
Computational Visual Media
https://doi.org/10.1007/s41095-020-0174-8 Vol. 6, No. 2, June 2020, 113–133

Review Article

A survey on deep geometry learning: From a representation
perspective

Yun-Peng Xiao1, Yu-Kun Lai2, Fang-Lue Zhang3, Chunpeng Li1, Lin Gao1 (�)

c© The Author(s) 2020.

Abstract Researchers have achieved great success in
dealing with 2D images using deep learning. In recent
years, 3D computer vision and geometry deep learning
have gained ever more attention. Many advanced
techniques for 3D shapes have been proposed for
different applications. Unlike 2D images, which can
be uniformly represented by a regular grid of pixels,
3D shapes have various representations, such as depth
images, multi-view images, voxels, point clouds, meshes,
implicit surfaces, etc. The performance achieved in
different applications largely depends on the representa-
tion used, and there is no unique representation that
works well for all applications. Therefore, in this
survey, we review recent developments in deep learning
for 3D geometry from a representation perspective,
summarizing the advantages and disadvantages of
different representations for different applications. We
also present existing datasets in these representations
and further discuss future research directions.
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1 Introduction
1.1 Background
Recent improvements in methods for acquisition
and rendering of 3D models have resulted in

1 Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, China. E-mail: Y.-P. Xiao,
xiaoypgk@gmail.com; C. Li, cpli@ict.ac.cn; L. Gao,
gaolin@ict.ac.cn (�).

2 School of Computer Science and Informatics, Cardiff
University, Wales, UK. E-mail: LaiY4@cardiff.ac.uk.

3 School of Engineering and Computer Science, Victoria
University of Wellington, New Zealand. E-mail:
fanglue.zhang@ecs.vuw.ac.nz.

Manuscript received: 2020-02-16; accepted: 2020-04-17

consolidated repositories on the Internet containing
huge numbers of 3D shapes. With the increased
availability of 3D models, we have been seeing an
explosion in the demands of processing, generation,
and visualization of 3D models in a variety
of disciplines, such as medicine, architecture,
and entertainment. Techniques for matching,
identification, and manipulation of 3D shapes have
become fundamental building blocks in modern
computer vision and computer graphics systems.
Due to the complexity and irregularity of 3D shape
data, effectively representing 3D shapes remains a
challenging problem. Thus, there have been extensive
research efforts concentrating on how to deal with
and generate 3D shapes in different representations.
In early research on 3D shape representations,

3D objects were normally modeled with a global
approach, such as constructive solid geometry and
deformed superquadrics. Those approaches have
several drawbacks when utilized for tasks like
recognition and retrieval. Firstly, when representing
imperfect 3D shapes, including those with noise
and incompleteness, which are common in practice,
such representations may have a negative influence
on matching performance. Secondly, the high-
dimensionality heavily burdens the computation
and tends to make models overfit. Hence, more
sophisticated methods are designed to extract
representations of 3D shapes in a more concise, yet
discriminative and informative form.
Several related surveys have been published [1–3],

which focus on different aspects of deep learning for
3D geometry. Moreover, with rapid development of
3D shape representations and related techniques for
deep learning, it is essential to further summarize
up-to-date research. In this survey, we mainly review
deep learning methods on 3D shape representations
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and discuss their advantages and disadvantages in
different application scenarios. We now give a
brief summary of different 3D shape representation
categories.

1.2 Depth and multi-view images
Depth and multi-view images can be used to represent
3D models over a 2D field; the regular structure of
images makes for efficient processing. Depending
on whether depth is included, 3D shapes can be
represented by RGB (color) or RGB-D (color and
depth) images viewed from different viewpoints.
Because of the influx of available depth data due
to the popularity of 2.5D sensors, such as Microsoft
Kinect, Intel RealSense, etc., multi-view RGB-D
images are widely used to represent real-world 3D
shapes. Large numbers of image-based models are
available in this representation, but it is inevitable
that such representations lose some geometric
detail.

1.3 Voxels
A voxel is a 3D extension of the concept of pixel.
Like pixels in 2D, the voxel-based representation also
has a regular structure in 3D space. Architectures
of various neural networks which have proved
useful in the 2D image field [4, 5] can be easily
extended to voxel form. Nevertheless, adding one
dimension means an exponential increase in data
size. As resolution increases, the memory required
and computational costs increase dramatically, which
restricts the representation to low resolutions when
representing 3D shapes.

1.4 Surfaces
Surface-based representations describe 3D shapes by
encoding their surfaces, which can also be regarded
as 2-manifolds. Point clouds and meshes are both
discretized forms of 3D shape surfaces. Point clouds
use a set of sampled 3D point coordinates to represent
the surface. They can easily be generated by scanners
but are difficult to process due to their lack of order
and connectivity information. Researchers use order
invariant operators such as the max pooling operator
in deep neural networks [6, 7] to mitigate the lack of
order. Meshes can depict higher quality 3D shapes
with less memory and computational cost compared
to point clouds and voxels. A mesh contains a
vertex set and an edge set. Due to its graphical
nature, researchers have made attempts to build

graph-based convolutional neural networks for coping
with meshes. Some other methods regard meshes as
the discretization of 2-manifolds. Moreover, meshes
are more suitable for 3D shape deformation. One can
deform a mesh model by transforming vertices while
simultaneously retaining the connectivity.

1.5 Implicit surfaces
Implicit surface representation exploits implicit field
functions, such as occupancy functions [8] and signed
distance functions [9], to describe the surface of 3D
shapes. The implicit functions learned by deep neural
networks define the spatial relationship between
points and surfaces. They provide a description
with infinite resolution for 3D shapes with reasonable
memory consumption, and are capable of representing
shapes with changing topology. Nevertheless, implicit
representations cannot reflect the geometric features
of 3D shapes directly, and usually need to be
transformed to explicit representations such as
meshes. Most methods apply iso-surfacing, such as
marching cubes [10], which is an expensive operation.

1.6 Structured representation
One way to cope with complex 3D shapes is to
decompose them into structure and geometric details,
leading to structured representations. Recently,
increasing numbers of methods regard a 3D shape
as a collection of parts and organize them linearly
or hierarchically. The structure of 3D shapes is
processed by recurrent neural networks (RNNs) [11],
recursive neural networks (RvNNs) [12], or other
network architectures. Each part of the shape
can be processed by unstructured models. The
structured representation focuses on the relations
(such as symmetry, supporting, being supported,
etc.) between different parts within a 3D shape,
which provides a better descriptive capability than
alternative representations.

1.7 Deformation-based representation
As well as rigid man-made 3D shapes such as
chairs and tables, there are also a large number
of non-rigid (e.g., articulated) 3D shapes such as
human bodies, which also play an important role
in computer animation, augmented reality, etc.
Deformation-based representation is used mainly
to describe intrinsic deformation properties while
ignoring extrinsic transformation properties. Many
methods use rotation-invariant local features for
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describing shape deformation to reduce distortion
while retaining geometric details.

1.8 Geometry learning
Recently, deep learning has achieved superior
performance to classical methods in many fields,
including 3D shape analysis, reconstruction, etc.
A variety of architectures of deep networks have
been designed to process or generate 3D shape
representations, which we refer to as geometry learning.
In the following sections, we focus on the most recent
deep learning based methods for representing and
processing 3D shapes in different forms. Based on
how the representation is encoded and stored, our
survey is organized around the following structure:
Section 2 reviews image-based shape representation
methods. Sections 3 and 4 introduce voxel- and
surface-based representations respectively. Section
5 further introduces implicit surface representations.
Sections 6 and 7 review structure- and deformation-
based description methods. We then summarize
typical datasets in Section 8 and typical applications
for shape analysis and reconstruction in Section 9,
before concluding the paper in Section 10. Figure 1
provides a timeline of representative deep learning
methods based on various 3D shape representations.

2 Image-based representations
2D images are projections of 3D entities. Although
the geometric information carried by one image is
incomplete, a plausible 3D shape can be inferred
from a set of images with different perspectives.

The extra channel of depth in RGB-D data further
enhances the capacity of image-based representations
to encode geometric cues. Benefiting from the image-
like structure, research using deep neural networks
for 3D shape inference from images started earlier
than alternative representations that explicitly depict
the surface or geometry of 3D shapes.
Socher et al. [33] proposed a convolutional and

recursive neural network for 3D object recognition,
which copes with RGB and depth images using
single convolutional layers separately and merges the
features with a recursive network. Eigen et al. [16]
first proposed reconstructing a depth map from a
single RGB image and designed a new scale invariant
loss for the training stage. Gupta et al. [34] encoded
the depth map into three channels including disparity,
height, and angle. Other deep learning methods based
on RGB-D images designed for 3D object detection
[35, 36] outperform previous methods.
Images from different viewpoints can provide

complementary cues to infer 3D objects. Thanks to
the development of 2D deep learning models, learning
methods based on multi-view image representation
perform better for 3D shape recognition than those
based on other 3D representations. Su et al. [14]
proposed MVCNN (multi-view convolutional neural
network) for 3D object recognition. It processes the
images for different views separately in the first part of
the CNN, then aggregates the features extracted from
different views by view-pooling layers, and finally
sends the merged features to the remainder of the
CNN. Qi et al. [37] proposed adding a multi-resolution
strategy to MVCNN for higher classification accuracy.

Fig. 1 The timeline of deep learning based methods for various 3D shape representations.
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3 Voxel-based representations
3.1 Dense voxel representation
The voxel-based representation is traditionally a
dense representation, which describes 3D shape data
by a volumetric grid in 3D space. Each voxel in a
cuboid grid records occupancy status (i.e., occupied
or unoccupied).
One of the earliest methods to apply deep

neural networks to volumetric representations, 3D
ShapeNets, was proposed by Wu et al. [13] in
2015. They assigned three different states to the
voxels in the volumetric representation produced
by 2.5D depth maps: observed, unobserved, and
free. 3D ShapeNets extended the deep belief
network (DBN) [38] from pixel data to voxel data
and replaced fully connected layers in the DBN
with convolutional layers. The model takes the
aforementioned volumetric representation as input,
and outputs category labels and predicted 3D shape
by iterative computations. Concurrently, Maturana
et al. proposed processing a volumetric representation
with 3D convolutional neural networks (3D CNNs)
[39] and designed VoxNet [40] for object recognition.
VoxNet defines several volumetric layers, including an
input layer, convolutional layers, pooling layers, and
fully connected layers. Although these layers simply
extend traditional 2D CNNs [4] to 3D, VoxNet is
easy to implement and train, and gets promising
performance as the first attempt at volumetric
convolution. In addition, to ensure that VoxNet is
invariant to orientation, Maturana et al. augmented
the input data by rotating each shape into n instances
with different orientations during training, and
added a pooling operation after the output layer
to group all predictions from the n instances during
testing.
In addition to the development of deep belief

networks and convolutional neural networks for shape
analysis based on volumetric representation, two most
successful generative models, namely auto-encoders
and generative adversarial networks (GANs) [41] have
also been extended to support this representation.
Inspired by denoising auto-encoders (DAEs) [42, 43],
Sharma et al. [44] proposed an autoencoder model
VConv-DAE to cope with voxels. It is one of
the earliest unsupervised learning approaches for
voxel-based shape analysis. Without object labels

for training, VConv-DAE chooses mean square loss
or cross entropy loss as the reconstruction loss
function. Girdhar et al. [45] also proposed the TL-
embedding network, which combines an auto-encoder
for generating a voxel-based representation with
a convolutional neural network for predicting the
embedding from 2D images.
Choy et al. [18] proposed 3D-R2N2 which takes

single or multiple images as input and reconstructs
objects within an occupancy grid. 3D-R2N2 regards
input images as a sequence; its 3D recurrent neural
network is based on LSTM (long short-term memory)
[46] or GRU (gated recurrent units) [47]. The
architecture consists of three parts: an image encoder
to extract features from 2D images, 3D-LSTM to
predict hidden states as coarse representations of final
3D models, and a decoder to increase the resolution
and generate target shapes.
Wu et al. [19] designed a generative model

called 3D-GAN that applies a generative adversarial
network (GAN) [41] to voxel data. 3D-GAN learns to
synthesize a 3D object from a sampled latent space
vector z with probability distribution P (z). Moreover,
Ref. [19] also proposed 3D-VAE-GAN inspired by
VAE-GAN [48] for the object reconstruction task.
3D-VAE-GAN puts the encoder before 3D-GAN to
infer the latent vector z from input 2D images, and
shares the decoder with the generator of 3D-GAN.
After early attempts to use volumetric

representations with deep learning, researchers began
to optimize the architecture of volumetric networks
for better performance and more applications. The
motivation is that a naive extension from traditional
2D networks often does not perform better than
image-based CNNs such as MVCNN [14]. The main
challenges affecting performance include overfitting,
orientation, data sparsity, and low resolution.
Qi et al. [37] proposed two new network structures

aiming to improve the performance of volumetric
CNNs. One introduces an extra task, predicting
class labels for subvolumes to prevent overfitting, and
another utilizes elongated kernels to compress the 3D
information into 2D in order to use 2D CNNs directly.
Both use mlpconv layers [49] to replace traditional
convolutional layers. Ref. [37] also augments the input
data using different orientations and elevations to
encourage the network to obtain more local features in
different poses so that the results are less influenced by
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orientation changes. To further mitigate the impact
of orientation on recognition accuracy, instead of
using data augmentation like Refs. [37, 40], Ref. [50]
proposed a new model called ORION which extends
VoxNet [40] and uses a fully connected layer to
predict the object class label and orientation label
simultaneously.

3.2 Sparse voxel representation (octree)
Voxel-based representations often lead to high
computational cost because of the exponential
increase in computations from pixels to voxels. Most
methods cannot cope with or generate high-resolution
models within a reasonable time. For instance,
the TL-embedding network [45] was designed for
a 203 voxel grid; 3DShapeNets [13] and VConv-
DAE [44] were designed for a 243 voxel grid with
3 voxels padding in each direction; VoxNet [40], 3D-
R2N2 [18], and ORION [50] were designed for a 323

voxel grid; 3D-GAN was designed to generate a 643

occupancy grid as a 3D shape representation. As
the voxel resolution increases, the occupied voxels
become sparser in the 3D space, which leads to more
unnecessary computation. To address this problem,
Li et al. [51] designed a novel method called FPNN
to cope with data sparsity.
Some methods instead encode the voxel grid using

a sparse, adaptive data structure, the octree [52] to
reduce the dimensionality of the input data. Häne
et al. [53] proposed hierarchical surface prediction
(HSP) which can generate a voxel grid in the form of
an octree from coarse to fine. Häne et al. observed
that only the voxels near the object surface need to
be predicted at high resolution, allowing the proposed
HSP to avoid unnecessary calculation for affordable
generation of a high resolution voxel grid. Each
node in the octree is defined as a voxel block with a
fixed number (163 in the paper) of voxels of different
sizes, and each voxel block is classified as occupied,
boundary, or free. The decoder of the model takes a
feature vector as input, and predicts feature blocks
that correspond to voxel blocks hierarchically. The
HSP defines that the octree has 5 layers and each
voxel block contains 163 voxels, so HSP can generate
up to a grid of up to 2563 voxels. Tatarchenko et
al. [54] proposed a decoder called OGN for generating
high resolution volumetric representations. Nodes
in the octree are separated into three categories:
empty, full, or mixed. The octree representing a

3D model and the feature map of the octree are
stored in the form of hashing tables indexed by
spatial position and octree level. In order to process
feature maps represented as hash tables, Tatarchenko
et al. designed a convolutional layer named OGN-
Conv, which converts the convolutional operation into
matrix multiplication. Ref. [54] generates different
resolution octree cells in each decoder layer by
convolutional operations on feature maps, and then
decides whether to propagate the features to the next
layer according to the label (propagating features
if “boundary” and skipping feature propagation if
“mixed”).
Besides decoder model design for synthesizing

voxel grids, shape analysis methods have also been
designed using octrees. However, It is difficult
to use conventional octree structure [52] in deep
networks. Many researchers have tried to resolve
the problem by designing new structures for octrees,
and special operations such as convolution, pooling,
and unpooling on octrees. Riegler et al. [21] proposed
OctNet. Its octree representation has a more regular
structure than a traditional octree, which places a
shallow octree in cells of a regular 3D grid. Each
shallow octree can have up to 3 levels and is encoded
in 73 bits. Each bit determines if the corresponding
cell needs to be split. Wang et al. [22] also proposed
an octree-based convolutional neural network called
O-CNN, where the model also removes pointers like
a shallow octree [21] and stores the octree data and
structure using a series of vectors, including shuffle
key vectors, labels, and input signals.
Instead of representing voxels, octree structure

can also be utilized to represent 3D surfaces with
planar patches. Wang et al. [55] proposed adaptive
O-CNN, based on a patch-guided adaptive octree,
which divides a 3D surface into a set of planar
patches restricted by bounding boxes corresponding
to octants. They also provided an encoder and a
decoder for the octree defined by this paper.

4 Surface-based representations
4.1 Point-based representation

4.1.1 Initial work
The typical point-based representation is also referred
to as a point cloud or point set. It can be raw
data generated by a 3D scanning device. Because
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of its unordered and irregular structure, this kind of
representation is relatively difficult to cope with using
traditional deep learning methods. Therefore, most
researchers avoided directly using point clouds in the
early stages of deep learning-based geometry research.
One of the first models to generate point clouds by
deep learning came out in 2017 [20]. The authors
designed a neural network to learn a point sampler
based on a 3D point distribution. The network takes
a single image and a random vector as input, and
outputs an N × 3 matrix representing a predicted
point set (x, y, z coordinates for N points). Chamfer
distance (CD) and earth mover’s distance (EMD) [56]
were used as loss functions to train the networks.
4.1.2 PointNet
At almost the same time, Charles et al. [6] proposed
PointNet for shape analysis, which was the first
successful deep network architecture to directly
process point clouds without unnecessary rendering.
Its pipeline is illustrated in Fig. 2. Taking account
of three properties of point sets mentioned in
Ref. [6], PointNet has three components in its
network, including using max-pooling layers as
symmetry functions for dealing with lack of ordering,
concatenating global and local features for point
interaction, and jointly aligning the network for
transformation invariance. Based on PointNet, Qi
et al. further improved this model in PointNet++
[7], overcoming the problem that PointNet cannot
capture and deal well with local features induced by
the metric. In comparison to PointNet, PointNet++
introduces a hierarchical structure, allowing it to
capture features at different scales, improving its

ability to extract 3D shape features. As PointNet
and PointNet++ showed state-of-the-art performance
for shape classification and semantic segmentation,
more and more deep learning models were proposed
based on point-based representations.
4.1.3 CNNs for point clouds
Some research works focus on applying CNNs to
analysis of irregular and unordered point clouds.
Li et al. [24] proposed PointCNN for point clouds
and designed the X -transformation to weight and
permute the input point features, guaranteeing
equivariance for different point orders. Each feature
matrix must be multiplied by the X -transformation
matrix before passing through the convolutional
operator. This process is called the X -Conv operator,
which is the key element of PointCNN. Wang
et al. [57] proposed DGCNN, a dynamic graph
CNN architecture for point cloud classification and
segmentation. Instead of processing point features
like PointNet [6], DGCNN first connects neighboring
points in spatial or semantic space to generate a
graph, and then captures local geometric features
by applying the EdgeConv operator to it. Moreover,
unlike other graph CNNs which process a fixed input
graph, DGCNN changes the graph to obtain new
nearest neighbors in feature space in different layers,
which is beneficial in providing larger and sparser
receptive fields.
4.1.4 Other point cloud processing techniques using

NNs
Klokov et al. [58] proposed the k-d-network to
process point clouds based on the form of k-d-trees.

Fig. 2 Pipeline of PointNet. Reproduced with permission from Ref. [6], c© IEEE 2017.
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Yang et al. [59] proposed FoldingNet, an end-to-
end auto-encoder for further compressing a point-
based representation with unsupervised learning.
Because point clouds can be transformed into a 2D
grid by folding operations, FoldingNet integrates
folding operations in their encoder–decoder to recover
input 3D shapes. Mehr et al. [60] further proposed
DiscoNet for 3D model editing by combining multiple
autoencoders specifically trained for different types of
3D shapes. The autoencoders use pre-learned mean
geometry of 3D training shapes as their templates.
Meng et al. [61] proposed VV-Net (voxel VAE net)
for point segmentation; it represents a point cloud by
a structured voxel representation. Instead of using a
Boolean value to represent occupancy of each voxel
as in a normal volumetric representation, it uses a
latent code computed by an RBF-VAE, a variational
autoencoder based on radial basis function (RBF)
interpolation of points, to describe point distribution
within a voxel. This representation is used to extract
intrinsic symmetry of point clouds using a group
equivariant CNN, and the output is combined with
PointNet [6] for better segmentation performance.
4.1.5 Observations
Although point-based representation can be more
easily obtained from 3D scanners than other 3D
representations, this raw form of 3D shape is
typically unsuitable for 3D shape analysis, due
to noise and data sparsity. Therefore, unlike
other representations, it is essential for methods
using point-based representation to incorporate an
upsampling module to obtain fine-grained point
clouds: see PU-NET [62], MPU [63], PU-GAN
[64], etc. Additionally, point cloud registration is
also an essential preprocessing step to fuse points
from multiple scans: it aims to calculate rigid
transformation parameters to align the point clouds.
Wang et al. [65] proposed deep closest point (DCP),
which extends the traditional iterative closest point
(ICP) method [66], using a deep learning method to
obtain the transformation parameters. Recently, Guo
et al. [3] presented a survey focusing on deep learning
models for point clouds, which provides more details
in this field.
4.2 Mesh-based representations
Unlike point-based representations, mesh-based
representations provide connectivity between
neighboring points, so are more suitable for

describing local regions on surfaces. As a typical type
of representation in non-Euclidean space, mesh-based
representations can be processed by deep learning
models both in spatial and spectral domains [1].
4.2.1 Parametric representations for meshes
Directly applying CNNs to irregular data structures
like meshes is non-trivial. A handful of approaches
have emerged that map 3D shape surfaces to 2D
domains such as 2D geometry images which can also
be regarded as another 3D shape representation, and
then apply traditional 2D CNNs to them [67, 68].
Based on geometry images, Sinha et al. [69] proposed
SurfNet for shape generation using a deep residual
network. Similarly, Shi et al. [70] projected 3D models
into cylinder panoramic images, which are then
processed by CNNs. Other methods convert mesh
models into spherical signals, using a convolutional
operator in the spherical domain for shape analysis.
To address high-resolution signals on 3D meshes,
in particular texture information, Huang et al. [71]
proposed TextureNet to extract features, using a 4-
rotationally symmetric (4-RoSy) field to parameterize
surfaces. In the following, we review deep learning
models according to how meshes are directly treated
as input, and introduce generative models working
on meshes.
4.2.2 Graphs
The mesh-based representation is constructed from
sets of vertices and edges, and can be seen as a
graph. Some models have been proposed based on the
graph spectral theorem. They generalize CNNs on
graphs [72–76] by eigen-decomposition of Laplacian
matrices, generalizing convolutional operators to the
spectral domain of graphs. Verma et al. [77] proposed
another graph-based CNN, FeaStNet, which computes
the receptive fields of the convolution operator
dynamically. Specifically, it determines assignment of
neighborhood vertices using features obtained from
networks. Hanocka et al. [29] also designed operators
for convolution, pooling, and unpooling for triangle
meshes, and proposed MeshCNN. Unlike other graph-
based methods, it focuses on processing features
stored in edges, using a convolution operator applied
to the edges with a fixed number of neighbors and a
pooling operator based on edge collapse. MeshCNN
extracts 3D shape features with respect to specific
tasks, and learns to preserve important features and
ignore unimportant ones.
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4.2.3 2-Manifolds
The mesh-based representation can be viewed as
a discretization of a 2-manifold. Several works
have been designed using 2-manifolds with a series
of refined CNN operators adapted to such non-
Euclidean spaces. These methods define their own
local patches and kernel functions when generalizing
CNN models. Masci et al. [15] proposed geodesic
convolutional neural networks (GCNNs) for manifolds,
which extract and discretize local geodesic patches
and apply convolutional filters to these patches in
polar coordinates. The convolution operator works in
the spatial domain and their geodesic CNN is quite
similar to conventional CNNs applied in Euclidean
space. Localized spectral CNNs [78] proposed by
Boscaini et al. apply windowed Fourier transforms
in non-Euclidean space. Anisotropic convolutional
neural networks (ACNNs) [79] use an anisotropic
heat kernel to replace the isotropic patch operator
in GCNN [15], giving another solution to avoid
ambiguity. Xu et al. [80] proposed directionally
convolutional networks (DCNs), which define local
patches based on faces of the mesh representation.
They also designed a two-stream network for 3D shape
segmentation, which takes local face normals and the
global face distance histogram as training input. Moti
et al. [81] proposed MoNet which replaces the weight
functions in Refs. [15, 79] with Gaussian kernels
with learnable parameters. Fey et al. [82] proposed
SplineCNN which uses a convolutional operator based
on B-splines. Pan et al. [83] designed a surface CNN
for irregular 3D surfaces; it preserves the standard
CNN property of translation equivariance by using
parallel translation frames and group convolutional
operations. Qiao et al. [84] proposed the Laplacian
pooling network (LaplacianNet) for 3D mesh analysis.
It considers both spectral and spatial information
from the mesh, and contains 3 parts: preprocessing
features as network input, mesh pooling blocks to
split the surface and cluster patches for feature
extraction, and a correlation network to aggregate
global information.
4.2.4 Generative models
There are also many generative models for mesh-
based representation. Wang et al. [23] proposed
Pixel2Mesh for reconstructing 3D shapes from single
images; it generates the target triangular mesh by
deforming an ellipsoidal template. As shown in

Fig. 3, the Pixel2Mesh network is implemented based
on a graph-based convolutional networks (GCNs)
[1] and generates the target mesh from coarse to
fine by an unpooling operation. Wen et al. [85]
advanced Pixel2Mesh and proposed Pixel2Mesh++,
which extends single image 3D shape reconstruction
to 3D shape reconstruction from multi-view images.
To do so, Pixel2Mesh++ introduces a multi-
view deformation network (MDN) to the original
Pixel2Mesh; it incorporates cross-view information in
the process of mesh generation. Groueix et al. [86]
proposed AtlasNet, which generates 3D surfaces
from multiple patches. AtlasNet learns to convert
2D square patches into 2-manifolds to cover the
surface of 3D shapes using an MLP (multi-layer
perceptron). Ben-Hamu et al. [87] proposed a multi-
chart generative model for 3D shape generation. It
uses a multi-chart structure as input; the network
architecture is based on standard image GAN [41].
The transformation between 3D surface and multi-
chart structure is based on Ref. [68]. However,
methods based on deforming a template mesh into
the target shape cannot express the complex topology
of some 3D shapes. Pan et al. [88] proposed a new
single-view reconstruction method which combines
a deformation network and a topology modification
network to model meshes with complex topology.
In the topology modification network, faces with
high distortion are removed. Tang et al. [89]
proposed generating complex topology meshes using
a skeleton-bridged learning method, as a skeleton
can well preserve topology information. Instead
of generating triangular meshes, Nash et al. [90]
proposed PolyGen to generate a polygon mesh
representation. Inspired by neural autoregressive
models in other fields like natural language processing,
they regarded mesh generation as a sequential
process, and designed a transformer-based network
[91], including a vertex model and a face model. The
vertex model generates a sequence of vertex positions
and the face model generates variable-length vertex
sequences conditioned on input vertices.

5 Implicit representations
In addition to explicit representations such as
point clouds and meshes, implicit representations
have increased in popularity in recent studies. A
major reason is that implicit representations are
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not limited to fixed topology or resolution. An
increasing number of deep models define their own
implicit representations and build on them for various
methods of shape analysis and generation.
5.1 Occupancy and indicator functions
Occupancy and indicator functions are one way
to represent 3D shapes implicitly. An occupancy
network was proposed by Mescheder et al. [8] to
learn a continuous occupancy function as a new
3D shape representation for neural networks. The
occupancy function reflects 3D point status with
respect to the 3D shape’s surface, where 1 means
inside the surface and 0 otherwise. Researchers
regarded this problem as a binary classification task
and designed an occupancy network which inputs
3D point position and 3D shape observation and
outputs the probability of occupancy. The generated
implicit field is then processed by a multi-resolution
isosurface extraction method MISE and marching
cubes algorithm [10] to obtain a mesh. Moreover,
researchers have introduced encoder networks to
obtain latent embeddings. Similarly, Chen et al. [26]
designed IM-NET as a decoder for learning generative
models, which also takes an implicit function in the
form of an indicator function.

5.2 Signed distance functions
Signed distance functions (SDFs) are another form of
implicit representation. They map a 3D point to a
real value instead of a probability, the value indicating
the spatial relation and distance to the 3D surface.
Let SDF(x) be the signed distance value of a given 3D
point x ∈ R

3. Then SDF(x) > 0 if point x is outside
the 3D shape, SDF(x) < 0 if point x is inside the
shape, and SDF(x) = 0 if point x is on the surface.
The absolute value of SDF(x) gives the distance
between point x and the surface. Park et al. [25]
proposed DeepSDF and introduced an auto-decoder-

based DeepSDF as a new 3D shape representation.
Xu et al. [9] also proposed deep implicit surface
networks (DISNs) for single-view 3D reconstruction
based on SDFs. Thanks to the advantages of SDFs,
DISN was the first to reconstruct 3D shapes with
flexible topology and thin structure in the single-view
reconstruction task, which is difficult for other 3D
representations.
5.3 Function sets
Occupancy functions and signed distance functions
represent the 3D shape surface by a single function
learned by a deep neural network. Genova et
al. [92, 93] proposed representing an entire 3D
shape by combining a set of shape elements. In
Ref. [92], they proposed structured implicit functions
(SIFs); each element is represented by a scaled
axis-aligned anisotropic 3D Gaussian, and the sum
of these shape elements represents the whole 3D
shape. The Gaussians’ parameters are learned
by the CNN. Ref. [93] improved the SIF and
proposed deep structured implicit functions (DSIFs)
which added deep neural networks as deep implicit
functions (DIFs) to provide local geometry details.
To summarize, DSIF exploits SIF to depict coarse
information for each shape element, and applies DIF
for local shape details.
5.4 Approach without 3D supervision
The above implicit representation models need to
sample 3D points in a 3D shape bounding box as
ground truth and train the model supervised with
3D information. However, 3D ground truth may
not be readily available in some situations. Liu et
al. [30] proposed a framework which learns implicit
representations without explicit 3D supervision. The
model uses a field probing algorithm to bridge the gap
between 3D shape and 2D images, using a silhouette
loss to constrain 3D shape outline, and geometry

Fig. 3 Pipeline of Pixel2Mesh. Reproduced with permission from Ref. [23], c© Springer Nature Switzerland AG 2018.
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regularization to constrain the surface to be plausible.

6 Structure-based representations
Recently, more and more researchers have realized the
importance of integrating structural information into
deep learning models. Primitive representations are a
typical kind of structure-based representation which
explicitly depict 3D shape structure: they represent
a 3D shape using several primitives such as oriented
3D boxes, using a compact parameter set. Instead
of providing a description of geometric details, the
primitive representation concentrates on the overall
structure of a 3D shape. More importantly, obtaining
a primitive representation encourages a method to
generate more detailed and plausible 3D shapes.

6.1 Linear organization
Observing that humans often regard 3D shapes as
a collection of parts, Zou et al. [11] proposed 3D-
PRNN, which applies LSTM in a primitive generator
to generate primitives sequentially. The resulting
primitive representations show great efficiency for
depicting simple and regular 3D shapes. Wu et al. [94]
further proposed an RCNN-based method called PQ-
NET which also regards 3D shape parts as a sequence.
The difference is that PQ-NET encodes geometry
features in the network. Gao et al. [27] proposed a
deep generative model named SDM-NET (structured
deformable mesh-net). They designed a two-level

VAE, containing a PartVAE for part geometry and
an SP-VAE (structured parts VAE) for both structure
and geometry features. Each shape part is encoded
in a well designed form, which records both structure
information (symmetry, supporting, and supported)
and geometry features.

6.2 Hierarchical organization
Li et al. [12] proposed GRASS (generative recursive
autoencoders for shape structures), one of the first
attempts to encode 3D shape structure using a
neural network. They describe shape structure in
a hierarchical binary tree, in which child nodes are
merged into the parent node by either adjacency
or symmetry relations. Leaves in this structure
tree represent oriented bounding boxes (OBBs) and
geometry features for each part, while intermediate
nodes represent both the geometric features of child
nodes and relations between child nodes. Inspired by
recursive neural networks (RvNNs) [33, 95], GRASS
also recursively merges the codes representing the
OBBs into a root code which depicts the whole shape
structure. The architecture of GRASS has three
parts: an RvNN autoencoder for encoding a 3D shape
into a fixed length code, a GAN for learning the
distribution of root codes and generating plausible
structures, and another autoencoder (inspired by
Ref. [45]) for synthesizing the geometry of each part.
Furthermore, to synthesize fine-grained geometry in
voxels, structure-aware recursive features (SARFs)

Fig. 4 Deformation-based shape representation used by the geometry learning group, ICT, CAS.
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are used, which contain both the geometric features
of each part and global and local OBB layout.
However, GRASS [12] uses a binary tree to

organize the part structure, which leads to
ambiguity; binary trees are unsuitable for large
scale datasets. To address the problem, Mo et
al. [28] proposed StructureNet which organizes the
hierarchical structure in the form of graphs.
The BSP-Net (binary space partitioning-Net)

proposed by Chen et al. [31] was the first method
to depict sharp geometric features. It constructs a
3D shape from convex components organized in a
BSP-tree [31]. The BSP-net includes three layers,
for hyperplane extraction, hyperplane grouping, and
shape assembly. The convex components can also be
seen as a new form of primitive which can represent
geometric details of 3D shapes rather than general
structures.

6.3 Structure and geometry
Researchers have tried to encode 3D shape structure
and geometric features separately [12] or jointly
[96]. Wang et al. [97] proposed a global-to-local
(G2L) generative model to generate man-made 3D
shapes from coarse to fine. To address the problem
that GANs cannot generate geometric details well
[19], G2L first applies a GAN to generate a coarse
voxel grid with semantic labels that represents shape
structure at the global level, and then puts voxels
separated by semantic labels into an autoencoder
called the part refiner (PR) to optimize geometric
details part by part at the local level. Wu et al. [96]
proposed SAGNet for detailed 3D shape generation;
it encodes structure and geometry jointly using a
GRU [47] architecture in order to find relationships
between them. SAGNet shows better performance for
modeling tenon-mortise joints than other structure-
based learning methods.

7 Deformation-based representations
Deformable 3D models play an important role
in computer animation. However, most methods
mentioned above focus on rigid 3D models, and
pay less attention to deformation of non-rigid
models. Unlike other representations, deformation-
based representations parameterize the deformation
information and achieve better performance for non-
rigid 3D shapes such as articulated models.

7.1 Mesh-based approaches
A mesh can be seen as a graph, which is
convenient when manipulating the vertex positions
while maintaining the connectivity between vertices.
Therefore, a great number of methods choose meshes
to represent deformable 3D shapes. Based on
this property, some mesh-based generation methods
generate target shapes by deforming a mesh template
[23, 27, 85, 88], and these methods can also
be regarded as deformation-based methods. The
graph structure makes it easy to store deformation
information as vertex features, which can be
seen as a deformation representation. Gao et
al. [17] designed an efficient, rotation-invariant
deformation representation called rotation-invariant
mesh difference (RIMD), which achieves high
performance for shape reconstruction, deformation,
and registration. Based on Ref. [17], Tan et al. [98]
proposed Mesh VAE for deformable shape analysis
and synthesis. It takes RIMD as the feature inputs of
VAE and uses fully connected layers for the encoder
and decoder. Further, Gao et al. [99] designed
an as-consistent-as-possible (ACAP) representation
to constrain the rotation angle and rotation axes
between adjacent vertices in the deformable mesh,
to which graph convolution is easily applied. Tan
et al. [100] proposed SparseAE based on the ACAP
representation [99]. It applies graph convolutional
operators [101] with ACAP [99] to analyse mesh
deformations. Gao et al. [102] proposed VC-GAN
(VAE CycleGAN) for unpaired mesh deformation
transfer. It is the first automatic approach for
unpaired mesh deformation transfer. It takes the
ACAP representation as input, and encodes the
representation into latent space by a VAE, and then
transfers deformation between source and target in the
latent space domain with cycle consistency and visual
similarity consistency. Gao et al. [27] first viewed the
geometric details shown in Fig. 5 as the deformations.
Based on previous techniques [98–100, 102], geometric
details can be encoded and generated. The structure
in Ref. [27] is also analyzed to determine stable
support in Ref. [103]. Yuan et al. [104] applied a
newly designed pooling operation based on mesh
simplification and graph convolution to the VAE
architecture, which also takes ACAP representation
as input to the network. Tan et al. [105] used ACAP
representation for simulating thin-shell deformable
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Fig. 5 Representing a chair leg by deforming the bounding box using
SDM-NET. Reproduced with permission from Ref. [27], c© ACM 2019.

materials, applying a graph-based CNN to embed high-
dimensional features into low-dimensional features.
In addition to considering a single deformable mesh,
mesh sequences play an important role in computer
animation. The deformation-based representation
ACAP [99] is suitable for representing a mesh sequence.
The deformation-based representation and related
works are illustrated in Fig. 4.

7.2 Implicit surface-based approaches
With the development of implicit surface
representations, Jeruzalski et al. [32] proposed
a method to represent articulated deformable shapes
by pose parameters, called neural articulated shape
approximation (NASA). Pose parameters record the
transformation of bones defined in models. They
compared three different network architectures,
including an unstructured model (U), a piecewise
rigid model (R), and a piecewise deformable model
(D) in the training dataset and test dataset, which
opens another direction to represent deformable 3D
shapes.

8 Datasets
With the development of 3D scanners, 3D models
are easier to obtain, and more and more 3D shape
datasets have been proposed with different 3D
representations. The larger datasets with more
details bring more challenges for existing techniques,
further promoting the development of deep learning
on different 3D representations.
The datasets can be divided into several types

according to different representations and different
applications. Choosing the appropriate type benefits
performance and generalization for learning based
models.

8.1 RGB-D images
RGB-D image datasets can be collected by depth
sensors like Microsoft Kinect. Most RGB-D image
datasets can be regarded as a video sequence. The
NYU Depth [106, 107] indoor scene RGB-D image
dataset was first provided as a benchmark for the
segmentation problem. Version 1 [106] has 64
categories while the version 2 [107] has 464 categories.
The KITTI [108] dataset provides outdoor scene
images aimed mainly at autonomous driving, and
contains 5 categories including road, city, residential,
campus, and person. Depth maps for the images
can be calculated using the development kit provided
with the KITTI dataset. This dataset also contains
3D object annotations for applications such as object
detection. ScanNet [109] is a large annotated RGB-D
video dataset which includes 2.5M views with 3D
camera pose of 1513 scenes, surface reconstructions,
and semantic segmentations. Another dataset,
Human10 [110], is sampled from 10 human action
sequences.

8.2 Man-made 3D objects
ModelNet [13] is a famous CAD model dataset for 3D
shape analysis, including 127,915 3D CAD models
in 662 categories. Two subsets, ModelNet10 and
ModelNet40, include 10 and 40 categories from the
whole dataset; in each subset, the 3D models are
aligned manually. ShapeNet [111] provides a larger
dataset, containing more than 3 million models in
more than 4k categories. It also contains two smaller
subsets: ShapeNetCore and ShapeNetSem. ShapeNet
[111] provides rich annotations for 3D objects in
the dataset, including category labels, part labels,
symmetry information, etc. ObjectNet3D [112] is a
large-scale dataset for 3D object recognition from
2D images. It includes 201,888 3D objects in 90,127
images and 44,147 different 3D shapes. The dataset
is annotated with 3D pose parameters which align
3D objects with 2D images. SUNCG [113] includes
full 3D models of rooms, and is suitable for 3D scene
analysis and scene completion tasks. Its 3D models
are represented by dense voxel grids with object
annotations. The whole dataset includes 49,884
valid floors with 404,058 rooms and 5,697,217 object
instances. PartNet [114] provides a more detailed
CAD model dataset with fine-grained, hierarchical
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part annotations, bringing more challenges, and
resources for 3D object applications such as semantic
segmentation, shape editing, and shape generation.
3D-Future [115] provides a large-scale furniture
dataset, which includes over 20,000 scenes in over
5000 rooms with over 10,000 3D instances. Each 3D
shape is of high quality; this dataset currently has
the best texture information.

8.3 Non-rigid models
TOSCA [116] is a high-resolution 3D non-rigid model
dataset containing 80 objects in 9 categories, in mesh
representation. Objects in the same category have
the same connectivity. FAUST [117] is a dataset of
3D human body scans of 10 different people in a
variety of poses; ground truth correspondences are
also provided. Because FAUST was proposed for
real-world shape registration, the scans are noisy and
incomplete, but the corresponding ground truth is
water-tight and aligned. AMASS [118] provides a
large and varied human motion dataset, gathering
previous mocap datasets in a consistent framework
and parameterization. It contains 344 subjects,
11,265 motions, and more than 40 hours of recordings.

9 Shape analysis and reconstruction
The shape representations discussed above are
fundamental for shape analysis and shape
reconstruction. In this section, we summarize

representative works in these two directions
respectively and compare their performance.

9.1 Shape analysis
Shape analysis methods usually extract latent
codes from different 3D shape representations using
different network architectures. The latent codes
are then used for specific applications like shape
classification, shape retrieval, shape segmentation,
etc. Different representations are usually suited
to different applications. We now review the
performance of different representations in different
models and discuss suitable representations for
specific applications.

9.1.1 Shape classification and retrieval
Shape classification and retrieval are basic problems of
shape analysis. Both rely on feature vectors extracted
from the analysis networks. For shape classification,
the datasets ModelNet10 and ModelNet40 [13] are
widely used as benchmarks and Table 2 shows the
accuracy of some different methods on ModelNet10
and ModelNet40. For shape retrieval, given a 3D
shape as a query, the target is to find the most
similar shape(s) in the dataset that match the query.
Retrieval methods usually learn to find a compact
code to represent the object in a latent space, and
seek the closest object based on Euclidean distance,
Mahalanobis distance, or some other distance metric.
Unlike the classification task, shape retrieval has a

Table 1 3D model datasets

Source Type Dataset Year Categories Items Description

Real-world RGB-D Images NYU Depth v1 [106] 2011 64 — Indoor Scene
Real-world RGB-D Images NYU Depth v2 [107] 2012 464 407024 Indoor Scene
Real-world RGB-D Images KITTI [108] 2013 5 — Outdoor Scene
Real-world RGB-D Images ScanNet [109] 2017 1513 2.5M Indoor Scene Video
Real-world RGB-D Images Human10 [110] 2018 10 9746 Human Action
Synthetic 3D CAD Models ModelNet [13] 2015 662 127915 Mesh Representation
Synthetic 3D CAD Models ModelNet10 [13] 2015 10 4899 —
Synthetic 3D CAD Models ModelNet40 [13] 2015 40 12311 —
Synthetic 3D CAD Models ShapeNet [111] 2015 4K 3M Richly Annotated
Synthetic 3D CAD Models ShapeNetCore [111] 2015 55 51300 —
Synthetic 3D CAD Models ShapeNetSem [111] 2015 270 12000 —
Synthetic Images and 3D Models ObjectNet3D [112] 2016 100 44161 2D Aligned with 3D
Synthetic 3D CAD Models SUNCG [113] 2017 — 49884 Full Room Scenes
Synthetic 3D CAD Models PartNet [114] 2019 24 26671 573585 Part Instances
Synthetic 3D CAD Models 3D-FUTURE [115] 2020 — 10K Texture Information
Synthetic Non-Rigid Models TOSCA [116] 2008 9 80 —
Real-world Non-Rigid Models FAUST [117] 2014 10 300 Human Bodies
Synthetic Non-Rigid Models AMASS [118] 2019 344 11265 Human Motions
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Table 2 Accuracy of shape classification methods on ModelNet10
and ModelNet40 datasets

Form Model
Accuracy(%)

MN10 MN40
Voxel 3DShapeNet [13] 83.54 77.32
Voxel VoxNet [40] 92 83
Voxel 3D-GAN [19] 91.0 83.3
Voxel Qi et al. [37] — 86
Voxel ORION [50] 93.8 —
Point PointNet [6] — 89.2
Multi-view MVCNN [14] — 90.1
Point Kd-net [58] 93.3 90.6
Multi-view Qi et al. [37] — 91.4
Point PointNet++ [7] — 91.9
Point Point2Sequence [119] 95.3 92.6

number of evaluation measures, including precision,
recall, mAP (mean average precision), etc.
9.1.2 Shape segmentation
Shape segmentation aims to discriminate the parts
of a 3D shape. This task plays an important role in
understanding 3D shapes. Mean intersection-over-
union (mIOU) is often used as the evaluation metric
for shape segmentation. Most researchers choose to
use point-based representation for the segmentation
task [6, 7, 24, 58, 61].
9.1.3 Symmetry detection
Symmetry is important in 3D shapes, and can
be further used in many other applications such
as shape alignment, registration, completion, etc.
Gao et al. [120] designed the first unsupervised
deep learning method, PRS-Net (planar reflective
symmetry net), to detect planar reflective symmetry
in 3D shapes, using a new symmetry distance loss
and a regularization loss, as illustrated in Fig. 6. It
proved robust in the presence of noisy and incomplete

input, and more efficient than traditional methods.
As symmetry is largely determined by overall shape,
PRS-Net is based on a 3D voxel CNN and has high
performance at low resolution.

9.2 Shape reconstruction
Learning based generative models have been proposed
for different representations, which is also an
important field in geometry learning. Reconstruction
applications include single-view shape reconstruction,
shape generation, shape editing, etc. The generation
methods can be summarized on the basis of
representation. For voxel-based representations,
learning based models try to predict the occupancy
probability of each voxel. For point-based
representations, learning based models either sample
3D points in space or fold the 2D grid into a target
3D object. For mesh-based representations, most
generation methods choose to deform a mesh template
into the final mesh. A recent study shows that
more and more methods choose to use a structured
representation and generate 3D shapes in a coarse-to-
fine way.

10 Summary
This survey has reviewed deep learning methods
based on different 3D object representations. We
first overviewed different 3D representation learning
models. The tendency in geometry learning can be
summarized to be to reduce computation and memory
demands, and to increase detail and structure. Then,
we introduced 3D datasets widely used in research.
These datasets provide rich resources and support
evaluation of data-driven learning methods. Finally,

Fig. 6 Pipeline of PRS-Net. Reproduced with permission from Ref. [120].



A survey on deep geometry learning: From a representation perspective 127

we discuss 3D shape applications based on different
3D representations, including shape analysis and
shape reconstruction. Different representations suit
different applications; it is important to choose
suitable 3D representations for specific tasks.
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