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Background. Currently, effective genetic markers are limited to predict the clinical outcome of melanoma. High-throughput
multiomics sequencing data have provided a valuable approach for the identification of genes associated with cancer
prognosis. Method. The multidimensional data of melanoma patients, including clinical, genomic, and transcriptomic data,
were obtained from The Cancer Genome Atlas (TCGA). These samples were then randomly divided into two groups, one for
training dataset and the other for validation dataset. In order to select reliable biomarkers, we screened prognosis-related
genes, copy number variation genes, and SNP variation genes and integrated these genes to further select features using
random forests in the training dataset. We screened for robust biomarkers and established a gene-related prognostic model.
Finally, we verified the selected biomarkers in the test sets (GSE19234 and GSE65904) and on clinical samples extracted from
melanoma patients using qRT-PCR and immunohistochemistry analysis. Results. We obtained 1569 prognostic-related genes
and 1101 copy-amplification, 1093 copy-deletions, and 92 significant mutations in genomic variants. These genomic variant
genes were closely related to the development of tumors and genes that integrate genomic variation. A total of 141 candidate
genes were obtained from prognosis-related genes. Six characteristic genes (IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and
AGAP2) were selected by random forest feature selection, many of which have been reported to be associated with tumor
progression. Cox regression analysis was used to establish a 6-gene signature. Experimental verification with qRT-PCR and
immunohistochemical staining proved that these selected genes were indeed expressed at a significantly higher level
compared with the normal tissues. This signature comprised an independent prognostic factor for melanoma patients.
Conclusions. We constructed a 6-gene signature (IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2) as a novel prognostic
marker for predicting the survival of melanoma patients.

1. Introduction

Among all newly diagnosed primary malignancies worldwide
(excluding nonmelanoma skin cancer), 232,100 (1.7%) of
which are cutaneous melanoma cases [1]. Skin melanoma
causes approximately 55,500 annual deaths globally,
accounting for 0.7% of all cancer deaths, which ultimately
results from the metastasis of melanoma [2]. Metastatic mel-
anoma in the small intestine is common, as the skin mela-
noma tends to metastasize to the gastrointestinal tract [3].

The morbidity and mortality of this disease vary according
to the time of detection and accessibility to treatment. Mela-
noma can be roughly divided into chronic sun-damaged
(CSD) or nonchronic sun-damaged (non-CSD) melanoma,
which refers to long-term exposure to sunlight or non-
long-term damage, respectively. CSD melanoma is usually
observed in the elderly (>55 years old) and located on the
posterior area of the distal head/neck region. This condition
is associated with neurofibrin (NF1), NRAS, BRAF, non-
V600E, or KIT-associated mutations, which shows high rates
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of mutation, while non-CSD melanoma usually affects areas
of the body that are more frequently exposed to intermittent
sunlight (e.g., the torso), and it is observed in younger indi-
viduals (<55 years old) who do not show significant solar
elastic tissue disease. Non-CSD melanoma is associated with
moderate mutation burdens, including BRAF V600E muta-
tions [4]. Various approaches have been applied in the clini-
cal treatment of melanoma, including surgery, targeting
agents, and immunotherapy [5]. Even though significant
advances in these treatments have been made, there are still
more than 95% of patients with melanoma metastases die
within one year [6]. Therefore, there exists an urgent need
to identify prognostic biomarkers which can aid clinicians
to accurately predict clinical outcome of melanoma and pro-
vide a reference for personalized medicine.

In the past few decades, a number of genetic or epigenetic
changes have been reported to be associated with the develop-
ment and progression of melanoma. Multiple driver muta-
tions, such as CDKN2A, BRAF, RAS, GNAQ, PTEN, and
TP53 have also been related to the occurrence of melanoma
[7]. Mutations in RAS can lead to activation of the receptor
tyrosine kinase-MAPK pathway in cancer development and
BRAF dysregulation which occurs in melanoma progression
and shows a strong correlation with melanoma metastasis [8].

A number of studies have been directed towards identify-
ing predictive survival biomarkers and establishing guide-
lines for the long-term prognosis of melanoma. These
potential markers can mainly be divided into two categories:
(1) individual molecules as independent prognostic indica-
tors such as MCAM/MUC18 and/or other novel markers
currently under study and (2) analyses of high-throughput
gene expression profiles, involving several to dozens of
prognostic genes for construction of gene signature [9,
10]. There exist several biological methods that can be uti-
lized to identify gene biomarkers associated with melanoma
prognosis and construct gene features [11–13]. However,
the prognosis, diagnosis, and treatment strategies of mela-
noma still need improving. Accordingly, the purpose of this
study is to analyze biological functions of bioinformatics to
identify gene signals associated with the prognosis of mela-
noma. Altogether, our findings will provide new prognostic
biomarkers of melanoma.

In order to effectively identify a reliable melanoma
prognosis-related gene signature, we obtained the large
dataset from the TCGA and GEO databases of melanoma
patients. Gene expression profiling, single nucleotide
mutations, copy number variation data, and screening of
prognostic markers by integrating genomics and tran-
scriptomics data were used to create a 6-gene signature.
Verification of survival predictions was achieved through
internal test sets and external validation sets. We found that
this 6-gene signature was involved with important biologi-
cal processes and pathways in melanoma. Similar results
were obtained from GSEA analysis, suggesting that this 6-
gene signature can effectively predict the prognosis risk of
melanoma and provide a basis for a better understanding
of the molecular mechanism of melanoma. In addition,
the findings can improve the rational use of precise medica-
tions for melanoma.

2. Materials and Methods

2.1. Data Download and Preprocessing. TCGA RNA-Seq data
from the UCSC cancer browser (https://xenabrowser.net/
datapages/), clinical follow-up information, and copy num-
ber variation data for the SNP 6.0 chip were downloaded. A
mutation comment file (MAF) was downloaded from the
GDC client. GSE19234 and GES65094 expression profile
data and clinical follow-up information were downloaded
from the GEO database and processed them using the R
package “GEOquery” to further standardize the data through
scale. Initially, the RNA-Seq FPKM data from TCGA were
downloaded. We selected half of the samples as the training
set and the remainder as the test set. The random seed was
set: seed (0). Both the training and the test sets were proc-
essed and using the R package “DESeq2” to further standard-
ize the data through scale. The TCGA training set contained
231 samples, the test set contained 231 samples, the
GSE19234 contained 44 samples, and the GSE65904 con-
tained 214 samples (we excluded 4 samples out of 214 for
missing information of survival). We collected four datasets
on the specific distribution of patient age, survival status,
gender, T stage, N stage, M stage, and tumor stage. Table 1
shows the demographic and clinical characteristics of the
training and validation sets. The result was analyzed by Stu-
dent’s t-test or chi-square test.

2.2. Multigroup Data Preliminary Analysis to Obtain
Prognosis Genes. For TCGA training set samples, a univariate
Cox regression analysis was used to establish the relationship
between overall survival (OS) and gene expression. In this
part, we identified 1569 univariate Cox regression genes with
p value less than 0.01 as the candidate prognosis genes.

2.3. Copy Number Variation Data and Mutation Data
Analysis. For copy number variation data in TCGA, GISTIC
2.0 was used to identify genes with significant amplification
or deletion, as based on parameter thresholds for fragments
with amplification or deletion lengths greater than 0.1 and
p < 0:05. Mutsig2 was used to identify genes with significant
mutations, with the threshold required to be p < 0:05. This
analysis resulted in a total of 92 genes with significant muta-
tion frequencies. For amplified and deleted genes recognized
by TCGA copy number variation, as well as mutated gene
integration, we identified a total of 2286 genes involved in
biological processes and pathways.

2.4. Determination of Best lncRNA Characteristics. To iden-
tify a gene signature, we integrated 2286 genes with copy
number amplification, deletion, and mutation and 1569
prognosis-related genes and then selected the intersection
of the two groups as candidate genes, which yielded 141
genes (Figure 1). The random survival forest algorithm was
used to rank order prognosis genes (R package random sur-
vival forest). The parameters used were nrep = 100, nstep = 5,
representing the number of Monte Carlo iterations of 100,
and the number of previous progressions was 5 [14]. Genes
with relative importance greater than 0.6 were used as the
final signature.
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2.5. Establishing a 6-Gene Signature and Division of Samples
in the TCGA Training Set. A multivariate Cox regression
analysis method was used to establish a 6-gene signature.
The model used was

Risk6 = 0:2055267 ∗ IQCE + 0:244203 ∗ RFX6
+ 0:1858435 ∗GPAA1 + 0:2002694 ∗ BAHCC1
− 0:329238 ∗ CLEC2B − 0:08811327 ∗ AGAP2:

ð1Þ

The scoring formula for each sample was the sum of the
above gene expression values ∗ coefficients. We then selected
a sample scoring median of -0.03765742 as a cutoff and
divided the samples into high-risk group and low-risk group.

2.6. Validation Using TCGA Test Sets and Independent Sets.
In order to determine the robustness of the model, we used
the samemodel and the same cutoff as that used in the TCGA
training set and validated these results in the TCGA test set
and external independent dataset GSE19234 and
GSE65904. Further, we assessed the robustness of the model
in all samples of the training set and validation set. The same
model and cutoff of the TCGA training set were used to ver-
ify these findings in all TCGA datasets.

2.7. Analysis of the Clinical Independence of the 6-Gene
Signature Model. To identify the independence of the 6-
gene signature model in clinical applications, we used the

TCGA training set, the TCGA test set, and clinical informa-
tion contained within the GSE 19234 and GSE65904 data.
A univariate and multivariate Cox regression was used to
analyze the relevant HR, 95% CI of HR, and p value. We sys-
tematically analyzed the clinical information of TCGA,
GSE19234, and GSE65904 patient records, including age,
gender, pathology T phase, N phase, M phase, tumor stage,
and 6-gene signature grouping information.

2.8. Use of GSEA to Analyze Pathways Enriched in High-Risk
Group and Low-Risk Group. GSEA was used to determine
significantly enriched pathways in the high-risk group and
low-risk group of the TCGA training set. The selected gene
set involved c2.cp. v6.2. symbols which contained the
KEGG, BIOCARTA, and REACTOME pathways. The
GSEA input file contained the expression spectrum data
normalized by the TCGA training set and the sample label
of the 6-gene signature. The sample label was used to mark
the sample as high-risk or low-risk group. The threshold
for enriched path selection was FDR q < 0:01, which then
enabled the identification of significantly enriched paths
as summarized in Table S4. Figure 1 is a flowchart of the
model construction process.

2.9. Tissue Samples. The tumor and adjacent normal tissues
of melanoma were collected from 10 patients (all participants
were older than 16 years), immediately placed in liquid nitro-
gen, and preserved at -80°C. None of the melanoma patients
received preoperative antitumor therapies. Patients and their

Table 1: Clinical information of the four datasets.

Characteristic TCGA training datasets (n = 231) TCGA test datasets (n = 231) GSE19234 (n = 44) GSE65904 (n = 210)

Age (years)
≤50 153 64 13 40

>50 78 167 31 169

Survival status
Living 118 124 20 108

Dead 113 107 24 102

Gender
Female 96 78 16 86

Male 35 153 28 124

pathologic_T

T1 23 18

T2 40 37

T3 45 45

T4 70 82

pathologic_N

N0 114 115

N1 36 37

N2 27 22

N3 31 25

pathologic_M
M0 205 206

M1 17 7

Tumor stage

Stage I 42 35

Stage II 66 73

Stage III 83 87 39

Stage IV 16 7 5
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Validation set 1 (n = 231)

Validation set 3 (n = 210)

Clinical characteristics
(age; stages T, N, and M;

and smoking)

Comparison of other
models

Random forest analysis
and multiple Cox analysis 

6-mRNAs signature

Univariate Cox analysis
(p < 0.01) 1569 mRNAs

Pathway enrichment analysis
(GO and KEGG pathways)

TCGA copy number
variation data

GISTIC 2.0
p < 0.05

TCGA RNAseq data
(n = 462)

TCGA training datasets
(n = 231 (50%))

CNV (amp n = 1101 and del = 1093)
Mutation (n = 92) 

Subgroup and sensitivity analysis

TCGA mutect.maf

Mutsig2
p < 0.05

Validation set 2 (n = 44)

Figure 1: Analysis of flowchart. The flowchart indicates the exploration process and potential mechanism of melanoma prognostic genes.

Table 2: Upper 20 prognosis-related gene information.

ENSG ID HR Coefficient z-score p value

ENSG00000167491 1.624708014 0.485328116 5.223401669 1.76E-07

ENSG00000110852 0.602961562 -0.505901829 -4.998288473 5.78E-07

ENSG00000101542 1.405581206 0.340450887 4.841619291 1.29E-06

ENSG00000070081 0.604807853 -0.50284447 -4.776054928 1.79E-06

ENSG00000106560 0.618291849 -0.480794685 -4.653630952 3.26E-06

ENSG00000123609 0.636638101 -0.451553915 -4.652856943 3.27E-06

ENSG00000239713 0.61079206 -0.492998705 -4.634911328 3.57E-06

ENSG00000162645 0.650961966 -0.429304062 -4.578510783 4.68E-06

ENSG00000013392 0.620058745 -0.477941055 -4.565733982 4.98E-06

ENSG00000182179 0.664881034 -0.408147151 -4.535593838 5.74E-06

ENSG00000162654 0.646580192 -0.436058048 -4.517325609 6.26E-06

ENSG00000104848 1.384886188 0.325617961 4.51248348 6.41E-06

ENSG00000168404 0.635103649 -0.453967066 -4.472065487 7.75E-06

ENSG00000163001 0.653569834 -0.42530589 -4.419121401 9.91E-06

ENSG00000151500 0.640197346 -0.445978797 -4.391908428 1.12E-05

ENSG00000117151 0.644975676 -0.438542675 -4.386964355 1.15E-05

ENSG00000156587 0.65353037 -0.425366275 -4.363773665 1.28E-05

ENSG00000132274 0.638251257 -0.449023254 -4.350642875 1.36E-05

ENSG00000080603 1.494851402 0.402026805 4.34413171 1.40E-05

ENSG00000177409 0.664707433 -0.408408286 -4.337688225 1.44E-05
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families in this study have been fully informed, and the
informed consents were obtained from the participants. This
study was approved by the local Ethics Committee of Shang-
hai Tongren Hospital.

2.10. qRT-PCR. RNA extraction from cell lines and tissues
was performed using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). RNA was reverse-transcribed into cDNA with
the QuantiTect Reverse Transcription Kit (QIAGEN,
Valencia, CA, USA). Real-time PCR analyses were quanti-
fied by SYBR-Green (Takara, Otsu, Shiga, Japan), and the
levels were normalized to the level of GAPDH. The
sequences of the upstream and downstream primers are
as follows:

IQCE: 5′-CGGCACTCCTGACTGTCTG-3′ and 5′
-CCAGGGACATGACCGTTGC-3′. RFX6: 5′-AAGCAG
CGGATCAATACCTGT-3′ and 5′-ACCGTGGTAAGCAA
ACTCCTT-3′. GPAA1: 5′-ACGGACGATGCGGTCA
GTA-3′ and 5′-GATGCCGTACACGTTGGT-3′. BAHCC1:
5′-GTACCCCAGATTTTCGGGGAG-3′ and 5′-GGGTTC
CATAGAAACGGTGCT-3′. CLEC2B: 5′-GTTCCACTC
AACATGCCGAC-3′ and 5′-TGCCATCTTCAGTCCA

ATCCA-3′. AGAP2: 5′-GCAGCTACTATGAGACTTG
TGC-3′ and 5′-GTGACCAACATTCGGTGAGGA-3′.

2.11. Immunohistochemistry. Each group of melanoma sam-
ples was fixed in 10% formalin, embedded in paraffin, and
processed as 5μm continuous sections. Samples were
dewaxed with discontinuous concentrations of ethanol and
blocked to inhibit endogenous peroxidase. They were then
heated in a microwave to retrieve antigens, cooled to room
temperature, and blocked by incubation in goat serum for
30 minutes at 37°C. Samples were incubated in rabbit anti-
IQCE, anti-RFX6, anti-GPAA1, anti-BAHCC1, anti-CLEC2B,
and anti-AGAP2 (Abcam, Cambridge, UK; 1 : 1, 200) over-
night at 4°C, followed by incubation with horseradish
peroxidase-coupled goat anti-rabbit secondary antibody at
37°C for 30 minutes, and stained by 3,3′-diaminobenzidine.
The cell nucleus was stained blue by hematoxylin. Sections
were then dehydrated, cleared by xylene, and mounted.
IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2
expression was detected by immunohistochemistry using a
streptavidin peroxidase method. IQCE, RFX6, GPAA1,
BAHCC1, CLEC2B, and AGAP2 expression in liver was taken
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Figure 2: (a) Significantly amplified fragments in the melanoma genome. (b) Significantly deleted fragments in the melanoma genome.
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as positive control. Samples incubated with PBS instead of
IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2 pri-
mary antibody were used as negative control. Positive and
negative control groups were included for each batch of
immunohistochemically stained sections. The experimental
procedure was performed by following the manufacturer’s
instructions strictly.

3. Results

3.1. Selection of Differentially Expressed lncRNA. The clinical
data from the four datasets (the training set in TCGA: 231

samples, the test set in TCGA: 231 samples, the GSE19234
set: 44 samples, and the GSE65904 set: 210 samples) are sum-
marized in Table 1. Following the analysis of the relationship
between the patient’s overall survival (OS) and gene expres-
sion by univariate Cox proportional hazard regression analy-
sis, 1569 univariate Cox regression genes with a p value less
than 0.01 were identified. Specific information regarding
these candidate prognostic genes, HR of the 1569 candidate
prognostic genes, coefficients, z-score, and p value used for
determining the prognostic information on the upper 20
genes according to their p value is shown in Table 2 with
detailed results presented in Table S1.
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Figure 3: Distribution of 92 genes with significant mutations in melanoma patients. (a) The total number of synonymous and
nonsynonymous mutations in 92 genes per patient. (b) The number of samples in which 92 genes were mutated in all samples.
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Figure 4: Continued.
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3.2. Copy Number Variation Data Analysis. Figure 2(a)
shows the results obtained from a significant amplification
of the melanoma genome, and Table S2 displays records of
genes that were significantly amplified on each fragment.
Some examples include BRAF which was significantly
amplified on the 7q34 segment (q value = 3:98E − 08),

CCND1 on the 11q13.3 segment (q value = 1:46E − 14), and
CDK4 on the 12q14.1 segment (q value = 5:20E − 09). A
total of 1101 genes were amplified. Figure 2(b) shows a
fragment that was notably absent in the melanoma
genome. Table S3 contains records of genes that were
notably deleted on each fragment, for example, CDKN2A
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Figure 4: (a) 2286 KEGG pathways involved in genes with copy number variation and mutation. (b) 2286 biological processes involved in the
generation of copy number variants and mutations (GO BP).
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was significantly missing in segment 9p21.3
(q value = 1:1011E − 198), PTEN was significantly missing
in segment 10q23.31 (q value = 1:02E − 14), and SPRED1
was significantly missing in segment 15q14
(q value = 1:23E − 09). A total of 1093 genes were missing.

3.3. Mutation Data Analysis. We showed the distribution of
synonymous mutations, missense mutations, framework
insertions or deletions, framework movements, nonsense
mutations, cleavage sites, and other nonsynonymous muta-
tions in the 92 genes distribution within TCGA melanoma
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Figure 5: (a) Error rate for the data as a function of trees. (b) Out-of-bag importance values for predictors.

Table 3: The 6 genes significantly associated with the overall survival in training set patients.

Ensemble gene ID Symbol HR z-score p value Importance Relative importance

ENSG00000106012 IQCE 1.34 3.462151 5.36E-04 0.0034 0.94

ENSG00000185002 RFX6 1.23 2.977574 2.91E-03 0.0034 0.92

ENSG00000110852 CLEC2B 0.6 -4.998288 5.78E-07 0.0034 0.92

ENSG00000197858 GPAA1 1.32 2.681788 7.32E-03 0.0029 0.8

ENSG00000266074 BAHCC1 1.39 3.46767 5.25E-04 0.0029 0.78

ENSG00000135439 AGAP2 0.72 -2.741749 6.11E-03 0.0024 0.66
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patient samples (Figure 3). Figure 3(a) shows the total num-
ber of synonymous and nonsynonymous mutations in 92
genes per patient, and Figure 3(b) shows the number of sam-
ples in which 92 genes were mutated. From this analysis, 92
genes were identified, some of which were closely related to
the development of cancer, such as PTEN, NRAS, BRAF,
TP53, and CDKN2A.

3.4. Pathways and Biological Processes Involved in Copy
Number Variant Genes and Mutant Genes. For amplified
and deleted genes recognized by TCGA copy number varia-
tion, as well as mutated gene integration, we identified a total

of 2286 genes involved in biological processes and pathways.
As shown in Figure 4(a), 2286 genes were significantly
enriched in melanoma, glioma, and breast cancer. PI3K-
Akt signaling pathway and natural killer cell mediated cyto-
toxicity. Figure 4(b) displays the 2286 genes which were sig-
nificantly enriched in biological processes of cancer
development, such as system development, regulation of cel-
lular protein metabolic process, regulation of cell prolifera-
tion, and cell-cell adhesion.

3.5. Random Survival Forests Rank Order of Prognostic Genes.
We integrated 2286 genes with copy number amplification,

−1

10000

6000

2000

0

0

1

2

Ri
sk

 sc
or

e
Fo

llo
w

in
g 

up
 (y

ea
rs

)

AGAP2

BAHCC1

GPAA1

CLEC2B

RFX6

IQCE

−2 −1 0 1 2

Dead
Alive

(c)

Figure 6: (a) Distribution of the Kaplan-Meier survival curves of the 6-gene signature in the TCGA training set. (b) ROC curves and AUCs of
the 6-gene signature classification. (c) Risk score, survival time, survival status, and expression of 6 genes in TCGA training set.
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deletion, and mutation and 1569 prognosis-related genes and
then selected the intersection of the two groups as candidate
genes, which yielded 141 genes. The random survival forest
algorithm was used to rank order the prognosis genes (R
package random survival forest) using the parameters of
nrep = 100 and nstep = 5, representing that the number of
Monte Carlo iterations was 100 and the number of prepro-
gressions was 5. Genes with relative importance greater than
0.6 were identified as comprising the final signature.
Figure 5(a) shows the relationship between the error rate
and number of classification trees. Figure 5(b) shows the
order of importance of the first six genes out-of-bag.

3.6. Creation of a 6-Gene Signature and Division of Samples in
the TCGA Training Set. Six genes were identified and subse-

quently used to construct a prognostic gene signature. For
the 6-gene signature identified above, information regard-
ing the importance of HR, z-score, and p value of the 6
genes and the relative importance is summarized in
Table 3.

A multivariate Cox regression analysis method was
then used to establish a 6-gene signature. The model used
was

Risk6 = 0:2055267 ∗ IQCE + 0:244203 ∗ RFX6
+ 0:1858435 ∗GPAA1 + 0:2002694 ∗ BAHCC1
− 0:329238 ∗ CLEC2B − 0:08811327 ∗ AGAP2:

ð2Þ
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Figure 7: (a) 6-gene signature Kapan-Meier survival curve distributions in the TCGA test set. (b) ROC curves and AUCs of the 6-gene
signature classification. (c) TCGA test set focused on risk score, survival time, survival status, and the expression of six genes.
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The scoring formula for each sample was the sum of
the above gene expression values ∗ coefficients, with the
sample scoring median of -0.03765742 selected as a cutoff
to divide the samples into high-risk group and low-risk
group. Figure 5 shows the classification effect in the TCGA
training set. 116 patients were classified within the low-
risk group and 115 patients in the high-risk group
(Figure 6(a)). Differences between the two groups were
statistically significant (log − rank p = 6:861462E − 08).
Figure 6(b) shows the ROC curves with AUCs of 0.79,
0.75, and 0.71 for one, three, and five years, respectively.
Figure 6(c) shows that as the patient’s risk score increased,

their survival time significantly decreased, with this effect
being more prevalent in the high-risk group.

As the risk value increased, the expression levels of the six
different signature genes changed. According to the above
results, high expression levels of IQCE, RFX6, GPAA1, and
BAHCC1 were associated with increase in risk factors, while
the high expression levels of CLEC2B and AGAP2 were
related to protection factors.

3.7. Detection of Robustness of 6-Gene Signature in the TCGA
Test Set. Figure 7 contains an illustration of classification
results in the TCGA test set. There were 114 patients
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Figure 8: (a) 6-gene signature KM survival curve distributions in the TCGA dataset. (b) ROC curves and AUCs of the 6-gene signature
classification. (c) Risk scores in the TCGA dataset, survival time, survival status, and expression of six genes.
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classified as low-risk and 117 comprising the high-risk group
(Figure 7(a)), with differences between these groups achiev-
ing statistical significance (log − rank p = 0:029). AUC
values from the ROC curves were 0.54, 0.58, and 0.61 for
one, three, and five years, respectively (Figure 7(b)).
Figure 7(c) shows that similar results obtained from the

TCGA training set. As the risk value increased, survival time
significantly decreased, with this effect being more predomi-
nant in the high-risk group. As the risk value increased, the
expression levels of the six different signature genes changed.
High expression levels of IQCE, RFX6,GPAA1, and BAHCC1
were associated with high risk factors, while high expression
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Figure 9: (a) 6-gene signature KM survival curve distributions in GSE19234. (b) ROC curves and AUCs of the 6-gene signature classification
in GSE19234. (c) Risk score in GSE19234, survival time, survival status, and expression of 6 genes. (d) 6-gene signature KM survival curve
distributions in GSE65904. (e) ROC curves and AUCs of the 6-gene signature classification in GSE65904. (f) Risk score in GSE65904,
survival time, survival status, and expression of 6 genes.
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Table 4: Identification of prognostic-related clinical factors and clinical independence using univariate and multivariate Cox regression
analyses in the TCGA training set, TCGA test set, GSE19234, and GSE65904.

Variables
Univariate analysis Multivariable analysis

HR 95% CI of HR p value HR 95% CI of HR p value

TCGA training datasets

6-gene risk score

Low-risk group 1 (reference) 1 (reference)

High-risk group 2.81 1.91-4.14 1.63E-07 1.87 1.11-3.14 0.018

Age 1.03 1.01-1.04 1.76E-05 1.02 1.001-1.03 0.03736

Gender female 1 (reference)

Gender male 1.14 0.77-1.67 0.51 0.98 0.61-1.58 0.941573

Pathologic T1 1 (reference) 1 (reference)

Pathologic T2 2.24 0.90-5.53 0.08 1.88 0.68-5.21 0.227

Pathologic T3 2.99 1.22-7.3 0.02 5.52 1.50-20.24 0.01

Pathologic T4 5.75 2.36-13.96 1.10E-04 11.88 3.31-42.52 1.43E-04

Pathologic N0 1 (reference) 1 (reference)

Pathologic N1 1.49 0.85-2.61 0.163 2.58 0.31-20.90 0.374

Pathologic N2 1.94 1.06-3.55 0.03 2.6 0.31-21.56 0.375

Pathologic N3 2.68 1.53-4.67 5.30E-04 7.35 0.88-60.98 0.065

Pathologic M0 1 (reference) 1 (reference)

Pathologic M1 1.66 0.83-3.28 0.151 1.26 0.42-3.74 0.67

Tumor stage I 1 (reference) 1 (reference)

Tumor stage II 1.64 0.92-2.89 0.089 0.28 0.092-0.82 0.022

Tumor stage III/IV 2.25 1.32-3.79 0.002 0.22 0.024-2.0024 0.18

Validation cohort, TCGA test datasets, GSE19234, and GSE65904

TCGA test datasets

6-gene risk score

Low-risk group 1 (reference) 1 (reference)

High-risk group 1.54 1.04-2.26 0.029 1.41 0.86-2.29 0.166

Age 1.02 1.007-1.034 0.003 1.01 0.99-1.02 0.223

Gender female 1 (reference) 1 (reference)

Gender male 1.28 0.83-1.97 0.26 1.23 0.70-2.16 0.454

Pathologic T1 1 (reference) 1 (reference)

Pathologic T2 0.98 0.42-2.26 0.957 1.35 0.48-3.75 0.563

Pathologic T3 1.4 0.62-3.12 0.409 1.25 0.33-4.69 0.737

Pathologic T4 2.47 1.13-5.36 0.023 2.3 0.62-8.45 0.21

Pathologic N0 1 (reference) 1 (reference)

Pathologic N1 1.46 0.85-2.49 0.168 2.12 0.57-7.94 0.261

Pathologic N2 1.11 0.54-2.24 0.78 2.29 0.57-9.12 0.237

Pathologic N3 3 1.47-6.09 0.002 5.86 1.4-24.53 0.015

Pathologic M0 1 (reference) 1 (reference)

Pathologic M1 4.35 1.01-18.62 0.047 5.307 0.54-51.81 0.151

Tumor stage I 1 (reference) 1 (reference)

Tumor stage II 1.51 0.83-2.73 0.172 1.14 0.37-3.5 0.813

Tumor stage III/IV 1.86 1.06-3.28 0.03 0.88 0.18-4.21 0.882

GSE19234

6-gene risk score

Low-risk group 1 (reference) 1 (reference)

High-risk group 3.22 1.18-8.76 0.022 3.34 1.2-9.3 0.021

Age 1.01 0.98-1.02 0.579 1 0.97-1.023 1

Gender female 1 (reference) 1 (reference)
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levels of CLEC2B and AGAP2 indicated low risk and served
as protective factors.

We also assessed the robustness of the model (the train-
ing set and test set) in all samples. In this assessment, the
same model as that of the TCGA training set and the same
cutoff was used for verification in all TCGA datasets. The
classification effect in the TCGA test set is presented in
Figure 6. From this analysis, 230 patients were classified as
low-risk and 232 as high-risk patients (Figure 8(a)), with dif-
ferences between these two groups being statistically signifi-
cant (log − rank p < 0:001). AUC values from ROC curves
were 0.7, 0.72, 0.68, and 0.67 for one, two, three, and five
years, respectively (Figure 8(b)). Similar results were
obtained from the TCGA training set (Figure 8(c)). As the
risk value increased, the survival time significantly decreased,
with this effect being more predominant in the high-risk
group. Moreover, increased expression of the six different
signature genes was observed as the risk value increased.
High expression levels of IQCE, RFX6,GPAA1, and BAHCC1
were associated with high-risk factors, while high expression
levels of CLEC2B and AGAP2 with low risk and served as
protective factors.

3.8. Verification of 6-Gene Signature Robustness in the
External Independent Dataset GSE19234 and GSE65904.
The classification effect in GSE19234 and GSE65904 is
shown in Figure 9. 18 patients were classified as low risk
and 26 patients as high risk (Figure 9(a)), with differences
between these two groups being statistically significant
(log − rank p = 0:013). AUC values from ROC curves were
0.54, 0.84, and 0.79 for one, three, and five years, respectively
(Figure 9(b)). Similar results were obtained from the TCGA
training set (Figure 9(c)). 124 patients were classified as low
risk and 86 patients as high risk (Figure 9(d)), with differ-
ences between these two groups being statistically significant
(log − rank p = 0:031). AUC values from ROC curves were
0.68, 0.59, and 0.59 for one, two, and three years, respectively
(Figure 9(e)). Similar results were obtained from the TCGA
training set (Figure 9(f)). As the risk value increased, survival
time significantly decreased, with this effect being more pre-
dominant in the high-risk group. Moreover, increased
expression of the six different signature genes was observed

as the risk value increased. High expression levels of IQCE,
RFX6, GPAA1, and BAHCC1 were associated with high risk
factors, while high expression levels of CLEC2B and AGAP2
with low risk and served as protective factors.

3.9. Analysis of Clinical Independence of the 6-Gene Signature
Model. We systematically analyzed the clinical information
of TCGA, GSE19234, and GSE65904 patient records, includ-
ing age, gender, pathology T phase, N phase, M phase, tumor
stage, and our 6-gene signature grouping information as
shown in Table 4.

In the TCGA training set, the univariate Cox propor-
tional hazard regression analysis revealed that the high-
risk group, age, pathologic T3, pathologic T4, pathologic
N2, pathologic N3, and tumor stage III/IV were all signif-
icantly associated with survival. However, when applying
the corresponding multivariate Cox regression analysis,
we found that only the high-risk group (HR = 1:87, 95%
CI = 1:11 − 3:14, p = 0:018), age (HR = 1:02, 95%CI =
1:001 − 1:03, p = 0:037), pathologic T4 (HR = 11:88, 95%
CI = 3:31 − 42:52, p = 1:43E − 04), and tumor stage II
(HR = 0:28, 95%CI = 0:092 − 0:82, p = 0:022) were clini-
cally independent.

In the TCGA test set, the univariate Cox proportional
hazard regression analysis revealed that the high-risk group,
age, pathologic T4, pathologic N3, pathologic M1, and tumor
stage III/IV were all significantly associated with survival.
However, we found that only pathologic N3 (HR = 5:86, 95
%CI = 1:4 − 24:53, p = 0:0154) was clinically independent
from corresponding multivariate Cox regression analysis.
The high-risk group showed a similar trend, but this effect
failed to achieve statistical significance (HR = 1:41, 95%CI
= 0:86 − 2:29, p = 0:166).

In GSE19234, the univariate Cox proportional hazard
regression analysis revealed that the high-risk group and
tumor stage IV was significantly associated with survival.
The corresponding multivariate Cox regression analysis indi-
cated that the high-risk group (HR = 3:34, 95%CI = 1:2 − 9:3,
p = 0:021) and tumor stage IV (HR = 4:2915, 95%CI = 1:46
− 12:56, p = 0:008) were clinically independent.

In GSE65904, the univariate Cox proportional hazard
regression analysis revealed that the high-risk group was

Table 4: Continued.

Variables
Univariate analysis Multivariable analysis

HR 95% CI of HR p value HR 95% CI of HR p value

Gender male 0.76 0.33-1.75 0.526 0.93 0.4-2.15 0.868

Tumor stage III 1 (reference) 1 (reference)

Tumor stage IV 4.03 1.43-11.38 0.008 4.29 1.46-12.56 0.008

GSE65904

6-gene risk score

Low-risk group 1 (reference) 1 (reference)

High-risk group 1.53 1.036-2.265 0.032 1.492 1.002-2.220 0.0488

Age 0.998 0.984-1.012 0.796 1.001 0.987-1.015 0.927

Gender female 1 (reference) 1 (reference)

Gender male 0.748 0.496-1.13 0.169 0.788 0.522-1.192 0.259
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significantly associated with survival. The corresponding
multivariate Cox regression analysis indicated that the
high-risk group (HR = 1:492, 95%CI = 1:002 − 2:220, p =
0:049) was clinically independent.

Taken together, the above results indicated that the 6-
gene signature model can serve as a prognostic indicator
independent of other clinical factors and contains an inde-
pendent predictive capacity of value for clinical application.

In addition, we compared some other known models, by
studying three recently published lung cancer prognosis
model, such as Wu et al. [15], Brunner et al. [16], and Yang
et al. [17]. In order to make the model comparable, we car-
ried out the following work. According to the corresponding
gene in the three models, we used the same method to calcu-
late the risk score of each sample in the TCGA and assessed
the ROC of each model. In addition, we divided the sample
into high-risk group and low-risk group according to the
median risk score, and then we calculated the OS prognosis
between the two groups. We found that the overall perfor-
mance of our model was better than that of the above three
models, as shown in Figures 10(a)–10(c). The restricted
mean survival curves of these models were also compared,
as shown in Figure 10(d), from which it can be seen that
our model has the highest c-index among the four models.
That means that our model has an advantage in long-term
survival prediction. Meanwhile, we compared the prediction
effect of the 6-gene signature with that of the three models
through DCA curves, and the results showed that the perfor-
mance of our model is better than that of the other three
models as indicated in Figure 10(e).

3.10. Use of GSEA to Analyze Pathways Enriched in High-Risk
Group and Low-Risk Group. We obtained a significantly
enriched path as indicated in Table S4. Some examples of
significantly enriched pathways were presented in
Figure 11, including cell adhesion molecules cams, JAK-

STAT signaling pathway, natural killer cell-mediated
cytotoxicity, and T cell receptor signaling pathway. All
pathways were significantly related to the development and
metastasis of melanoma.

3.11. Experimental Verification of the Biomarker Screening
Results with qRT-PCR and Immunohistochemistry Analysis.
In order to verify whether IQCE, RFX6, GPAA1, BAHCC1,
CLEC2B, and AGAP2 were highly expressed in melanoma
tissues as predicted, we experimentally confirmed this by
qRT-PCR and immunohistochemical staining using mela-
noma tissues extracted from 10 patients. The qRT-PCR result
is shown in Figure 12; IQCE, RFX6, GPAA1, BAHCC1,
CLEC2B, and AGAP2 were all highly expressed in melanoma
tissues compared with normal healthy control (p < 0:05, Stu-
dent’s t-test, n = 10). In addition, immunohistochemistry
analysis demonstrated that IQCE, RFX6, GPAA1, BAHCC1,
CLEC2B, and AGAP2 were highly expressed in melanoma
tissues compared with normal tissue (Figure 13).

4. Discussion

Melanoma leads to 90% of mortalities among all skin cancers
[18]. The incidence of melanoma in people over 60 years of
age has risen sharply, especially in Europe, and the incidence
of melanoma continues to increase [19]. Melanoma is a
genetically heterogeneous disorder, and the lesions located
in different anatomical locations exhibit different molecular
features. The latest research progress in melanoma provides
possible method for discrete classifications of melanoma that
would consider not only the epidemiology and pathology but
also the mutational profiles and other novel biomarkers [20].
Melanoma is highly heterogeneous in terms of prognosis as
melanoma patients with same TNM stages show different
survival time. Moreover, as melanoma is increasingly
detected and treated in the early stages, traditional
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Figure 10: Comparison and analysis between the 6-gene signature model and other existing models. (a) AUC and KM curve of Wu’s model.
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Figure 11: Continued.
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Figure 11: Enriched pathways in the high-risk group and low-risk group as obtained in the 6-gene signature.
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clinicopathological indicators, such as tumor size, vascular
invasion, portal vein thrombosis, and TNM staging have
become less effective in predicting individual outcomes. This
is especially true for risk stratification, as no “one size fits all”
treatment strategy has been proven to be effective [21]. It is
clear that screening for prognostic molecular markers that
fully reflect the biological characteristics of tumors is critical
for individualized prevention and treatment of melanoma
patients. In this study, we analyzed the expression profiles
of 716 melanoma samples from TCGA and GEO databases
as associated with OS. Based on this analysis, a related robust
6-gene signature which is independent of clinical factors was
generated and verified.

We assessed the effectiveness of this 6-gene signature
using multiomics data, including transcriptome, copy num-

ber variation data, and mutation data, to identify disease-
associated genes. Based on a TCGA dataset containing 462
samples, a potential prognostic six-marker lncRNAwas iden-
tified. The signature included IQCE, RFX6, GPAA1,
BAHCC1, CLEC2B, and AGAP2. Among these lncRNAs,
high expression levels of IQCE, RFX6, GPAA1, and BAHCC1
were associated with risk factors. High expression levels of
CLEC2B and AGAP2 were found to be protective factors.
According to the previous reports, RFX6 can be used as a
marker of prostate cancer [22, 23]. GAPP1 is closely related
to prognosis in gastric cancer, head and neck squamous car-
cinoma, and hepatocellular carcinoma [24–26]. BAHCC1 is
closely related to prognosis in hepatocellular carcinoma
[27]. CLEC2B is a marker of clear cell renal cell carcinoma
and other tumors [28–31]. AGAP2 is closely related to
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Figure 12: The expression of IQCE, RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2 significantly increased in melanoma tissues compared to
normal tissues (∗p < 0:01, n = 10). Ca: melanoma tissues; Normal: normal healthy tissues.
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prognosis in gastric cancer and prostate cancer [32, 33].
IQCE has not been previously reported to be related to can-
cer. Ours is the first study to suggest that it can be used as
new prognostic markers of melanoma.

The 6-gene signature of multiomics data recognition is
robust and can achieve stable prediction performance in
datasets of different platforms. We systematically analyzed
the patient record and clinical information in TCGA,
GSE19234, and GSE65904 datasets, including age, gender,
pathology, T stage, N stage, M stage, tumor stage, and our
6-gene signature group information. Univariate Cox regres-
sion analysis and multifactor Cox regression analysis showed
that our multiple omics data of 6-gene signature has strong
clinical independence and can maintain stable under the
influence of multiple clinical factors.

The classification ability of this characteristic lncRNA
was verified on a TCGA test dataset and GSE19234 and
GSE65904 datasets. Subsequent analysis supported the con-
clusion that this 6-lncRNA feature showed reliable prediction
accuracy. The enriched pathways in the high-risk group and
low-risk group obtained by GSEA analysis of 6-gene signa-
ture were significantly related to the occurrence and develop-
ment of melanoma, suggesting its potential as a prognostic
marker for clinical diagnosis. For example, cell adhesion mol-
ecules cams, JAK-STAT signaling pathway, natural killer
cell-mediated cytotoxicity, and T cell receptor signaling path-
way were all related to a variety of tumors [34–37]. To the
best of our knowledge, the prognostic value of this multimar-
ker feature in melanoma has not previously been reported.
Therefore, our findings provide new insights into improving
risk stratification and survival prediction for melanoma
patients.

Although we identified potential candidate genes for mel-
anoma prognosis in large samples through bioinformatic

techniques, some limitations of this study should be noted.
First, the sample lacks some clinical follow-up information.
For example, we did not consider factors such as the presence
of other health conditions within these patients to distinguish
the prognostic biomarkers. Second, although we have carried
out experimental verification, our sample size was not large
enough. Therefore, further genetic and experimental studies
involving larger sample size and experimental validation are
required.

5. Conclusions

In summary, we constructed a 6-gene signature (IQCE,
RFX6, GPAA1, BAHCC1, CLEC2B, and AGAP2) as a novel
prognostic marker with respectable AUCs in both the train-
ing and validation sets in this study, which was independent
of clinical features. Compared with clinical features, this gene
classifier can improve survival risk prediction. Therefore, we
recommend using this classifier to assess the prognostic risk
of melanoma.
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