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Abstract. In this paper, we propose a novel ICP variant that uses a
histogram in conjunction with multiple closest points to detect the over-
lap area between range images geing registered. Tentative correspon-
dences sharing similar distances are normally all within, or all outside,
the overlap area. Thus, the overlap area can be detected in a bin by bin
batch manner using a histogram. Using multiple closest points is likely
to enlarge the distance difference for tentative correspondences in the
histogram, and pull together the images being registered, facilitating the
overlap area detection. Our experimental results based on real range im-
ages show that the performance of our proposed algorithm enhances the
state of the art.

1 Introduction

Range image registration finds numerous applications in areas such as 3D object
modelling and recognition, computer graphics, virtual reality, reverse engineer-
ing, and industrial inspection. It has thus attracted considerable attention in
the 3D vision community. Research into range image registration techniques has
been driven by the development of 3D laser scanning technologies which provide
easy 3D data acquisition, and the computational power of modern computers
(see Figure 1).

Registration has two goals (i) to establish point correspondences between
overlapping range images, and (ii) to estimate the rigid transformation that
brings one range image into the best possible alignment with the other. The fact
that these two problems must be solved simultaneously complicates the range
image registration process.

1.1 Previous work

Due to the challenging nature of automatic range image registration, a large
number of algorithms have been developed. Many are based on the iterative



Fig. 1. Real range images used. Top, left to right: cow60 and 57, tubby100 and 60, buddhal40,
120, and 100; Middle: frog20 and 0, dinosaur36 and 0, buddha0 and 20; Bottom: buddha40 and 60,
duck120, 100, 80 and 60.

closest point (ICP) approach [3], and improved variants [1,9,11,15,16], as well
as other approaches such as feature extraction and matching [6, 14], salient point
detection and matching [4], density functions [21], genetic search [12, 20], scatter
search [17], visibility classification and modeling [19], M-estimators [2], exhaus-
tive search with limited points [13], graduated assignment [7], and expectation
maximisation [5, 8]; many others also exist.

These algorithms belong to three main categories, or a combination of them,
depending on how the correspondences are established: (i) feature extraction
and matching [6, 14]; (ii) coarse matching of points in one image to those in an-
other [5, 7], and (iii) transformation search and evaluation [17, 20]. Each category
has advantages and disadvantages:

— The first class of algorithms can establish correspondences between any two
overlapping range images subject with either small or large transformations,
while the second and third require that the transformation is approximately
known;

— The first class of algorithms has to extract and match geometric and/or
optical features from a structured, a non-structured, or an analytic repre-
sentation of the surface of interest, while the second and third do not have
to perform feature extraction and matching;

— Extraction of features is typically sensitive to noise caused by sampling and
properties of the scanning process, and furthermore, matching of features is
not straightforward because: (a) features should ideally be viewpoint invari-
ant, (b) the similarity metric must allow discrimination of different features;
and (c) a feature in one image may match multiple candidate features in
another, leading to a combinatorial correspondence problem. The second
class of algorithms heavily depends on both optimization and explicit out-
lier treatment. In contrast, while the third class typically has the advantage
of finding the globally optimal solution, they are usually time consuming
and it is difficult to determine appropriate termination conditions.

In summary, automatic registration of overlapping range images is still not a
fully solved problem.



1.2 Our approach

The ICP algorithm is a de facto standard technique for registration of overlap-
ping free form shapes for three main reasons: (i) it is not just an algorithm,
but also a methodology, which is widely used for object recognition and data
clustering; (ii) it is theoretically guaranteed to establish high quality tentative
correspondences [10]; and (iii) it is usually employed to refine the registration re-
sults obtained [12]. However, it introduces false correspondences in almost every
iteration caused by inaccurate transformation parameters, occlusion, and ap-
pearance and disappearance of point, and so it has attracted intensive attention
for improvement from the 3D vision community.

The FICP algorithm [15] is mathematically elegant, since it simultaneously
estimates both the overlapping region and the registration parameters by opti-
mizing the root mean squared distance (RMSD) of the tentative correspondences
established using the traditional closest point criterion (CPC). Inspired by the
FICP algorithm, in this paper, we propose a novel ICP variant that uses a
histogram in conjunction with multiple closest points to determine the overlap
area between the range images being registered. If certain correspondences have
similar distances, typically, they will all simultaneously fall either inside or out-
side the overlap area. Thus, detection of the overlap area may be performed
by considering batches. To implement this idea, we employ a histogram of the
squared distances (SDs) between tentative correspondences: all tentative corre-
spondences with similar distances fall into the same bin. The objective function
that minimizes the Euclidean distances between the tentative correspondences
is evaluated for each bin, allowing detection of the overlap area to be done in a
batch manner: if any correspondence from a bin lies in the overlap area, then
all the others in the same bin also lie in the overlap area and vice versa.

The SDs of the tentative correspondences determine their distribution in the
histogram. To enlarge the difference between distances belonging to overlap and
non-overlap areas, we replace the estimate the SD of a tentative correspondence
by the sum of the SDs between a point in one image and a number of closest
points in theother. In the overlap area, such Multiple Closest Points (MCPs)
will not make much difference in the sense of distinguishing between different
correspondences. However, in the non-overlap area, they may cause tentative
correspondences to differ significantly in their SDs and thus fall into different
bins of the histogram, facilitating the differentiation of real correspondences from
false ones. Real correspondences will typically have lower distances.

To evaluate our proposed algorithm, we have also implemented the FICP
algorithm [15] and one of the latest ICP variants, Geometric Primitive ICP (GP-
ICP) [1]. A comparative study was carried out using real range images from a
Minolta Vivid 700 range camera.

The rest of this paper is structured as follows: Section 2 details our novel
algorithm, Section 3 presents experimental results, and Section 4 draws some
conclusions.
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Fig. 2. Top: The histogram of SDs of tentative correspondences defined using 16 closest points
(left) and a single closest point (right) respectively for the duck80 and duck60 images. Bottom: p]
and p,, p’3 and pj are two closest points to Rp; +t and Rp, +t respectively. The difference between

[lp} — Rp; — t||* +||p5 — Rp; — t||? and ||p5 — Rp, — t||*+ ||p) — Rp, — t||? can be as large as
twice that between ||p} — Rp; — t||? and ||p; — Rp, — t||%.

2 Algorithm

Assume that two range images to be registered are represented as two sets of
unorganised points P = {p1,---,pn,} and P’ = {p},---,p},,}, representing
the same free form shape viewed under a small transformation, such that P
and P’ have a relatively large overlap in 3D space and the pure translation
motion derived from the difference of the centroids of P and P’ provides a good
initial estimate for the transformation, which comprises a rotation matrix R and
translation vector t. Using the traditional ICP criterion [3], a set of tentative
correspondences (p;, p’c(i)) is obtained between P and P’:

P.(;) = argming cp/|[p’ — Rp; — t] (1)

where c(i) € [1,n2] is the label of a point in P’: this is a mapping associating
o ) in P’ with p; in P. The search for a tentative correspondent is determined
by the size of P’. In order to speed up the search for the closest points p/, (i)> a0

optimised k-D tree data structure [9], and squared Euclidean distance, rather
than Euclidean distance itself, are employed in our implementation.

2.1 Using a histogram to determine overlap
Having obtained a set of tentative correspondences (p;, p, (i)) between P and
P’, the following objective function is used [15] to estimate the rotation matrix



R and translation vector t, and the fractional overlap size f (meaning that fn;
points belong to the overlap region):

N
FRMSD(P. P, R.t) = 7 | 15 > 1Pl —Rpi —t]|? (2)
f piGPf

where P ; denotes the fny points p; € P with smallest distances pr:(i)—Rpi—tH.
We set A = 3 during the iterative process and A = 0.95 in a final iteration.

Suppose that certain correspondences have similar distances. Typically, they
will either all be inside or all be outside the overlap area (Figure 2). Thus,
deciding whether particular correspondences belong to the overlap area can be
more effectively determined in batches, which we implement using a histogram.

All tentative correspondences falling in the same bin j have similar SDs d;
and are presumed to all be inside or all outside the overlap area. The SDs d;
can be approximated as (j + 1)h’ and j = 0,---,s — 1 where s is the number
of bins and A} is the bin width. The larger the parameter s, the better the
approximation. Using this approximation, the objective function in Equation 2
can be rewritten as:

I o
AP Z (j + Dh;,

pePy

FRMSD(P, P, R, t, f) =

which counts the number h; of tentative correspondences whose SDs can be
approximated by (5 4+ 1)h}. This is exactly the idea of a histogram. As A} is a
constant, the above objective function can be further rewritten as:

1 1oy +1)
(Z;f:o hj/ni)* Z;‘:o h;

which calculates the square root of a weighted average of the bin indexes with
weights defined as the frequencies h; of the corresponding bins j.

In practice, we implement the histogram based detection of the overlap area
as follows:

FRMSD(P,P’, R, t, f) = 3)

— Use Scott’s method [18] to determine the bin width h of the histogram:
i, = ade/ny? (4)

where « is a positive number that reflects the characteristics of the actual
data and d, is the standard deviation of d; = |[p/,) — Rpi — t]|%.

— Determine the number s of bins in the histogram: s = (dmax — dmin)/h
where dp.x = maxy di, and dpi, = ming dj.

— Construct the histogram H = {hg,hy---,hs_1} of SDs d; of all tentative
correspondences where h; is the frequency of (j + 1)h}: hj <~ h; +1,j =
|(d; — dmin)/Rh%)] and i =1, ny.



— Compute values Jy of the objective function in Equation 3 by changing
the number f of the bins in the overlap area: J; = FRMSD(P,P’, R, t, f),
f=0 s—1.

— Select the minimum J; to determine the points (pi,p’c(i)) in the overlap
area.

Note that the computation of J; does not involve the actual SDs d; of the
tentative correspondences. This is because they are approximated by (5 + 1)k}
where h;, is a constant. This property provides a novel perspective for detection
of overlap area.

2.2 Using multiple closest points to reduce error

Earlier, the SD d; of a tentative correspondence (pi,p’c(i)) was defined as d; =
||P/C(l-) — Rp; — t||?. Since d; plays a crucial role in determining whether or not
(pi, P, (i)) lies in the overlap area and hence in camera motion re-estimation,
its exact form is important. Here, we define it as the sum of the SDs between
Rp; + t and a number m of the closest points in P’ (Figure 2).

Computation of d; can be easily implemented using a k-D tree without requir-
ing significantly more computational time. Multiple closest points (MCPs) have
a potential to play two roles: (i) using MCPs will not make much difference from
using the single closest point in the overlap area between P and P’. However, in
the non-overlap area, it is likely to enlarge the SDs of incorrect correspondences,
thus making detection of the overlap area more robust. Figure 2 shows that the
maximum of the SDs of the tentative correspondences defined over 16 MCPs has
been increased by as much as (1400 — 60 x 16)/(60 x 16) x 100%=45.83%, man-
ifested by the fact that the histogram is more representative of the distribution
of the SDs of the tentative correspondences, and the bins of the histogram are
more scattered; and (ii) they tend to pull together the images being registered
and thus maximize the overlap area.

After the overlap area has been detected, the transformation parameters are
estimated using the quaternion least square method [3]. When the difference
of the average SD of the overlapping correspondences between two successive
iterations falls below a threshold (0.000001) or the number of iterations has
exceeded 300, iteration terminates. Since the proposed algorithm is a novel ICP
variant based on the Histogram and Multiple closest points, it is denoted HM-
ICP in the rest of this paper. It has a computational complexity of O(nlogn).

3 Experimental results

To validate the performance of the proposed HM-ICP algorithm, the FICP algo-
rithm [15] and a recent ICP variant, geometric primitive ICP (GP-ICP) [1] were
also implemented and compared using a Pentium IV, 2.80GHz computer. These
three algorithms employ different strategies for the detection of the overlap area:
(i) sorting d; in the FICP algorithm takes time O(nlogn), whereas constructing



Fig. 3. Registration results for the proposed HM-ICP algorithm using two different
pairs of range images and varying «. Left three: cow60, cow57; Right three: tubby100,
tubby60. In each case: « = 0.01, «a = 0.1, a = 1.

Table 1. The mean e, and standard deviation es of registration errors in millimetres
for reciprocal correspondences (RCs), known and estimated rotation angles 6 and 0 in
degrees of the trasnformation, the number N of RCs, and registration time ¢ in seconds
for our HM-ICP algorithm with varying a.

Images| ale, (mm)les (mm)(0 (°)| 0 (°)| NIt (sec.)

0.01 0.49 0.19 30.39|3249 9
cow60-57|0.10 0.50 0.19] 30/30.17|3255 7
1.00 0.71 0.29 28.80(3215 5

0.01 0.29 0.19 39.13|2056 20
tubby100-60(0.10 0.29 0.19] 40|37.96|2053 17
1.00 0.52 0.33 27.31{1649 10

a histogram has a computational complexity of O(n); (ii) the FICP algorithm
detects the overlap area by considering each correspondence in turn, whereas
the histogram determines the overlap area by considering bins, and there are far
fewer bins than points; (iii) the FICP algorithm uses the same objective function
for the detection of the overlap area and the estimation of the trasnformation,
while our HM-ICP algorithm separates them; and (iv) while both HM-ICP and
FICP algorithms simultaneously optimize the registration parameters and the
overlap area, the GP-ICP algorithm employs thresholds for the rejection of false
correspondences and minimizes the point to point distance at early stages of
registration and the point to plane distance at later stages.

The comparative study used real range images (Figure 1) downloaded from
a publicly available database hosted at the Signal Analysis and Machine Percep-
tion laboratory at Ohio State University. They were captured using a Minolta
Vivid 700 range camera, and are all of size of 200 x 200 pixels. The purpose of
these experiments is threefold: (i) to determine how to set parameters such as
the histogram bin width and the number m of closest points in our HM-ICP
algorithm, (ii) to test whether the histogram and MCPs can effectively detect
the overlap area, and (iii) whether our HM-ICP algorithm advances the state of
the art.



Fig. 4. Registration results for our HM-ICP algorithm applied to different overlapping
range images using different values of m. Left three: buddhal40, buddhal20; Right
three: buddhal20, buddhal00. In each case: m =1, m = 16, m = 25.

Table 2. Average e, and standard deviation es of registration errors in millimetres for
RCs, known and estimated rotation angles 6 and 6 in degrees for the transformation,
the number N of RCs, and registration time ¢ in seconds for our HM-ICP algorithm,
using different numbers m of closest points.

Images| m|e, (mm)|es (mm)|d (°)| 8 (°) Nt (sec.)

1 0.82 0.39 4.42| 8153 58
buddhal40-120|16 0.59 0.25| 20/20.08{10070 163
25 0.59 0.26 20.21(10097 199

1 0.84 0.45 2.75| 8061 30
buddhal20-100|16 0.58 0.26] 20(20.46| 9760 140
25 0.58 0.26 20.46| 9755 152

To compare the algorithms, we used the average and standard deviation in
millimetres of registration errors of reciprocal correspondences (RCs), the es-
timated rotation angle in degrees of the transformation relative to the ground
truth value, and the time taken in seconds for registration. A reciprocal corre-
spondence (p;, p’c(i)) is one for which ¢ = ¢(c¢(i)), implying that if p; in P finds
p’c(i) in P’ as a correspondent, p’c(i) in P’ also finds p; in P as a correspondent.
RCs are often used to measure the performance of registration algorithms as
their determination does not involve any threshold [1,16] and hence unwanted
bias. In Figures 3-5, yellow represents the transformed first image P, and green
represents the second image P’.

3.1 Histogram bin width

The SD histogram bin width plays a key role in determining registration errors
and speed. We investigated choice of the bin width by letting @ = 0.01, o = 0.1,
and a = 1 in Equation 4; we used the cow60, cowb7 and tubby100, tubby60
images from Figure 1 for the experiments. Results are presented in Figure 3 and
Table 1, and show that using a large o = 1 and hence a large bin width provides
only a coarse approximation of the SDs of the tentative correspondences. While
this leads to efficient registration, it gives poor registration results: e.g. the two
hands of the tubby in the two images are separated. Using a small bin width,
setting a = 0.01, provides a good approximation of the SDs, leading to more



Fig. 5. Registration results for different algorithms and different range images. Top:
HM-ICP; Middle: FICP; Bottom: GP-ICP. Columns from left to right: frog20-0,
dinosaur36-0, buddha0-20, 20-40, and 40-60; duck80-60, 100-80, and 120-100.

accurate registration results at a cost of increased computational time. o = 0.1
provides a good compromise between accuracy and speed. Thus, in later tests,
we set a = 0.1.

3.2 Number of closest points

The number of the closest points has a subtle effect on determination of SDs
for the tentative correspondences. We experimentally investigated the effect of
varying the number m of closest points, setting m = 1, m = 16, and m = 25.
We used the buddhal40, buddhal20, and buddhal20, buddhalO0 image pairs
in Figure 1 for the experiments. Results are presented in Figure 4 and Table 2,
which show that as expected, a large number of closest points, m = 25, leads to
most accurate registration results but at a cost of greater computational time,
while setting m = 1 increases computational efficiency but produces poorer
results: e.g. the two ears of the buddha in the two images are misplaced. In
practice m = 16 seems a good compromise between accuracy and speed. Thus,
henceforth, we set m = 16.

3.3 Comparative study

In this section, we compare our new HM-ICP algorithm with FICP and GP-ICP
algorithms using 8 pairs of real overlapping range images shown in Figure 1:
frog20-0, dinosaur36-0, buddha0-20, 20-40, and 40-60, duck80-60, 100-80, and



Table 3. Average e, and standard deviation es registration errors in millimetres for
RCs, known and estimated rotation angles 6§ and 6 in degrees of the transformation,
the number N of RCs, and registration time ¢ in seconds for different algorithms.

Images|Algorithml|e,, (mm)|es (mm)[6 (°)] 6 (°) Nt (sec.)
HM-ICP 0.30 0.15 18.84| 5806 38

frog20-0 FICP 0.30 0.15] 20|18.83| 5798 16
GP-ICP 0.31 0.15 18.58| 5726 16

HM-ICP 0.60 0.54 35.11} 5302 29

dinosaur36-0 FICP 0.56 0.54| 36|35.66] 5309 23
GP-ICP 1.38 1.41 23.96| 3321 31

HM-ICP 0.58 0.24 20.10{11011 137

buddha0-20 FICP 0.81 0.49] 20]13.77 9353 64
GP-ICP 0.73 0.32 18.18{10531 29

HM-ICP 0.58 0.25 20.11{10786 130

buddha20-40 FICP 0.71 0.35] 20]17.16] 9859 58
GP-ICP 0.67 0.27 18.78/10576 29

HM-ICP 0.58 0.25 19.81{10551 115

buddha40-60 FICP 0.58 0.25| 20]19.41{10535 51
GP-ICP 0.61 0.25 19.01{10472 26

HM-ICP 0.30 0.17 19.08| 7529 87

duck80-60 FICP 0.31 0.18| 20|17.77| 7517 38
GP-ICP 0.32 0.17 19.39| 7454 23

HM-ICP 0.27 0.15 18.06| 7229 103

duck100-80 FICP 0.41 0.27] 20| 6.03] 6700 22
GP-ICP 0.28 0.14 18.23| 7144 25

HM-ICP 0.27 0.12 19.19| 7567 84

duck120-100 FICP 0.30 0.15] 20(16.47| 7446 38
GP-ICP 0.28 0.12 18.39] 7551 27

120-100. The buddha head is of a generally cylindrical shape. The duck head
and belly are of a generally spherical shape. Such shapes are challenging to reg-
ister, since simplicity leads to ambiguity in transformation parameters. Rresults
are presented in Figure 5 and Table 3. Both the HM-ICP and FICP algorithms
produced similar results for the registration of geometrically complex frog20-0
and dinosaur36-0 images. The FICP algorithm had difficulties registering the
buddha and duck images, giving poor average registration errors for reciprocal
correspondences and rotation angle, because (i) a point difference of the objec-
tive function in Equation 2 does not always reflect a difference in overlap area,
especially when the tentative correspondences have similar distances; and (ii) an
objective function suitable for the transformation estimation is not necessarily
also suitable for detection of the overlap area. Our HM-ICP algorithm produces
much better results, decreasing the average registration error by up to 17%. As
the FICP algorithm is a refinement algorithm, this error decrease is valuable and
represents a significant achievement. Accurate registration results are manifested
as a large amount of interpenetration [20] between the superimposed images.



The reasons why multiple points in the same bin of the histogram are a pow-
erful tool for the detection of the overlap area can be explained as follows. MCPs
render the cause the data in the bins in the histogram to become more scattered,
as seen in Figure 2. This facilitates the discrimination of correct correspondences
from false ones. Tentative correspondences in the same scattered bins also play a
role in perturbing the existing registration parameters and thus preventing our
HM-ICP algorithm from converging prematurely. This perturbation arises due
to use of MCPs about the local geometry in the images and relies on accuracy
of the existing registration parameters. This is desirable and in sharp contrast
with the ad hoc random approach [11] that is usually not reliable. Our HM-ICP
algorithm requires an additional computational time of 33% compared to the
FICP algorithm. This is because the latter usually converges prematurely.

Even though the dinosaur36-0 images are geometrically complex, the GP-ICP
algorithm still produced much worse results, with average errors compared to
our HM-ICP algorithm as much as 130% higher. It exhibits a similar behaviour
for registering the geometrically simple buddha and duck images. In this case, it
increases the average error by as much as 12%. The GP-ICP algorithm produces
worse results because it is difficult to set up thresholds for the rejection of false
correspondences. In the later stages of registration, it also has to invert a matrix
to estimate of the registration parameters. When this matrix is close to singular,
the estimated registration parameters are unreliable and may lead the GP-ICP
algorithm to fail to find any true correspondence in the next iteration. On the
other hand, it minimizes the point-to-plane distance, but not the point-to-point
distance.

4 Conclusions

This paper has proposed a novel ICP variant that uses both a histogram and
multiple closest points to detect the overlap area during range image registration.
Our experimental results show that accurate detection of the overlap area is
obtained for various real range images even with relatively simple geometry that
is typically more challenging to register. This is because the role of multiple
points in the same scattered bin of the histogram is more pronounced than a
single point in the FICP algorithm [15] in perturbing the existing registration
parameters and helping our HM-ICP algorithm to traverse the local minimum of
the objective function during registration of overlapping range images. Our HM-
ICP algorithm also outperforms the latest ICP variant, Geometric Primitive ICP
(GP-ICP) [1], because our approach simultaneously optimizes both the overlap
area and the registration parameters, while the latter has difficulty in choosing
thresholds for rejection of false correspondences and in minimizing the point-to-
plane distance. Thus, our HM-ICP algorithm advances the state of the art for
registration of overlapping range images. Future research will consider how to to
reduce the computational cost of the HM-ICP algorithm.
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