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Abstract
Objectives Investigate the effect of a novel Bayesian
penalised likelihood (BPL) reconstruction algorithm on anal-
ysis of pulmonary nodules examined with 18F-FDG PET/CT,
and to determine its effect on small, sub-10-mm nodules.
Methods 18F-FDG PET/CTs performed for nodule evalua-
tion in 104 patients (121 nodules) were retrospectively recon-
structed using the new algorithm, and compared to time-of-
flight ordered subset expectation maximisation (OSEM) re-
construction. Nodule and background parameters were
analysed semi-quantitatively and visually.
Results BPL compared to OSEM resulted in statistically sig-
nificant increases in nodule SUVmax (mean 5.3 to 8.1,
p<0.00001), signal-to-background (mean 3.6 to 5.3,
p < 0.00001) and signal-to-noise (mean 24 to 41,
p<0.00001). Mean percentage increase in SUVmax

(%ΔSUVmax) was significantly higher in nodules ≤10 mm
(n=31, mean 73 %) compared to >10 mm (n=90, mean
42 %) (p=0.025). Increase in signal-to-noise was higher in
nodules ≤10 mm (224 %, mean 12 to 27) compared to
>10 mm (165 %, mean 28 to 46). When applying optimum

SUVmax thresholds for detecting malignancy, the sensitivity
and accuracy increased using BPL, with the greatest improve-
ments in nodules ≤10 mm.
Conclusion BPL results in a significant increase in signal-to-
background and signal-to-noise compared to OSEM. When
semi-quantitative analyses to diagnose malignancy are ap-
plied, higher SUVmax thresholds may be warranted owing to
the SUVmax increase compared to OSEM.
Key Points
• Novel Bayesian penalised likelihood PET reconstruction
was applied for lung nodule evaluation.

• This was compared to current standard of care OSEM
reconstruction.

• The novel reconstruction generated significant increases in
lung nodule signal-to-background and signal-to-noise.

• These increases were highest in small, sub-10-mm pulmo-
nary nodules.

• Higher SUVmax thresholds may be warranted when using
semi-quantitative analyses to diagnose malignancy.

Keywords Solitary pulmonary nodule . Positron-emission
tomography . Image reconstruction . Signal-to-noise ratio .

Image quality enhancement

Introduction

18F-FDG PET/CT is now commonly performed in the assess-
ment of potentially malignant solitary pulmonary nodules [1,
2], but its use is limited in the evaluation of small pulmonary
nodules [3, 4], with a paucity of studies evaluating its value in
small, sub-10-mm pulmonary nodules [1, 4].

The use of semi-quantitative measurements in the evalua-
tion of small pulmonary nodules is also uncertain, with no
agreed standardised uptake value (SUVmax) threshold for
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differentiating benign from malignant aetiologies [1, 5–7].
Signal acquisition and technical factors such as the image
reconstruction methodologies used have a greater impact on
the accuracy of SUV measurements in small nodules com-
pared to large nodules [8, 9].

There are two main types of PET reconstruction available:
analytical and iterative. Generally iterative methods are more
commonly used because of their improved signal-to-noise ra-
tios compared to analytical algorithms, such as filtered back
projection (FBP) [8–10]. Iterative methods also allow the
modelling of various system factors that can be included in
the reconstruction, such as the point spread function (PSF)
[11–13]. The main iterative algorithm used is ordered subset
expectation maximisation (OSEM) [14] which aims to find
the most likely image from the raw data through repeated
iterations of possibilities. Each iteration gives an image with
a greater likelihood of describing the measured data. The main
disadvantage of iterative algorithms is that it is not possible to
run them to full convergence as the image noise increases with
each iteration, becoming unacceptable before full conver-
gence is reached [8, 10]. In general, OSEM is stopped after
a predetermined number of iterations resulting in an
underconverged image. The failure to accurately attribute the
signal results in an underestimation of SUVs, and has the
greatest effect in small FDG-avid foci such as sub-10-mm
nodules.

Recently a new iterative PET reconstruction algo-
rithm, Bayesian penalised likelihood (BPL), has been
developed by GE Healthcare, called Q.Clear (GE
Healthcare, Milwaukee, USA) and includes PSF model-
ling [15]. Whilst penalised likelihood algorithms were
first reported in 1987 [16], and their advantage over
FBP was described in 1996 [17], their clinical use has
so far been very limited. The BPL considered here in-
cludes a relative difference penalty, first introduced in
2002 [18]. The main advantage this has over other pos-
sible penalties is that it is a function of the difference
between neighbouring voxels as well as a function of
their sum [19]. This penalty function acts as a noise
suppression term, which allows an increased number
of iterations without the noise usually seen in OSEM
[15]. The strength of this penalty function is controlled
by the penalisation factor (beta), which is the only user-
input variable to the algorithm. Modified block sequen-
tial regularized expectation maximization (BSREM) is
used as an optimiser for this BPL algorithm, which, as
a result of the penalty function, allows effective conver-
gence to be achieved in images, potentially providing a
more accurate SUV [19, 20].

The aim of this study was to investigate the effect of the
iterative reconstruction technique using BPL on the analysis
of nodules scanned with PET/CT, and to determine its effect
on small, sub-10-mm nodules.

Materials and methods

Patient selection

All patients who underwent 18F-FDG PET/CT at our institu-
tion between November 2010 and December 2013 for the
evaluation of pulmonary nodules, with subsequent histologi-
cal diagnosis, were retrospectively identified. Nodules were
defined as having a long-axis diameter of ≤30 mm on lung
windows. Informed consent is not required for retrospective
reviews of this nature in our institution.

18F-FDG PET/CT imaging protocol

PET/CT examinations were performed on a 3D mode time of
flight (ToF) GE Discovery 690 PET/CT system (GE
Healthcare, Milwaukee, USA). The patients fasted for at least
6 h prior to their scan. Their blood glucose was measured prior
to intravenous injection, with 4 MBq/kg of 18F-FDG. Imag-
ing commenced 90 min post-injection (93±7 min) and cov-
ered the skull base to upper thighs. The PET/CT images were
acquired under normal tidal respiration for 4 min per bed
position. The CT was performed using a pitch of 0.984,
120 kV, automAwith a noise index of 25.

PET reconstructions

PET images were reconstructed using two different algorithms
both of which used the CT for attenuation correction and the
same normalisation correction factors. The standard of care
PET reconstruction algorithm used is ToF OSEM (VPFX,
GE Healthcare, Milwaukee, USA). This was used with two
iterations, 24 subsets and 6.4 mm Gaussian filter in our insti-
tution. The sinograms generated at the time of scanning were
retrospectively processed using the new ToF BPL reconstruc-
tion algorithm (Q.Clear, GE Healthcare, Milwaukee, USA)
using a penalisation factor (beta) of 400, the only user-input
variable for this algorithm.

Imaging analysis

Semi-quantitative analysis

The pre-existing PET images (reconstructed using OSEM)
and new PET images reconstructed using BPL were fused
with the CT component of the original study for analysis.
The SUVmax of each nodule was recorded using a standard
volume of interest (VOI) tool. Background SUVs were mea-
sured in the right lobe of liver and descending aorta at the level
of the carina, with 3.0-cm and 1.0-cm diameter spherical
VOIs, respectively. SUVmax, SUVmean and standard deviation
within the VOI were recorded for both reference organs.
Signal-to-background ratio (SBR) for each nodule was
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calculated as nodule SUVmax divided by descending aorta
SUVmean. Nodule signal-to-noise ratio (SNR) was defined as
nodule SUVmax divided by liver SUVsd using the standard
deviation on a liver reference VOI (SUVsd) as the measure
of noise. To identify possible change in image noise the back-
ground SNR was calculated as liver SUVmean divided by liver
SUVsd.

Visual analysis

Visual analysis of the OSEM and BPL PET/CT images was
performed by a radiology resident with 4 years of radiology
(including 1 year of PET/CT) experience. Nodules were
scored according to degree of FDG uptake (above-back-
ground, at-background or below-background). The reference
organ for background uptake was the descending aorta. The
scorer reviewed the cases in a randomised and unpaired order,
blinded to the clinical details.

Statistical analysis

Statistical analyseswere performed using IBMSPSS Statistics
20.0 (IBM Corporation, New York, USA). P values ≤0.05
were considered as statistically significant.

Background analysis

This was performed across the entire cohort. Differences in
background SUVmean, SUVmax and SNR across the entire
cohort were analysed using paired t tests.

Nodule analysis

Nodules were classified according to three different categories
for analysis:

1. Size: ≤10 mm or >10 mm in long-axis diameter on lung
windows

2. FDG uptake: FDG-positive (above-background) or FDG-
negative (at/below-background). Background uptake was
patient-specific and set as the descending aorta SUVmean

on the OSEM algorithm.
a. A sub-analysis of FDG-positive nodules was per-

formed according to size
3. Aetiology

For the first two categories, differences in nodule SUVmax,
SBR and SNR were analysed using Wilcoxon rank-sum tests.
The percentage difference in nodule SUVmax (%ΔSUVmax)
was also calculated. Differences in %ΔSUVmax within each
category were analysed using the Mann–Whitney U test.

Across the entire cohort, and within the FDG uptake clas-
sification, correlation between %ΔSUVmax and nodule size
was analysed using Spearman’s rank correlation coefficient.

Within the aetiological classification, differences in
%ΔSUVmax and nodule size were analysed according to three
categories: primary lung cancer, metastases and benign aetiol-
ogies, using the Kruskal–Wallis test.

Diagnostic performance

The performance of both algorithms to detect malignant nod-
ules (primary lung cancer and metastases) was assessed using
both semi-quantitative and visual criteria. For semi-
quantitative criteria, receiver operating characteristic (ROC)
curves were plotted, and area under the curve (AUC) values
calculated. The areas under both ROC curves were compared
using the method described by Hanley and McNeil [21]. The
optimal SUV threshold for the diagnosis of malignancy was
defined as the point on the curve closest to the upper left
corner of the ROC space. Sensitivity, specificity and accuracy
for malignancy detection were calculated for these thresholds.
For visual criteria, nodules scored as above-background were
designated malignant and nodules at-background or below-
background were designated benign. Sensitivity, specificity
and accuracy for malignancy detection were then calculated.

Results

Clinical characteristics

One hundred and four patients (45 male, 59 female, mean age
68 years, range 23–89 years) met the inclusion criteria. A total
of 121 nodules were included for analysis, comprising various
malignant (n=106) and benign (n=15) aetiologies. Malignant
nodules comprised of non-small cell lung cancer (NSCLC)
(n=64), metastases of extra-thoracic malignancy (n=32) and
carcinoid (n=10). Benign aetiologies included hamartoma,
sarcoidosis and mycobacterial granulomata, benign alveolar
adenoma and inflammatory scar. The mean nodule diameter
was 15mm (range 3–28mm) with 31 nodules ≤10mm and 90
nodules >10 mm.

Background analysis

Differences in all the background SUV parameters between
OSEM and BPL were statistically significant (Table 1). The
largest difference was in liver SUVmean (mean difference 0.17,
95 % CI 0.14–0.21). The average background SNR on OSEM
was 10.2 (range 6.9–15.0), increasing to 12.3 on BPL (range
8.0–17.9, p<0.0001) (Table 1).

578 Eur Radiol (2016) 26:576–584



Nodule analysis: entire cohort

There was a statistically significant difference in overall nod-
ule SUVmax (mean difference 2.8, p<0.00001), SNR (mean
17.0 on OSEM almost doubling to 41.1 on BPL, p<0.0001)
and SBR (mean difference 1.7, p<0.00001), with mean in-
crease %ΔSUVmax of 50.0 % (median 40.5 %, range −16.7
to +301 %). There was a statistically significant inverse cor-
relation between %ΔSUVmax and nodule size (p=0.0028).
Results of this analysis are described in Table 2.

Nodule analysis: size

Consistent with analysis of the entire cohort, there were sta-
tistically significant differences between BPL and OSEM in
nodule SUVmax, SBR and SNR in both ≤10 mm and >10 mm
categories. Results of this analysis are detailed in Table 2.

Nodule analysis: FDG uptake

The same trends in change to SUVmax, SBR and SNR were
observed in FDG-positive (above-background) nodules (all
p<0.00001). There was also a stronger correlation between
%ΔSUVmax and nodule size in this group compared to the
entire cohort (p<0.00001 vs 0.0028). However in FDG-
negative (at/below-background) nodules, statistical signifi-
cance of SUVmax and SBR change was relatively weaker
(p=0.031 and 0.0076, respectively). There was no statistically
significant change to SBR or %ΔSUVmax in FDG-negative
nodules (p=0.196 and 0.522, respectively). Results of this
analysis are summarised in Table 2 and Fig. 1.

In view of the stronger correlation between %ΔSUVmax

and nodule size in FDG-positive nodules compared to the
entire cohort, a sub-analysis was performed according to size.
The difference in %ΔSUVmax between FDG-positive nodules
≤10 mm and >10 mm was accentuated in this subgroup
(92.1 % vs 45.3 %, p=0.00013).

Nodule analysis: aetiology

When categorised into three groups, NSCLC, metastases and
benign, there was an observed difference in %ΔSUVmax be-
tween the groups (mean 65.2 % in metastases, 46.6 % in
NSCLC, 35.0 % in benign), but this was not statistically sig-
nificant. The highest %ΔSUVmax in metastases could not be
accounted for by differences in nodule size, as there was no
significant difference in nodule size among the three groups
(Table 3). The OSEM SUVmax, BPL SUVmax and
%ΔSUVmax of the three groups are summarised in Table 3.

Visual analysis of FDG uptake

On visual analysis of FDG uptake on OSEM compared to
BPL (Table 4), scores were concordant in 113 nodules
(93 %). Seven nodules had a higher score on BPL (six back-
ground increased to above-background, of which four were
malignant and two benign; one below-background increased
to background–malignant), and one nodule had a lower score
on BPL (above-background decreased to below-background–
malignant).

Four of the seven nodules that scored higher on BPL using
visual analysis were ≤10 mm. By semi-quantitative criteria,
three of these seven nodules were FDG-negative on OSEM,
one remaining FDG-negative on BPL by semi-quantitative
criteria. The latter nodule was scored as below-background
on OSEM, and background on BPL. The two benign nodules
in this group were FDG-positive by semi-quantitative criteria
on both algorithms. These results are summarised in Table 4.

Diagnostic performance

ROC curves were plotted to evaluate the usefulness of BPL
and OSEM to detect malignant nodules on the basis of semi-
quantitative criteria (Fig. 2). The AUC values were 0.719 (p=
0.009) and 0.709 (p=0.006), respectively, with no statistically
significant difference between the two algorithms (p=0.98).

Table 1 Background analysis
Parameter OSEM

Mean (range)

BPL

Mean (range)

Paired t test

(BPL vs OSEM)

Mean

difference (95 % CI)

p value

Liver SUVmean 2.3 (1.4–3.2) 2.5 (1.3–3.7) 0.17 (0.14–0.21) <0.001

Liver SUVmax 3.1 (1.6–4.5) 3.2 (1.6–4.7) 0.07 (0.02–0.12) 0.006

Liver SUVpeak 2.6 (1.4–3.6) 2.7 (1.4–4.1) 0.16 (0.12–0.20) <0.001

Liver SUVsd 0.23 (0.09–0.38) 0.21 (0.09–0.32) –0.027 (0.020–0.034) <0.001

D. aorta SUVmean 1.5 (0.8–2.5) 1.6 (0.8–2.4) 0.07 (0.05–0.10) <0.001

D. aorta SUVmax 1.8 (1.0–3.1) 1.8 (0.9–2.7) 0.04 (0.01–0.07) 0.016

SNR 10.2 (6.9–15.0) 12.3 (8.0–17.9) 2.1 (1.7–2.4) <0.0001
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The optimum SUVmax threshold for detection of malignancy
was 3.5 and 4.4 for OSEM and BPL, respectively. The sensi-
tivities, specificities and accuracies at these thresholds as an
entire cohort and categorised according to size are
summarised in Table 5. Across these groups, there was an
increase in accuracy and a divergence in sensitivity and

specificity between OSEM and BPL, with sensitivity tending
to increase and specificity tending to decrease with BPL. The
greatest increases in accuracy (48 % to 58 %) and sensitivity
(44 % to 56 %) were demonstrated in nodules ≤10 mm.

On the basis of visual criteria, sensitivity and accuracy was
consistently higher across the cohort compared to semi-

Table 2 Summary of SUVmax, SNR, SBR and percentage difference in SUVmax across the entire cohort, classified according to size (≤10 mm and
>10 mm) and FDG uptake (FDG-positive and FDG-negative)

All (n=121) ≤10 mm (n=31) >10 mm (n=90) FDG-positive (n=105) FDG-negative (n=16)

OSEM BPL OSEM BPL OSEM BPL OSEM BPL OSEM BPL

SUVmax

Mean 5.3 8.1 2.8 5.3 6.2 9.0 5.9 9.1 1.2 1.3

Median 4.1 5.8 2.4 4.0 5.1 7.7 4.6 7.6 1.2 1.2

Range 0.5–19.4 0.5–30.7 0.5–5.7 0.5–19.3 1.0–19.4 1.0–30.7 1.4–19.4 1.3–30.7 0.5–1.7 0.5–2.0

Wilcoxon p value <0.00001 <0.00001 <0.00001 <0.00001 0.031

SNR

Mean 23.8 41.1 12.2 27.3 27.7 45.8 26.6 46.4 4.9 6.2

Median 17.0 29.8 9.5 20.4 20.5 35.0 19.9 35.7 4.7 5.6

Range 1.3–104.2 1.9–155.1 1.3–35.6 1.9–101 4.1–104 4.2–155 5.3–104 5.5–155 1.3–8.1 1.9–11.2

Wilcoxon p value <0.00001 0.00019 <0.00001 <0.00001 0.0076

SBR

Mean 3.6 5.3 1.9 3.4 4.1 6.0 4.0 6.0 0.7 0.8

Median 2.6 3.8 1.7 2.5 3.2 4.6 2.9 4.9 0.8 0.8

Range 0.3–14.3 0.3–26.2 0.3–5.2 0.3–13.1 0.6–14.3 0.6–26.2 1.0–14.3 0.9–26.2 0.3–1.0 0.3–1.3

Wilcoxon p value <0.00001 0.00005 <0.00001 <0.00001 0.196

%ΔSUVmax

Mean 50.0 % 73.3 % 42.0 % 56.0 % 10.9 %

Median 40.5 % 61.6 % 37.9 % 43.3 % 7.2 %

Range −16.7 to 301 % −13.7 to 301 % −16.7 to 156 % −12.7 to 301 % −16.7 to 49.5 %

Spearman p value
(correlation vs size)

0.0028 – – <0.00001 0.522

Mann–Whitney U p value – 0.025 <0.00001

Fig. 1 Scatter plot of %ΔSUVmax (relative change of SUVmax from OSEM to BPL) against nodule size according to FDG-positivity
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quantitative criteria, although specificity was lower (Table 5).
The differences in accuracy and sensitivity between OSEM
and BPL were relatively smaller, if not unchanged (Table 5).
The largest change in sensitivity was by 3 % (84 % to 87 % in
the entire cohort), and 2 % in accuracy (84 % to 82 % in
nodules >10 mm).

Discussion

Overall there was an almost twofold increase in nodule SNR
across the cohort. Significant increments in SUVmax and SBR
in FDG-positive nodules (SUVmax>blood pool SUVmean)
were also observed with an average SUVmax increase of 3.2
(56 %) and SBR increment of 2.0, while changes in

background SUV parameters were minimal (mean difference
≤0.17, Table 1). These changes are best illustrated by two
example cases in Figs. 3 and 4. There was no significant
increase in SUVmax and SBR in FDG-negative nodules. There
was an inverse correlation between nodule size and
%ΔSUVmax: for nodules ≤10 mm %ΔSUVmax was 92.1 %,
compared to nodules >10 mm (%ΔSUVmax 45.3 %).

This overall observation is considered to be due to BPL
running to ‘effective convergence’ [19, 20], compared to the
limited convergence of OSEM (reported here using two itera-
tions). The greater differences in SUVmax in nodules ≤10 mm
would also be due to BPL including PSF modelling in the
reconstruction process, giving higher values for small lesions
compared to reconstructions that do not include PSF model-
ling, with SUVmax approaching phantom truth [11, 13].

Table 3 SUVmax, %ΔSUVmax

and size of NSCLC, metastases
and benign nodules

NSCLC (n=74) Metastases (n=32) Benign (n=15)

OSEM BPL OSEM BPL OSEM BPL

SUVmax

Mean 6.5 9.5 3.7 6.7 2.9 4.0

Median 5.5 8.8 2.9 4.7 2.5 3.8

Range 1.0–19.4 1.1–30.7 0.5–12.1 0.5–26.1 1.0–6.3 1.0–9.1

%ΔSUVmax

Mean 46.6 % 65.1 % 35.0 %

Median 39.8 % 48.6 % 39.7 %

Range −16.7 to 190 % −13.7 to 301 % 0–85 %

Kruskall–Wallis p value 0.393

Size (mm)

Mean 15 17 14

Median 13.5 16.5 13

Range 3–28 5–28 8–24

Kruskall–Wallis p value 0.131

Table 4 Results of visual
analysis of FDG uptake compared
to semi-quantitative criteria

OSEM BPL

Visual

FDG-positive (above-background) 99 104

FDG-negative (at/below-background) 22 17

Semi-quantitative

FDG-positive (above-background) 105 106

FDG-negative (at/below-background) 16 15

Visual Semi-quantitative

Concordant 113 (93 %) 116 (96 %)

Increased score /

became FDG-positive

6

(4 malignant, 2 benign)

3

(2 malignant, 1 benign)

Decreased score /

became FDG-negative

1

(malignant)

2

(malignant)
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Interestingly, the greatest increases were seen in small malig-
nant nodules. While comparison between OSEM with PSF
modelling (SharpIR on GE systems) and BPL might seem
more appropriate, the former reconstruction has not been
adopted as standard of care in our institution. This is due to
the increased intervoxel covariance seen with the PSF model-
ling (Fig. 2 in [22]), which causes images to appear very
heterogeneous, for example in the liver.

The effect of BPL on nodule evaluation and diagnostic
performance was assessed using semi-quantitative and visual
criteria. Improvements in sensitivity and accuracy were ob-
servedwith BPLwhen semi-quantitative criteria were applied.
This was accompanied by decreases in specificity which were
expected, considering there was no significant difference in
%ΔSUVmax between benign andmalignant nodules and AUC
values using either algorithm. Remarkably, sensitivity and ac-
curacy were consistently higher using visual criteria compared
to semi-quantitative criteria (e.g. accuracy 62–67 % on semi-
quantitative criteria compared to 78–79 % on visual criteria),
and the differences of these parameters between OSEM and
BPL were less varied using visual criteria. The specificities
were generally lower for BPL, although this may be accounted
for by the use of FDG uptake as a single determinant of ma-
lignancy. It is anticipated that the incorporation of other fac-
tors such as clinical history, risk, prior imaging and CT ap-
pearance would improve specificity alongside the other diag-
nostic performance parameters.

The two most used methods to analyse 18F-FDG PET
data for distinguishing benign from malignant lung

Fig. 2 ROC curves for evaluation of pulmonary nodules on OSEM and
BPL based on SUVmax as a single determinant of malignant involvement

Table 5 Diagnostic performance of OSEM and BPL in detecting
malignant nodules on the basis of semi-quantitative analysis using
optimum SUVmax threshold (3.5 and 4.4, respectively) and visual
analysis

Semi-quantitative Visual

OSEM BPL OSEM BPL

All (n=121)

Sensitivity 60.4 % 67.0 % 84.0 % 86.8 %

Specificity 73.3 % 66.7 % 33.3 % 20.0 %

Accuracy 62.0 % 67.0 % 77.7 % 78.5 %

≤10 mm (n=31)

Sensitivity 44.4 % 55.6 % 100.0 % 100.0 %

Specificity 75.0 % 75.0 % 69.2 % 60.0 %

Accuracy 48.4 % 58.1 % 87.1 % 87.1 %

>10 mm (n=90)

Sensitivity 65.8 % 70.9 % 89.9 % 89.9 %

Specificity 72.7 % 63.6 % 45.5 % 27.3 %

Accuracy 66.7 % 70.0 % 84.4 % 82.2 %

Fig. 3 Coronal PET and PET/CT images demonstrating an 11-mm left
upper lobe adenocarcinoma which had an SUVmax of 2.1 on OSEM, and
4.6 on BPL. Liver and descending aorta SUVmean differed by 0.1 between
the two reconstructions. SNR increased by more than twofold from 15 to
35. All PET images are displayed on SUV scale 0–6
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nodules are either by subjectively assessing FDG avidity
in comparison to background or using semi-quantitative
analyses, SUV, most commonly SUVmax, with variable
thresholds used as a cut-off to separate benign from ma-
lignant disease. In their widely cited meta-analysis,
Gould et al. demonstrated that semi-quantitative analysis
did not improve the accuracy of 18F-FDG PET in the
diagnosis of pulmonary nodules in comparison to subjec-
tive visual analysis [1], and our observations are gener-
ally consistent with this finding. Other groups have also
demonstrated visual analysis of 18F-FDG PET to be use-
ful [7, 23]. Potentially, when either a semi-quantitative
method or subjective visual analysis is used to differen-
tiate benign from malignant disease, a higher threshold to
report a nodule as benign may be appropriate.

Factors which influence SUV, and in turn affect
semi-quantitative analysis, include blood glucose levels,
radiotracer uptake times and respiratory movement [24];
the last of these being of particular relevance to lung
nodules. Our study suggests that BPL does not improve
the differentiation of benign from malignant nodules
when compared to conventional OSEM analysis. How-
ever, this may be because we did not include enough
benign nodules to enable a separation of nodules with
borderline FDG avidity to show that BPL increases the
detectable signal from those that are malignant, and
those that are not. This seems unlikely to be the case,
because non-malignant FDG-avid nodules are just as
likely to have their visibility and SUVs increased as
are malignant nodules. As such, using BPL instead of
OSEM improves the sensitivity of PET/CT in nodule
characterisation but does not appear to improve its
specificity.

The value of BPL is most likely to be its ability to
provide better visibility and more accurate quantitative
data. This has been shown in phantom studies [15, 25]
and our results demonstrate this advancement specifically

in small nodules. This should enable PET/CT to be used
in the assessment of nodules currently not thought suit-
able for imaging, potentially 6- to 9-mm nodules, when a
low SUV or visibility is known to be an inaccurate as-
sessment of their true metabolic activity. In contrast to
the clinical setting of the solitary pulmonary nodule in
patients without a history of known malignancy, BPL
may be of particularly added value in assessing small
nodules in the context of known malignancy. The highest
%ΔSUVmax was observed in metastatic nodules in our
cohort (65.1 %, Table 3).

Alongside the small numbers of benign nodules
analysed, this study found relatively low AUC values
derived compared to larger group data [1], owing to
the stand-alone use of SUVmax as a single determinant
of malignant involvement. Although, this supports the
published observations that semi-quantitative analysis
does not improve the accuracy of FDG-PET in lung
nodule assessment.

Conclusion

The use of BPL, an iterative reconstruction technique
using a Bayesian penalised likelihood reconstruction al-
gorithm, results in a significant increase in signal-to-
noise and signal-to-background measures in comparison
to conventional OSEM reconstruction. While it does not
improve the overall accuracy of 18F-FDG PET/CT for
differentiating benign from malignant nodules, it appears
to provide a more accurate report on the metabolic ac-
tivity of the nodules. When a semi-quantitative analysis
is applied in the assessment of pulmonary nodules whose
signal is reconstructed using BPL, a higher SUVmax

threshold may be warranted owing to the general in-
crease in SUVmax values in comparison to conventional
OSEM.

Fig. 4 Axial PET and PET/CT
images of an 8-mm right upper
lobe metastasis from colorectal
adenocarcinoma which had an
SUVmax of 1.8 on OSEM, and 4.4
on BPL. Liver and descending
aorta SUVmean differed by up to
0.28. Signal-to-noise ratio
increased by more than twofold
from 8 to 20. All PET images are
displayed on SUV scale 0–6
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