Embedding K5 and K33 on orientable surfaces
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Abstract

The Kuratowski graphs K5 and K33 are fundamental non-planar graphs. We are
interested in obtaining all their distinct 2-cell embeddings on orientable surfaces. The
2-cell embeddings of K5 and K33 on the torus are well-known. Using a constructive
approach of expanding from minors, we obtain all 2-cell embeddings of these graphs on
the double torus. As a consequence, several new polygonal representations of the double
torus are described. Rotation systems for the one-face embeddings of K5 on the triple
torus are also found, using an exhaustive search approach.
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1 Introduction

A graph G is embeddable on a surface if it can be drawn on the surface with no crossing edges.
Such a drawing of G on the surface is called an embedding. An embedding is 2-cell (cellular)
if its every face is homeomorphic to an open disk. The distinct (non-isomorphic) embeddings
of the non-planar Kuratowski graphs K5 and K33 on the torus are well-known [4]. We want
to find explicitly all their distinct 2-cell embeddings on the double torus, and all the distinct
2-cell embeddings of K5 on the triple torus. This can serve as a first step in studying graphs
embeddable on the double torus and orientable topological surfaces of higher genus.

The number of 2-cell embeddings of K5 and K33 on orientable surfaces was previously de-
termined in [6] and [5] using Burnside’s Lemma and automorphism groups of these graphs. We
use a constructive approach to actually find the embeddings and to determine their orientabil-
ity. By Euler’s formula, the maximum orientable genus of K33 and K5 are two and three, and
their orientable genus spectra are {1,2} and {1, 2,3}, respectively. 2-cell embeddings of K33
and K5 on the double torus must have respectively one and three faces, and a 2-cell embedding
of K5 on the triple torus must have only one face.

We consider some auxiliary graphs that can have parallel edges (i.e., be multi-graphs), but
no loops. A 2-cell embedding of a graph G on an orientable surface is characterized by its
rotation system. Given a labelling of the vertices and edges, a rotation system consists of a
cyclic list of the incident edges for each vertex v, called the rotation at v. The rotation system
uniquely determines the facial boundaries, and therefore the embedding of G on the surface.
However, it does not determine a drawing on a polygonal representation of the surface. If 7 is
a rotation system for an embedding of GG, we denote the embedding by G7. Two embeddings
G™ and G™ are isomorphic if there is a permutation of the vertices V(G) and of the edges
E(G) that transforms 71 into 79. See [4] for more details.

We denote by ©,, a multi-graph consisting of two vertices {u,v} and a set of m parallel
edges between them (m > 1). We first construct all 2-cell embeddings of an auxiliary graph
O5 on the double torus, and then derive all possible embeddings of K5 and K33 on this surface
by expanding ©5 and some other minors of K5 and K33 back to the original graphs. Based on
these results, we provide different polygonal representations of the double torus. We also find
all the rotation systems for distinct 2-cell embeddings of K5 on the triple torus.



2 On the double torus

Three 2-cell embeddings of ©5 on the double torus are shown in Fig. 1. Here the double torus is
represented by a standard octagon a™bta"b~cTdt e d ™, traversed clockwise, with paired sides
{a,b,c,d}. See [1, 2, 4] for more information on representations of the double torus. Each of
these embeddings of ©5 has exactly one face homeomorphic to an open disc, with its facial
boundary consisting of 10 edges. We prove that this list of 2-cell embeddings is complete.

Theorem 1 There are exactly three distinct 2-cell embeddings of O5 on the double torus.

Cla
FIG. 1: The 2-cell embeddings of ©5 on the double torus (the edges are labelled).

The automorphisms of the embeddings of Fig. 1 are helpful in finding the embeddings of
Ks33. We need the rotations at vertices u and v for each embedding. An automorphism is a
permutation of the vertices and edges that leaves the rotation system unchanged. The double
torus is an orientable surface. If all the rotations of an embedding are reversed, an equivalent,
but possibly non-isomorphic, embedding results. These embeddings will be considered equiva-
lent. An embedding is non-orientable if the embedding obtained by reversing the rotations is
isomorphic to the original embedding. Otherwise it is orientable. We can show that:

e Embeddings @?1, @5#2, and @?3 of Fig. 1 are non-orientable and have the automorphism
groups of order two, ten, and five, respectively.

e All the edges in each of the embeddings @5#2 and @5#3 are equivalent.

e Vertices u and v are equivalent in each of the embeddings ©F' and 672, but not in 072,

Denote now by A, B,C, D, E, F' the vertices of K33, and choose the edges AC, AE, BD, BF
of K33, as shown in Fig. 2. Contract these four edges to form a minor of K33 isomorphic
to ©5. If we start with a 2-cell embedding of K33 on the double torus, and contract these
edges, the resulting embedding of the minor will be a 2-cell embedding of ©5 on the double
torus. Therefore, every 2-cell embedding of K33 on the double torus can be contracted to a
2-cell embedding of ©5, and ©5 has only three 2-cell embeddings. To find the distinct 2-cell
embeddings of K33, we restore the contracted edges in all possible ways and compare the
results for isomorphism.

FIG. 2: K33 and one of its minors isomorphic to Os.

There are 5! = 120 different ways to assign the labels AB,CD,CF, ED, E'F to the five edges
of the embeddings of ©5 shown in Fig. 1, before attempting to restore the contracted edges.
However, many of them are equivalent. There are eight automorphisms of K33 that map the
bold subgraph of Fig. 2 to itself — they are generated by the permutations (CE), (DF'), and
(AB)(CD)(EF). The only edge uv that doesn’t cross the boundary of the octagon in the
embeddings @5#1 and @5#3 of Fig. 1 is called the central edge. We prove that:



e There are four extensions of @5#1 to K33 with central edge uv labelled C'D.
e There are no extensions of @?2 to K3 3.

e Up to isomorphism, there are at most three extensions of 9?3 to K3 3.

Using these results and checking the embeddings for isomorphism (using the graph isomorphism
software [3]), we prove that the 2-cell embedding of K3 3 on the double torus is actually unique
(see Fig. 3). This embedding is non-orientable: the permutation (1)(4)(26)(35) of vertices of
K33 in Fig. 3, which is an automorphism of K33, maps the rotations to their reversals.

Theorem 2 Up to isomorphism, K33 has a unique 2-cell embedding on the double torus.

FIG. 3: The 2-cell embedding of K33 on the double torus.

We find all distinct 2-cell embeddings of K5 using O35 and some intermediate graphs, which
can be used as building blocks for 2-cell embeddings of various other graphs. First, we consider
T1 2,3, which is the graph of a triangle with edges of multiplicity 1, 2, and 3 (six edges in total).
Then, we consider K, , which is K, with one edge doubled, Wy (the 4-wheel), which is Kj
without a 2-matching, and K5 —uv, which is K5 without an edge. A 2-cell embedding of T 5 3,
K or Wy on the double torus must have only one face. We prove that, up to equivalence,

e Tj 93 has two orientable and four non-orientable 2-cell embeddings on the double torus;
e K, has two orientable and three non-orientable 2-cell embeddings on the double torus;
e W, has one orientable and three non-orientable 2-cell embeddings on the double torus.

As a result, we prove the following theorem. The addition of edges to K, Wy, and K5 —uv
in all possible ways in Theorem 3 was done by using a computer program. This provides a list
of rotation systems for the 31 inequivalent 2-cell embeddings of K5 on the double torus.

Theorem 3 Up to equivalence, K5 has 14 orientable and 17 non-orientable 2-cell embeddings
on the double torus.

3 Hyperbolic tilings and polygonal representations

The torus has symbolic representations atb*a~ b~ and a™b"cta b ¢, which also represent
tilings of the Euclidean plane by rectangles and by regular hexagons, respectively. These
polygonal representations correspond to one-face embeddings, one of which is given by ©s.

There are many more possibilities for such one-face embeddings on the double torus. The
standard representation a™bTa"b~cTd ¢~ d™ of the double torus produces a tiling of the hyper-
bolic plane by regular octagons, in which eight octagons meet at each vertex. The three embed-
dings of ©5 produce tilings by regular 10-gons, i.e. polygons with 10 sides, having fundamental
regions atbtctdTeTc d a b e, atbtcTdTeTa b ¢ d e, and atbtcta dTcTetd be .
In each case, five hyperbolic 10-gons meet at each vertex. Two of the ©5-polygons are shown
in Fig. 4, with 2-cell embeddings of K5 drawn on them. The polygon boundaries are traversed
in a clockwise direction, and for each pair of corresponding edges, the orientations of the two
edges are opposite. Dotted lines are used to show the pairing of edges of the polygons. Kj3
produces a tiling of the hyperbolic plane by regular 18-gons, i.e., polygons with 18 sides, with
three 18-gons meeting at each vertex. Different polygonal representations of the double torus
can be used, e.g., to have symmetric drawings of the embeddings (see Fig. 4).
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FIG. 4: Embeddings of K5 on two different 10-gon representations of the double torus.

4 On the triple torus

Using an exhaustive search of the rotation systems, we find all 13 inequivalent 2-cell embeddings
of K5 on the triple torus — 11 orientable and 2 non-orientable. Our approach using rotation
systems for graphs on the double torus allows a drawing of the embedding to be constructed
from its rotation system. However, in general, given a rotation system, it is a non-trivial task to
find a drawing of the graph on a polygonal representation of the surface. An ad-hoc approach
has been used to find drawings on the triple torus shown in Fig. 5.

FIG. 5: Orientable and non-orientable embeddings of K5 on the triple torus.
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