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ON THE WEIGHTED ENUMERATION OF ALTERNATING SIGN

MATRICES AND DESCENDING PLANE PARTITIONS

ROGER E. BEHREND, PHILIPPE DI FRANCESCO, AND PAUL ZINN-JUSTIN

Abstract. We prove a conjecture of Mills, Robbins and Rumsey [Alternating sign matri-
ces and descending plane partitions, J. Combin. Theory Ser. A 34 (1983), 340–359] that,
for any n, k, m and p, the number of n × n alternating sign matrices (ASMs) for which
the 1 of the first row is in column k + 1 and there are exactly m −1’s and m+ p inversions
is equal to the number of descending plane partitions (DPPs) for which each part is at
most n and there are exactly k parts equal to n, m special parts and p nonspecial parts.
The proof involves expressing the associated generating functions for ASMs and DPPs with
fixed n as determinants of n × n matrices, and using elementary transformations to show
that these determinants are equal. The determinants themselves are obtained by standard
methods: for ASMs this involves using the Izergin–Korepin formula for the partition func-
tion of the six-vertex model with domain-wall boundary conditions, together with a bijection
between ASMs and configurations of this model, and for DPPs it involves using the Lind-
ström–Gessel–Viennot theorem, together with a bijection between DPPs and certain sets of
nonintersecting lattice paths.

1. Preliminaries

Alternating sign matrices (ASMs) and descending plane partitions (DPPs) are combina-
torial objects which arose within a few years of each other in the late 1970s and early 1980s,
but in somewhat different contexts. DPPs were introduced by Andrews while attempting to
prove a conjectured formula for the generating function of cyclically symmetric plane parti-
tions [1, 2], whereas ASMs first appeared during studies by Mills, Robbins and Rumsey of
Dodgson’s condensation algorithm for the evaluation of determinants [47, 48, 60].

However, despite their independent origins, it soon became apparent that ASMs and DPPs
share some basic enumerative properties. In particular, it was conjectured by Mills, Robbins
and Rumsey [48, Conj. 3], in one of the early papers on the subject, that certain finite sets
of ASMs have the same sizes as certain finite sets of DPPs, where these sets are comprised of
all ASMs or DPPs with fixed values of particular statistics. It is the objective of this paper
to prove this conjecture.

Some special cases of this result are already known to be valid, the most noteworthy
perhaps being the fact, which follows from results of Andrews [2] and of Zeilberger [72] or
Kuperberg [38], that for any positive integer n, the number of n × n ASMs is equal to the
number of DPPs in which each part is at most n, with these numbers furthermore being
given by a simple product formula.

Key words and phrases. Alternating sign matrices, descending plane partitions, six-vertex model with
domain-wall boundary conditions, nonintersecting lattice paths.
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Many other similar results, involving particular classes, refinements, representations or
weightings of ASMs or plane partitions, and equalities of sizes of finite sets or explicit formu-
lae for these sizes, have also been proved. Such results can typically be stated very simply,
and yet are often conjectured long before they are proved.

Ideally, results of this sort would be proved bijectively, but unfortunately few such proofs
are currently known in this area. Nevertheless, there are some alternative methods of proof
which have been widely successful. For ASMs, one of the most successful techniques involves
first applying a simple correspondence between ASMs and configurations of certain cases
of the statistical mechanical six-vertex model, then using the integrability of this model to
obtain a determinant or Pfaffian expression for the model’s partition function, and finally
using certain methods related to determinants or Pfaffians to transform or evaluate the de-
terminant or Pfaffian, for particular values of the additional parameters which necessarily
appear, thereby leading to enumerative results. For plane partitions, one of the most success-
ful techniques involves first applying a simple correspondence between plane partitions and
sets of nonintersecting lattice paths, then using certain general results for nonintersecting
paths to express the number of such sets of paths, or the associated generating function, as
a determinant or Pfaffian, and finally again using certain methods to transform or evaluate
the determinant or Pfaffian, thus leading to enumerative results.

In this paper, elements of each of these by-now-standard techniques are employed to
obtain determinant formulae for the generating functions associated with the sets of ASMs
and DPPs under consideration. Transformations are then applied to the generating functions
associated with the entries of the underlying matrices of these determinants, and this enables
it to be shown that the determinants are equal, which in turn implies that the sizes of the sets
in the Mills, Robbins and Rumsey conjecture are equal, but without these sizes having been
evaluated explicitly. Although this proof has much in common with other known proofs in
this area, one of its distinguishing features is that it involves deriving a determinant for the
partition function of the relevant case of the six-vertex model which depends directly on the
underlying weights of the model, rather than on the spectral parameters of the model (which
have only an implicit inverse-functional dependence on the weights, resulting from certain
rational functions which give the weights in terms of the spectral parameters). Indeed, once
this determinant for the partition function in terms of the weights has been obtained, the
equality of the determinants for ASMs and DPPs follows relatively straightforwardly.

For reviews of, and historical information about, enumerative results and conjectures in-
volving ASMs or plane partitions, see for example Bressoud [7], Bressoud and Propp [8],
Propp [53, 54, 55], Robbins [58, 59], Stanley [62, 63, 64] and Zeilberger [74]. Note, however,
that most of these reviews were written over a decade ago, and that many of the conjec-
tures which they report have since been proved. For example, most of the conjectures for
symmetry classes of ASMs listed by Robbins in [58, Table 3] have been proved by Kuper-
berg [39], Okada [52] or Razumov and Stroganov [56, 57]. Note also that, in the past decade,
further interesting results and conjectures involving ASMs or plane partitions, and revealing
new connections with algebra, mathematical physics and other areas, have appeared, the
most prominent of these being the Razumov–Stroganov (ex-)conjecture. For information
about, and references for, these more recent developments see, for example, the reviews of
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de Gier [19, 20, 21] and Zinn-Justin [75], and the proof of the Razumov–Stroganov conjecture
by Cantini and Sportiello [10].

An outline of this paper is as follows. In Sections 1.1 and 1.2 we give the definitions of
ASMs and DPPs, of certain statistics for ASMs and DPPs, and of the generating functions
associated with these statistics. In Section 1.3 we state the Mills, Robbins and Rumsey
conjecture, and outline the cases which have been previously proved or studied. We then
present the proof of this conjecture in the next two sections. For ease of understanding,
the proof of a certain, unrefined version of the result is given first in Section 2, with the
proof of the general, refined case following in Section 3. Both of these sections have the same
structure, in which the ASM generating function is expressed as a determinant in Sections 2.1
and 3.1, the DPP generating function is expressed as a determinant in Sections 2.2 and 3.2,
and it is shown that the determinants are equal in Sections 2.3 and 3.3. We conclude the
paper by discussing some further aspects of this work, and some future work, in Section 4.

1.1. Definitions. In this subsection, definitions will be given for ASMs and DPPs, and for
sets of ASMs and DPPs of order n.

An ASM, first defined by Mills, Robbins and Rumsey [47, 48], is a square matrix in which:

• Each entry is 0, 1 or −1.
• The nonzero entries alternate in sign along each row and column.
• The sum of entries in each row and column is 1.

It follows that an ASM has a unique 1 in each of its first and last row and column, and that
any permutation matrix is an ASM. A further example of an ASM is

(1) A =




0 0 0 1 0 0
0 1 0 −1 1 0
1 −1 1 0 0 0
0 0 0 1 0 0
0 1 0 −1 0 1
0 0 0 1 0 0




.

A DPP, first defined by Andrews [1, 2], is an array of positive integers, called parts, of the
form

(2)

D11 D12 D13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .D1,λ1

D22 D23 . . . . . . . . . . . . . . . . . . . . . . . . . . .D2,λ2+1

D33 . . . . . . . . . . . . . . . . . . . . . .D3,λ3+2

..
.

. .
.

Dtt . . . . . . . .Dt,λt+t−1

in which:

• The parts decrease weakly along rows, i.e., Dij ≥ Di,j+1 whenever both sides are defined.
• The parts decrease strictly down columns, i.e., Dij > Di+1,j whenever both sides are
defined.
• The first parts of each row and the row lengths satisfy

(3) D11 > λ1 ≥ D22 > λ2 ≥ . . . ≥ Dt−1,t−1 > λt−1 ≥ Dtt > λt.
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The empty array is regarded as a DPP and denoted ∅. A further example of a DPP is

(4)
6 6 6 5 2

D = 4 4 1
3

.

We now define sets of ASMs and DPPs of order n, for each positive integer n. Let ASM(n)
be the set of all n× n ASMs, and let DPP(n) be the set of all DPPs in which each part is
at most n.

For example,

ASM(3) =








1 0 0
0 1 0
0 0 1



 ,




0 0 1
0 1 0
1 0 0



 ,




1 0 0
0 0 1
0 1 0



 ,




0 0 1
1 0 0
0 1 0



 ,(5)



0 1 0
1 0 0
0 0 1


 ,



0 1 0
0 0 1
1 0 0


 ,



0 1 0
1 −1 1
0 1 0







,

DPP(3) =

{
∅, 3 3

2, 2, 3 3, 3, 3 2, 3 1

}
.(6)

Note that a DPP D will often be associated with a particular value of n for which D ∈
DPP(n) (i.e., a particular n ≥ D11). For example, the DPP of (4) will be associated
throughout this paper with n = 6.

1.2. Statistics and generating functions. In this subsection, certain statistics will be
introduced for ASMs and DPPs, and the associated generating functions will be defined.

For a given positive integer n, define statistics for each A ∈ ASM(n) as

ν(A) =
∑

1≤i<i′≤n
1≤j′≤j≤n

Aij Ai′j′ =
∑

1≤i≤i′≤n
1≤j′<j≤n

Aij Ai′j′,(7)

µ(A) = number of −1’s in A,(8)

ρ(A) = number of 0’s to the left of the 1 in the first row of A,(9)

and define statistics for each D ∈ DPP(n) as

ν(D) = number of parts of D for which Dij > j − i,(10)

µ(D) = number of parts of D for which Dij ≤ j − i,(11)

ρ(D) = number of parts equal to n in (necessarily the first row of) D.(12)

The equality between the two expressions for ν(A) in (7) holds for any matrix A in which
the sum of entries in a row and column is the same for all rows and columns, and therefore
holds for an ASM A.

A part of a DPP D for which Dij ≤ j− i is referred to by Mills, Robbins and Rumsey [48,
p. 344] as a special part. Thus, ν(D) and µ(D) are the numbers of nonspecial and special
parts respectively in D.
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The examples (1) and (4) have ν(A) = 5, µ(A) = 3, ρ(A) = 3, ν(D) = 7, µ(D) = 2 and
(taking n = 6) ρ(D) = 3.

Definitions (7)–(12) are based on definitions of statistics for ASMs and DPPs first intro-
duced by Mills, Robbins and Rumsey [48, pp. 344–345]. However, note that two of the three
statistics used in [48] differ slightly from those used here. In particular, Mills, Robbins and
Rumsey use statistics ν ′, µ and ρ′, where µ is again given by (8) and (11), while ν ′ and ρ′

are given by ν ′(A) =
∑

1≤i<i′≤n, 1≤j′<j≤nAij Ai′j′ for A ∈ ASM(n), ν ′(D) = total number of

parts in D for D ∈ DPP(n), and ρ′(X) = ρ(X) + 1 for X ∈ ASM(n) or X ∈ DPP(n). It
follows that ν ′(X) = ν(X) + µ(X) for any X ∈ ASM(n) or X ∈ DPP(n).

The statistic ν ′ for an ASM A is referred to by Mills, Robbins and Rumsey [48, p. 344]
as the number of inversions in A, since it generalizes the usual definition of the number
of inversions for permutation matrices. More specifically, if A ∈ ASM(n) is a permutation
matrix, i.e., if µ(A) = 0, then ν ′(A) is the number of inversions in the permutation π ∈ Sn
given by δπi,j = Aij . In fact, if A is a permutation matrix, then ν ′(A) = ν(A) so that ν could
be regarded as an alternative generalization of the number of inversions for permutation
matrices.

Now define generating functions, which give weighted enumerations of the elements of
ASM(n) or DPP(n) using arbitrary weights x, y and z associated with the statistics (7)–(9)
or (10)–(12), as

ZASM(n, x, y, z) =
∑

A∈ASM(n)

xν(A) yµ(A) zρ(A),(13)

ZDPP(n, x, y, z) =
∑

D∈DPP(n)

xν(D) yµ(D) zρ(D).(14)

For example, (5) and (6) give

(15) ZASM(3, x, y, z) = ZDPP(3, x, y, z) = 1 + x3z2 + x+ x2z2 + xz + x2z + xyz,

where the terms are written in an order which corresponds to that used in (5) and (6).

It follows easily from the definitions of ASMs and DPPs that the generating functions
satisfy

(16) ZASM(n, x, y, 0) = ZASM(n− 1, x, y, 1), ZDPP(n, x, y, 0) = ZDPP(n− 1, x, y, 1).

1.3. The Mills, Robbins and Rumsey conjecture. In this subsection, the Mills, Rob-
bins and Rumsey ASM-DPP conjecture will be stated, and special cases for which the result
is already known to be valid will be listed.

The result conjectured by Mills, Robbins and Rumsey [48, Conj. 3] (see also Bressoud [7,
Conj. 10]), whose proof is the primary focus of this paper, is as follows.

Theorem 1. The sizes of {A ∈ ASM(n) | ν(A) = p, µ(A) = m, ρ(A) = k} and {D ∈
DPP(n) | ν(D) = p, µ(D) = m, ρ(D) = k} are equal for any n, p, m and k.

Equivalently,

(17) ZASM(n, x, y, z) = ZDPP(n, x, y, z), for any n, x, y and z.
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Note that the statement of this result in [48] uses the slightly different statistics ν ′ and ρ′

outlined in Section 1.2. Note also that the ranges of the integers p, m and k can be restricted
to

p = 0, . . . , n(n−1)
2

, m = 0, . . . ,

{
(n−1)2

4
, n odd

n(n−2)
4

, n even,
k = 0, . . . , n− 1,

since each set in Theorem 1 is otherwise empty.

Furthermore, using certain symmetry operations on ASMs and DPPs which will be defined
in Section 4.2 (and, in particular, applying (99)), it follows that the size of either of the sets
in Theorem 1 is invariant under the replacement of p by n(n−1)/2−p−m and k by n−1−k.
Equivalently, the generating functions satisfy ZASM(n, x, y, z) = xn(n−1)/2zn−1ZASM(n,

1
x
, y
x
, 1
z
)

and ZDPP(n, x, y, z) = xn(n−1)/2zn−1ZDPP(n,
1
x
, y
x
, 1
z
).

The following two sections are devoted to the proof of Theorem 1. We first prove the
unrefined case z = 1 in Section 2, and then proceed to the refined case of arbitrary z in
Section 3. Both of these proofs have an identical structure, in which the ASM and DPP
generating functions are each expressed as determinants, and it is then shown that the
determinants are equal. However, since the details for z = 1 are somewhat simpler, it
seemed pedagogically preferable to consider this special case first. Although the proof of
Section 2 is thereby repeated in Section 3, some of the necessary notation and background
material appears only in Section 2.

In the remainder of the current section, we list special cases of Theorem 1 which have been
previously proved or studied. However, this information is not needed for the full proofs of
Sections 2 and 3, and so could be omitted by readers who are interested only in those proofs.

The cases of Theorem 1 which have already been proved in the literature are as follows.

• n small, p, m and k arbitrary. The conjecture can easily be verified by hand for small n,
and by computer for somewhat larger n. For example, Mills, Robbins and Rumsey [48,
pp. 345–346] explicitly considered the case n = 5, p = 3, m = 1 and k = 2, for which
there are 10 ASMs and 10 DPPs, and they stated that they had checked the conjecture
by computer for all cases with n ≤ 7. The validity of the conjecture for n = 3 can also
be seen from (15). Note that for n ≤ 3, each triplet of values of p, m and k is associated
with at most one ASM or DPP, but that for each n ≥ 4 there are cases associated with
several ASMs or DPPs.
• n arbitrary, p, m and k summed over (i.e., x = y = z = 1). In this case, which corresponds
to straight enumeration of ASMs or DPPs,

(18) |ASM(n)| = |DPP(n)| =
n−1∏

i=0

(3i+ 1)!

(n+ i)!
.

The product formula for |ASM(n)| was conjectured by Mills, Robbins and Rumsey [47,
Conj. 1], [48, Conj. 1], and first proved by Zeilberger [72] and Kuperberg [38], using two
very different methods. The product formula for |DPP(n)| (in a slightly different form)
was obtained by Andrews [1, Thm. 10].
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• n arbitrary, p and m summed over, 0 ≤ k ≤ n − 1 (i.e., x = y = 1). In this case, which
corresponds to so-called refined enumeration of ASMs or DPPs,

(19) |{A ∈ ASM(n) | ρ(A) = k}| = |{D ∈ DPP(n) | ρ(A) = k}| =

(n+ k − 1)! (2n− k − 2)!

(2n− 2)! k! (n− k − 1)!

n−2∏

i=0

(3i+ 1)!

(n+ i− 1)!
.

The product formula for refined ASM enumeration was conjectured (as an essentially
equivalent result) by Mills, Robbins and Rumsey [48, Conj. 2], and first proved by Zeil-
berger [73]. (For alternative proofs of this, and the product formula for |ASM(n)| in (18),
see for example Colomo and Pronko [16, 17] and Fischer [27].) The product formula for
refined DPP enumeration follows from results of Mills, Robbins and Rumsey [47]. (For
further details see Bressoud [7, Conj. 9 and Sec. 5.3].)
• n, p and k arbitrary, m = 0 (i.e., permutation matrices, DPPs with no special parts). A
proof for this case was known to Mills, Robbins and Rumsey [48, p. 345], who stated that
the conjecture “has been proved for the case m = 0”, but did not provide further details.
(See also Bressoud [7, Exercise 6.1.2].) However, a bijection between {A ∈ ASM(n) |
ν(A) = p, µ(A) = 0, ρ(A) = k} and {D ∈ DPP(n) | ν(D) = p, µ(D) = 0, ρ(D) = k} is
outlined briefly by Lalonde [42] and in more detail (but using slightly different terminology)
by Striker [67]. The mapping from A to D is as follows. First, let χi be the number of 1’s
below and to the left of the 1 in row i of A, i.e., χi =

∑
i<i′≤n, 1≤j′<j≤nAij Ai′j′. (Note that

(χ1, . . . , χn) ∈ {0, 1, . . . , n−1}× . . .×{0, 1}×{0}, so that this is an inversion table.) Then
create D, in the form of (2), using χi (n+1−i)’s for each i = 1, . . . , n, by taking these parts
in weakly decreasing order and forming the rows of D successively from top to bottom,
placing as many parts as possible successively from left to right into each row, subject to
the condition that the length of a row does not exceed its rightmost part. The mapping
from D to A is as follows. First, let χi be the number of parts of D equal to n + 1 − i.
Then form a permutation π ∈ Sn by successively, for i = 1, . . . , n, removing the (χi +1)th
largest element from {1, . . . , n} and setting this to be πi. Finally, obtain the entries of A
as Aij = δπi,j. It follows from this bijection that

(20) ZASM(n, x, 0, z) = ZDPP(n, x, 0, z) = [n]xz [n− 1]x!,

where [n]x = 1 + x + . . . + xn−1 and [n]x! = [n]x[n − 1]x . . . [1]x. An alternative bijec-
tion between {A ∈ ASM(n) | µ(A) = 0, ρ(A) = k, Aij = δπi,j, π has t ascents} and
{D ∈ DPP(n) | µ(D) = 0, ρ(D) = k, D has t rows} is given by Ayyer [3], but for this
bijection ν(A) does not equal ν(D) for all corresponding A and D. Both of these bijections
can be visualized easily in terms of the set NILP(n) of sets of nonintersecting lattice paths
which will be defined in Section 2.2. Also, both of these bijections satisfy the property
that if A corresponds to D, then A∗ corresponds to D∗, where ∗ is a certain symmetry
operation on ASMs and DPPs which will be defined in Section 4.2.
• n, p and k arbitrary, m = 1 (i.e., ASMs with a single −1, DPPs with a single special
part). This case was proved nonbijectively by Lalonde in [40], with further aspects being
studied in [42]. Briefly, the proof involves showing that

∑
A∈ASM(n), µ(A)=1, ρ(A)=k x

ν(A) and∑
D∈DPP(n), µ(D)=1, ρ(D)=k x

ν(D) are each determined by the same recursion relations and
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boundary conditions. The relations for ASMs follow from a simple combinatorial exami-
nation of ASMs with a single −1, while the relations for DPPs are obtained by applying
algebraic transformations to a determinant formula, which is itself obtained using lattice
paths and a Lindström–Gessel–Viennot-type theorem.

Some further cases which do not seem to have been considered explicitly in the literature,
but which can be proved easily, are as follows.

• n arbitrary, p = k(k + 1)/2, m = k(n − k − 1), 0 ≤ k ≤ n − 1. In this case, there is a
single ASM A and a single DPP D for each n and k, where

(21) Aij =

{
(−1)i+j+k, k + 2 ≤ i+ j ≤ 2n− k and |i− j| ≤ k

0, otherwise,

and row i of D is comprised of k − i + 1 (n− i + 1)’s (all of which are nonspecial parts)
followed by n− k − 1 (k − i+ 1)’s (all of which are special parts), for i = 1, . . . , k. Thus,

(22) A =




k︷ ︸︸ ︷ n−k−1︷ ︸︸ ︷
0 · · · 0 1 0 · · · · · · 0
... . .

.
1 −1 1

...
0 1 −1

. . .
...

1 −1 1 0
0 1 −1 1
...

. . . −1 1 0... 1 −1 1 . .
. ...

0 · · · · · · 0 1 0 · · · 0




, D =

k︷ ︸︸ ︷ n−k−1︷ ︸︸ ︷
n n · · · n k · · · · · · k
n−1 · · · n−1 k−1 · · · · · · k−1

. . .
...

...
...

n−k+1 1 · · · · · · 1

Note that for k = 0, A is the n × n identity matrix and D = ∅, and these are the only
ASM and DPP for which ν(A) = ν(D) = 0.
• n, m and k arbitrary, p = 1 (i.e., ASMs with m + 1 inversions, DPPs with a single
nonspecial part). In this case, there are n−m− 2 ASMs and n−m− 2 DPPs for k = 0
and each m = 0, . . . , n − 3, there is a single ASM and a single DPP for k = 1 and each
m = 0, . . . , n − 2 , and there are no ASMs or DPPs for other values of m and k. The
ASMs A are given by

(23) Aij =





1, 1 ≤ i = j ≤ t− 1, t +m+ 2 ≤ i = j ≤ n,

t+ 1 ≤ i = j + 1 ≤ t +m+ 1 or t+ 1 ≤ i+ 1 = j ≤ t+m+ 1

−1, t+ 1 ≤ i = j ≤ t +m

0, otherwise,

and the DPPs consist of a single row comprised of a single n − t + 1 followed by m 1’s,
where t = 1, . . . , n − m − 1. The cases t = 2, . . . , n − m − 1 give k = 0, while the case
t = 1 gives k = 1.
• n, m and k arbitrary, p = n(n− 1)/2−m− 1. The ASMs and DPPs for this case can be
obtained from those of the previous case by applying certain symmetry operations which
will be defined in Section 4.2.
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• n, m and k arbitrary, p = 2 or p = n(n− 1)/2−m− 2. These cases can be proved using
an approach similar to that used for the previous two cases, although the details become
more complicated.

Finally, some closely related cases which have been studied, but without proofs of the con-
jecture for all instances of these cases being obtained, are as follows.

• n and m arbitrary, p and k summed over. In this case, some properties shared by the
associated generating functions ZASM(n, 1, y, 1) and ZDPP(n, 1, y, 1) have been found. Fur-
thermore, some formulae for these functions at y = 2 and y = 3 have been obtained,
this often being referred to as 2- or 3-enumeration. In fact, some formulae for refined 2-
and 3-enumeration (i.e., in which k is arbitrary rather than being summed over) are also
known.

More specifically, a factorization property for ZASM(n, 1, y, 1) was conjectured by Mills,
Robbins and Rumsey [48, Conj. 4], and proved by Kuperberg [38, Thm. 3]. (See also
Mills, Robbins and Rumsey [48, Conj. 5] and Kuperberg [39, Thm. 4, first two equa-
tions].) A formula for (refined) 2-enumeration of ASMs was obtained by Mills, Robbins
and Rumsey [48, Cor., p. 358], and a formula for 3-enumeration of ASMs was conjectured
by Mills, Robbins and Rumsey [48, Conj. 6] and proved (up to a certain correction) by
Kuperberg [38, Thm. 3]. Most of the corresponding results for DPPs have been, or can
be, obtained from results of Mills, Robbins and Rumsey [50, pp. 50 & 54] which give a
determinant formula for ZDPP(n, 1, y, 1). For further related work (including some refined
cases) and references see for example Colomo and Pronko [15, 16, 17], Elkies, Kuper-
berg, Larsen and Propp [25, 26], Kuperberg [39, p. 837], Mills, Robbins and Rumsey [49,
Conj. 5], Okada [52, Thm. 2.4(1)], Robbins [59, Sec. 2], Robbins and Rumsey [60], and
Stroganov [69].

This case for ASMs has also been studied combinatorially by Cori, Duchon and Le
Gac [18, 45]. Define an isolated 1 in an ASM A to be an entry Aij = 1 such that
all other entries in row i and column j of A are 0. It is then shown in [18, 45] that

|{A ∈ ASM(n) | µ(A) = m}| =
∑3m

i=1
(n!)2

(i!)2(n−i)!
Ci,m, where Ci,m is the number of i × i

ASMs which contain m −1’s but no isolated 1’s.
• n and p arbitrary, m and k summed over. In this case, enumerative formulae for ASMs
and DPPs follow from results of Behrend [5, Sec. 14]. Given a Young (Ferrers) diagram λ
and a nonnegative integer l, an oscillating (or up-down) tableau of shape λ and length l is
defined to be a sequence of l+ 1 Young diagrams which starts with the empty diagram ∅,
ends with λ, and in which successive diagrams differ by the addition or deletion of a single
square, without the movement of any other squares. (The conventions being used here
are that a Young diagram consists of an array of adjacent squares justified along the left
and top, with rows numbered from top to bottom, columns numbered from left to right,
and weakly-decreasing row lengths.) Let OT(λ, l) denote the set of all oscillating tableaux
of shape λ and length l. (Note that OT(λ, l) is empty unless l − |λ| is nonnegative and
even, where |λ| is the number of squares in λ. Note also that if l = |λ|, then OT(λ, |λ|)
is in simple bijection with the set of standard Young tableaux of shape λ. In particular,
the (k + 1)th diagram of any η ∈ OT(λ, |λ|) is obtained from the kth diagram of η by the
addition of a square, for each k = 1, . . . , |λ|, so if this square is in row ik and column jk,
then η can be associated with the standard Young tableau of shape λ in which the square



10 R. E. BEHREND, P. DI FRANCESCO, AND P. ZINN-JUSTIN

in row ik and column jk is filled with the integer k.) Now define an order ≺ on the integers
by . . . ≺ −2 ≺ 2 ≺ −1 ≺ 1 ≺ 0, and let an ascent of an oscillating tableau η be an
integer k for which jk − ik ≺ jk+1 − ik+1, where ik and jk are the row and column of the
square by which the kth and (k + 1)th diagrams of η differ. (Note that it is shown in [5]
that certain other orders on the integers can be used here instead of ≺.) Let asc(η) denote
the number of ascents of η.

For a strict partition κ = (κ1, . . . , κr) of p (i.e., a strictly-decreasing sequence of positive
integers whose sum is p), the double diagram ∆(κ) is defined to be the Young diagram
which is comprised of r squares on the main diagonal, together with κi squares to the right
of the main diagonal in row i, and κi − 1 squares below the main diagonal in column i,
for each i = 1, . . . , r. (Using Frobenius notation, ∆(κ) = (κ1, . . . , κr | κ1 − 1, . . . , κr − 1).)
By using a bijection between ASMs and certain sets of osculating lattice paths, a bijection
between DPPs and certain sets of nonintersecting lattice paths, and a result of Behrend [5,
Cor. 14], which itself follows from a bijection [5, Thm. 13] between certain sets of paths
and certain generalized oscillating tableaux, it can be shown that

|{A ∈ ASM(n) | ν(A) = p}| =
∑

η∈OT(∅,2p)

(
n+ asc(η)

2p

)
,(24)

|{D ∈ DPP(n) | ν(D) = p}| =
∑

κ�p

∑

η∈OT(∆(κ),2p)

(
n+ asc(η)

2p

)
,(25)

where κ � p denotes all strict partitions κ of p. (Note that |∆(κ)| = 2p, so OT(∆(κ), 2p)
is in bijection with the set of standard Young tableaux of shape ∆(κ).)

As an example, consider p = 2. Then OT(∅, 4) consists of (∅, , ∅, , ∅), (∅, , , , ∅)
and

(
∅, , , , ∅

)
, which have 0, 1 and 1 ascent respectively. (For example, for the

second of these oscillating tableaux, the row ik and column jk of the square by which
the kth and (k + 1)th diagrams differ are (i1, j1) = (i4, j4) = (1, 1) and (i2, j2) = (i3, j3) =
(1, 2), which gives the single ascent 3, since j3 − i3 = 1 ≺ 0 = j4 − i4.) The only
strict partition of 2 is (2), ∆(2) is , and ∪κ�2OT(∆(κ), 4) = OT(∆(2), 4) consists of
(
∅, , , ,

)
,
(
∅, , , ,

)
and

(
∅, , , ,

)
, which have 0, 1

and 1 ascent respectively. Therefore (24) and (25) give |{A ∈ ASM(n) | ν(A) = 2}| =
|{D ∈ ASM(n) | ν(D) = 2}| =

(
n
4

)
+ 2
(
n+1
4

)
. Some details of the further example of (24)

for p = 3 can be found in [5, Sec. 17].
It follows from (24)–(25) that, for any p,

|{A ∈ ASM(n) | ν(A) = p}| = |{D ∈ DPP(n) | ν(D) = p}| for all n if and only if

|{η ∈ OT(∅, 2p) | asc(η) = s}| = |{η ∈
⋃

κ�pOT(∆(κ), 2p) | asc(η) = s}| for all s.

Indeed, Theorem 1 of this paper implies that the first of these equalities between set sizes
holds for any n and p, so that a corollary of Theorem 1 is

(26) |{η ∈ OT(∅, 2p) | asc(η) = s}| =

|{η ∈
⋃

κ�pOT(∆(κ), 2p) | asc(η) = s}| for any p and s.
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Unfortunately, we do not have a direct or bijective proof of (26). (Note that if a bijective
proof were known then, due to the bijective nature of the derivation of (24) and (25),
this would provide a bijection between {A ∈ ASM(n) | ν(A) = p} and {D ∈ DPP(n) |
ν(D) = p} for any n and p.) Nevertheless, (26) can be proved bijectively for the special
case in which s is summed over, i.e., an explicit bijection is known between OT(∅, 2p)
and ∪κ�pOT(∆(κ), 2p) for any p (but oscillating tableaux which correspond under this
bijection do not always have equal numbers of ascents). This bijection is a composition of
a bijection of Stanley (see Roby [61, Sec. 4.2], Stanley [65, Sec. 9], Sundaram [70, Sec. 8]
or Sundaram [71, Sec. 2]) between OT(∅, 2p) and the set of fixed-point-free involutions on
{1, . . . , 2p} (or, equivalently, matchings of {1, . . . , 2p}, or perfect matchings of the complete
graph K2p), and a bijection, which follows from results of Burge [9, Sec. 4], between the
set of such involutions and ∪κ�pOT(∆(κ), 2p). (It also follows that these sets all have
size (2p− 1)!!.) We have also considered the further implications on (26) provided by the
presence of the additional ASM and DPP statistics µ and ρ in Theorem 1, but this has so
far not yielded a direct proof of (26).

2. The unrefined enumeration (z = 1)

In this section, Theorem 1 will be proved for the case z = 1 in (17). This will be done by
expressing the ASM and DPP generating functions (13) and (14) for z = 1 as determinants
of n× n matrices, and showing that these determinants are equal.

Let ω be a solution of

(27) yω2 + (1− x− y)ω + x = 0,

and define n× n matrices

MASM(n, x, y, 1)ij = (1− ω) δij + ω

min(i,j)∑

k=0

(
i

k

)(
j

k

)
xk yi−k,(28)

MDPP(n, x, y, 1)ij = −δi,j+1 +

min(i,j+1)∑

k=0

(
i− 1

i− k

)(
j + 1

k

)
xk yi−k,(29)

with 0 ≤ i, j ≤ n − 1. Note that ω depends on x and y, even though this is not explicitly
indicated by the notation. Definitions of matricesMASM(n, x, y, z) andMDPP(n, x, y, z) which
reduce to (28) and (29) for z = 1 will be given in Section 3.

Note also that for x = y = z = 1, which corresponds to the case of straight enumeration,
MASM(n, 1, 1, 1)ij = e±iπ/3 δij + e∓iπ/3

(
i+j
i

)
and MDPP(n, 1, 1, 1)ij = −δi,j+1 +

(
i+j
i

)
.

Formulae for the z = 1 ASM and DPP generating functions as determinants, and the
equality of these determinants, can now be stated as follows.

Proposition 1. Let ZASM(n, x, y, 1) and MASM(n, x, y, 1) be given by (13) and (28). Then

ZASM(n, x, y, 1) = detMASM(n, x, y, 1).

Proposition 2. Let ZDPP(n, x, y, 1) and MDPP(n, x, y, 1) be given by (14) and (29). Then

ZDPP(n, x, y, 1) = detMDPP(n, x, y, 1).
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Proposition 3. Let MASM(n, x, y, 1) and MDPP(n, x, y, 1) be given by (28) and (29). Then

detMASM(n, x, y, 1) = detMDPP(n, x, y, 1).

The validity of Theorem 1 for z = 1 in (17) follows immediately from Propositions 1–3.
The proofs of these propositions will be given in the ensuing three subsections.

For further information on determinants of matrices closely related to those given here,
including contexts (usually that of plane partitions or rhombus tilings) in which they arise
and formulae for their evaluation in some cases, see for example Andrews [1, 2], Bressoud [7],
Ciucu, Eisenkölbl, Krattenthaler and Zare [11, Thms. 10–13], Ciucu and Krattenthaler [12],
Colomo and Pronko [13, Eqs. (23)–(24)], Colomo and Pronko [14, Eqs. (4.3)–(4.7)], Gessel
and Xin [30, Sec. 5], Krattenthaler [35, e.g., Thms. 25–37], Krattenthaler [36, Sec. 5.5],
Mills, Robbins and Rumsey [47], Mills, Robbins and Rumsey [50, Secs. 3–4], Mitra and
Nienhuis [51, Sec. 5], and Robbins [59, Sec. 2].

2.1. Proof of Proposition 1. In this subsection, the ASM determinant formula of Propo-
sition 1 will be obtained using the Izergin–Korepin formula for the partition function of the
six-vertex model with domain-wall boundary conditions (DWBC), together with a bijection
between ASMs and configurations of this model. Such a determinant formula has also been
obtained, using the Izergin–Korepin formula together with certain other results, by Colomo
and Pronko in [13, Eqs. (23)–(24)] and [14, Eqs. (4.3)–(4.7)].

The bijection between ASMs and configurations of the six-vertex model with DWBC will
be outlined first. This correspondence was first observed (using slightly different terminology)
by Robbins and Rumsey [60, pp. 179–180] and by Elkies, Kuperberg, Larsen and Propp [26,
Sec. 7], and first applied to the enumeration of ASMs by Kuperberg [38]. Note that there
is a closely-related bijection between ASMs and certain sets of osculating lattice paths. See,
for example, Behrend [5, Secs. 2–4] for further information and references. The statistical
mechanical six-vertex or square ice model was itself first studied and solved by Lieb and
Sutherland. See, for example, Baxter [4, Chaps. 8 & 9] for further information and references.
DWBC for this model were first introduced and studied by Korepin [33].

Consider the n× n grid with vertices {(i, j) | i, j = 0, . . . , n + 1} \ {(0, 0), (0, n+ 1), (n+
1, 0), (n + 1, n + 1)}, where (i, j) is in the ith row from the top and jth column from the
left, and for which there are horizontal edges between (i, j) and (i, j ± 1), and vertical edges
between (i, j) and (i± 1, j), for each i, j = 1, . . . , n.

Now let 6VDW(n) be the set of all configurations of the six-vertex model on the n × n
grid with DWBC, i.e., decorations of the grid’s edges with arrows such that:

• The arrows on the external edges are fixed, with the horizontal ones all incoming and
the vertical ones all outgoing.
• At each internal vertex, there are two incoming and two outgoing arrows.

The latter condition is the “six-vertex” condition, since it allows for only six possible arrow
configurations around an internal vertex, denoted by the symbols a1, a2, b1, b2, c1, c2:
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a1

u

u

u u

a2

u

u

u u

b1

u

u

u u

b2

u

u

u u

c1

u

u

u u

c2

u

u

u u

The mappings between ASM(n) and 6VDW(n), which can be shown straightforwardly to be
well-defined and bijective, are as follows.

• To map C ∈ 6VDW(n) to A ∈ ASM(n), place a 0 at vertex configurations in C of
types a1, a2, b1 or b2, a 1 at configurations of type c1 and a −1 at configurations of
type c2. This array of 0’s, 1’s and −1’s is then the ASM A.
• To map A ∈ ASM(n) to C ∈ 6VDW(n), first associate the partial row sum

∑j
j′=1Aij′

with the horizontal edge between (i, j) and (i, j+1), for each i = 1, . . . , n, j = 0, . . . , n,

and associate the partial column sum
∑i

i′=1Ai′j with the vertical edge between (i, j)
and (i + 1, j), for each i = 0, . . . , n, j = 1, . . . , n. The defining properties of ASMs
ensure that each of these partial sums is 0 or 1. Now obtain C by placing a right/up
(respectively left/down) arrow on each edge associated with a 0 (respectively 1). This
mapping applied to the example of (1) is shown in Figure 1, where the intermediate
grid shows the values of the partial sums associated with each edge.

A =




0 0 0 1 0 0
0 1 0 −1 1 0
1 −1 1 0 0 0
0 0 0 1 0 0
0 1 0 −1 0 1
0 0 0 1 0 0



→

0 0 0 0 0 0

0

0

0

0

0

0

1 1 1 1 1 1
1

1

1

1

1

1

0 0 0 1 1

0 1 1 0 0

0 0 0 1 1

1 0 1 1 1

0 1 1 0 1

0 0 0 1 1

1 1 1 0 1 1

1 0 1 1 1 0

1 0 1 0 1 0

0 1 0 0 1 0

0 0 0 1 0 0

→ C =

u u u u u u

u u u u u

u u u u

u u u

u u

u

u u u u u u

u u u u u

u u u u

u u u

u u

u

u
u

u
u

u
u

u
u

u
u

u

u
u

u
u

u
u

u

u
u

u

u
u

u
u

u
u

u
u

u
u

u

u
u

u
u

u
u

u

u
u

u

Figure 1. The mapping from an ASM to a six-vertex model configuration.

As a further example, mapping ASM(3), as given in (5), to 6VDW(3) gives

(30) 6VDW(3) =
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 ,

where the elements are listed in the order corresponding to that used in (5).

For C ∈ 6VDW(n), denote the total number of type-t vertex configurations in C as Nt(C),
for t ∈ {a1, a2, b1, b2, c1, c2}. It can be seen that the arrow on the vertical edge immediately
above (i, j) and the arrow on the horizontal edge immediately to the right of (i, j) both
point towards (i, j) if and only if a type-a2 configuration occurs in C at vertex (i, j). Now let
A ∈ ASM(n) correspond to C. It then follows from the previous observation, and from the

mapping from ASM(n) to 6VDW(n), that
∑i−1

i′=1Ai′j

∑j
j′=1Aij′ is 1 if a type-a2 configuration

occurs at (i, j), or 0 if any of the other five configuration types occurs at (i, j). Therefore,

Na2(C) =
∑n

i,j=1

∑j
j′=1

∑i−1
i′=1Aij′Ai′j =

∑
1≤i′<i≤n, 1≤j′≤j≤nAij′ Ai′j = ν(A), where ν is the
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ASM statistic given by (7). It can be shown similarly that Na1(C) = ν(A) and Nb2(C) =
Nb1(C) =

∑
1≤i<i′≤n, 1≤j≤j′≤n Aij Ai′j′ =

∑
1≤i≤i′≤n, 1≤j<j′≤nAij Ai′j′. It also follows from the

bijection between ASM(n) and 6VDW(n), and the fact that each row and column of an
ASM contains one more 1 than −1, that Nc2(C) = Nc1(C)− n = µ(A), where µ is the ASM
statistic given by (8).

It is therefore natural to define, for any C ∈ 6VDW(n),

Na(C) = Na1(C) = Na2(C),(31)

Nb(C) = Nb1(C) = Nb2(C),(32)

Nc(C) = Nc1(C)− n = Nc2(C).(33)

Since
∑

t∈{a1,a2,b1,b2,c1,c2}
Nt(C) = n2, these numbers satisfy

(34) Na(C) +Nb(C) +Nc(C) = n(n− 1)/2.

Also, the previous observations of their relation with the ASM statistics (7) and (8) can be
summarized as follows.

Lemma 1. Let A ∈ ASM(n) correspond to C ∈ 6VDW(n). Then

ν(A) = Na(C),

µ(A) = Nc(C).

Now let u and v be parameters (often known as spectral parameters), and associate a
weight ā(u, v), b̄(u, v) or c̄(u, v) to arrow configurations around a vertex of types a1 and a2, b1
and b2 or c1 and c2 respectively, where

(35) ā(u, v) = uq −
1

vq
, b̄(u, v) =

u

q
−

q

v
, c̄(u, v) =

(
q2 −

1

q2

)√u

v
,

and q is a further fixed parameter. The six-vertex model weights take various forms in
the literature, with the form of (35) seeming the most appropriate for the purposes of this
paper. These weights satisfy

(
ā(u, v)2 + b̄(u, v)2 − c̄(u, v)2

)/(
ā(u, v)b̄(u, v)

)
= q2 + q−2, and

the fact that this is independent of u and v implies (see for example Baxter [4, pp. 187–
190]) integrability, in the sense that the Yang–Baxter equation is satisfied. The form of the
Yang–Baxter equation satisfied by the weights of (35) is

(36)

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

qw1,
q

w2

w1,w3

w2,w3

= qw1,
q

w2

w2,w3

w1,w3

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

where this holds for any arrow configuration on the six external edges and any w1, w2 and w3,
and there is summation over all arrow configurations on the three internal edges of each side
consistent with the six-vertex condition at each vertex.
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Now associate parameters u1, . . . , un with the rows, and parameters v1, . . . , vn with the
columns of the n× n grid. For C ∈ 6VDW(n), assign a weight Wij(C) which depends on ui

and vj to the configuration of arrows of C around vertex (i, j). The partition function for
this model is

(37) Z6VDW(u1, . . . , un; v1, . . . , vn) =
∑

C∈6VDW(n)

n∏

i,j=1

Wij(C).

It was shown by Izergin [31], using certain results of Korepin [33], that this partition func-
tion, for weights which satisfy a Yang–Baxter equation, can be expressed in terms of the
determinant of an n×n matrix. For weights given by (35), this Izergin–Korepin determinant
formula is as follows.

Theorem (Izergin).

(38) Z6VDW(u1, . . . , un; v1, . . . , vn) =∏n
i=1 c̄(ui, vi)

∏n
i,j=1 ā(ui, vj)b̄(ui, vj)∏

1≤i<j≤n(ui − uj)(v
−1
j − v−1

i )
det

1≤i,j≤n

(
1

ā(ui, vj)b̄(ui, vj)

)
.

This can be proved by showing that each side satisfies, and is uniquely determined by,
four particular properties. For example, one of these properties is that each side of (38) is
symmetric in u1, . . . , un and (separately) in v1, . . . , vn. This is immediate for the RHS, and
can be obtained for the LHS using the Yang–Baxter equation (36). For details of this proof
of (38) see Izergin [31], Izergin, Coker and Korepin [32] or Korepin and Zinn-Justin [34]. For
an alternative proof see Bogoliubov, Pronko and Zvonarev [6, Sec. 4].

Using (35), (38) can also be written as

(39) Z6VDW(u1, . . . , un; v1, . . . , vn)

=

∏n
i=1 u

1/2
i v

n+1/2
i

∏n
i,j=1 ā(ui, vj)b̄(ui, vj)∏

1≤i<j≤n(ui − uj)(vi − vj)
det

1≤i,j≤n

(
1

uivj − q2
−

1

uivj − q−2

)
.

Now consider the homogeneous case in which u1 = · · · = un = v1 = · · · = vn = r, for a
parameter r, and define a, b and c as

(40) a = ā(r, r) = qr − (qr)−1, b = b̄(r, r) = q−1r − qr−1, c = c̄(r, r) = q2 − q−2.

Note that a, b and c will remain dependent on q and r, although this is not indicated explicitly
by the notation. The partition function (37) with these weights is, using (31)–(33), given by

(41) Z6VDW(r, . . . , r; r, . . . , r) =
∑

C∈6VDW(n)

a2Na(C) b2Nb(C) c2Nc(C)+n.

The bijection between ASM(n) and 6VDW(n), together with (13), (34) and Lemma 1, now
gives

(42) Z6VDW(r, . . . , r; r, . . . , r) = bn(n−1)cn ZASM

(
n,
(
a
b

)2
,
(
c
b

)2
, 1
)
.

Therefore, r and q can be regarded as parameterizing x and y in (13), where x =
(
a
b

)2
=( qr−(qr)−1

q−1r−qr−1

)2
and y =

(
c
b

)2
=
(

q2−q−2

q−1r−qr−1

)2
.
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An expression for Z6VDW(r, . . . , r; r, . . . , r) cannot be obtained immediately from (39),
since the denominator of the prefactor and the determinant both vanish. However, such an
expression can be obtained using the following general results.

Consider a power series f(u, v) and parameters u0, . . . , un−1, v0, . . . , vn−1. Then

(43)
det

0≤i,j≤n−1

(
f(ui, vj)

)

∏
0≤i<j≤n−1(uj − ui)(vj − vi)

= det
0≤i,j≤n−1

(
f [u0, . . . , ui][v0, . . . , vj]

)
,

where f [u0, . . . , ui][v0, . . . , vj ] is the divided difference,

(44) f [u0, . . . , ui][v0, . . . , vj] =
i∑

k=0

j∑

l=0

f(uk, vl)∏i
k′=0
k′ 6=k

(uk − uk′)
∏j

l′=0
l′ 6=l

(vl − vl′)
.

This result can be obtained by considering the matrix

D(u0, . . . , un−1)ij =

{∏i
k=0
k 6=j

(uj − uk)
−1, i ≥ j

0, i < j

with 0 ≤ i, j ≤ n − 1. Then detD(u0, . . . , un−1) =
∏

0≤i<j≤n−1(uj − ui)
−1, and the matrix

on the RHS of (43) is related to the matrix on the LHS of (43) by multiplication on the left
by D(u0, . . . , un−1) and on the right by D(v0, . . . , vn−1)

t.

Let [uivj ]f(u, v) denote the coefficient of uivj in a power series f(u, v). It can be shown
that the divided difference (44) can be written as

(45) f [u0, . . . , ui][v0, . . . , vj] =

∞∑

k,l=0

di+k,j+l hk(u0, . . . , ui) hl(v0, . . . , vj),

where dij = [uivj]f(u, v), and hk(u0, . . . , ui) is the complete symmetric polynomial, defined
by

(46) hk(u0, . . . , ui) =





1, k = 0
∑

0≤m1≤...≤mk≤i

um1 . . . umk
, k > 0.

It now follows that the RHS of (43) is well-defined for u0 = · · · = un−1 and v0 = · · · = vn−1.
Furthermore, setting r = u0 = · · · = un−1 and s = v0 = · · · = vn−1 gives

f [ r, . . . , r︸ ︷︷ ︸
i+1

][ s, . . . , s︸ ︷︷ ︸
j+1

] =

∞∑

k,l=0

di+k,j+l

(
i+ k

k

)(
j + l

l

)
rk sl(47)

= [uivj]f(u+ r, v + s).

The homogeneous limit of (39) can now be obtained, using (43) and (47), as

(48) Z6VDW(r, . . . , r; r, . . . , r) =

rn(n+1) (ab)n
2

det
0≤i,j≤n−1

(
[uivj]

(
1

(u+r)(v+r)−q2
− 1

(u+r)(v+r)−q−2

))
.
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A homogeneous limit of an Izergin–Korepin determinant was first obtained by Izergin, Coker
and Korepin in [32, Sec. 7].

Now define, for parameters α and β, the n× n lower triangular matrix

L(α, β)ij =

(
i

j

)
αiβj(49)

= [uivj ]
1

1− αu(1 + βv)
,

with 0 ≤ i, j ≤ n− 1. Then the following properties are satisfied:

(L(α, β)L(α, β)t)ij =
∑min(i,j)

k=0

(
i
k

)(
j
k

)
αi+j β2k,(50)

(L(α, β)L(α, β)t)ij = [uivj] 1
1−α(u+v)−α2(β2−1)uv

,(51)

detL(α, β) = (αβ)n(n−1)/2,(52)

L(α1, β1)L(
α2−α1

α1β1
, α2β2

α2−α1
) = L(α2, β2), for any α1, α2, β1, β2.(53)

Properties (50) and (52) follow immediately from (49), while properties (51) and (53) can be
obtained easily using Cauchy-type residue integrals with appropriately-chosen contours of in-
tegration, or using certain other standard methods for proving binomial coefficient identities.
For example, (53) follows from

(
L(α1, β1)L(α, β)

)
ij
= [uivj]

∮
dw

2πiw

1

1− α1u(1 + β1w)

1

1− α
w
(1 + βv)

(54)

= [uivj]

∮
dw

2πi

1

1− α1u(1 + β1w)

1

w − α(1 + βv)

= [uivj]
1

1− α1u(1 + β1α(1 + βv))

= L(α2, β2)ij ,

where α2 = α1(1 + β1α) and α2β2 = α1β1αβ.

Also define

(55) ω± =
r±2 − q∓2

q±2 − q∓2
,

so that

(56) c2ω2
± + (b2 − a2 − c2)ω± + a2 = 0.
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We now have

ZASM

(
n,
(
a
b

)2
,
(
c
b

)2
, 1
)
= b−n(n−1) c−n Z6VDW(r, . . . , r; r, . . . , r) [using (42)]

= rn(n+1) an
2
bn

cn
det

0≤i,j≤n−1

(
[uivj ]

(
1

(u+r)(v+r)−q2
− 1

(u+r)(v+r)−q−2

))
[using (48)]

= rn(n+1) an
2
bn

cn
det
(

1
r2−q2

L
(

r
q2−r2

, q
r

)
L
(

r
q2−r2

, q
r

)t
−

1
r2−q−2 L

(
r

q−2−r2
, 1
qr

)
L
(

r
q−2−r2

, 1
qr

)t)
[using (51)]

= rn(n+1) an
2
bn

cn (q−1−qr2)n(n−1) det
(

1
r2−q2

L
(

r
q−2−r2

, 1
qr

)−1
L
(

r
q2−r2

, q
r

)(
L
(

r
q−2−r2

, 1
qr

)−1
L
(

r
q2−r2

, q
r

))t
−

1
r2−q−2 I

)
[using (52)]

=
(

(r2−q2)(r2−q−2)
q2−q−2

)n
det
(

1
q−2−r2

I + 1
r2−q2

L
(

q2−q−2

q−1r−qr−1 ,
qr−(qr)−1

q2−q−2

)
L
(

q2−q−2

q−1r−qr−1 ,
qr−(qr)−1

q2−q−2

)t)

[using (40) and (53)]

= det
(
(1− ω+) I + ω+ L

(
c
b
, a
c

)
L
(
c
b
, a
c

)t)
[using (40) and (55)]

= det
0≤i,j≤n−1

(
(1− ω+) δij + ω+

∑min(i,j)
k=0

(
i
k

)(
j
k

)(
c
b

)i+j (a
c

)2k)
[using (50)]

= det
0≤i,j≤n−1

(
(1− ω+) δij + ω+

∑min(i,j)
k=0

(
i
k

)(
j
k

)(
a
b

)2k ( c
b

)2(i−k)
)

[multiplying the matrix

on the left by V and right by V −1, where Vij =
(
c
b

)i
δij ].

It can be seen from (40) and (55) that under the transformation r → r−1 and q → q−1, a
b

and c
b
are invariant, and ω+ and ω− are interchanged. Therefore, applying this transformation

to the equality between the first and last expressions in the previous sequence it follows that

this equality remains valid if ω+ is replaced by ω−. Finally, identifying x =
(
a
b

)2
and y =

(
c
b

)2
gives the result of Proposition 1, using (27), (28) and (56).

2.2. Proof of Proposition 2. In this subsection, the DPP determinant formula of Propo-
sition 2 will be obtained using the Lindström–Gessel–Viennot theorem, together with a
bijection between DPPs and certain sets of nonintersecting lattice paths. Closely related
determinant formulae have also been obtained by Mills, Robbins and Rumsey [48, p. 346]
and Lalonde [40, Thm. 3.1].

The bijection between DPPs and sets of nonintersecting lattice paths will be given first.
This correspondence was outlined by Lalonde [40, Sec. 2] and is based on similar such cor-
respondences, as obtained by Gessel and Viennot [28, 29] for certain plane partitions and
Young tableaux. Correspondences between DPPs and slightly different sets of nonintersect-
ing lattice paths have been given by Bressoud [7], Krattenthaler [37] and Lalonde [40, 41],
and some information about these will be given at the end of this subsection.

Consider the directed n×n grid Gn,n with vertices {(i, j) | i, j = 0, . . . , n−1}, where (i, j)
is in the ith column from the left and jth row from the bottom, and for which there are edges
from (i, j) to (i+1, j) for each i = 0, . . . , n− 2, j = 0, . . . , n− 1, and from (i, j) to (i, j − 1)
for each i = 0, . . . , n− 1, j = 1, . . . , n− 1. Thus, all horizontal edges are directed rightward
and all vertical edges are directed downward. Note that this grid differs slightly from the
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n × n grid used in Section 2.1. In particular, the grid there was undirected, had certain
additional boundary vertices and edges, and matrix-type rather than Cartesian labeling was
used.

Now let NILP(n) be the set of all sets P of nonintersecting paths on Gn,n for which there
exist integers 0 ≤ t ≤ n− 1 and n = λ0 > λ1 > . . . > λt > λt+1 = 0 such that P consists of
paths from (0, λi−1 − 1) to (λi, 0) for i = 1, . . . , t+ 1.

It can be seen that each set of paths in NILP(n) corresponds to a single vertex-distinct
path from (0, n− 1) to (0, 0) on the graph shown in Figure 2, which is obtained from Gn,n

by adding certain boundary edges.

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

(0,n−1) (n−1,n−1)

(0,0)
(n−1,0)

· · ·

...

Figure 2. The graph obtained from Gn,n by adding certain boundary edges.

The mappings between DPP(n) and NILP(n), which can be shown straightforwardly to
be well-defined and bijective, are as follows.

• To map P ∈ NILP(n) to D ∈ DPP(n), first number the paths of P according to the
height at which they start, taking the path which starts highest as path 1. Then take
part Dij to be 1 plus the height of the (j − i+ 1)th rightward step of path i.
• To map D ∈ DPP(n) to P ∈ NILP(n), first let t be the number of rows in D and
let λi be the length of row i, as in (2). Also define λ0 = n and λt+1 = 0. Then
obtain P by forming a path, for each i = 1, . . . , t + 1, from (0, λi−1 − 1) to (λi, 0)
whose kth rightward step has height Di,i+k−1 − 1.

It follows from these mappings that the statistics ν and µ for DPPs, given by (10) and (11),
can be identified with numbers of certain horizontal steps in sets of paths as follows.

Lemma 2. Let D ∈ DPP(n) correspond to P ∈ NILP(n). Then

ν(D) = number of rightward steps in P above the line {(i, i− 1)},

µ(D) = number of rightward steps in P below the line {(i, i− 1)}.

The set of nonintersecting lattice paths which corresponds to the example of (4) (with n =
6) is shown in Figure 3, where each part ofD is shown above its corresponding rightward step,
with the nonspecial and special parts in red and green respectively, and the line {(i, i− 1)}
also shown.
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6 6 6 5 2
D = 4 4 1

3
←→ P =

b

6 6 6

5

2

4 4

3

1

0 1 2 3 4 5
0

1

2

3

4

5

Figure 3. A DPP and corresponding set of nonintersecting lattice paths.

As a further example, mapping DPP(3), as given in (6), to NILP(3) gives

(57) NILP(3) =

{
,

b
,

b
, ,

b
, ,

}
,

where the elements are listed in the order corresponding to that used in (6).

Now consider an acyclic directed graph G. Let a weight be assigned to each edge of G, and
define the weight W (p) of a path p on G to be the product of the weights of its edges. For
vertices u and v of G, let P(u, v) denote the set of all paths on G from u to v. For vertices
u1, . . . , un, v1, . . . , vn of G, let NG(u1, . . . , un; v1, . . . , vn) denote the set of all sets P of paths
on G such that P consists of a path of P(ui, vi) for each i = 1, . . . , n, and different paths
of P are nonintersecting. The Lindström–Gessel–Viennot theorem [28, 29, 46] can now be
stated as follows.

Theorem (Lindström, Gessel, Viennot). If NG(uσ1, . . . , uσn
; v1, . . . , vn) is empty for each

permutation σ ∈ Sn other than the identity, then

(58)
∑

P∈NG(u1,...,un;v1,...,vn)

∏

p∈P

W (p) = det
1≤i,j≤n

(
∑

p∈P(uj ,vi)

W (p)

)
.

Briefly, this can be proved by writing the RHS as
∑

σ∈Sn

∑
p1∈P(uσ1 ,v1)

. . .
∑

pn∈P(uσn ,vn)

sgn(σ)W (p1) . . .W (pn). A certain involution φ is then constructed on the set {(p1, . . . , pn) ∈
P(uσ1 , v1) × . . . × P(uσn

, vn) | σ ∈ Sn, there exist i and j for which pi and pj intersect}.
This involution has the properties that if φ(p1, . . . , pn) = (p′1, . . . , p

′
n), with pi ∈ P(uσi

, vi)
and p′i ∈ P(uσ′

i
, vi) for each i = 1, . . . , n, then sgn(σ) = −sgn(σ′) and W (p1) . . .W (pn) =

W (p′1) . . .W (p′n). It then follows that each corresponding pair of terms on the RHS of (58)
cancels, leaving only the terms which give the LHS. For further details of this proof see
Gessel and Viennot [29, Sec. 2] or Lindström [46, Lemma 1]. For an account of the origins of
the theorem, or closely related results, see for example Krattenthaler [36, Footnote 10]. For
an account of the relationship with free fermionic methods see for example Zinn-Justin [75,
Sec. 1].
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The set NILP(n) can be written as

(59) NILP(n) =
⋃

n−1≥λ1>...>λt≥1

NGn,n

(
(0, n− 1), (0, λ1 − 1), . . . , (0, λt − 1); (λ1, 0) . . . , (λt, 0), (0, 0)

)
.

Now assign the horizontal edge in Gn,n from (i, j) to (i + 1, j) a weight of x for i ≤ j and
a weight of y for i > j, and assign each vertical edge a weight of 1. Then the bijection
between DPP(n) and NILP(n), together with (14), (58) and Lemma 2 (and the fact that
the condition for the validity of (58) is satisfied), gives

(60) ZDPP(n, x, y, 1) =
∑

n−1≥λ1>...>λt≥1

det
i=0,λt,...,λ1

j=λt−1,...,λ1−1,n−1

(
∑

p∈P((0,j),(i,0))

W (p)

)
.

Let S be the n× n subdiagonal matrix,

(61) Sij = δi,j+1.

Then, for any matrix A with rows and columns indexed by {0, . . . , n− 1},

(62) det(A− S) =
∑

T⊂{1,...,n−1}

detA{0}∪T,(T−1)∪{n−1},

where A{0}∪T,(T−1)∪{n−1} is the submatrix of A formed by restricting the rows and columns
to those indexed by {0} ∪ T and {t − 1 | t ∈ T} ∪ {n − 1} respectively. Briefly, this
identity can be obtained by writing det(A− S) =

∑
σ∈Sn

sgn(σ)A0,σ0

∏n−1
i=1 (Ai,σi

− δi,σi+1) =∑
T⊂{1,...,n−1}(−1)

n+|T |+1
∑

σ∈Sn
sgn(σ)A0,σ0

∏
i∈T Ai,σi

∏
i∈{1,...,n−1}\T δi,σi+1. The result then

follows using a certain decomposition property of sgn(σ).

Applying (62) to (60) now gives

(63) ZDPP(n, x, y, 1) = det
0≤i,j≤n−1

(
−δi,j+1 +

∑

p∈P((0,j),(i,0))

W (p)

)
.

The paths of P((0, j), (i, 0)) can be obtained by joining any path of P((0, j), (k, k−1)) to any
path of P((k, k − 1), (i, 0)), for any 0 ≤ k ≤ min(i, j + 1). Each path of P((0, j), (k, k − 1))
has k horizontal edges, each with weight x, and j − k+1 vertical edges, each with weight 1,
so there are

(
j+1
k

)
such paths, each with weight xk. Similarly, P((k, k − 1), (i, 0)) contains(

i−1
i−k

)
paths, each with weight yi−k. This is shown diagrammatically in Figure 4. (Note

that the case k = 0 is slightly exceptional: an additional edge from (0, 0) to (0,−1) is then
considered, with P((0, j), (0,−1)) containing a single path, and P((0,−1), (i, 0)) containing
a single path for i = 0 and empty otherwise.) It now follows that

(64)
∑

p∈P((0,j),(i,0))

W (p) =

min(i,j+1)∑

k=0

(
i− 1

i− k

)(
j + 1

k

)
xk yi−k.

Finally, combining (63) and (64) gives the result of Proposition 2.

An alternative set NILP′(n) of sets of nonintersecting lattice paths which is also in bijection
with DPP(n) will now be described. This is not needed for the main results of the paper, but
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k−1

j−k+1

j
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x x

x
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y

y

Figure 4. Derivation of (64).

is included for completeness, and since it matches certain nonintersecting lattice paths in the
literature, in particular those of Bressoud [7, p. 108 & Exercise 3.4.9] and Krattenthaler [37].
Some differences between NILP(n) and NILP′(n) are that they use an n × n and an (n −
1)× (n+ 1) grid respectively, and that the endpoints of the paths are closely related to the
lengths of rows of DPPs for NILP(n) and to the first entries of rows of DPPs for NILP′(n).

Let Gn−1,n+1 be the directed (n−1)×(n+1) grid with vertices {(i, j) | i = 1, . . . , n−1, j =
−1, . . . , n − 1}, and in which each horizontal edge is directed rightward and each vertical
edge is directed downward. Let NILP′(n) be the set of all sets P ′ of nonintersecting paths
on Gn−1,n+1 for which there exist integers 0 ≤ t ≤ n− 1 and n− 1 ≥ δ1 > . . . > δt ≥ 1 such
that P ′ consists of paths from (1, δi) to (δi,−1) for i = 1, . . . , t.

To map P ′ ∈ NILP′(n) to D ∈ DPP(n), first number the paths of P ′ according to the
height at which they start, taking the path which starts highest as path 1. Then take Dii

to be 1 plus the initial height of path i, and Dij for j > i to be 1 plus the height of the
(j − i)th rightward step of path i, excluding steps at height −1. To map D ∈ DPP(n) to
P ′ ∈ NILP′(n), let t be the number of rows in D and obtain P ′ by forming a path, for
each i = 1, . . . , t, from (1, Dii − 1) to (Dii − 1,−1) whose kth rightward step has height
Di,i+k − 1, adding further steps at height −1 if necessary. It can be seen that ν(D) is the
number of paths in P ′ plus the number of rightward steps in P ′ above the line {(i, i− 1)},
and that µ(D) is the number of rightward steps in P ′ below the line {(i, i − 1)} and with
nonnegative height. The alternative set of nonintersecting lattice paths which corresponds
to the example of (4) (with n = 6) is shown in Figure 5. Now assign the horizontal edge
from (i, j) to (i+ 1, j) a weight of x for i ≤ j, a weight of y for i > j ≥ 0 and a weight of 1
for j = −1, and assign each vertical edge a weight of 1. Then the Lindström–Gessel–Viennot
theorem (58), together with the identity det(I + A) =

∑
T⊂K detAT,T (where A is a matrix

with rows and columns indexed by K and AT,T is the submatrix formed by restricting the
rows and columns to those indexed by T ), gives ZDPP(n, x, y, 1) = detM ′

DPP(n, x, y, 1), with

(65) M ′
DPP(n, x, y, 1)ij = δij +

i−1∑

k=0

min(j,k)∑

l=0

(
j

l

)(
k

l

)
xl+1 yk−l,

where either 1 ≤ i, j ≤ n− 1 or 0 ≤ i, j ≤ n− 1 can be used. Note that M ′
DPP(n, 1, 1, 1)ij =

δij +
(
i+j
i−1

)
, and that (I − S)M ′

DPP(n, x, y, 1) = MDPP(n, x, y, 1)(I − St), with S given

by (61) and M ′
DPP(n, x, y, 1)ij taken with 0 ≤ i, j ≤ n − 1. The formula ZDPP(n, 1, 1, 1) =
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6 6 6 5 2
D = 4 4 1
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Figure 5. A DPP and corresponding alternative set of nonintersecting lattice paths.

detM ′
DPP(n, 1, 1, 1) also follows from a result of Andrews [1, Thm. 3], and the formula

ZDPP(n, 1, y, 1) = detM ′
DPP(n, 1, y, 1) follows from results of Mills, Robbins and Rumsey [50,

pp. 50 & 54].

Lalonde has shown that DPP(n) is also in bijection with certain sets of n lattice paths,
termed top-bottom or TB configurations, on an equilateral triangular lattice of side length n.
See [40, Sec. 3] and [41, Sec. 2] for details. The TB configuration which corresponds to
P ∈ NILP(n) is obtained by applying a certain transformation to the segments of paths of P
below the line {(i, i−1)}. By using TB configurations and a Lindström–Gessel–Viennot-type
theorem, Lalonde [40, Thm. 3.1] showed that ZDPP(n, x, y, 1) = detM ′′

DPP(n, x, y, 1), where

(66) M ′′
DPP(n, x, y, 1)ij =

(
j + 1

i

)
xi −

(
i− 1

i− j − 1

)
(−y)i−j−1,

with 0 ≤ i, j ≤ n − 1. Note that B(y)M ′′
DPP(n, x, y, 1) = MDPP(n, x, y, 1), where B(y)ij =(

i−1
i−j

)
yi−j.

Finally, Krattenthaler [37] has shown that DPP(n) is also in bijection with the set of cycli-
cally symmetric rhombus tilings of a hexagon with alternating sides of length n−1 and n+1,
from which a central equilateral triangular hole of side length 2 has been removed. This bi-
jection is best understood in terms of the alternative set NILP′(n) of sets of nonintersecting
lattice paths. The correspondence between the example of (4) (with n = 6) and a rhombus
tiling of a punctured hexagon is shown in Figure 6.

2.3. Proof of Proposition 3. In this subsection, the equality of the ASM and DPP de-
terminants in Proposition 3 will be proved by obtaining a certain relation between the
generating functions associated with the entries of the respective matrices. This will then
imply a relation between the matrices themselves, and the equality of their determinants.

Define the generating functions

gASM(x, y; u, v) =
1− ω

1− uv
+

ω

1− yu− v − (x− y)uv
,(67)

gDPP(x, y; u, v) =
1− u

(1− v)(1− uv)
+

xu

(1− v)(1− yu− v − (x− y)uv)
.(68)
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Figure 6. A DPP and corresponding cyclically symmetric rhombus tiling of
a punctured hexagon.

Then

MASM(n, x, y, 1)ij = [uivj]gASM(x, y; u, v),(69)

MDPP(n, x, y, 1)ij = [uivj]gDPP(x, y; u, v).(70)

Using the equation (27) satisfied by ω, it is seen that

(71) (1 + (x− ωy − 1)u)gASM(x, y; u, v) = (1 + (ω − 1)v)gDPP(x, y; u, v).

(In particular, the difference between the two sides of (71) contains the LHS of (27) as a
factor, and therefore vanishes.) It follows that

(72) (I + (x− ωy − 1)S)MASM(n, x, y, 1) = MDPP(n, x, y, 1) (I + (ω − 1)St),

where S is given by (61), and this now implies the result of Proposition 3.

3. The refined enumeration (z arbitrary)

In this section, Theorem 1 will be proved for z arbitrary in (17). The same approach
will be taken as in Section 2, i.e., formulae for the ASM and DPP generating functions (13)
and (14) as (up to a common normalization factor) determinants of n × n matrices will be
obtained, and it will then be shown that the determinants are equal.

Let ω again be a solution of (27), and define n× n matrices

(73) MASM(n, x, y, z)ij =

(1− ω) δij + ω





min(i,j)∑

k=0

(
i

k

)(
j

k

)
xk yi−k, j ≤ n− 2

i∑

k=0

k∑

l=0

(
i

k

)(
n− l − 2

k − l

)
xk yi−k zl+1, j = n− 1,
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(74) MDPP(n, x, y, z)ij =

− δi,j+1 +






min(i,j+1)∑

k=0

(
i− 1

i− k

)(
j + 1

k

)
xk yi−k, j ≤ n− 2

(1 + ω(z − 1))
i∑

k=0

k∑

l=0

(
i− 1

i− k

)(
n− l − 1

k − l

)
xk yi−k zl, j = n− 1,

with 0 ≤ i, j ≤ n−1. Note that ω depends on x and y, and that (73) and (74) reduce to (28)
and (29) for z = 1.

Formulae for the ASM and DPP generating functions in terms of determinants, and the
equality of these determinants, can now be stated as follows.

Proposition 4. Let ZASM(n, x, y, z) and MASM(n, x, y, z) be given by (13) and (73). Then

(1 + ω(z − 1))ZASM(n, x, y, z) = detMASM(n, x, y, z).

Proposition 5. Let ZDPP(n, x, y, z) and MDPP(n, x, y, z) be given by (14) and (74). Then

(1 + ω(z − 1))ZDPP(n, x, y, z) = detMDPP(n, x, y, z).

Proposition 6. Let MASM(n, x, y, z) and MDPP(n, x, y, z) be given by (73) and (74). Then

detMASM(n, x, y, z) = detMDPP(n, x, y, z).

(In fact, Proposition 5 is valid for arbitrary ω, whereas the validity of Propositions 4 and 6
depends on ω being a solution of (27).)

The validity of Theorem 1 for z arbitrary in (17) follows immediately from Propositions 4–
6. The proofs of these propositions will be given in the ensuing three subsections.

3.1. Proof of Proposition 4. In this subsection, the ASM determinant formula of Propo-
sition 4 will be obtained using the same approach as in Section 2.1, i.e., the Izergin–Korepin
formula (38) and the bijection between ASMs and certain six-vertex model configurations
will be used.

Consider again the set 6VDW(n), as defined in Section 2.1. For any C ∈ 6VDW(n),
denote the numbers of vertex configurations of C in row 1 of the grid of types a1, b1 and c1
as Ña(C), Ñb(C) and Ñc(C) respectively. It can be seen that these numbers satisfy

(75) Ña(C) + Ñb(C) = n− 1, Ñc(C) = 1.

Also, it follows from the bijection between ASM(n) and 6VDW(n) that the statistic ρ for
ASMs, as given by (9), satisfies the following result.

Lemma 3. Let A ∈ ASM(n) correspond to C ∈ 6VDW(n). Then

ρ(A) = Ña(C).

Now let weights a, b and c be again defined by (40), for parameters r and q. Also, using (35)

and a further parameter s, define weights ã, b̃ and c̃ by

(76) ã = ā(s, r) = sq −
1

rq
, b̃ = b̄(s, r) =

s

q
−

q

r
, c̃ = c̄(s, r) =

(
q2 −

1

q2

)√s

r
.
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The partition function (37) with these weights and u1 = s, u2 = · · · = un = v1 = · · · =
vn = r is, using (31)–(33), given by

(77) Z6VDW(s, r, . . . , r; r, . . . , r) =
∑

C∈6VDW(n)

a2Na(C)
(
ã
a

)Ña(C)
b2Nb(C)

(
b̃
b

)Ñb(C)
c2Nc(C)+n−1 c̃.

The bijection between ASM(n) and 6VDW(n), together with (13), (34), (75) and Lemmas 1
and 3, now gives

(78) Z6VDW(s, r, . . . , r; r, . . . , r) = b(n−1)2 b̃n−1 cn−1 c̃ ZASM

(
n,
(
a
b

)2
,
(
c
b

)2
, ã b

a b̃

)
.

The following variation of (43) holds for a power series f(u, v) and parameters u0, . . . , un−1,
v0, . . . , vn−1:

(79)
det

0≤i,j≤n−1

(
f(ui, vj)

)

∏
1≤i<j≤n−1(uj − ui)

∏
0≤i<j≤n−1(vj − vi)

=

det
0≤i,j≤n−1

({
f [u0][v0, . . . , vj ], i = 0

f [u1, . . . , ui][v0, . . . , vj ], i ≥ 1

)
,

where the divided differences are again given by (44). Now define, for parameters α, β, γ
and δ, the n× n lower triangular matrix

K(α, β, γ, δ)ij =

{(
i
j

)
αi βj, i ≤ n− 2

γ δj , i = n− 1
(80)

=

{
[uivj] 1

1−αu(1+βv)
, i ≤ n− 2

[vj] γ
1−δv

, i = n− 1,

with 0 ≤ i, j ≤ n− 1.

Then the following properties are satisfied:

(
L(α, β)K(α, β, γ, δ)t

)
ij
=





[uivj ] 1

1−α(u+v)−α2(β2−1)uv
, j ≤ n− 2

[ui] γ
1−α(1+βδ)u

, j = n− 1,
(81)

detK(α, β, γ, δ) = (αβ)(n−1)(n−2)/2 γ δn−1,(82)
(
L
(
α1, β1

)−1
L
(
α2, β2

) (
K
(
α1, β1, γ1,

α1β1(γ2−γ1)
γ2(α2−α1)

)−1
K
(
α2, β2, γ2,

α2β2(γ2−γ1)
γ1(α2−α1)

))t)
ij
=(83)

{∑min(i,j)
k=0

(
i
k

)(
j
k

)(
α2−α1

α1 β1

)i+j ( α2 β2

α2−α1

)2k
, j ≤ n− 2

∑i
k=0

∑k
l=0

(
i
k

)(
n−l−2
k−l

) (
α2−α1

α1 β1

)i+n−1( α2 β2

α2−α1

)2k (γ2
γ1

)l+1
, j = n− 1,

for any α1, β1, γ1, α2, β2, γ2,

where, as before, [ui]f(u) and [uivj]f(u, v) denote the coefficients of ui and uivj in power
series f(u) and f(u, v) respectively, and L(α, β) is given by (49). Property (83) can be
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obtained by first showing that

(84)
(
K
(
α1, β1, γ1,

α1β1(γ2−γ1)
γ2(α2−α1)

)−1
K
(
α2, β2, γ2,

α2β2(γ2−γ1)
γ1(α2−α1)

))
ij
=





(
i
j

) (
α2−α1

α1 β1

)i ( α2 β2

α2−α1

)j
, i ≤ n− 2

(
α2−α1

α1 β1

)n−j−1 (α2 β2

α1 β1

)j∑j
k=0

(
n−k−2
j−k

) (
γ2
γ1

)k+1
, i = n− 1,

and using (53). Properties (81) and (84) can be obtained using Cauchy-type residue integrals,
similarly to the derivation of (51) and (53) as indicated in (54).

We now have
(
1 + ω+

(
ã b

a b̃
− 1
))

ZASM

(
n,
(
a
b

)2
,
(
c
b

)2
, ã b

a b̃

)

= b

b̃
ZASM

(
n,
(
a
b

)2
,
(
c
b

)2
, ã b
a b̃

)
[using (40), (55) and (76)]

= 1

bn(n−2) b̃n cn−1 c̃
Z6VDW(s, r, . . . , r; r, . . . , r) [using (78)]

= rn(n+1) (ãb)n an(n−1)

(r−s)n−1 cn
det

0≤i,j≤n−1







[vj]

(
1

s(v+r)−q2
− 1

s(v+r)−q−2

)
, i = 0

[ui−1vj]
(

1
(u+r)(v+r)−q2

− 1
(u+r)(v+r)−q−2

)
, i ≥ 1




[using (39), (40), (47), (76) and (79)]

= rn(n+1) (ãb)n an(n−1)

(s−r)n−1 cn
det

0≤i,j≤n−1








[uivj]

(
1

(u+r)(v+r)−q2
− 1

(u+r)(v+r)−q−2

)
, j ≤ n− 2

[ui]
(

1
s(u+r)−q2

− 1
s(u+r)−q−2

)
, j = n− 1





[cycling the rows of and transposing the matrix]

= rn(n+1) (ãb)n an(n−1)

(s−r)n−1 cn
det
(

1
r2−q2

L
(

r
q2−r2

, q
r

)
K
(

r
q2−r2

, q
r
, r2−q2

rs−q2
, r−s
q−1rs−q

)t
−

1
r2−q−2 L

(
r

q−2−r2
, 1
qr

)
K
(

r
q−2−r2

, 1
qr
, r2−q−2

rs−q−2 ,
r−s

qrs−q−1

)t)
[using (81)]

= rn(n+1) (ãb)n an(n−1)

(qr2−q−1)n(n−2) (qrs−q−1)n cn
det
(

1
r2−q2

L
(

r
q−2−r2

, 1
qr

)−1
L
(

r
q2−r2

, q
r

)
×

(
K
(

r
q−2−r2

, 1
qr
, r2−q−2

rs−q−2 ,
r−s

qrs−q−1

)−1
K
(

r
q2−r2

, q
r
, r2−q2

rs−q2
, r−s
q−1rs−q

))t
− 1

r2−q−2 I
)

[using (52) and (82)]

= det
0≤i,j≤n−1



(1− ω+)δij + ω+





∑min(i,j)
k=0

(
i
k

)(
j
k

) (
c
b

)i+j(a
c

)2k
, j ≤ n− 2

∑i
k=0

∑k
l=0

(
i
k

)(
n−l−2
k−l

) (
c
b

)i+n−1(a
c

)2k( ã b
a b̃

)l+1
, j = n− 1





[using (40), (55), (76) and (83)]

= det
0≤i,j≤n−1



(1− ω+)δij + ω+





∑min(i,j)
k=0

(
i
k

)(
j
k

) (
a
b

)2k( c
b

)2(i−k)
, j ≤ n− 2

∑i
k=0

∑k
l=0

(
i
k

)(
n−l−2
k−l

) (
a
b

)2k( c
b

)2(i−k)( ã b
a b̃

)l+1
, j = n− 1





[multiplying the matrix on the left by V and right by V −1, where Vij =
(
c
b

)i
δij].
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Applying the transformation r → r−1, s → s−1 and q → q−1 to the equality between the
first and last expressions in the previous sequence, it follows that this equality remains valid

if ω+ is replaced by ω−. Finally, identifying x =
(
a
b

)2
, y =

(
c
b

)2
and z = ã b

a b̃
gives the result

of Proposition 4, using (27), (56) and (73).

3.2. Proof of Proposition 5. In this subsection, the DPP determinant formula of Proposi-
tion 5 will be obtained using the same approach as in Section 2.2, i.e., the Lindström–Gessel–
Viennot theorem (58) and the bijection between DPPs and certain sets of nonintersecting
lattice paths will be used.

Consider again the set NILP(n), as defined in Section 2.2. It follows from the bijection
between DPP(n) and NILP(n) that the statistic ρ for DPPs, as given by (12), satisfies the
following result.

Lemma 4. Let D ∈ DPP(n) correspond to P ∈ NILP(n). Then

ρ(D) = number of rightward steps in P in the top row of the grid.

Now assign a weight of xz to each horizontal edge in the top row of the grid, and assign
the same weights as in Section 2.2 to all other edges. Then the bijection between DPP(n)
and NILP(n), together with (14), (59), (62) and Lemmas 2 and 4, gives

(85) ZDPP(n, x, y, z) = det
0≤i,j≤n−1

(
−δi,j+1 +

∑

p∈P((0,j),(i,0))

W (p)

)
.

For j ≤ n − 2, each path of P((0, j), (i, 0)) remains below the top row of the grid, and
so (64) holds. For j = n − 1, the paths of P((0, n − 1), (i, 0)) can be obtained by joining
the unique path of P((0, n − 1), (l, n − 1)), which has weight (xz)l, the unique path of
P((l, n−1), (l, n−2)), which has weight 1, any of the

(
n−l−1
k−l

)
paths of P((l, n−2), (k, k−1)),

each of which has weight xk−l, and any of the
(
i−1
i−k

)
paths of P((k, k−1), (i, 0)), each of which

has weight yi−k, for any 0 ≤ k ≤ i and 0 ≤ l ≤ k. This is shown diagrammatically in Figure 7.
It therefore follows that

(86)
∑

p∈P((0,j),(i,0))

W (p) =





min(i,j+1)∑

k=0

(
i− 1

i− k

)(
j + 1

k

)
xk yi−k, j ≤ n− 2

i∑

k=0

k∑

l=0

(
i− 1

i− k

)(
n− l − 1

k − l

)
xk yi−k zl, j = n− 1.

Finally, combining (85) and (86), and multiplying the last column of the matrix by 1 +
ω(z − 1), gives the result of Proposition 5.

The alternative sets of nonintersecting lattice paths described in Section 2.2 and the TB
configurations used by Lalonde [40, 41] lead to the alternative formulae ZDPP(n, x, y, z) =
detM ′

DPP(n, x, y, z) = detM ′′
DPP(n, x, y, z), where the entries of the matrices here are given,

for 0 ≤ i, j ≤ n − 1, by M ′
DPP(n, x, y, z)ij = M ′

DPP(n, x, y, 1)ij and M ′′
DPP(n, x, y, z)ij =

M ′′
DPP(n, x, y, 1)ij if j ≤ n − 2 (with M ′

DPP(n, x, y, 1) and M ′′
DPP(n, x, y, 1) given by (65)
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k−1

l k−l i−k

i

n−k−1

n−1

xz xz

x

x

x

y

y y

y

Figure 7. Derivation of (86) for j = n− 1.

and (66)), and

M ′
DPP(n, x, y, z)i,n−1 = δi,n−1 +

i−1∑

k=0

k∑

l=0

l∑

m=0

(
n−m− 2

l −m

)(
k

l

)
xl+1 yk−l zm+1,(87)

M ′′
DPP(n, x, y, z)i,n−1 =

i∑

k=0

(
n− k − 1

i− k

)
xi zk.(88)

Note that (I − S)M ′
DPP(n, x, y, z) = M̄(n, x, y, z)(I − St) and that B(y)M ′′

DPP(n, x, y, z) =
M̄(n, x, y, z), where M̄(n, x, y, z) (as will be given explicitly in (98)) is the matrix ob-
tained from MDPP(n, x, y, z) by omitting the factor 1 + ω(z − 1) from the last column,
S is given by (61) and B(y)ij =

(
i−1
i−j

)
yi−j. The matrix M ′

DPP(n, x, y, z) is given, us-

ing slightly different notation, in Mills, Robbins and Rumsey [48, p. 346], and the result
ZDPP(n, x, y, z)= detM ′

DPP(n, x, y, z) is stated there, without proof.

3.3. Proof of Proposition 6. In this subsection, the equality of the ASM and DPP de-
terminants in Proposition 6 will be proved using the same approach as in Section 2.3, i.e., a
certain relation between the generating functions associated with the entries of the respective
matrices will be obtained, and this will then imply a relation between the matrices and the
equality of their determinants.

The entries of the last columns of MASM(n, x, y, z) and MDPP(n, x, y, z) satisfy

MASM(n, x, y, z)i,n−1 = (1− ω)δi,n−1 + [ui]
ωz

1− (xz − x+ y)u

(
1 +

xu

1− yu

)n

,(89)

MDPP(n, x, y, z)i,n−1 = [ui]
(1 + ω(z − 1))(1− yu)

1− (xz − x+ y)u

(
1 +

xu

1− yu

)n

.(90)
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Now define the generating functions

fASM(n, x, y, z; u, v) =
1− ω

1− uv
+

ω

1− yu− v − (x− y)uv
(91)

+
ω(z − 1)

1− (xz − x+ y)u

(
1 +

xu

1− yu

)n

vn−1

(
1 +

(ωx− ω − x+ ωyu)v

y(ω + xu− ωyu)

)
,

fDPP(n, x, y, z; u, v) =
1− u

(1− v)(1− uv)
+

xu

(1− v)(1− yu− v − (x− y)uv)
(92)

+
(z − 1)(ω + xu− ωyu)

1− (xz − x+ y)u

(
1 +

xu

1− yu

)n

vn−1.

Then, using (69), (70), (89) and (90), it follows that

MASM(n, x, y, z)ij = [uivj]fASM(n, x, y, z; u, v),(93)

MDPP(n, x, y, z)ij = [uivj]fDPP(n, x, y, z; u, v).(94)

Using the equation (27) satisfied by ω, it is seen that

(95) (1 + (x− ωy − 1)u)fASM(n, x, y, z; u, v) = (1 + (ω − 1)v)fDPP(n, x, y, z; u, v).

(In particular, the difference between the two sides of (95) contains the LHS of (27) as a

factor, and therefore vanishes.) Note that if the final term 1 + (ωx−ω−x+ωyu)v
y(ω+xu−ωyu)

were omitted

from fASM(n, x, y, z; u, v), then (93) would still hold, but (95) would not.

It now follows that

(96) (I + (x− ωy − 1)S)MASM(n, x, y, z) = MDPP(n, x, y, z) (I + (ω − 1)St),

where S is again given by (61), and this implies the result of Proposition 6.

4. Discussion

The proof of the Mills, Robbins and Rumsey ASM-DPP conjecture (i.e., Theorem 1),
which has been the primary focus of this paper, has been presented in the preceding two
sections. In this final section, we discuss some consequences for the computation of the
associated ASM and DPP generating functions, describe certain symmetry operations for
ASMs and DPPs, outline some further work which generalizes the work reported in this
paper, and review some remaining unresolved matters regarding the relationship between
ASMs and DPPs.

4.1. Determinant formulae for weighted enumeration of ASM and DPPs. This
paper has mainly been devoted to the proof of Theorem 1, which asserts the equality of sizes
of subsets of ASM(n) and DPP(n) associated with arbitrary values of certain statistics, or
equivalently the equality of the generating functions which give weighted enumerations of
the elements of ASM(n) or DPP(n) using arbitrary weights associated with these statistics.
However, as a byproduct of this proof, determinant formulae have been obtained which
enable the efficient computation of these generating functions for given n, and thereby the



ON THE WEIGHTED ENUMERATION OF ASMs AND DPPs 31

evaluation of the sizes of all of the associated subsets of ASM(n) and DPP(n). In particular,
it follows from Propositions 4–6 that the generating functions (13) and (14) satisfy

(97) ZASM(n, x, y, z) = ZDPP(n, x, y, z) = det M̄(n, x, y, z),

where

(98) M̄(n, x, y, z)ij =−δi,j+1 +





min(i,j+1)∑

k=0

(
i− 1

i− k

)(
j + 1

k

)
xk yi−k, j ≤ n− 2

i∑

k=0

k∑

l=0

(
i− 1

i− k

)(
n− l − 1

k − l

)
xk yi−k zl, j = n− 1,

with 0 ≤ i, j ≤ n− 1.

Note that the matricesM ′
DPP(n, x, y, z) orM

′′
DPP(n, x, y, z), as given by (65)–(66) and (87)–

(88), could be used here instead of M̄(n, x, y, z), with the formulae for ZDPP(n, x, y, z) as
the determinant of these matrices having been obtained by Mills, Robbins and Rumsey [48,
p. 346] and Lalonde [40, Thm. 3.1] respectively.

It can be seen that ZASM(n, x, y, z) = ZDPP(n, x, y, z) =
1

1+ω(z−1)
detMASM(n, x, y, z) also

holds, where MASM(n, x, y, z) is given by (73) and ω is a solution of (27). However, this
form seems computationally less useful, due to the presence in the prefactor and the matrix
of the term ω, which does not have polynomial dependence on x, y and z. A formula for
ZASM(n, x, y, 1) in terms of the determinant of a matrix closely related to MASM(n, x, y, 1)
was also obtained by Colomo and Pronko in [13, Eqs. (23)–(24)] and [14, Eqs. (4.3)–(4.7)],
but it seems that a general determinant formula for ZASM(n, x, y, z) of the form of (97)–(98)
(i.e., in which all entries of the matrix are polynomials in x, y and z) has not previously
appeared in the literature. In fact, the equation ZASM(n, 1, y, z) = detM ′

DPP(n, 1, y, z),
with M ′

DPP(n, 1, y, z) given by (65)–(66), confirms the validity of a determinant formula
conjectured by Robbins [59, Conj. 3.1]. (See also de Gier [21, Sec. 2].)

Note also that combining (42), (97) and (98) gives a determinant formula for the par-
tition function of the homogeneous six-vertex model with DWBC directly in terms of the
weights a, b and c, rather than in terms of the spectral parameters, as is the case with
previously-known determinant formulae for this partition function. (Specifically, this for-

mula for an n× n grid is cn det0≤i,j≤n−1

(
−b2iδi,j+1 +

∑min(i,j+1)
k=0

(
i−1
i−k

)(
j+1
k

)
a2kc2(i−k)

)
.)

Finally, note that it seems that the techniques of this paper could be used to obtain similar
such determinant formulae for the partition functions of cases of the homogeneous six-vertex
model with certain other boundary conditions, for example some of the cases studied by
Kuperberg in [39]. Indeed, the study of these cases in [39] led to enumerative results for
various classes of ASMs, and, using the Lindström–Gessel–Viennot theorem, determinant
formulae of the form of (97) can often be interpreted in terms of the enumeration of particular
types of plane partition. Accordingly, if such determinant formulae are obtained for these
classes of ASMs, then this may reveal new enumerative connections between these ASMs
and certain plane partitions.
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4.2. Symmetry operations. We now discuss certain symmetry operations for ASMs and
DPPs, and state a result, analogous to Theorem 1, for the equality of sizes of subsets of
ASM(n) and DPP(n) which are invariant under these operations.

Define an operation ∗ on ASM(n) and on DPP(n) as follows. For A ∈ ASM(n), let A∗ be
the ASM obtained by reflecting A in a vertical line passing through the center of the matrix,
i.e., A∗

ij = Ai,n+1−j. For DPPs, consider the bijection, as obtained by Krattenthaler [37]
and shown for the example of (4) in Figure 6, between DPP(n) and the set of cyclically
symmetric rhombus tilings of a hexagon with alternating sides of length n − 1 and n + 1
and a central equilateral triangular hole of side length 2. If D ∈ DPP(n) corresponds to the
rhombus tiling R, then D∗ is defined to be the DPP which corresponds to the reflection of R
in any of the three lines which bisect the central triangular hole.

For example, for the DPP D of (4), D∗ = 6 6 5 5 3
4 2 2 (taking n = 6). As further examples,

for ASM(3) and DPP(3), as given in (5) and (6), the first and second, third and fourth, and
fifth and sixth elements are related by ∗, and the seventh elements are invariant under ∗.

It can immediately be seen that ∗ is an involution on ASM(n) and on DPP(n). Mills,
Robbins and Rumsey [48, Sec. 3] showed that ∗ is also a unique antiautomorphism on
DPP(n), with respect to a certain partial order.

The operation ∗ for DPPs was introduced by Mills, Robbins and Rumsey [48, Sec. 3],
and first defined directly in terms of the parts of a DPP [48, p. 351]. (See also Bressoud [7,
pp. 194–195].) The alternative description of ∗ for DPPs in terms of rhombus tilings was
first obtained by Krattenthaler [37, p. 1143]. A description of ∗ for DPPs in terms of the TB
configurations of Lalonde is given in [41], and a closely-related description can be given in
terms of the set NILP(n) of sets of nonintersecting lattice paths, as defined in Section 2.2.

It was shown by Mills, Robbins and Rumsey [48, p. 352] (see also Krattenthaler [37] and
Lalonde [41] for the DPP case) that the ASM and DPP statistics (7)–(12) behave under ∗
according to

(99) ν(X∗) = n(n−1)
2
− ν(X)− µ(X), µ(X∗) = µ(X), ρ(X∗) = n− 1− ρ(X),

for any X ∈ ASM(n) or X ∈ DPP(n). (It can also be shown that, for any D ∈ DPP(n), the
sum of the number of rows in D and number of rows in D∗ is n− 1, and the sum of all parts
in both D and D∗ is 2

(
n+1
3

)
.)

The following result was conjectured by Mills, Robbins and Rumsey [48, Conj. 3S] and
proved (in a form involving slightly different terminology) by de Gier, Pyatov and Zinn-
Justin [22, Prop. 3, first equation].

Theorem (de Gier, Pyatov, Zinn-Justin). The sizes of {A ∈ ASM(n) | A∗ = A, µ(A) = m}
and {D ∈ DPP(n) | D∗ = D, µ(D) = m} are equal for any n and m.

It follows from (99) and other basic properties of the operations ∗ that if the sets in the
previous theorem are nonempty, then n is odd, m/2 − (n − 1)/4 is a nonnegative integer,
and any element X of either set satisfies ν(X) = n(n− 1)/4−m/2 and ρ(X) = (n− 1)/2.
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As examples,

{A ∈ ASM(5) | A∗ = A} =(100)








0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0



,




0 0 1 0 0
1 0 −1 0 1
0 0 1 0 0
0 1 −1 1 0
0 0 1 0 0



,




0 0 1 0 0
0 1 −1 1 0
1 −1 1 −1 1
0 1 −1 1 0
0 0 1 0 0









,

{D ∈ DPP(5) | D∗ = D} =(101)

{
5 5 3 2
4 1 ,

5 5 4 2
3 1 ,

5 5 2 2
4 1 1

}
∼=





, ,





.

A bijective proof of the m = 0 case of the previous theorem can be obtained straightfor-
wardly. Also, for the case of the theorem with m summed over, it is known that

(102) |{A ∈ ASM(2n+ 1) | A∗ = A}| = |{D ∈ DPP(2n+ 1) | D∗ = D}| =
n∏

i=1

(6i− 2)!

(2n+ 2i)!
.

The formula for ASMs in (102) was conjectured by Robbins [58, 59] and first proved by
Kuperberg [38, Thm. 2, second equation], while the formula for DPPs can be obtained using
the correspondence between DPPs and sets of nonintersecting lattice paths, together with
the Lindström–Gessel–Viennot theorem, to obtain a determinant which is then evaluated
using a result of Mills, Robbins and Rumsey [50, Thm. 7, 2nd part, µ = 1]. Certain aspects
of ∗-invariant ASMs and DPPs are also considered by Di Francesco and Zinn-Justin [23, 24].

It has thus been seen in this subsection that the symmetry operations ∗ on ASMs and ∗
on DPPs seem to correspond in the sense that they share the same behavior with regard
to the statistics ν, µ and ρ of (7)–(12), and that the sizes of sets of ∗-invariant ASMs and
DPPs are equal. Accordingly, if a bijective proof of Theorem 1 is found, then the bijection
would preferably satisfy the property that for any ASM A and DPP D which correspond, A∗

and D∗ also correspond.

4.3. Further work and remaining questions. In this paper we have proved a result,
Theorem 1, which confirms the existence of a close relationship between ASMs and DPPs.

In future work we plan to present the proof of a certain doubly-refined generalization of
Theorem 1 involving a further statistic for ASMs and DPPs (where this statistic for an ASM
is simply the number of 0’s to the right of the 1 in the last row), to define further statistics
and give associated results for ∗-invariant ASMs and DPPs (where ∗ is the operation defined
in Section 4.2), and to discuss some progress made towards constructing a bijection between
ASMs and DPPs.

However, despite the implications of our current and forthcoming results, there remain
various questions about the relationship between ASMs and DPPs which are likely only
to be resolved by the discovery of a full bijection between these two types of objects. For
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example, there are certain features which, based on current knowledge, are displayed by only
one type of object, with no corresponding feature known for the other. (Of course, even if a
bijection is found, it is likely that many of these features will still have a simple or natural
description in terms of only one type of object.)

A feature displayed by ASMs is the existence of eight natural symmetry operations, corre-
sponding to those of the dihedral group acting on a square matrix, i.e., the identity, reflections
in central vertical, horizontal, diagonal and antidiagonal lines, and rotations about the cen-
ter by π/2, π and 3π/2. The operation ∗ for DPPs, as discussed in Section 4.2, seems to
correspond to vertical reflection of ASMs, but as was pointed out by Mills, Robbins and
Rumsey [48, p. 353] and is still the case, there are no known operations for DPPs which
seem to correspond to the last six of the ASM operations.

Another feature of ASMs is the existence of simple bijections with several other combina-
torial objects, which themselves display natural properties for which no analogous properties
are known for DPPs. A review of such bijections is given by Propp [54]. For example, as
described in [54], the set ASM(n) is in bijection with the sets, all associated with a certain or-
der n, of monotone triangles, height-function matrices and fully packed loop configurations.
The bijection with monotone triangles enables a further statistic to be defined naturally for
ASMs, where this statistic enters a certain refined enumerative relationship between ASM(n)
and the set of totally symmetric self-complementary plane partitions in a 2n× 2n× 2n box
(see Mills, Robbins and Rumsey [49, Conj. 7] and Zeilberger [72, Lemma 1]), the bijection
with monotone triangles or with height-function matrices enables ASM(n) to be regarded
as a distributive lattice, where this lattice is associated with various algebraic results (see
for example Lascoux [43, pp. 3–4], Lascoux and Schützenberger [44], Propp [54, pp. 46–47]
and Striker [68]), and the bijection with fully packed loop configurations enables ASMs to
be classified according to certain link patterns, where these patterns play a primary role
in the Razumov–Stroganov (ex-)conjecture (see for example Cantini and Sportiello [10] and
Propp [54, Sec. 7]).

On the other hand, examples of some features which are exhibited by DPPs, but for
which no counterparts are known for ASMs, are the existence of a certain lattice structure,
as described by Mills, Robbins and Rumsey [48, p. 347] (where this is a different lattice
structure from the one known for ASMs), and the existence of two natural statistics, given by
the number of rows of a DPP and the sum of parts of a DPP. Furthermore, it can be shown,
using the derivations of Sections 2.2 and 3.2, that

∑
D∈DPP(n) w

φ(D)+1 xν(D) yµ(D) zρ(D) =

det M̄(n, w, x, y, z), where φ(D) is the number of rows of D and M̄(n, w, x, y, z) is the matrix
obtained from M̄(n, x, y, z) by multiplying the second term on the RHS of (98) by w, and it

was shown by Mills, Robbins and Rumsey [47] that
∑

D∈DPP(n) q
|D| =

∏n−1
i=0

[3i+1]q !

[n+i]q!
, where |D|

is the sum of parts of D and [n]q! is defined after (20).

Finally, and intriguingly, it has been shown (nonbijectively) that certain enumerations
of DPPs involving the sum of parts are related to enumerations of ASMs invariant under
certain symmetry operations. More specifically, it follows from a result of Stanton, as given
by Stephens-Davidowitz and Cloninger [66, Thm. 2.2], that

|{D ∈ DPP(n) | |D| even}| = |{D ∈ DPP(n) | |D| odd}| +(103)

|{A ∈ ASM(n) | A invariant under rotation by π}|,



ON THE WEIGHTED ENUMERATION OF ASMs AND DPPs 35

|{D ∈ DPP(n) | |D| ≡ 0 mod 4}| = |{D ∈ DPP(n) | |D| ≡ 2 mod 4}| +(104)

|{A ∈ ASM(n) | A invariant under rotation by π
2
}|.
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