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Abstract Background: Pre-clinically, phosphoinositide 3-kinase (PI3K) inhibition radiosen-

sitises tumours by increasing intrinsic radiosensitivity and by reducing tumour hypoxia. We

assessed whether buparlisib, a class 1 PI3K inhibitor, can be safely combined with radio-

therapy in patients with non-small cell lung carcinoma (NSCLC) and investigated its effect

on tumour hypoxia.

Methods: This was a 3 þ 3 dose escalation and dose expansion phase I trial in patients with

advanced NSCLC. Buparlisib dose levels were 50 mg, 80 mg and 100 mg once daily orally for

2 weeks, with palliative thoracic radiotherapy (20 Gy in 5 fractions) delivered during week 2.
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Tumour hypoxic volume (HV) was measured using 18F-fluoromisonidazole positron-emission

tomographyecomputed tomography at baseline and following 1 week of buparlisib.

Results: Twenty-one patients were recruited with 9 patients evaluable for maximum tolerated

dose (MTD) analysis. No dose-limiting toxicity was reported; therefore, 100 mg was declared

the MTD, and 10 patients received this dose in the expansion phase. Ninety-four percent of

treatment-related adverse events were �grade 2 with fatigue (67%), nausea (24%) and

decreased appetite (19%) most common per patient. One serious adverse event (grade 3 hy-

poalbuminaemia) was possibly related to buparlisib. No unexpected radiotherapy toxicity

was reported. Ten (67%) of 15 patients evaluable for imaging analysis were responders with

20% median reduction in HV at the MTD.

Conclusion: This is the first clinical trial to combine a PI3K inhibitor with radiotherapy in

NSCLC and investigate the effects of PI3K inhibition on tumour hypoxia. This combination

was well tolerated and PI3K inhibition reduced hypoxia, warranting investigation into

whether this novel class of radiosensitisers can improve radiotherapy outcomes.

ª 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Radiotherapy is used in half of patients with cancer [1];

however, tumour response and treatment efficacy are

highly variable. In locally advanced non-small cell lung

carcinoma (NSCLC), outcomes following standard

radical (chemo)radiotherapy remain exceptionally poor

with 5-year overall survival only in the region of 15% [2].
It is well recognised that suboptimal locoregional con-

trol contributes to such poor outcomes [3] and that the

development of novel radiosensitisers represents an

unmet clinical need for this patient group.

Intracellular signal transduction pathways are known

to play an important role in determining tumour

response to radiation, thus providing opportunity for

developing radiosensitisers [4]. In particular, the well-
studied EGFR/Ras/PI3K/Akt pathway appears to be

pivotal. Aberrant activation of this pathway is common

in many tumour types, including NSCLC, and correlates

with poor clinical outcomes after radiotherapy [5e7].

In vitro radiosensitivity studies demonstrate that acti-

vation of Ras, PI3K or Akt results in marked resistance

of tumour cell lines to radiation, whereas inhibition

improves response [8].
The importance of the EGFR/Ras/PI3K/Akt

pathway in modifying the tumour microenvironment to

alter radiation response has also become apparent,

specifically with regard to oxygenation. In vivo experi-

ments have shown that inhibitors of EGFR, Ras,

PI3K and Akt result in marked ‘normalisation’ of

tumour microvasculature with durable increases in

perfusion and alleviation of tumour hypoxia [9,10].
Hypoxic regions are a common feature of solid tumours

and result from an imbalance between high oxygen de-

mand and poor oxygen delivery because of dysfunc-

tional tumour vasculature [11]. Hypoxia is associated

with an aggressive tumour phenotype and treatment

resistance, which is especially pertinent for radiotherapy
[12]. There is therefore significant interest in developing
hypoxia modifiers as radiosensitisers and the ability of

PI3K inhibitors to reduce tumour hypoxia represents a

novel class of agents for this purpose. In vivo experi-

ments have demonstrated that PI3K inhibition results in

significant tumour growth delay after radiation because

of vascular remodelling which is independent and syn-

ergistic to increasing intrinsic radiosensitivity [13].

Buparlisib (BKM120) (Novartis International AG,
Switzerland) is an oral pan class 1 PI3K inhibitor. In

xenografts, buparlisib reduces tumour hypoxia through

rapid vascular remodelling [13]. In vitro studies have also

demonstrated that buparlisib inhibits tumour mito-

chondrial oxygen consumption, thereby further

contributing to hypoxia modification [14]. Clinical

studies using buparlisib have been conducted in a range

of tumour types, with established favourable pharma-
cokinetics, acceptable toxicity and mixed response rates

[15e17]. Although buparlisib has significant potential to

improve radiotherapy response, no previous trials have

combined this agent with radiation.

We therefore conducted a phase I clinical trial of

buparlisib with thoracic radiotherapy. The primary aim

of this study was to investigate the safety and maximum

tolerated dose (MTD) of buparlisib in combination with
palliative radiotherapy. Palliative radiotherapy was

chosen as there were no previous reports of combining

this agent with radiation and because of the significant

toxicity of radical radiotherapy in NSCLC. This study

also investigated the effect of buparlisib on tumour

hypoxia, using 18F-fluoromisonidazole (FMISO) posi-

tron-emission tomographyecomputed tomography

(PET-CT). The use of radiolabelled tracers such as
FMISO has become the most widely used method for

the clinical study of tumour hypoxia. This non-invasive

method correlates with other measures of hypoxia, is

highly reproducible and functions as a predictive

biomarker of radiotherapy outcomes [18e20].

http://creativecommons.org/licenses/by/4.0/
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Our findings provide clinical evidence for the safety

of combining PI3K inhibition with thoracic radio-

therapy and for the effect of this class of agents on

tumour hypoxia in NSCLC.
2. Materials and methods

2.1. Study design

This was a single-centre (Oxford Cancer Centre), open-
label, dose escalation and expansion phase I clinical trial

(EudraCT number: 2012-003762-40). All patients pro-

vided written consent and trial conduct complied with

the Declaration of Helsinki. Ethical approval was ob-

tained from National Research Ethics Service Com-

mittee South Central Oxford B (12/SC/0674).

Dose escalation of oral once daily (OD) buparlisib

followed a standard 3 þ 3 design with three pre-
determined dose cohorts: cohort 1 50 mg, cohort 2

80 mg and cohort 3 100 mg. Primary end-points assessed

the safety and determined the MTD of buparlisib when

combined with palliative thoracic radiotherapy. The

MTD was defined as the dose at which no more than

0 of 3 patients or 1 of 6 patients experienced a dose

limiting toxicity (DLT). Dose escalation was not

permitted beyond 100 mg OD as this dose has previ-
ously been established as the single agent MTD [15].

Once the MTD was determined, this dose was used in an

expansion cohort of 6 patients with data from all trial

patients used to investigate the effect of buparlisib on

tumour hypoxia and perfusion after 1 week of treatment

(secondary trial end-points). The trial schema is shown

in Fig. 1.

2.2. Patients

Patients aged �18 years with life expectancy of �16

weeks, Eastern Cooperative Oncology Group Perfor-

mance Status of 0e2, histologically confirmed advanced
Fig. 1. Trial schema. D, day; FMISO, 18F-fluoromisonidazole; PET,

raphy; OD, once daily; MTD, maximum tolerated dose.
stage NSCLC and a thoracic lesion requiring palliative

radiotherapy were eligible. Key exclusion criteria were

uncontrolled central nervous system metastases, poorly

controlled diabetes mellitus, psychiatric illness, cardiac

disease or other malignancy (other than NSCLC) in the

last three years. Anti-cancer therapy within 28 days;

previous thoracic radiotherapy or exposure to PI3K,

mTOR, or Akt inhibitors was not permitted. Full details
of the study design including eligibility criteria can be

found in the trial protocol provided as Supplementary

information.

2.3. Treatment regimen

Oral buparlisib was administered OD for 14 days with

palliative thoracic radiotherapy delivered during the

second week. For radiotherapy planning, patients un-

derwent CT simulation with gross tumour volume out-

lined and 2 cm margin added for field edge. Treatment

was delivered using parallel 6 or 15 MV photon beams,

and 20 Gy in 5 daily fractions was prescribed according
to International Commission on Radiation Units

(ICRU 62) guidance. As palliative radiation was used,

no dose constraints were specified.

2.4. Assessments

Adverse events (AEs) were graded according to the

National Cancer Institute’s Common Terminology

Criteria (NCI CTCAE version 4.0). DLT was defined as

follows: �grade 3 non-haematological toxicity

(excluding nausea, vomiting or diarrhoea) that required

hospitalisation or which did not resolve to �grade 2

within 7 days, �grade 3 nausea, vomiting or diarrhoea
that persisted for >48 h, �grade 3 pneumonitis, �grade

4 haematological toxicity and grade �3 mood change if

baseline score was 2 in the self-reported PHQ-9 or

GAD-7 mood questionnaire or grade �2 mood change

if baseline score was �1. DLT was considered if toxicity
positron-emission tomography; pCT, perfusion computed tomog-



Fig. 2. Consort diagram. FMISO, 18F-fluoromisonidazole; MTD, maximum tolerated dose; PET, positron-emission tomography; pCT,

perfusion computed tomography.
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was attributable to buparlisib or its interaction with

radiotherapy.

Tumour response was the change in tumour hypoxic
volume (HV) as detected by FMISO PET-CT per-

formed at baseline and on day 8 of buparlisib, before

radiotherapy. Patients were imaged using a Discovery

690 or 710 PET-CT scanner (GE Healthcare). 370 MBq

of FMISO (University of Cambridge, UK) was injected

and a 10-min image acquired 4 h after injection. CT

was performed for localisation and PET attenuation

correction. Tumour outlining was performed by an
experienced PET-CT radiologist. Background mean

standardised uptake (SUVmean) was obtained by out-

lining blood in the descending aorta. To determine HV,

voxel-by-voxel SUVs were divided by the background

SUVmean providing tumour-to-blood ratio (TBR)

values, and voxels with TBR �1.4 were classified hyp-

oxic, as previously described [21]. Volumes of hypoxic

voxels before and after buparlisib were compared and
�10% reduction in HV was defined as a response. This

cutoff was based on reproducibility test-retest data for

FMISO imaging [20] and used the minimum detectable
change (MDC) method [22]. Okamoto et al. showed a

mean difference of 2.7% and SD 14% in tumour-to-

muscle (TMR) volumes from FMISO scans repeated
within 48 h (n Z 9, excluding two patients with TMR

volumes <1.5 mL) [20]. MDC is the smallest change at

95% confidence interval and is defined as the standard

error (4.7) multiplied by 1.96, giving 9.2%. Our �10%

threshold was ratified by the University’s independent

Early Phase Trial Oversight Committee in combination

with an external radiologist.

Changes in tumour perfusion were also investigated
using perfusion CT (pCT) imaging. The pCT technique

used is provided as Supplementary methodology.
2.5. Statistical analysis

Patients were evaluable for DLT analysis after 14 days
of buparlisib if they completed 56 days of evaluation or

withdrew early after experiencing DLT. Patients who

withdrew early for other reasons were deemed non-

evaluable and were replaced. All patients who received
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a dose of buparlisib were included in the safety anal-

ysis, for which descriptive statistics were used.

Secondary end-point analysis included all patients

who had an interpretable pair of FMISO PET-CT scans.

Patients with insufficient baseline HV (<1.5 mL) to

reliably measure change were excluded. The number of

hypoxia or perfusion responders, median response per

cohort and waterfall plots were used to summarise the
data. Analysis was undertaken using Stata v15.0 (Sta-

taCorp, College Station, TX).
3. Results

From June 2013 to August 2017, 21 patients were

recruited. Eleven patients were registered for dose

escalation with 9 evaluable for DLT analysis. Ten pa-

tients were registered during dose expansion, and in

total, 15 patients were evaluable for tumour response

analysis. The CONSORT diagram is shown in Fig. 2,
and baseline patient characteristics are summarised in

Table 1.

All 21 patients started buparlisib and 19 patients

started radiotherapy. Fifteen (71%) patients had full

compliance with treatment. Three patients discontinued

treatment because of AEs (described below), 1 patient

accidentally missed a dose of buparlisib, 1 patient
Table 1
Baseline characteristics.

Characteristics Dose escalation phase

Cohort 1 (n Z 4) Cohort 2 (n

Age [years] 64 (58e77) 72 (63e75)

Gender

Male 50 (2) 50 (2)

Female 50 (2) 50 (2)

Stage of disease

IV 100 (4) 100 (4)

ECOG performance status

0 0 (0) 0 (0)

1 100 (4) 100 (4)

Tumour volume [mL]a 111 (13e510) 135 (29e204

Histology

Adenocarcinoma 75 (3) 25 (1)

Squamous cell 25 (1) 75 (3)

Previous treatment

Chemotherapy 50 (2) 50 (2)

Surgical treatment 0 0

Extrathoracic radiotherapy 0 25 (1)

Predominant clinical indication for radiotherapy

Chest pain 25 (1) 0

Bronchial obstruction 75 (3) 25 (1)

Cough 0 25 (1)

Superior vena cava obstruction 0 25 (1)

Solitary site of progression 0 25 (1)

Haemoptysis 0 0

Left atrium invasion 0 0

Brachial plexus invasion 0 0

Data are median (range) or % (number).

ECOG, Eastern Cooperative Oncology Group.
a Tumour volume data were only available for patients evaluable for the
discontinued treatment because of disease progression

and 1 patient was replaced because of FMISO produc-

tion failure.
3.1. MTD and safety assessment

No DLT was reported; therefore, buparlisib 100 mg OD

was declared as the MTD. The safety analysis results are

summarised in Table 2. In total, 114 AEs were experi-

enced by 20 of 21 patients of which 103 (90%) were

�grade 2. One patient in the expansion cohort dis-
continued treatment because of worsening long-standing

abdominal pain (unrelated to treatment). 94% of all AEs

with any relation to treatment were �grade 2 with only

three �grade 3 AEs deemed possibly related to treat-

ment (2 fatigue and 1 hypoalbuminaemia). Most com-

mon treatment-related AEs per patient were fatigue

(67%), nausea (24%) and decreased appetite (19%).

Five AEs, all grade 1, were specifically related to
radiotherapy and included skin reaction in 3 patients

and fatigue and cough in another patient. There was no

reported acute oesophagitis or pneumonitis.

Four patients experienced serious adverse events.

One patient (cohort 2) discontinued treatment due to

grade 5 lower limb ischaemia, which was deemed unre-

lated to treatment due to long-standing vascular disease
Expansion

phase (n Z 10)

Total (n Z 21)

Z 4) Cohort 3 (n Z 3)

68 (68e72) 68 (52e78) 69 (52e78)

33 (1) 20 (2) 33 (7)

67 (2) 80 (8) 67 (14)

100 (3) 100 (10) 100 (21)

33 (1) 50 (5) 29 (6)

67 (2) 50 (5) 71 (15)

) 54 (40e219) 99 (8e250) 101 (8e510)

33 (1) 60 (6) 52 (11)

67 (2) 40 (4) 48 (10)

33 (1) 70 (7) 57 (12)

0 60 (6) 29 (6)

0 30 (3) 19 (4)

33 (1) 40 (4) 29 (6)

0 10 (1) 24 (5)

0 40 (4) 24 (5)

0 0 5 (1)

0 0 5 (1)

33 (1) 0 5 (1)

33 (1) 0 5 (1)

0 10 (1) 5 (1)

imaging analysis.
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and symptoms of acute ischaemia preceded starting

buparlisib. One patient (cohort 3) developed grade 3

lung infection (unrelated to treatment) and hypo-

albuminaemia (possibly related to buparlisib) and dis-

continued treatment. Two patients (cohorts 1 and 2)

experienced grade 3 lung infection (unrelated to

treatment).

3.2. Tumour response to buparlisib

Fifteen patients were evaluable for tumour hypoxia

analysis. As shown by the waterfall plot in Fig. 3, 10

(67%) of 15 patients were responders. Table 3 summa-

rises the hypoxia response data. All cohort 1 patients

were non-responders with 7% median HV increase. All
cohort 2 patients were responders with 18% median HV

decrease. In cohort 3 and the expansion cohort, 7 (77%)

of 9 patients were responders with 20% median HV

decrease. No correlation between tumour size and
Table 2
Adverse events.

Parameter Dose group

Cohort 1 [50 mg] (n Z 4) Coh

Total number of AE episodesb 19 17

Patients with

AEs 4 (100) 4 (10

Grade � 3 AEs 1 (25) 2 (50

SAEs 1 (25) 2 (50

Patients discontinued treatment because of

AEs 0 0

SAEs 0 1 (25

Patients experiencing treatment-related AEsc

Fatigue 2 (50) 3 (75

Nausea 1 (25) 1 (25

Decreased appetite 1 (25) 0

Constipation 0 0

Radiotherapy skin reaction 1 (25) 0

Rash 0 0

Altered/depressed mood 0 0

Dyspepsia 0 1 (25

Hiccups 0 0

Oral candidiasis 1 (25) 0

Headache 0 1 (25

Weight loss 0 0

Stomatitis 0 0

Personality change 0 0

Dry skin 0 0

Hyperglycaemia 0 0

Hypophosphatemia 0 0

Vomiting 0 0

Cough 0 0

Nightmare 0 0

Total number of treatment-related AEs 6 6

Patients experiencing treatment-related SAEs

Hypoalbuminaemia 0 0

Data are patient number (%).

AE, adverse event; SAE, serious adverse event.
a Cohort 3 includes patients in the dose escalation and expansion phases
b AE episodes are shown only once per patient and if an AE occurrence w

AE which was present at baseline increased during study participation.
c Shown are AEs of all grades with possible, probable or definite relatio
response was observed (Supplementary Fig. S1). Fig. 4

shows representative examples of FMISO PET-CT im-

ages for an expansion cohort patient.

pCT results are shown as supplementary data (Tables

S1 and S2).
4. Discussion

We demonstrate that buparlisib, a pan class 1 PI3K

inhibitor, is well tolerated with palliative thoracic

radiotherapy and that this agent rapidly reduces tumour

hypoxia.

Although in our study a palliative dose of radiation

was used, the lack of any unexpected radiotherapy
toxicity reported is encouraging for the safe combina-

tion of this class of agent with radical doses of radiation.

Pre-clinical data demonstrate that PI3K inhibition

radiosensitises tumours, at least in part, by alleviating
Total (n Z 21)

ort 2 [80 mg] (n Z 4) Cohort 3a [100 mg] (n Z 13)

78 114

0) 12 (92) 20 (95)

) 4 (31) 7 (33)

) 1 (8) 4 (19)

1 (8) 1 (5)

) 1 (8) 2 (10)

) 9 (69) 14 (67)

) 3 (23) 5 (24)

3 (23) 4 (19)

3 (23) 3 (14)

3 (23) 4 (19)

4 (31) 4 (19)

3 (23) 3 (14)

) 1 (8) 2 (10)

2 (15) 2 (10)

0 1 (5)

) 0 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

1 (8) 1 (5)

41 53

1 (8) 1 (5)

.

as temporally associated with study participation, or if the grade of an

n to treatment with buparlisib and/or radiotherapy.



Fig. 3. Waterfall plot of change in tumour hypoxic volume. Per-

centage change of tumour hypoxic volume per patient after 7 days

of buparlisib treatment. A �10% reduction in hypoxic volume

(dotted line) was classified a positive response. C1, cohort 1 (50 mg

OD); C2, cohort 2 (80 mg OD); C3, cohort 3 (100 mg OD);

FMISO, 18F-fluoromisonidazole; TBR, tumour-to-blood FMISO

uptake ratio (�1.4).

Fig. 4. Example of tumour hypoxic response. FMISO PET-CT

images for one patient in the expansion cohort before (A) and

after (B) buparlisib treatment. PET images are fused with the

corresponding CT and displayed on a tumour-to-blood uptake

ratio (TBR) colour scale. Red regions depict a TBR greater than

1.4, indicating hypoxia, and no visible PET tracer uptake depicts a

TBR below 1, indicating normoxia. In this case, there was a 42%

reduction in tumour hypoxic volume after buparlisib. FMISO,
18F-fluoromisonidazole; PET, positron-emission tomography; CT,

computed tomography.
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tumour hypoxia [13]. As hypoxia is predominantly a

tumour-specific phenomenon, in principle, such agents

are expected to preferentially radiosensitise tumours, as

compared with normal tissues.

Trial accrual was challenging for numerous reasons.

Patients with metastatic NSCLC requiring palliative
radiotherapy were generally unwell with poor perfor-

mance status and many were therefore ineligible for the

study. Commonly, radiotherapy was indicated urgently

and thus trial participation was clinically inappropriate.

The high rate of AEs experienced by patients reflects this

borderline fit and deteriorating patient group. The

increasing use of targeted treatments for advanced

NSCLC was a further challenge to recruitment, as was
the fact that this was a single-centre study.

Despite the relatively small size of our study, the

observation that buparlisib reduces tumour hypoxia

supports pre-clinical data and therefore represents an

important clinical proof-of-principle for this class of

agents. The absence of such studies in the development of

hypoxia modifiers previously may explain why numerous

clinical trials have failed to demonstrate improvement in
radiotherapy outcomes. A lack of sufficiently validated
Table 3
Summary of FMISO PET-CT results.

Cohort Number (%) of

responders per cohort

TBR >

First sc

Median

Cohort 1 (n Z 3) 0 44.4 [0

Cohort 2 (n Z 3) 3 (100) 51.3 [1

Cohort 3 (n Z 9) 7 (77) 33.1 [6

Overall (n [ 15) 10 (67) 40.4 [3

Data are number (%) or median (IQR). Cohort 3 includes patients in the

FMISO, 18F-fluoromisonidazole; PET, positron-emission tomography; TB
hypoxia biomarkers to enable selection of patients who

would benefit from hypoxia treatment is further contrib-

utory. For example, in head and neck cancer, the hypoxia-

targeting agents nimorazole and tirapazamine may have

improved radiotherapy outcomes if predictive hypoxia

biomarkers were used to select patients [23,24]. Therefore,
to further develop PI3K inhibitors as radiosensitisers, it is

important to also develop and incorporate hypoxia bio-

markers into future study design.

As our data demonstrate a reduction in hypoxia after

PI3K inhibition, it is hoped that combining such agents

with radiotherapy may improve outcomes. To establish

this, studies in the radical radiotherapy setting are

required. As FMISO PET relies on tracer accumulation
in viable tissues with oxygen tensions significantly below

that at which radioresistance becomes a feature [25], it is
1.4 volume

an

[IQR]

Second scan

Median [IQR]

% change

Median [IQR]

.4 239] 47.6 [0.4 233] 7.1 [�2.5 14.3]

.3 99.5] 42.2 [1.1 75.6] �17.6 [�24.1 e16.7]

.9 43.7] 25.4 [4.9 42.0] �19.9 [�41.9 e14.6]

.3 67.5] 27.6 [3.5 52.5] L16.8 [L37.1 7.1]

dose escalation and expansion phases.

R, tumour-to-blood ratio; IQR, interquartile range.
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expected that the reduction in HV detected in our study

is likely to result in improved tumour radiation

response. This is supported by the observation that high

FMISO uptake in patients with NSCLC is associated

with significantly worse outcomes after radiotherapy

[18]. Furthermore, given that PI3K inhibition is known

to improve tumour intrinsic radiosensitisation, the ef-

fects would be anticipated to be more pronounced than
through hypoxia reduction alone. Encouragingly, early

phase studies combining inhibitors of downstream sig-

nalling targets of PI3K with radiotherapy, such as the

AKT inhibitor nelfinavir, have reported promising

response rates and outcomes in rectal and pancreatic

cancer [26e28]. Hahn et al. demonstrated that upstream

inhibition of Ras with a farnesyltransferase inhibitor

resulted in impressive complete response rates in
NSCLC and head and neck cancer when combined with

radical radiotherapy [29].

Although, we observed a reduction in tumour hyp-

oxia in most patients, this did not always correspond

with increased tumour perfusion. This may reflect the

technical challenges of performing pCT in our patient

population, namely tumours were often only partly

imaged because of large size with significant motion
artefact. Interestingly, this may also perhaps represent

the fact that buparlisib inhibits tumour mitochondrial

oxygen consumption [14], and so changes in hypoxia

and perfusion may, at least in part, be independent

phenomena. In fact, mathematical modelling suggests

that reducing oxygen consumption may be more effec-

tive in addressing tumour hypoxia compared with stra-

tegies aimed solely at improving oxygen delivery [30].

5. Conclusion

Overall, the results from this trial demonstrate that

PI3K inhibition reduces tumour hypoxia in patients
with NSCLC and when combined with thoracic radio-

therapy is well tolerated. This study supports the

development of clinical trials combining this class of

agent with radical radiotherapy with the aim of

improving outcomes in NSCLC.
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