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Supplementary Methods 19 

 20 

Inclusion and Exclusion Criteria 21 

Studies which combined genetics and non-genetic data (such as from neuroimaging) were 22 

included if they developed or validated a model using only genetic data. Models were only 23 

considered for inclusion if they contained two or more genetic predictors from more than 24 

one locus. Psychiatric disorders were limited to those with demonstrated heritability and for 25 

which large association studies have been undertaken; neurological conditions with 26 

psychiatric comorbidities were excluded. A machine learning or statistical learning method 27 

was required to be used as the prediction model, with models only using ML for quality 28 

control or predictor selection not considered. Changes were made to the registered 29 

protocol (registration number CRD42019128820) to further restrict the review's scope, and 30 

to clarify inclusion and search criteria before completing database searches. 31 

 32 

Extraction 33 

Events per candidate predictor were extracted for all models. Candidate predictors include 34 

all predictors considered for inclusion in a model by their association with the outcome. 35 

Predictors removed due to association only with other predictors were not counted. As 36 

coding of variables is not supplied by most authors, categorical predictors that may be 37 

converted to multiple indicator variables by methods are considered only as a single 38 

candidate predictor. Similarly, where methods consider additional parameters in the model, 39 

such as hidden layers in deep neural networks, only the number of actual predictors is used, 40 

not including all possible additional parameters estimated in the model. EPV should 41 
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therefore be considered an upper bound. Where authors were ambiguous in their reporting 42 

of sample size or number of predictors, bounds of the highest and lowest possible EPV are 43 

given. 44 

 45 

Where models were fit and internally evaluated before external validation in a single study, 46 

we extracted information for both internal and external validation. Internal validation is 47 

taken to be any form of evaluation on a subset of the same sample used for training, 48 

including splitting samples between training and test sets, bootstrapping and k-fold cross 49 

validation. Apparent validation, where training and testing are both done on the whole 50 

sample, is also recorded under internal validation for the purpose of this review. This is part 51 

of model development. External validation is understood as evaluation on an independent 52 

dataset, which differs in temporal, geographic or other aspects, and is not simply a splitting-53 

off from the original sample. If multiple models were presented with subsampled predictors 54 

or participants, only main models presented in the text were extracted; if such a distinction 55 

was unclear, all models were selected for review. Where AUC was only available graphically 56 

it was extracted from the figure using Plot Digitizer [1], and accuracy was calculated from 57 

the confusion matrix if not provided in-text.  58 

 59 

Model discrimination was extracted independently by two authors (MBS, KC). AUC 60 

extracted were the same for both authors, except for 3 of 77 models from a single study; 61 

consensus was reached after reviewing the text. Studies often included many models; 62 

logistic regression models were only extracted where they received the same predictors as 63 

ML methods, in order to keep models comparable. 64 

 65 



 4 

PROBAST 66 

Risk of bias (ROB) was assessed using the prediction model risk of bias assessment tool 67 

(PROBAST). Where information was unavailable within a study, any references or links given 68 

to descriptions of datasets or methods were examined. Questions remained unchanged; 69 

however, recommendations for assessing studies using genetics and machine learning were 70 

added to adapt the tool and keep consistency in answers across models and reviewers. 71 

These are detailed below. No studies dictated if a model was intended for prognostic or 72 

diagnostic use. For the purpose of assessing ROB, models are assumed to be diagnostic; 73 

changing intended model use to prognostic does not alter the final ROB assessments for 74 

models.  Where databases or publications were referenced for a study, these were assessed 75 

for information relevant to ROB. As large genetic datasets may change composition over 76 

iterations as smaller studies are added, additional publications that may describe an 77 

iteration of a publicly available dataset, but which were not referenced in the included 78 

study, were not examined. 79 

 80 

Questions in PROBAST are formatted such that answering “Yes” indicates low risk of bias, 81 

and answered “no” indicates high risk of bias. Normally, if any questions within a domain 82 

are rated “no” or “probably no” (N/PN), then the rating is considered to be “high” ROB for 83 

that domain. In the absence of any N/PN responses, if any questions are reported as “no 84 

information” (NI), then the domain is taken to have “unclear” ROB. If instead all questions 85 

were answered as “yes” or “probably yes” (Y/PY), then the domain is rated as “low” ROB. 86 

Select situations where questions are rated NI or N/PN were allowed to be rated “low” ROB 87 

overall. For predictors, if question 2.2 (“Were predictor assessments made without 88 

knowledge of outcome data?”) was rated as NI or Y/PY, overall rating for ROB of predictors 89 
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was allowed to be “low”. Knowledge of the outcome can enable careful design of cases and 90 

controls across arrays and batches, and exclusion by a more stringent threshold of Hardy-91 

Weinberg equilibrium in controls. These may allow for reduced ROB for predictors, rather 92 

than increased. For outcome, question 3.5 (“Was the outcome determined without 93 

knowledge of predictor information?”), if NI or Y/PY, was allowed to be rated “low” ROB for 94 

outcome overall if it was considered that genotypes or other predictors would have been 95 

extremely unlikely to influence the outcome of standard assessments, or that outcomes 96 

were likely to have been assessed prior to genotyping. For question 4.1 (“Were there a 97 

reasonable number of participants with the outcome?”), events per candidate predictors 98 

were assessed against recommendations using machine learning methods with default 99 

hyperparameters, and therefore represent the wort-case scenario. If EPV was determined to 100 

be near to the cut-off, and all other modelling procedures indicated low ROB, including 101 

appropriate regularisation and handling of predictors, analysis was allowed to be rated 102 

“low” overall. In practice, this situation did not occur. 103 

 104 

PROBAST requires a ROB assessment of each evaluation of each distinct model [2]. 105 

Development and validation are therefore both assessed for each model and contribute 106 

separately to overall counts. Restricting counts to development-only does not appreciably 107 

change results. ROB was assessed for all studies by one author (MBS), with the exception of 108 

a single publication on which MBS and VEP are co-authors [3]. Here two authors, MBS and 109 

KC, independently assessed ROB, the latter being uninvolved in the original study. 110 

Differences were overcome through consensus. A third colleague not included in the 111 

original study was designated as arbiter should disagreements be unable to be resolved. 112 

This situation did not occur. 113 
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 114 

1.1 Were appropriate data sources used, e.g. cohort, RCT, or nested case-control study data? 115 

Studies may be made of multiple smaller studies, some of which are cohorts or where cases 116 

are from cohorts but controls are from elsewhere. If cases and controls are sampled from 117 

different sources to give a roughly balanced (equal events and non-events) combined 118 

sample, denote the combined sample as case-control. If absolute risk cannot be estimated 119 

from the combined sample, rate as N/PN. 120 

 121 

1.2 Were all inclusions and exclusions of participants appropriate? 122 

If the target population for the prediction model is undefined, rate as NI, as this cannot be 123 

assessed. 124 

 125 

2.1 Were predictors defined and assessed in a similar way for all participants? 126 

If genotypes measured on different arrays and there has been no effort to demonstrate 127 

similarity across arrays or lack of batch effects, rate N/PN. If genotypes from different arrays 128 

have been imputed to the same panel of reference genomes to infer untyped or missing 129 

variants, rate Y/PY. 130 

 131 

3.1 Was the outcome determined appropriately? 132 

Consensus best-estimate diagnosis using medical records and structured interview is 133 

considered appropriate. Use of only a structured interview is also considered appropriate, 134 

but use of only interviews with family members and records is rated N/PN. Routine care 135 

registry data are appropriate only if studies confirming comparability with standard 136 
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diagnostic methods are available. If method is appropriate only for cases, rate 3.1 as Y and 137 

3.4 as N. 138 

 139 

3.2 Was a prespecified or standard outcome definition used? 140 

Diagnostic and Statistical Manual of Mental Disorders (DSM) or International Classification 141 

of Diseases (ICD)-based outcomes are accepted. 142 

 143 

3.4 Was the outcome defined and determined in a similar way for all participants? 144 

If the same assessments tool was used for all participants, rate Y/PY. If cases were assessed 145 

differently to controls, rate N/PN. 146 

 147 

3.6 Was the time interval between predictor assessment and outcome determination 148 

appropriate? 149 

If predictors are genetics-only, rate Y/PY. If predictors include gene-expression data sampled 150 

after diagnosis or onset, rate N/PN. 151 

 152 

4.1 Were there a reasonable number of participants with the outcome? 153 

No recommendations are available for assessing events per variable (EPV) in machine 154 

learning models. To our knowledge, only one paper has attempted to assess EPV needed for 155 

machine learning models across multiple datasets [4], which we use here as a guide in lieu 156 

of a more rigorous alternative. For the purpose of assessing ROB in this review, support 157 

vector machines are required to have greater than 200 EPV. Neural networks require at 158 

least 200 EPV, but a cut-off of at least 500 EPV should be imposed as architecture can vary 159 

greatly. Random forests are also required to have greater than 500 EPV. For other machine 160 
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learning methods not specified above, 200 EPV is taken as the minimum requirement. 161 

Everything below these cut-offs is rated as N/PN. It should be noted that the models these 162 

estimates are based on were run using default (hyper)parameters [4] on non-genetic data. 163 

Final assessment of ROB for “analysis” should therefore take into account regularisation and 164 

model architecture, as models with an EPV of less than 200 may still be rated as “low” ROB 165 

for the domain. However, given that all models had multiple aspects of analysis which 166 

introduced ROB, changing these thresholds would not affect the final rating for the ‘analysis’ 167 

domain in any models.  168 

 169 

4.4 Were participants with missing data handled appropriately? 170 

For imputation using a genetics-specific application or server, such as IMPUTE2, rate Y/PY. 171 

For imputation in the sample using other methods, rate N/PN. For complete-case analysis, 172 

rate N/PN. 173 

 174 

4.5 Was selection of predictors based on univariable analysis avoided? 175 

If any plink-based univariable tests for association in the current dataset were used, rate 176 

N/PN. If information from an external published GWAS was used to select predictors, rate 177 

Y/PY. 178 

 179 

4.8 Were model overfitting, underfitting, and optimism in model performance accounted for? 180 

If nested cross-validation was used, rate Y/PY, assuming other standard procedures were 181 

followed. If any method of repeated cross-validation on the whole dataset where both 182 

tuning and evaluation of models were done in the same k-fold cross-validation loop was 183 

used, or where test data were observed during tuning of hyperparameters, rate N/PN. 184 
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 185 

4.9 Do predictors and their assigned weights in the final model correspond to the results from 186 

the reported multivariable analysis? 187 

If no model coefficients or assigned weights clearly reported, rate NI, as this cannot be 188 

assessed. 189 

  190 
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Supplementary Figures 191 

Figure S1: PRISMA flow diagram. Where a publication met multiple exclusion criteria, it is 192 

counted only under the first reason in the list. 193 

 194 

Figure S2: within-study risk of bias and applicability assessed by PROBAST. Colours indicate 195 

low, high or unclear risk of bias or applicability. 196 

 197 

Figure S3: discrimination (AUC) for machine learning, logistic regression and polygenic risk 198 

scores. Internal validation (split-sample) and partly-external validation (with sample overlap) 199 

are reported for the same models in a single study [5]. 1Median AUC for internal validation 200 

(model development). 2Median AUC for external validation (independent replication). 201 

Annotated scores are the median AUC for each model and study. Pirooznia et al. (bipolar 202 

disorder) and Vivian-Griffiths et al. (schizophrenia) show SNP-only models for LR and ML [3, 203 

6], while Chen et al. (schizophrenia) used multiple schizophrenia-associated trait polygenic 204 

risk scores as predictors [5]. PRS model performance was extracted from a figure when 205 

unreported in-text [3]. AUC is shown only for 5 of the 9 reported logistic regression models; 206 

a fourth study compared ML and LR but did not report discrimination [7]. AUC was not 207 

available for a logistic regression which was reported as attempted but not completed for 208 

one study [6]. AUC: area under the receiver operating characteristic curve, ML: machine 209 

learning, LR: logistic regression, PRS: polygenic risk scores. 210 

 211 

  212 
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Supplementary Tables 213 

Where percentages are reported in any table, they are taken from the total number of 214 

models, 77, and rounded to the nearest integer unless stated otherwise. Some aspects of 215 

methodology differed between models within studies. Where this occurs, studies are 216 

counted under each category that has been met unless stated otherwise, and total counts 217 

may not sum to 13. 218 

Search 219 

1. (schizophreni* or schizoaffective or schizotyp* or anxiety or depressi* or autis* or adhd 

or anorexi* or bullimi* or psychos?s or psychotic or manic or mania or hypomani* or 

tourette* or obsessive compulsive disorder or ocd).ti,ab. or (exp SCHIZOPHRENIA/ or 

Bipolar Disorder/ or exp ANXIETY DISORDERS/ or exp Autism Spectrum Disorder/ or exp 

Depressive Disorder/ or Attention Deficit Disorder with Hyperactivity/ or Anorexia 

Nervosa/ or Bulimia Nervosa/ or exp Obsessive-Compulsive Disorder/ or Tourette 

Syndrome/) 

 

2. (machine learning or statistical learning or pattern analysis or pattern recognition or 

ensemble or bayesian network* or relevance vector machine* or support vector 

machine* or decision tree* or classification tree* or regression tree* or elastic net or 

bagging or gradient boosting or neural network or perceptron or nearest neighbo?r or 

gaussian process* or ridge or lasso or regulari#ed regression or penali#ed regression or 

naive bayes or (deep adj3 learning) or (boosted adj2 trees) or (deep adj2 network) or 

(random adj2 forest) or (supervised adj2 learning)).ti,ab. or exp Machine Learning/ 

 

3. (rare variant* or rare variation or copy number variant* or copy number variation* or 

dna variant* or polygenic or genetic* or polymorphism* or genotype* or genome* or 

genomic* or exome*).ti,ab. or exp Polymorphism, Genetic/ 
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4. 1 and 2 and 3 
 

5. limit 4 to english language 
 

6. limit 5 to journal article 
 

7. remove duplicates from 6 
 

 220 

Table S1: example literature search from Medline (Ovid). 221 

 222 

 223 

Extraction 224 

Domain Item 

Background Reference 

Disorder 

Study design 

Publication number 

Model type (diagnostic/prognostic) 

Participants Recruitment method 

Study setting 

Retrospective or Prospective? 

Number of Centres 

Inclusion/Exclusion criteria 

Sample description 

Study Dates 

Dataset names or identifiers 

Sample size Total number of observations before QC 

Total number of observations after QC 

Case:control ratio in final dataset 

Number of cases in training set/fold 

Events Per Variable in the training set/fold 
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Outcome Definition of outcome 

Measurement 

Same for all patients? 

Type of outcome (single/combined) 

Were assessors blinded to knowledge of predictors? 

Predictors in outcome? 

Predictors Genotyping/sequencing method 

Imputation method and reference 

Types of genetic data 

Method of choice of variants to genotype/sequence 

Genetic Predictor QC 

Number of candidate predictors 

Number predictors in final model 

Coding of genetic data 

Risk allele definition for coding at a single locus 

Knowledge/annotation information included? 

Knowledge/annotation inclusion method 

Was measurement of predictors blinded to outcome/other predictors? 

Any other handling of predictors 

Was leakage handled appropriately? 

Participant QC Genetic sample QC 

Method for accounting for genetic ancestry 

Method of accounting for plate/batch/site effects 

Method for accounting for relatedness 

Missing Data Number participants with any missing value1,2 

Number of participants with missing data for each predictor1 

Handling of missing data 

Modelling method/representation 
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Model 

Development 

Model implementation (programming language) 

Model modifications 

Predictor selection types used 

Method for selection of predictors prior to modelling (filter) 

Method for selection of predictors during modelling (wrapper) 

Method for selection of predictors as part of model (embedded) 

Hyperparameter search method 

Tuned Hyperparameters 

Class imbalance method1 

Model 

Performance 

Discrimination measures reported 

Calibration measures reported 

Classification measures reported 

Other measures reported 

A-priori decision threshold cut-off used for classification? 

Model Evaluation Method for testing model performance internally 

Method for testing model performance externally 

Model adjusted or updated after poor validation?3 

Results Model AUC 

Model Accuracy, sensitivity and specificity  

Model calibration1 

Comparison of distribution of predictors1 

Data/code available (link) 

Extra Resources 

Notes 

 225 

 226 

Table S2: extraction form, modified from the checklist for critical appraisal and data extraction for systematic reviews of 227 

prediction modelling studies (CHARMS) checklist [8]. Items which overlap heavily with prediction model risk of bias 228 

assessment tool (PROBAST) signalling questions, such as participant information, are reported in risk of bias summaries. 229 
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AUC: area under the receiver operating characteristic curve, QC: quality control. 1Not reported in any publications. 230 

2Number of participants excluded above a threshold of missingness was reported in many studies. 3No for all publications. 231 

 232 

Samples 233 

Datasets 234 

Titles and descriptions of studies making up a dataset are recorded as given in the extracted 235 

publication. Where references are supplied, these were given in the text, or clear from an online 236 

repository, such as the database of Genotypes and Phenotypes (dbGaP) [9]. Where datasets appear 237 

to overlap, this has been noted.  238 

 239 

Study Disorder Dataset 

Yang et al. (2010) Schizophrenia No name/reference given 

Ghafouri-Fard et al. (2010) Autism No name/reference given 

Aguiar-Pulido et al. (2010;2013) Schizophrenia External samplea 

Wang et al. (2018) Schizophrenia PsychENCODEb 

Bipolar disorder PsychENCODEb 

Autism PsychENCODEb 

Pirooznia et al. (2012) Bipolar disorder BGSCc†‡ (DEV), WTCCCd* (VAL) 

Laksshman et al. (2017) Bipolar disorder Not clearly reportede 

Acikel et al. (2016) Bipolar disorder Whole-Genome Association 

Study of Bipolar Disorderf†‡ 
Li et al. (2014) Bipolar disorder Whole-Genome Association 

Study of Bipolar Disorderf†‡ 
Schizophrenia Genome-Wide Association 

Study of Schizophreniag† 
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Guo et al. (2016) Anorexia GCANh, WTCCCd*, CHOPi, PFCGj 

Trakadis et al. (2019) Schizophrenia Sweden-Schizophrenia 

Population-Based Case-Control 

Exome Sequencingk** 

Engchuan et al. (2015) Autism AGPl 

Chen et al. (2018) Schizophrenia MGSm†, SSCCSn** (DEV), CATIEo† 

(VAL) 

Vivian-Griffiths et al. (2019) Schizophrenia CLOZUKp* 

 240 

Table S3: sample overlap between studies. a: Galician sample described elsewhere [10]. b: PsychENCODE, made up of 8/9 241 

studies, where only 6 are listed in the supplementary as having genotype data - study 1 (BrainGVEX, consisting of the 242 

Banner Sun Mental Research Institute, BSHRI [11], and Stanley Medical Research Institute, SMRI); study 2 (BrainSpan), no 243 

genotype data; study 3 (CommonMind [12]); study 4 (Yale-ASD); no genotype data; study 5 (UCLA-ASD [13]); study 6 244 

(BipSeq); study 7 (CMC_HBCC); study 8 (LIBD_szControl + BipSeq); study 9 (not reported). Information and data also 245 

available through an online repository [14]. c: Bipolar Genome Studies Consortium (BGSC) [15], made up of the Genetic 246 

Association Information Network European American (GAIN) [16], and the Translational Genomics Research Institute 247 

(TGRI) samples. Controls obtained through Knowledge Networks (KN) [17], and recruitment described elsewhere [18, 19]. 248 

d: Wellcome Trust Case Control Consortium (WTCCC). Bipolar Disorder cases are described in methods, with further 249 

information provided elsewhere [20, 21]. Controls include the 1958 British Birth Cohort (58BC) [22] and the UK Blood 250 

Service (UKBS) [23]. e: part of the Critical Assessment of Genome Interpretation (CAGI)-4 challenge. Laksshman et al. [24] 251 

reference Daneshjou et al. [25], from which a third reference [26] gives information on an exome dataset with only bipolar 252 

cases recruited for a suicide study, but not controls. f: Whole-Genome Association Study of Bipolar Disorder, dbGaP study 253 

accession “phs000017.v3.p1”. References on dbGaP provide further details on sample recruitment [18, 27]. Acikel et al. 254 

acquired Bipolar Disorder Only (BDO) participants [28]; Li et al. report using the Bipolar and Related Disorders (BARD) 255 

subset [29]. Controls, obtained through KN, are described under “Clinical Procedures” of the relevant dbGaP entry, and by 256 

other studies [17]. g: Genome-Wide Association Study of Schizophrenia, dbGaP study accession “phs000021.v3.p2”. Cases 257 

described on dbGaP, controls obtained through KN. h: the Genetic Consortium for Anorexia Nervosa (GCAN). i: Price 258 

Foundation Collaborative Group and the Children’s Hospital of Philadelphia (CHOP). Methodological details for Guo et al. 259 

are also referenced to a previous study [30]. j: the Price Foundation Collaborative Group (PFCG). k: Sweden-Schizophrenia 260 

Population-Based Case-Control Exome Sequencing, dbGaP study accession “phs000473.v1.p1”. Described in more detail 261 
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elsewhere [31]. l: Autism Genome Project (AGP); three references supplied for methodology and participants [32–34]. m: 262 

Molecular Genetics of Schizophrenia (MGS) [35], with controls from KN. n: Swedish Schizophrenia Case Control Study 263 

(SSCCS) [36]. o: Clinical Antipsychotic Trials of  Intervention Effectiveness (CATIE) [37, 38], with controls from KN. 264 

Imputation for Chen et al. is also given elsewhere [39]. p: CLOZUK [40]; controls from 58BC and UKBS. *Includes controls 265 

from the 1958 British Birth Cohort and the UK Blood Service. †Includes controls from Knowledge Networks. ‡Publications 266 

do not all give the same dataset name or description, but do include a common reference for recruitment or inclusion 267 

criteria. **Studies refer to a Swedish population-based sample with the same outcome definition, but no clear statement 268 

or reference describing sample overlap. 269 

 270 

Handling of Missing Data 271 

Method Studies Models 

Reported 7 43 (56%) 

 Exclusion (complete-case analysis) 1 1 

 Code missingness as category in predictor 1 12 

 Imputation after excluding high missingness 5 30 

  Imputation using genetics server/application 3 16 

  Imputation in-sample from binomial distributiona 2 14 

Unclear/unreported 6 34 (44%) 

 Only exclusion for high missingness reportedb 4 28 

 Not reported 2 6 

 272 

Table S4: missingness. Handling of missing data differed between the development and validation set for Pirooznia et al. 273 

(2012), where imputation is only reported for external validation [6]; these models are counted under the method 274 

reported in model development, “only exclusion for high missingness”. aA study [3] reported using unspecified imputation 275 

prior to quality control filters, before a second in-sample imputation and is recorded once as in-sample. bIncludes high 276 

missingness filters for samples, predictors or both, with method for handling remaining missingness not reported. 277 

 278 
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Software 279 

Language/Implementation/Method Studies Models 

R 4 11 (14%) 

 glmnet (LASSO) 1 1 

 randomForest (RF) 2 2 

 party (CIF) 1 1 

 e1071 (SVM, NB) 2 2 

 gbm (GBM) 1 1 

 XGBoost (Histogram-based GBM) 1 1 

 kNN (k-NN) 1 1 

 MDR (MDR) 1 2 

Python 4 16 (21%) 

 scikit-learn 3 12 

  SVM 1 8 

  Data handling 1 1 

  Unspecified 1 3 

 Keras (NN)a 2 4 

 Tensorflow (NN) 1 4 

Java (WEKA)b 2 28 (36%) 

Matlab 2 11 (14%) 

 Matlab (NN) 2 10 

 libSVM (SVM) 1 1 

Not reported 3 11 

 280 

Table S5: software and packages used in machine learning. aBackend to Keras not specified. bMethods used in WEKA: 281 

neural networks (linear, perceptron and radial basis function), evolutionary computation, multifactor dimensionality 282 
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reduction, Bayesian networks, naïve Bayes, support vector machine, decision tables, decision tree-naïve Bayes, best-first 283 

tree, AdaBoost. LASSO: least absolute shrinkage and selection operator, RF: random forest, CIF: conditional inference 284 

forest, GBM: gradient boosting machine, XGBoost, eXtreme Gradient Boosting, k-NN: k-nearest neighbours, MDR: 285 

multifactor dimensionality reduction, SVM: support vector machine, NN: neural network, NB: naïve Bayes. 286 

 287 

Bias 288 

Method of accounting for ancestry 289 

Method Studies Models 

Population substructure identified in current study but not accounted for 2 14 (18%) 

 Visualised by PCs for subsample after restricting to European 1 9 

 Table of ancestry for European American and African Americana 1 5 

Unclearb 9 50 (65%) 

 Population structure identified in dataset reference(s) 7 42 

  Exclusion of non-European ancestry through PCs/MDS 5 35 

  Visualised but observations not excluded 3 11 

 Reported as European/Caucasian-only, no details given 2 8 

Not reported in publication or reference 2 13 (17%) 

 290 

Table S6: methodology for accounting for population structure. Where development or validation sets are made-up of 291 

multiple datasets with separate ancestry filters, these are counted separately. aMethod of establishing ancestry not 292 

specified. bAncestry not clearly specified in current study. PCs: principal components, MDS: multi-dimensional scaling.  293 

  294 
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Models 295 

Model Performance Measures 296 

Reported measures Studies Models 

Discrimination 8 45 (58%) 

 AUC 8 45 

 ROC plot 4 7 

Classification 9 41 (53%) 

 Accuracy 8 39 

 Sensitivity/Recall/Hit-rate/TPR 6 16 

 Specificity/TNR 4 10 

 F1-score (F-measure) 3 12 

 Precision/PPV 3 12 

 Confusion matrix 3 3 

Other 5 29 (38%) 

 Variance explained on liability scale 1 9 

 p-value* 1 4 

 % correctly classified cases, averaged over repeats 1 4 

 Nagelkerke’s pseudo-R2 1 4 

 t-test comparisons between models 1 8 

 297 

Table S7: model performance. *The p-value "indicates that XGBoost algorithm is performing better than a random 298 

predictor simply predicting the majority class" [41]. ROC: receiver operating characteristic, AUC: area under the ROC curve, 299 

TRP: true positive rate, TNR: true negative rate, PPV: positive predictive value. As many studies reported multiple 300 

measures, percentages do not combine to 100. 301 

 302 
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Decision threshold cut-off 303 

Method for choosing cut-off Studies Models 

a-priori 1 9 (22%) 

Unclear 3 6 (15%) 

Unreported 5 26 (63%) 

 304 

Table S8: method for choosing decision threshold when reporting classification metrics. Studies which were unclear either 305 

reported a general outline of how classification works for a given method, without stating this was used in the current 306 

implementation, or reported the use of 0.5 as the threshold but not how the number was chosen. Percentages are taken 307 

from the total number of models which reported classification measures, 41, and rounded to the nearest integer. Number 308 

of studies does not sum to 13 as not all studies reported classification metrics. 309 

 310 

Validation 311 

 312 

Method Studies Models 

Internal validation 

 Cross-validation 8 44 (57%) 

  3-fold 1 4 

  4-fold 1 8 

  5-fold 2 8 

  10-fold 3 22 

  LOOCV 1 2 

 Split-sample 5 16 (21%) 

  34% traina 1 3 

  40% trainb 1 3 

  70% train 1 4 

  80% train 1 2 
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  90% train 1 4 

 Apparent 1 1 (1%) 

 Not reportedc 1 16 (21%) 

External Validation 

 External (temporal, geographic)c 1 16 (21%) 

 Partly externald 1 4 (5%) 

 Not performed 11 57 (74%) 

 313 

Table S9: validation. Percentages are given with respect to 77, the total number of models.  Methodology for internal 314 

validation differed between models in a study [31], which is counted in cross-validation (CV), split-sample and apparent. 315 

aApproximately equal three-way split between predictor selection, train and test, with 10-fold CV performed in the training 316 

fold for hyperparameter tuning. b40% train, 10% test, 50% final test. cNo performance measures reported for internal 317 

validation, but discrimination for fully external validation reported [25]. dControl sample used in development and 318 

validation partially overlaps. LOOCV: Leave-one-out cross validation. 319 

 320 

  321 
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Overview 322 
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a AB SNP Y 20/40 150/367 1 0.0054 NR 0.7175 0.76 CV 

a SVM SNP N 20/40 367/367 1 0.0054 NR 0.4 0.4 CV 

b NN SNP Y 487/942 15/15 0.93 32.5 NR 0.8275 0.6395 CV 

c NN SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c NN SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c EC SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c NN SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c MDR SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c BN SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c NB SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c SVM SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c DTb SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c DTNB SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c BFT SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

c AB SNP N 260/614 40-48/40-48* 1.36 5.42-6.5* NR NR NR CV 

d NN SNP/GE N 355/710 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE Y 355/710 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE Y 355/710 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE N 94/188 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE Y 94/188 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE Y 94/188 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE N 31/62 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE Y 31/62 NCR/NR 1 n/a NR NR NR CV 

d NN SNP/GE Y 31/62 NCR/NR 1 n/a NR NR NR CV 

e SVM SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext 

e SVM SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext 

e SVM SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext 

e SVM SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext 

e NN SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext 

e NN SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext 
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e NN SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext 

e NN SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext 

e RF SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext 

e RF SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext 

e RF SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext 

e RF SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext 

e BN SNP N 2191/3625 3514/NCR 0.65 n/a NR NR NR Ext 

e BN SNP N 2191/3625 14632/NCR 0.65 n/a NR NR NR Ext 

e BN SNP N 2191/3625 1252/NCR 0.65 n/a NR NR NR Ext 

e BN SNP N 2191/3625 5366/NCR 0.65 n/a NR NR NR Ext 

f NN Exome Y 200/400 ~1000/>500000* 1 <0.0004* Ref/alt 0.64 NR Split 

f RF Exome N 200/400 ~1000/>500000* 1 <0.0004* Ref/alt 0.55 NR Split 

f DT Exome N 200/400 ~1000/>500000* 1 <0.0004* Ref/alt 0.54 NR Split 

g RF SNP N 604/2371 693/761830 2.93 0.00079 NR 0.998 NR App. 

g NB SNP N 483/1414 693/761830 1.93 0.00063 NR 0.734 NR Split 

g k-NN SNP N 483/1414 693/761830 1.93 0.00063 NR 0.954 NR Split 

g MDR SNP N 604/2371 693/761830 2.93 0.00079 NR 0.664 NR CV 

g MDR SNP N 604/2371 693/761830 2.93 0.00079 NR 0.883 NR CV 

h Ridge SNP N 653/1158 298604/298604 0.77 0.0022 NR NR NR CV 

h SVM SNP N 653/1158 98604/298604 0.77 0.0022 NR NR NR CV 

h LASSO SNP N 653/1158 98604/298604 0.77 0.0022 NR NR NR CV 

h Ridge SNP N 1170/2068 98604/298604 0.77 0.0039 NR NR NR CV 

h SVM SNP N 1170/2068 98604/298604 0.77 0.0039 NR NR NR CV 

h LASSO SNP N 1170/2068 98604/298604 0.77 0.0039 NR NR NR CV 

i LASSO SNP N 1341/4402 1486/317481* 2.28 >=0.0042* NR 0.11 0.97 Split† 

i SVM SNP N 1341/4402 1486/317481* 2.28 >=0.0042* NR NR NR Split† 

i GBM SNP N 1341/4402 1486/317481* 2.28 >=0.0042* NR NR NR Split† 

j LASSO Exome N 1782*/3564 1155/17138 1 0.1* NR 0.720 0.773 Split 

j SVM Exome N 1782*/3564 1155/17138 1 0.1* NR 0.708 0.706 Split 

j RF Exome N 1782*/3564 1155/17138 1 0.1* NR 0.820 0.813 Split 

j GBM Exome N 1782*/3564 1155/17138 1 0.1* NR 0.849 0.866 Split 

k CIF CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV 

k RF CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV 

k SVM CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV 

k NN CNV N 1570/3486 21/21 1.22 74.6 NR NR NR CV 
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l NN PRS N 5018/10859 19/116 1.16 43.26 NR NR NR Split/

Ext. 

l NN PRS N 5018/10859 116/116 1.16 43.26 NR NR NR Split/

Ext. 

l NN PRS N 5018/10859 14/29-32* 1.16 156.81-173.03* NR NR NR Split/

Ext. 

l NN PRS N 5018/10859 26/29-32* 1.16 156.81-173.03* NR NR NR Split/

Ext. 

m SVM SNP N 3446/7731 125/125 1.24 27.57 Ref NR NR CV 

m SVM SNP N 5554/11853 125/125 1.13 44.43 Ref NR NR CV 

m SVM SNP N 3446/7731 4998/4998 1.24 0.69 Ref NR NR CV 

m SVM SNP N 5554/11853 4998/4998 1.13 1.11 Ref NR NR CV 

m SVM SNP N 3446/7731 125/125 1.24 27.57 Ref NR NR CV 

m SVM SNP N 5554/11853 125/125 1.13 44.43 Ref NR NR CV 

m SVM SNP N 3446/7731 4998/4998 1.24 0.69 Ref NR NR CV 

m SVM SNP N 5554/11853 4998/4998 1.13 1.11 Ref NR NR CV 

 323 

Table S10: overview of prediction models. n: number of cases used in model development in final model, N: number of 324 

total observations in model development in final model, p: number of predictors in final model, P: number of candidate 325 

predictors, EPV: events per candidate variable/predictor, NR: not reported, NCR: not clearly reported, Ref: risk allele coded 326 

as reference allele, Alt: coded as alternative allele, SNP: single nucleotide polymorphism, CNV: copy number variant, PRS: 327 

polygenic risk score, GE: gene expression, AB: AdaBoost, SVM: support vector machine, NN: neural network, EC: 328 

evolutionary computation, MDR: multifactor dimensionality reduction, BN: Bayesian networks, NB: naïve Bayes, DTb: 329 

decision tables, DTNB: decision table naïve Bayes, BFT: best-first tree (BFTree), RF: random forest, DT: decision tree, k-NN: 330 

k-nearest neighbours, LASSO: least absolute shrinkage and selection operator, GBM: gradient boosting machine, CIF: 331 

conditional inference forests, CV: cross-validation, n/a: not applicable. †Study used a roughly equal 3-way split for predictor 332 

selection, training and testing, where 10-fold CV was used in the training fold [42]. Splits were repeated, but reported AUCs 333 

in the main text are for only one of the repeats; the study is recorded here as split-sample. *Number reported is unclear; 334 

upper and lower bounds, or an approximation given by the authors in the text are used. Where insufficient information is 335 

provided to give a reasonable approximation for predictors, NCR or NR is recorded. Imbalance refers to class imbalance, 336 

given here as number of controls divided by number of cases in model development. Modification refers to whether a 337 

classifier was used “out-of-the-box”, N, or was modified in some way, Y. Validation is k-fold CV, split-sample (Split), 338 

apparent (App.) or external (Ext.). A single study reported internal validation (split-sample) and external validation (but 339 

with partial sample overlap) [5]. Studies: a (Yang et al., 2010) [43], b (Ghafouri-Fard et al., 2019) [44], c (Aguiar-Pulido et al., 340 
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2010;2013) [45, 46], d (Wang et al., 2018) [7], e (Pirooznia et al., 2012) [6], f (Laksshman et al., 2017) [24], g (Acikel et al., 341 

2016) [28], h (Li et al., 2014) [29], i (Guo et al., 2016) [42], j (Trakadis et al., 2019) [41], k (Engchuan et al., 2015) [47], l 342 

(Chen et al., 2018) [5], m (Vivian-Griffiths et al., 2019) [3]. 343 

 344 

Predictors 345 

Coding of predictors 346 

Coding Studies Models 

Reported 6 35 (45%) 

 Continuous (weighted average of additive SNPs; PRS) 1 4 

 Counts of genes per gene set (CNV) 1 4 

 Counts of variants per gene (Exome) 1 4 

 Additive model (0, 1, 2), missing coded as 3 (SNP) 1 12 

 Z-transformation of additive model (0, 1, 2; SNP) 1 8 

 One-hot encoded (SNP) 1 3 

Unclear/unreported 7 42 (55%) 

 Uncleara 2 3 

 Not reported 5 39 

 347 

Table S11: coding of predictors. aCoding implied through description as ‘ordinal’ or through an abstract description of the 348 

type of classifier, but not clear. 349 

 350 

Information in predictors 351 

Method Studies Models 

Additional knowledge used 9 49 (64%) 

 Predictors 8 43 

  Array not genome-wide 3 15 
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  Predictors only from brain-expressed genes 1 8 

  Selection by p-value cut-off from external GWAS 1 8 

  Annotation of gene and variant-type 1 4 

  Annotation of gene and gene set 1 4 

  Choice of phenotypes and weights from GWAS for SZ-PRS 1 4 

 Modelling 1 6 

  Non-zero matrix weights in cRBM determined from GE data 1 6 

Unclear/unreported 6 28 (36%) 

 Not clear 1 3 

 Not reported 5 25 

 352 

Table S12: explicit use of additional knowledge in selecting or weighting of predictors and modelling. Implicit knowledge, 353 

such as choice of a linear machine learning method, or additive encoding of genotyping data, are not included. GE: gene 354 

expression, cBRM: conditional restricted Boltzmann machine. 355 

 356 

Predictor selection 357 

Type Studies Models 

Filter 8 48 (62%) 

 Association test in external dataset, clumping 1 8 

 Association test in current dataset, clumping 1 8 

 Association test in current dataset for brain-expressed genes 

only, clumping 

1 8 

 Association test in split of current dataset, p-value cut-off 1 3 

 Pruning, association test in current dataset, p-value cut-off 1 5 

 Embedded (LASSO/RF/GBM combined)a 1 4 

 Embedded (LASSO) with p-value cut-off 1 2 
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 Forward sequential feature selection (FSFS)b 1 1 

 Correlation with outcome or intermediate phenotype 1 9 

Embedded 8 20 (26%) 

 Regression (LASSO) 3 4 

 Tree-based 7 13 

  RF (including CIF) 4 8 

  Boosting (GBM, AdaBoost) 3 3 

  DT 2 2 

 Other 2 3 

  DTb 1 1 

  DTNB 1 1 

  Feature-selective AdaBoostc 1 1 

Uncleard 1 3 (4%) 

None reported 6 18 (23%) 

 358 

Table S13: predictor selection technique. aTrakadis et al. (2019) report predictors being selected “in combination of” 359 

embedded methods, but do not state how such methods were combined [41]. bFSFS is a wrapper on an embedded 360 

method, used as a filter. cYang et al. (2010) modified AdaBoost to include univariable predictor selection within each 361 

iteration before training each weak learner [43]; as the modification is within each iteration it is listed as “embedded” 362 

here. This is counted once under feature-selective AdaBoost, and is not counted under ‘Boosting’. dLaksshman et al. (2017) 363 

report using “L1-based feature selection” but no indication about what method the L1-norm was applied to [24]. LASSO: 364 

least absolute shrinkage and selection operator, RF: random forest, GBM: gradient-boosting machine, DTNB: decision 365 

table-naïve Bayes, DTb: decision table, DT: decision tree, CIF: conditional inference forest. Several models exploited both 366 

filter and embedded methods; these are counted in both sections. 367 

  368 
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Leakage handled appropriately? Studies Models 

Yes/Probably Yes 7 44 (57%) 

No/Probably No 7 32 (42%) 

 Predictor selection performed prior to cross-validation 2 7 

 Predictor transformed prior to cross-validationa 4 22 

 Prior knowledge in predictors generated from test set 1 4 

 DEV and VAL sets overlap 1 4 

 HP chosen by test-set/split performance 4 22 

 GRN from whole dataset used to set NN architecture 1 6 

Unclearb 1 1 (1%) 

 369 

Table S14: handling of information “leaks” during training. Where studies have multiple reasons for suspected leakage, 370 

each of these is counted separately. If predictors were reduced to a set number before cross-validation was described, or a 371 

transformation was not reported as having been done within a pipeline or for each fold of cross-validation, this is recorded 372 

as ‘probably no’. aTransform includes anything that summarises information from the test set, such the mean of the whole 373 

sample in a z-transformation. bPredictor handling implied, as scikit-learn is listed for pre-processing and preparation, but 374 

no pre-processing steps are given [44]. DEV: development, VAL: validation, HP: hyperparameter, GRN: gene regulatory 375 

network, NN: neural network. 376 

 377 

Hyperparameter search 378 

 379 

Search method for hyperparameters Studies Models 

Search method reported 4 15 (19%) 

 Grid 1 1 

 Random 1 8 

 Manual 2 12 

 Bias variance decomposition  1 2 

Default hyperparameters  1 16 (21%) 
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Search method unclear/unreported 9  46 (60%) 

 Not clearly reporteda 2 8 

 Not reported 7 38 

 380 

Table S15:  hyperparameter search technique. aMethods reported clearly for other models in publications, but not made 381 

clear that the same methods apply to extracted models. One publication [3] used both manual and random elements for 382 

search, and is counted in both categories. Manual tuning by Chen et al. (2019) is implied through reported values which 383 

were attempted for hyperparameters, but not explicitly stated [5]. Hyperparameters searched systematically using a given 384 

set of values are denoted as grid search. If authors report attempting various hyperparameter choices but give no 385 

indication of systematic search or value choices, this is recorded as manual. Two studies (12 models) reported 386 

hyperparameters that were tuned but gave no indication of how this was done [7, 24]. A study (1 model) reported search 387 

methodology, but not what hyperparameters were tuned [43]. 388 

 389 

Method Studies Models 

Reported 6 26 (34%) 

 SVM (RBF)   

 C  2 9 

 Gamma 2 9 

 AdaBoosta   

 Iterations 1 1 

 Neural Networks   

 Epochs 2 12 

 Optimiser 1 4 

 Activation function 1 4 

 Layers 1 4 

 LASSO   

 Lambda 1 1 
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Unclear/unreported 9 51 (66%) 

 Not clearly reported 2 5 

 Not reported 8 46 

 390 

Table S16: hyperparameters tuned during model training. aFeature-selective AdaBoost [43]. Manual experiments with 391 

different hyperparameters are presented by Engchuan et al. (2015) in the supplementary: these are included as “not 392 

reported”, as they appear to be post-hoc experiments rather than a search as part of learning [47]. Several studies report 393 

either hyperparameter search method, or the hyperparameters that were tuned, but not both (see Table S15). A study (16 394 

models) used the default hyperparameters (Table S15) and is counted here under ‘not reported’ [6]. 395 

 396 

  397 
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