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Gravitational waves from compact binary coalescence sources can be decomposed into spherical-
harmonic multipoles, the dominant being the quadrupole (ðl; jmjÞ ¼ ð2; 2Þ) modes. The contribution of
subdominant modes toward total signal power increases with increasing binary mass ratio and source
inclination to the detector. It is well known that in these cases neglecting higher modes could lead to
measurement biases, but these have not yet been quantified with a higher-mode model that includes spin
effects. In this study, we use the multimode aligned-spin phenomenological waveform model IMRPhenomHM

[1] to investigate the effects of including multimode content in estimating source parameters and contrast
the results with using a quadrupole-only model (IMRPhenomD). We use as sources IMRPhenomHM and hybrid
effective-one-body–numerical-relativity waveforms with zero spin over a range of mass-ratio and
inclination combinations, and recover the parameters with IMRPhenomHM and IMRPhenomD. These allow
us to quantify the accuracy of parameter measurements using a multimode model, the biases incurred when
using a quadrupole-only model to recover full (multimode) signals, and the systematic errors in the
IMRPhenomHM model. We see that the parameters recovered by multimode templates are more precise for all
nonzero inclinations as compared to quadrupole templates. For multimode injections, IMRPhenomD recovers
biased parameters for nonzero inclinations with lower likelihood while IMRPhenomHM-recovered parameters
are accurate for most cases, and if a bias exists, it can be explained as a combined effect of observational
priors and (in the case of hybrid-NR signals) waveform inaccuracies. However, for cases where
IMRPhenomHM recovers biased parameters, the bias is always significantly smaller than the corresponding
IMRPhenomD recovery, and we conclude that IMRPhenomHM will be sufficiently accurate to allow unbiased
measurements for most gravitational wave observations.
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I. INTRODUCTION

The first gravitational-wave (GW) detection, from a
binary black hole (BBH) merger, was achieved on the
September 14, 2015 [2] by the two advanced LIGO
(aLIGO) detectors at Hanford and Livingston [3]. Two
observing runs have since been completed by the aLIGO
detectors, and from the second half of 2017, Advanced
Virgo (AdV) [4] joined the GW detector network, facili-
tating the first three-detector observation of a BBH source
[5]. During the first two observation runs of aLIGO
and AdV, a total of ten BBH mergers and one binary
neutron star merger were detected [6,7]. Most signal
measurements were performed using waveform models
that included only the dominant quadrupole harmonic,
although one signal (GW170729) showed evidence for a
binary with unequal masses, for which models that
include higher harmonics allow for improved measure-
ments [8]. The goal of this work is to quantify the
measurement accuracy possible with higher-multipole
models.
Any GW hðθ;ϕ; λ⃗; tÞ can be decomposed in terms

of spherical harmonics with spin-weight −2, −2Ylmðθ;ϕÞ,

hðθ;ϕ; λ⃗; tÞ ¼
X
l

Xm¼l

m¼−l

−2Ylmðθ;ϕÞhlmðλ⃗; tÞ; ð1Þ

where hlmðλ⃗; tÞ are the GW modes, and λ⃗ are the intrinsic
parameters of the source, i.e., the black-hole masses and
spins. For coalescing binary systems with aligned spins, or
in the coprecessing frame of precessing systems [9–11], the
quadrupole modes ðl; jmjÞ ¼ ð2; 2Þ are the strongest.
Relative to the corresponding quadrupole mode, the sub-
dominant modes (l ¼ 3; 4; 5…; jmj ∈ ½0; l� ∀ l) are weak-
est for equal-mass systems, their strength increasing with
increasing mass ratio. In addition, for a given system, as the
binary’s inclination to the detector is increased from face-
on ðθ ¼ 0°Þ to edge-on ðθ ¼ 90°Þ, the contribution of the
dominant modes decreases, as does the overall signal
power, and the relative importance of subdominant modes
grows.
Black-hole binaries in noneccentric orbits are charac-

terized by the two black-hole masses, m1 and m2, and the
black-hole spins S1 and S2. The inspiral rate of the binary
(and phasing of the GW signal, which is crucial to
measuring the properties of the binary) is effected most
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strongly by combinations of these parameters: the chirp
mass, Mc ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 (during the inspi-
ral), and the total mass, M ¼ m1 þm2 (during the merger
and ringdown); the mass ratio q ¼ m1=m2, or alternatively
symmetric mass ratio η ¼ m1m2=M2; and the weighted
sum of the spin components parallel to the orbital angular
momentum L̂, χeff ¼ ðm1χ1 þm2χ2Þ=M, where χi ¼ Si ·
L̂=m2

i [12–15]. The overall strength of the GW signal
scales withM=dL, where dL is the distance from the source
to the detector, and is also affected by the binary inclination
θJN, which is the angle between the total angular momen-
tum Ĵ (or equivalently L̂ for aligned-spin binaries) and the
line of sight, N̂. If there are spin components perpendicular
to L̂, then the binary’s orbital plane and spins will precess,
leading to modulations of the GW signal. In general,
precession has little effect on the overall GW phase
[16,17], and so might not strongly affect the measurement
of other parameters [18,19]. Precession has not yet been
measured in GWobservations [6], and for these reasons we
focus on aligned-spin binaries in this study.
Waveform models describing the inspiral-merger-

ringdown (IMR) stages of BBH mergers are available for
nonspinning, aligned-spin and precessing configurations.
Many of the aligned-spin waveform models model only
the dominant quadrupole mode, but several multimode
models now exist. For nonspinning systems, there are
effective-one-body (EOB)–numerical-relativity (NR) multi-
modemodels, EOBNRv2HM [20] and TEOBiResumMultipoles [21],
and “Phenom” models [22,23]. The EOBNR model was
recently extended to aligned-spin systems (SEOBNRv4HM)
[24] and models the ðl; jmjÞ ¼ ð2; 2Þ, (2,1), (3,3), (4,4),
and (5,5) modes. In this study, we will use the phenomeno-
logical aligned-spin multimode model IMRPhenomHM [1],
which models the l ¼ ð2; 3; 4Þ and jmj ¼ ðl; l − 1Þ modes;
IMRPhenomHM is described in more detail in Sec. II A. Higher
modes are also included in a series of surrogate models
constructed from NR waveforms [25–28].
Previous studies have investigated the effect of employ-

ing higher-order mode models for gravitational wave
searches [29–32] and provided an estimate of the system-
atic errors that could be incurred from neglecting higher-
order modes in the template waveforms [33–35]. In [36,37],
the authors performed a full Bayesian analysis of the effects
of including and neglecting higher-order modes in template
waveforms nonspinning systems. We summarize some
notable results relevant to the current study.
In Ref. [35], the authors used multimode Post-

Newtonian - Numerical Relativity (PN-NR) hybrids as
signals and computed the expected statistical and system-
atic errors from using quadrupole-only templates to esti-
mate source parameters over a range of total mass and
mass-ratio values, for a signal sky-averaged signal-to-noise
ratio (SNR) of 8. The statistical errors are estimated from
the Fisher information matrix, which is the noise-weighted

inner product between partial derivatives of the waveform.
The authors also estimate the systematic errors by calcu-
lating the fitting factor, which is the noise-weighted inner
product between the signal and model waveforms, maxi-
mized over the model parameters. The effective systematic
error is proportional to the difference between the best fit
and true parameters. In this study, the authors found that
noninclusion of the subdominant modes in templates will
lead to ∼10% loss in detection rate for q ≥ 6 and M ≥
100 M⊙ and will lead to systematic errors larger than
statistical errors for q ≥ 4 and M ≥ 150 M⊙. The results
obtained from a Fisher information matrix approximation
are valid for high SNR events. To study the waveform
errors for low or moderate SNRs and for a realistic
assessment of the model’s measurement capabilities, a full
Bayesian analysis is required.
In a Bayesian analysis, the physical parameters of the

source are estimated by matching the detector data with
model waveforms. Given detector data dðtÞ and a wave-
form model hðtÞ, the posterior over λ⃗ is

pðλ⃗jdðtÞ; hðt; λ⃗ÞÞ ¼ pðλ⃗jhðt; λ⃗ÞÞpðdðtÞjλ⃗; hðt; λ⃗ÞÞ
pðdðtÞjhðt; λ⃗ÞÞ

; ð2Þ

where λ⃗ is the vector of intrinsic and extrinsic parameters.
pðλ⃗jhðt; λ⃗ÞÞ, pðdðtÞjλ⃗; hðt; λ⃗ÞÞ, and pðdðtÞjhðt; λ⃗ÞÞ are the
prior, likelihood, and evidence, respectively, where the
likelihood is

pðdjλ⃗; hðλ⃗ÞÞ ∝ e−
1
2
hd−hðλ⃗Þjd−hðλ⃗Þi; ð3Þ

and the quantity hajbi gives the noise-weighted inner
product between the two functions; this is the match if a
and b are descriptions of waveforms from systems with the
same physical parameters, optimized over a relative time
and phase shift. See Ref. [38] for more details on the
techniques and algorithms employed for GW parameter
estimation. Accuracy of the inferred parameters depends on
the accuracy of the waveform model used to simulate the
real signal and the noise content of the detector data.
In Ref. [36], the authors injected multimode nonspinning

NR waveforms in zero noise at different mass ratios with
fixed inclination of 60° and compared the systematic and
statistical errors of the posteriors recovered by nonspinning
quadrupole-only (EOBNRv2) and multimode (EOBNRv2HM)
waveform models for nonspinning systems. They found
that up to q ¼ 6 and for SNRs ≤ 50, the systematic errors
from EOBNRv2HM were smaller than or comparable to the
statistical errors. The fractional systematic error (defined as
the ratio between systematic bias and statistical error) for
the intrinsic parameters is consistently lower for
EOBNRv2HM than EOBNRv2. Also, the posteriors were
recovered at an overall higher likelihood by EOBNRv2HM

than EOBNRv2 (see Fig. 2 of Ref. [36]).
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In Ref. [37], the authors performed a comprehensive
study of the effects of using EOBNRv2HM and EOBNRv2

templates to recover EOBNRv2HM signals across a range of
total mass values (50 M⊙ ≤ Mtotal ≤ 500 M⊙) and SNRs
(6 ≤ ρ ≤ 18) for q ¼ 1.25 and q ¼ 4 systems at two
inclinations ðθJN ¼ 0°; 60°Þ. Consistent with Ref. [36],
the posteriors are recovered at an overall larger total
evidence by EOBNRv2HM compared to EOBNRv2 for inclined
systems; see Fig. 5 of Ref. [37]. These differences increase
with increasing inclination, mass ratio, and total mass. The
posteriors are better constrained by the multimode model
than a quadrupole-only model (see Fig. 7 of Ref. [37]) with
lower systematic bias for inclined systems. They found that
the multimode model constrains the inclination angle better
than quadrupole-only model, which in turn leads to better
constraints on the distance.
In the previous studies, the authors used nonspinning

multimode and quadrupole-onlywaveforms for theBayesian
analysis, and hence, were restricted in the (m1,m2) space for
intrinsic parameters. In this study, we will use a multimode
aligned-spinwaveform template (IMRPhenomHM) and increase
the dimensionality of the problem by one, i.e., covering the
(m1,m2 and χeff) space of intrinsic parameters. Of course, the
extrinsic parameter space remains the same.
One of the aims of this study is to explore the effects of

using a multimode waveform template (IMRPhenomHM) on
inferring source parameters from a multimode signal and to
contrast it with a quadrupole-only model (IMRPhenomD). For
this, we perform a set of injections at three different mass
ratios and three inclinations in zero noise using the
IMRPhenomHM model. This allows us to quantify parameter
errors from not including subdominant modes in templates
and accuracy improvements when the subdominant modes
are included.

IMRPhenomHM is an approximate model of the subdomi-
nant modes and does not model all of the higher harmonics
(all modes with l ≥ 5, allm ¼ 0modes, and the (3,1), (4,2),
(4,1) modes). The subdominant modes of the model are not

tuned to NR simulations and mode-mixing effects are not
modeled. With that in mind, the other aim of the study is to
determine the ability of IMRPhenomHM to recover parameters
of real physical signals. For that, we perform the same set of
injections as for IMRPhenomHM injections but with multimode
EOB-NR hybrid waveforms and compare the parameters
recovered by IMRPhenomD and IMRPhenomHM.Hybridization is
required to include the contributions to the signals below the
starting frequency of the NR waveforms.
Note that this study is not exhaustive enough to make

quantitative statements of the bias across the whole mass-
spin parameter space as we choose to consider systems at a
fixed total mass, coalescence phase, polarization, sky
position, and zero spins. As was shown in [39], varying
polarization can change recovered posteriors for inclined
systems. From Fig. 1, it can be seen that the coalescence
phase has a large effect on the matches and as was shown in
[33], the same can cause varying biases on recovered
parameters. The point of this study is to explore the general
trends of recovered parameters across the mass ratio and
inclination space with multimode models and make
approximate statements of the validity of IMRPhenomHM

in those regions. A more detailed systematic exploration of
the parameter space is beyond the scope of this paper.
Section II will provide a short summary of the template

waveform models IMRPhenomHM and IMRPhenomD construc-
tion of the multimode hybrids and details of the setup for
parameter estimation. The results will be introduced in
general in Sec. III, and the specific results for intrinsic and
extrinsic parameters will be given in Secs. IV and V.

II. METHODS

A. Summary of waveform models

IMRPhenomD [40,41] is a quadrupole-only frequency-
domain phenomenological waveform model describing
inspiral-merger-ringdown (IMR) stages of aligned-spin
BBH systems. IMRPhenomD is calibrated to NR simulations

FIG. 1. Mismatches between hybrid-NR and IMRPhenomHM waveforms (blue) and IMRPhenomD waveforms (gray). The left, central, and
right panels give the mismatches for q ¼ ð2; 4; 8Þ systems. The match is computed over a range of signal inclination, phase and
polarization values with the match optimized over template phase and polarization. We quote the minimum (dashed-lower bound),
average (central black line), and maximum value (dashed-upper bound) of the match at each signal inclination. The dashed blue line
shows the minimummatch required for the obtaining minimal PE bias (at 90% credible intervals) for an injected SNR of 25, by using the
relation ρc ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2kð1 − pÞ=2ð1 −MÞ

p
[15] for k ¼ 3. For the match, the total mass is set to 100 M⊙ with a lower-frequency bound of

fmin ¼ 30 Hz. This choice of lower frequency cutoff for the matches was made to keep these results consistent with those in Fig 3 of [1].
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with 1 ≤ q ≤ 18 and spins jχij≲ 0.85. The agreement
between IMRPhenomD and other quadrupole-only models
is extremely good in the region of parameter space that we
consider in this study [41,42], and so we expect that results
obtained with this model will be indicative of the perfor-
mance of any accurate quadrupole-only model.

IMRPhenomHM [1] is a frequency-domain aligned-spin
phenomenological waveform model, wherein results from
post-Newtonian theory (for inspiral) and BH perturbation
theory (for ringdown) are used to map the dominant
quadrupole mode to the subdominant modes. So, given
the quadrupole frequency (f22), amplitude (A22) and phase
(φ22), the frequency ðflmÞ, amplitude ðAlmÞ, and phase
ðϕlmÞ of other modes are computed via

h̃lmðfÞ ¼ AlmðfÞ × exp fiφlmðfÞg ð4Þ
≈ jβlmðfÞjA22ðfA22Þ
× exp fi½κðfÞφ22ðfφ22Þ þ ΔlmðfÞ�g; ð5Þ

where jβlmðfÞj and κðfÞ are amplitude and phase scaling
functions and ΔlmðfÞ are phase shifts to be computed
separately for each mode.

IMRPhenomHM uses IMRPhenomD for the quadrupole mode
information to obtain the subdominant modes. Though
the subdominant modes of IMRPhenomHM are not calibrated
to NR simulations and are thus an approximation,
IMRPhenomHM has much better matches to NR waveforms
than a quadrupole-only model; see Fig. 1. As discussed in
Ref. [1], the higher mismatch of IMRPhenomHM as compared
to IMRPhenomD for face-on q ¼ 2 waveforms is due to
inaccuracy in the modeling of the ðl; jmjÞ ¼ ð3; 2Þ modes
by the former. We refer the reader to Ref. [1] for further
information on the construction and validity of the model.

B. Construction and validation of
multimode hybrids

The discussion below closely follows that of Sec. VI
of Ref. [43].
Two perfectly accurate gravitational waveforms [haðtÞ

and hbðtÞ] computed with different methods or with

differing conventions can be mapped between each other
with a time and an orbital phase shift, along with a shift in
polarization to account for differing conventions. So, we
can write haðtÞ as

haðt; θ;ϕÞ ¼ hbðtþ τ; θ;ϕþ ϕ0Þeiψ0 : ð6Þ

This allows us to relate the modes of the two waveforms
with each other as

halmðt; θ;ϕÞ ¼ hblmðtþ τ; θÞeiðψ0þmϕ0Þ: ð7Þ

So, given a PN inspiral waveform and an NR waveform for
the same physical configuration, if the NR waveform is
long enough, then there would be a common region where
both the waveforms are accurate and agree with each other.
We can then construct a hybrid waveform by stitching the
two within the overlapping regions. The symmetry require-
ments of nonprecessing systems [see Eq. (11)] restrict ψ0

to be either 0 or π; a more detailed discussion of which is
given in Ref. [43].
The problem then reduces to finding appropriate time

and orbital phase shifts between the two waveforms. To
obtain the time shift (τ), we minimize the quantity
Δðτ; t0; dtÞ with respect to τ, where Δðτ; t0; dtÞ is given as

Δðτ; t0; dtÞ ¼
Z

t0þdt

t0

ðωPNðtÞ − ωNRðt − τÞÞ2dt: ð8Þ

Using this time shift, we construct the phase integral
Φðϕ0Þ,

Φðϕ0Þ ¼
Z

t0þdt

t0

ðϕNRðt − τÞ − ϕPNðtÞ þ ϕ0Þ2dt: ð9Þ

The orbital phase shift used for constructing the hybrid
would be the one that minimizes Φðϕ0Þ.
Once the quantities ðτ;ϕ0;ψ0Þ are computed, the hybrid

waveform is obtained by stitching the PN and NR wave-
forms as

hlmðtÞ ¼
8<
:

eiðmϕ0þψ0ÞhPNðtþ τÞ t < t0 − τ

w−ðtÞeiðmϕ0þψ0ÞhPNðtþ τÞ þ wþðtÞhNRðtÞ t0 − τ < t < t0 − τ þ dt

hNRðtÞ t > t0 − τ þ dt;

ð10Þ

where w−ðtÞ and wþðtÞ are the blending functions which go
from [1,0] and [0,1], respectively, between t0 − τ < t <
t0 − τ þ dt. We use Planck taper windowing function [44]
for blending the PN and NR waveforms.
To construct the hybrids for injections, we use an EOB

code to generate the inspiral and hybridize it with the

corresponding public SXS NR waveform [45] following
the procedure summarized above. The reason for using the
SXS waveforms is that these include more inspiral cycles
than any other currently available set. The EOB code used
to obtain the inspiral modes is based on the method
described in Refs. [46,47] with the fits to the parameters
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as published in Ref. [48]. Since our purpose is to construct
hybrids, we only use the inspiral contribution to these EOB
waveforms. We construct the hybrid for (2,2), (2,1), (3,3),
(3,2), (3,1), (4,4), (4,3), and (4,2) modes and the negative
“m” modes are related to the positive m modes by the
relation

hl;mðt; λ⃗Þ ¼ ð−1Þlh�l;−mðt; λ⃗Þ: ð11Þ

The EOB and NR waveforms are matched at the time
when the (2,2) mode has frequencies Mω2;2 ¼
ð0.072; 0.066; 0.044Þ for mass ratios q ¼ ð2; 4; 8Þ with a
hybridization window of dt ¼ 200M. The hybrid-NR
waveforms are validated by computing the match between
the hybrid waveform and corresponding SXS waveform
(which all have a starting frequency ofMω2;2 ∼ 0.04), over
the ðθ;ϕÞ space, where the match is maximized over the
phase of the hybrid waveform. We find that the match is
never less than 0.9999.

C. Setup

For this study, we use hybrid-NR waveforms and
IMRPhenomHM waveforms for injections. We create EOB-
NR multimode hybrids for nonspinning q ¼ ð2; 4; 8Þ sys-
tems. The waveforms are injected at a constant SNR of 25,
total mass of 100 M⊙, and at inclinations of 0°, 60°, and
90°. We choose a polarization value (ψ ) of 1.4 and the gps
time is set to 1186741623. For the recovery PSD, we
compute the median detector PSD via BayesWave [49,50]
with gps time set to be near to the trigger time for
GW170814 [51]. This is so that the recovery PSD is close
to the final O2 sensitivity. The accuracy of the recovered
extrinsic parameters will depend strongly on the total
detector response. We choose the sky position (for a given
polarization and gps time) such that the total detector
response for Hanford and Livingston is of comparable
value. The right ascension and declination values used are
0.2897 and 1.4323 rad, respectively. All waveforms are
injected in zero noise. The lower frequency cutoff for both
injected signal and for the parameter estimation (PE) runs is
set to 20 Hz. See Ref. [52] for details regarding the frame
transformations performed during the injection and defi-
nitions of the above parameters.
For this study, we performed a total of 36 PE runs. For

each of the three mass-ratio and inclination combinations,
we perform both hybrid-NR and IMRPhenomHM injections.
For each injection, the parameters were recovered using
both IMRPhenomD and IMRPhenomHM. All signals have an
SNR of 25; this is at the high end of SNRs we would expect
in aLIGO and AdVobservations (at best roughly only 1 in
15 observations will have a higher SNR, assuming a
detection threshold at SNR 10 [53]), so provides an
indication of the best measurement precision we could
achieve, as well as the worst impacts of measurement biases
and systematic errors.

The PyCBC [54] hardware injection function (PYCBC_
GENERATE_HWINJ) is used to generate the injection frames.
We use the LALInferenceNest [38] pipeline to obtain the
posterior samples. All runs are performed with 1024 live
points.

III. RESULTS

It has already been shown in a number of previous
studies [36,37,55–57] that recovery using multimode mod-
els can improve the measurement of intrinsic and extrinsic
parameters (depending on total mass of the system). Here
we present the first results that quantify these effects when
recovery is performed with an aligned-spin multimode IMR
model. Given that there is a well-known partial degeneracy
between the binary’s mass ratio and the black-hole spins
[15], we expect the inclusion of spin in the recovery
template to significantly affect the precision of the param-
eter recovery, even for signals from nonspinning binaries.
Furthermore, the effects of precession (which are not
considered here) in general are driven by the in-plane
spins [58,59] and precession measurement approximately
decouples from aligned-spin parameters [19,60] and hence,
we expect that our results will in many cases carry over to
recovery using generic-binary models.
We first discuss the recovery of the intrinsic parameters

(black-hole masses and spins), and then consider the
extrinsic parameters, i.e., the distance ðdLÞ and inclination
ðθJNÞ. As we are considering only nonspinning or aligned-
spin binaries, L⃗kJ⃗ and so, θJN ¼ θLN .

IMRPhenomHM is an approximate model for the subdomi-
nant modes and in particular is not tuned to fully general-
relativistic NR results through the merger and ringdown.
Systematic errors due to these approximations can be tested
by using IMRPhenomHM to recover injections of hybrid-NR
waveforms. Also, our hybrid-NR waveforms contain extra
mode content, namely, the ðl; mÞ ¼ ð3; 1Þ and ð4; 2Þ
modes, but given that these modes contribute less than
10% to total signal power (even for edge-on configura-
tions), we expect that the dominant source of systematic
errors will be amplitude and phase errors in the modes that
are present in the model.
The results from the IMRPhenomHM injections quantify the

accuracy of parameter recovery using a multimode model,
and any biases that may be incurred by using a quadrupole-
only model. We expect these to be largely independent of
the choice of model; if IMRPhenomD and IMRPhenomHM were
replaced by some other (accurate) quadrupole-only and
multimode models, the results would show similar quali-
tative behaviors. In contrast, the results of the hybrid-NR
injections indicate the systematic errors that might be
incurred when estimating the parameters of real data using
the approximate IMRPhenomHM model. With that in mind,
we split the results of intrinsic parameter recovered for
IMRPhenomHM and hybrid-NR injections.
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Our main results are in the form of the posterior
distributions for each of the 18 parameter-estimation runs
(three mass ratios, three inclinations, two recovery models).
The posteriors are truncated at the 90% confidence interval,
indicating the uncertainty in each parameter measurement.
Comparison against the true parameters indicates whether
the measurement is unbiased (the true value lies within the
90% CI), or the level of bias. We also use the opacity of the
distributions to indicate the relative log-likelihood
(Δ logL), which tells us how well the model agrees with
the signal. In our zero-noise injections, the log-likelihood is
proportional to −jhSðλ0Þ − hMðλÞÞj, where hS is the
injected signal, with the specific parameters λ0, and hM
is the template model evaluated with parameters λ, and the
magnitude of the difference between the signal and model
is calculated using an inner product weighted with the
detector’s spectral noise density. If the model is able to
exactly reproduce the signal (as in the case of IMRPhenomHM

injection and recovery), then the maximum log-likelihood
will be logL ≈ 0 and less than zero for all other cases. In
our figures, an opaque posterior distribution indicates
excellent agreement between the signal and model, while
a more transparent posterior distribution indicates that the
model parameters that provide the best agreement with the
signal are nonetheless a poor representation of it.
Another way to quantify the difference between the

performance of two models that we report is the Bayes
factor, which measures the probabilistic support of one
model over another, as opposed to the maximum like-
lihood, which provides the goodness of fit. We can quantify
the support of IMRPhenomHM over IMRPhenomD for any
injection with the logarithm of the Bayes factor between
the two models, logðBPhnHM

PhnD Þ. For instance, a log Bayes
factor of logðBPhnHM

PhnD Þ ¼ 5 means that IMRPhenomHM is e5

more likely than IMRPhenomD. Note that those probabilities
are given by comparing the models IMRPhenomHM-plus-
Gaussian-noise versus IMRPhenomD-plus-Gaussian-noise.
While in this study we use zero noise as the noise
realization, in practice Gaussian noise is only an approxi-
mation for detector noise and the Bayes factor is used with
an empirically set threshold.

IV. RECOVERY OF INTRINSIC PARAMETERS

In this section, we discuss the differences between the
source mass and spin parameters ðMc; q; χeff ;MtotalÞ when
recovered by both IMRPhenomD and IMRPhenomHM.
Overall, we see that the IMRPhenomD recovered param-

eters are consistently biased for inclined systems for both
IMRPhenomHM and hybrid-NR injections, with the bias
increasing with increasing mass ratio of the system.
Parameters recovered by IMRPhenomHM also show a bias
for large ðq; θJNÞ hybrid-NR injections, but this bias is
always smaller than the corresponding IMRPhenomD recov-
ery. If a bias exists for IMRPhenomHM injection-IMRPhenomHM

recovery, it can be explained by marginalization and prior
effects (see Sec. IVA).
For a given (mass ratio, inclination) configuration, the

improved constraints on the inclination and distance
parameters by using multimode templates might lead to
better constraints on the intrinsic parameters. To check for
that, let us define dmodel

λi
¼ Cupper

λi
− Clower

λi
, whereCupper

λi
and

Clower
λi

are the upper and lower bounds of the 90% CI for a

given parameter λi. Hence, dmodel
λi

would provide a measure
of the posterior width. Using this, we define the relative
percentage difference between the credible interval widths
for a given configuration (Δλi ) as

Δλi ¼ 100

�
dIMRPhenomD
λi

− dIMRPhenomHM
λi

dIMRPhenomD
λi

�
: ð12Þ

For a given intrinsic parameter, Δλi would quantify the
improvements on the parameter constraints from using
multimode templates.
For the following plots, the posterior over a parameter

from each run is clippedwithin its 90% credible intervals and
we plot them as a violin plot. For each parameter, the y axis
shows the value of the recovered posterior and the x axis
gives the injected inclination-recovery waveform combina-
tion. For example, if the recovery is for an edge-on injection
by IMRPhenomD, it is labeled as ι ¼ 90°PhnD. Posteriors for
q ¼ 2, 4, 8 systems are shown in blue, gray, and orange,
respectively. Wewill first discuss the results of IMRPhenomHM

injections.

A. IMRPhenomHM injections

The results of recovered intrinsic parameters for the
IMRPhenomHM injections are given in Fig. 2. The percentage
improvement in parameter measurements, Δλi , is shown for
λi ∈ ðMc;Mtotal; q; χeffÞ in Fig. 3.
We consider the face-on systems first, which are the left-

hand columns in each of the panels in Fig. 2 and the upper
panel in Fig. 3. For all mass ratios, at face-on inclination the
posteriors recovered by IMRPhenomHM and IMRPhenomD are
consistent with each other, show no bias, and are recovered
at very similar maximum likelihood. This is expected due
to the almost zero contributions (<10%) of higher-order
modes to total signal power at face-on inclination and due
to the underlying quadrupole model for IMRPhenomHM being
IMRPhenomD.
The log Bayes factor between IMRPhenomHM and

IMRPhenomD logðBPhnHM
PhnD Þ for all face-on systems is ≤ 4.

At q ¼ 2, the confidence intervals are almost identical
between IMRPhenomHM and IMRPhenomD recovery, although
the mass-ratio recovery shows a greater preference for
lower q. Any improvements in the measurement precision
are difficult to detect in the posterior plots, but are clear
in Fig. 3. We see that q is always recovered slightly better
by IMRPhenomHM even for the q ¼ 2 system, with an
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improvement of ∼5%, with the recovery of the other
parameters slightly less constrained at q ¼ 2. Although
the effect is small, for face-on signals, the higher-mode
content does lead to a slight improvement at higher mass
ratios, where we see that the total mass and effective spin
are recovered more accurately, and the effective spin
measurement is also more precise.
Now consider systems with inclination 60°. The effects

of higher modes are perhaps the most relevant for these
cases, because this is where we statistically expect to
observe greater number of signals; this is clear from, for
example, the IMRPhenomD inclination recoveries in Fig. 4,
which predominantly recover the observational prior.
In the middle column of each Fig. 2 panel, we see that
the IMRPhenomD recovery starts to show a bias away from
the true values and the parameters are recovered at com-
paratively lower likelihood. These effects are stronger with
increasing subdominant mode contribution to total signal

power. At q ¼ 2, the IMRPhenomD recovery ofMc andMtotal
are slightly biased away from the true value toward overall
higher total mass and more equal mass. For a given q, the
waveform length decreases (increases) at higher (lower)
total mass or more negative (positive) χeff . For q ¼ 2
system, the shift to an overall higher total mass is
compensated by higher χeff recovery. We might expect
that the increase in total mass puts more power into the
signal, to mimic the extra power that is there from the
higher harmonics, but we see the opposite trend for mass
ratios q ¼ 4 and q ¼ 8. Regardless of the parameter shifts
in the quadrupole-only model to find the best agreement
with the higher-mode signal, it is clear that best matching
IMRPhenomD signals does not agree especially well with the
true signal, as indicated by the drop in log-likelihood for
signals with increasing mass ratio.
Biases in IMRPhenomD recovery increase with inclination

and are most extreme for edge-on cases. Note that there are

FIG. 2. Posteriors of intrinsic parameters ðMc; q;MtotalðM⊙Þ; χeffÞ for IMRPhenomHM waveform injected at q ¼ 2, q ¼ 4, q ¼ 8 with
θJN ¼ 0°, 60°, 90°. Posteriors for q ¼ 2 (q ¼ 4) [q ¼ 8] are shown in blue (gray) (orange) with the opacity of each determined from the
maximum likelihood value of that run. The variation of opacity over the likelihood values is shown at the bottom of each graph. See
Sec. IVA for a description of these results, specifically, the bimodal posteriors recovered by IMRPhenomD at q ¼ 8, θJN ¼ 90°.
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also biases in the IMRPhenomHM recovery, but these are
caused by the prior. The inclination prior has very low
support from edge-on inclinations, and hence, the
recovered θJN posterior tends to have more support from
non-edge-on inclinations. This leads to an overestimation
of the distance. The amplitude (A) of a BBH source is
A ∝ M5=6

c =dL ¼ M5=6 ffiffiffi
η

p
=dL. At higher masses, Mc and

Mtotal are the better constrained mass parameters. Hence,
overestimating dL (with good constraints on Mc and
Mtotal) would lead to a higher value of η or, equivalently,
a lower q. This effect is what causes the slight bias on the
IMRPhenomHM recovered q for edge-on q ¼ 4 and q ¼ 8
IMRPhenomHM injections.
Returning to the IMRPhenomD recovery biases, the most

extreme case we see is that of the IMRPhenomD recovery
of the q ¼ 8 edge-on IMRPhenomHM injection. The recov-
ered posteriors show a bimodal distribution. For this
injection, IMRPhenomD sees the signal as two completely
different systems with parameters ½ðMtotal; q; χeffÞ∼
ð85; 7;−0.25Þ; ð63; 11;−1.Þ�, with comparable (but overall
very low) likelihood. Including the prior difference, the
posterior values around those two areas in the parameter
space are very similar, leading to the bimodality. As an
additional test, we checked that the bimodal distribution is
not due to sampling error by performing two additional
nested-sampling PE runs with 2048 and 4096 live points
and another MCMC run with 16 parallel chains and 5000
effective samples, but the bimodal distribution persists.
Two additional PE runs were then done where the sky
position of the signal was randomized while keeping the
polarization fixed and vice versa. The bimodality seen by
IMRPhenomD for the run in Fig. 2 is lost for these runs, but
the corresponding parameters recovered by IMRPhenomD

were (1) highly biased and (2) recovered with similar low
maximum likelihood (ΔLogðLÞ ∼ −95). The bimodality of
recovered parameters in Fig. 2 is a consequence of
IMRPhenomD seeing the signal as from two different but
equally likely systems, which is then lost when the signal
morphology changes with changing sky position and polari-
zation values. But, for all sky-position and polarization
combinations, parameters recovered by IMRPhenomD for
q ¼ 8 show a consistent bias toward lower total mass and
negative χeff . Also, logðBPhnHM

PhnD Þ for the bimodal run is≈94,
which implies that the signal as seen by IMRPhenomD is highly
unlikely as compared to IMRPhenomHM. All this suggests
that the observed bimodality is a combined effect of the
priors over the physical parameters and the inaccuracy of
IMRPhenomD toward recreating the true multimode signal.
Mc posteriors recovered by IMRPhenomHM are accurate

for all the cases. At face-on q ¼ 2, recovered q has large
support from near-equal mass systems, but this behaviour is
lost at higher inclinations. At edge-on q ¼ 4 and q ¼ 8,
mass ratio and Mtotal are slightly biased toward lower
values, with accurate recovery of the mass-spin parameters
for all other cases.

Where quadrupole models tend to recover a biased χeff
at higher inclinations, IMRPhenomHM recovery does not. For
the q ¼ 2 injections with θJN ¼ 60° and 90°, the recovered
χeff posteriors have almost the same width for IMRPhenomD

and IMRPhenomHM templates (Δχeff ∼ 0). Although the
spread of these posteriors is similar, χeff recovery with
IMRPhenomHM is accurate, whereas IMRPhenomD recovery is
biased.
We now consider the relative improvement in parameter

precision (i.e., the widths of the posteriors, irrespective of
any bias from the true injected values), as shown in Fig. 3.
At inclinations of 60° and 90°, the mass parameters

recovered by IMRPhenomHM are always better constrained
than corresponding IMRPhenomD recoveries (see middle
and bottom panels of Fig. 3), i.e., Δλi > 0. For a given
inclination-parameter combination, Δλi increases with
increasing q. For, e.g., θJN ¼ 60°, ΔMc

∼ 20%; 30%; 50%
for q ¼ 2, 4, and 8, respectively. The comparatively highΔλi
values for the edge-on q ¼ 8 configuration is due to the
bimodality of the IMRPhenomD recovered posteriors.Atq ¼ 4
and q ¼ 8, Δχeff ≥ 0 for all inclinations, and IMRPhenomD

recovers biased χeff posteriors for non-face-on inclinations
whereas IMRPhenomHM recovery is accurate for all configu-
rations. Overall, we observe better constraints on the mass
parameters for inclined system across the mass-ratio space.
The results in Fig. 3 illustrate that in addition to more

accurate parameter recovery when using a multimode
model, we also find improved precision in the parameter
measurements. We see that other than for face-on configu-
rations, the recovered mass and spin parameters are better
constrained (Δλi > 0), with the constraints improving with
increasing mass ratio and/or inclination.

B. Hybrid-NR injections

We now consider injections of the same physical
systems, but using hybrid-NR waveforms instead of
IMRPhenomHM. The purpose of this is to assess systematic
errors in the IMRPhenomHM model. If the hybrid-NR wave-
forms and the corresponding IMRPhenomHM waveforms
were almost identical, then the results from hybrid-NR
injections would be nearly identical to those in the previous
section. This would require not only that the IMRPhenomHM

model accurately capture all of the features of the NR
waveforms, but that the numerical errors in the higher-
mode content of the NR waveforms be insignificant, along
with the differences between the hybrids’ EOB inspiral and
the IMRPhenomHM inspiral. We do not expect any of these
requirements to hold, and so with hybrid-NR injections we
can determine which of the previous results is robust
against uncertainties in the IMRPhenomHM model, and for
which parameters and regions of the parameter space
systematic errors may contaminate measurements.
The results of recovered intrinsic parameters for hybrid-

NR waveform injections are given in Fig. 5. For these
injections, we will not plot Δλis, but will discuss them
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when relevant. For q ¼ 2, q ¼ 4, and q ¼ 8, at face-on
inclinations, posteriors recovered by IMRPhenomHM and
IMRPhenomD follow the same behaviour that we saw for
IMRPhenomHM injections. Parameters recovered by both
models are accurate, but the posteriors recovered by
IMRPhenomHM show slightly improved constraints on the
mass and spin parameters (Δλi ≥ 0). Given the weak
higher-mode content in face-on injections, it is not surpris-
ing that the results do not depend strongly on whether
IMRPhenomHM or hybrid-NR waveforms were injected.
The same is true for q ¼ 2 injections at all inclinations.

In some cases, the posteriors are wider for the hybrid-NR
injections, the most notable example being the
IMRPhenomHM recovery of Mtotal at θJN ¼ 60°. However,
it is not too surprising that recovery is more accurate and

precise when the injection was an instance of the waveform
model used for recovery, as with the IMRPhenomHM injec-
tions. The lack of any notable impact of systematic errors at
q ¼ 2 means that the bias in the quadrupole-only recovery
of χeff for the 60° injection is a robust result.
For q ¼ 4 and q ¼ 8 injections, we do see some clear

differences between the results from IMRPhenomHM and
hybrid-NR injections. To ease the interpretation of a large
number of results, we first focus on the recovery using
IMRPhenomHM, which is most relevant to future GW obser-
vations. Here we see that for most parameters the recovery
again does not change significantly between the two classes
of injections. There are two exceptions. One is the recovery
of the mass ratio for q ¼ 8 edge-on systems, where we see
that the prior effect, which leads to an underestimation of q,
becomes yet more pronounced with the hybrid-NR injec-
tion, and the true value is outside the 90% CI. The other
is the measurement of the total mass. The posteriors are
broader in the q ¼ 2 case for both 60° and edge-on
configurations, and for q ¼ 4 and q ¼ 8 the mass is clearly
biased. However, we also note that these are cases where
the quadrupole-only IMRPhenomD shows extremely large
biases, and the IMRPhenomHM recovery shows a clear
improvement.
As with the biases on mass parameters, biases on

IMRPhenomD recovered χeff for the hybrid-NR injections
follow the same behavior as for IMRPhenomHM injections
for q ¼ 2 and 4, but the bias for q ¼ 8 is in the opposite
direction. However, IMRPhenomHM is able to measure the true
value of χeff within its 90% CIs for all the configurations.
If we now look at the quadrupole-only recovery, we see

that there are many differences between the IMRPhenomHM

and hybrid-NR injections. Some of these are counterintui-
tive: for example, for q ¼ 8, 60° injections, the bias in the
chirp mass recovery is in opposite directions for the two
classes of injections. However, we note that in all of these
examples, the log-likelihood for the IMRPhenomD recovery is
low, and so it is possible for the parameters of best
agreement between IMRPhenomD and the injected waveform
to show greater variation; and note also that these will also
be sensitive to all of the intrinsic and extrinsic parameters.
Overall, we conclude that only in the most extreme cases

(q ¼ 8 and edge-on) do we see a risk of biases when using
IMRPhenomHM for parameter recovery, and in all cases it
shows an improvement, and often a dramatic improvement,
over a quadrupole-only model.

V. RECOVERY OF EXTRINSIC PARAMETERS

We saw inRef. [1] that one of themost significant impacts
of using a higher-multipole model for parameter measure-
ment is in the recovery of the binary’s inclination (θJN) and
distance (dL). In a quadrupole-only model, the only effect of
changing the inclination is to change the overall amplitude,
which is degenerate with a change in distance. The strength
of the (2,2) mode varies by a factor of 2 between face-on

FIG. 3. Plot of Δλi for all the IMRPhenomHM injections. Results
for face-on, 60°, and 90° inclination injections are shown in the
top, middle, and bottom panels, respectively. Δλi for the para-
meters ðMc;MtotalðM⊙Þ; q; χeffÞ are shown with red circle, black
cross, blue lower triangle, and green square, respectively.
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and edge-on systems (for the plus polarization), leading to
an uncertainty of roughly a factor of 2 in the distance
measurement. The inclination measurement is then domi-
nated by the prior, which is a combination of the inclination
dependence of the detector sensitivity (the sensitivity is
twice as sensitive to face-on systems) and the inclination
probability distribution, which is uniform in cosðθJNÞ. The
result is a distribution that peaks at∼30° and∼150°, and this
is reflected in the IMRPhenomD inclination recovery plots
below. In general, as was seen inRefs. [36,37,56,57], the use
of higher-order mode templates break the degeneracy
present between θJN, ψ , and ϕ that allows for better
measurements of inclination value and hence better distance
precision. We see that IMRPhenomHM is able to capture

inclination information better than IMRPhenomD and leads
to improved constraints on the distance.
In the following sections, we quantify these effects for

both IMRPhenomHM and hybrid-NR injections; the former
quantify the impact of higher multipoles, while the latter
allow us to investigate systematic biases due to approx-
imations in IMRPhenomHM.

A. θJN recovery

Figure 4 shows the results for inclination recovery for
both the IMRPhenomHM and hybrid-NR injections. For both
IMRPhenomHM and hybrid-NR injections, at all mass-ratio
and inclination configurations, θJN recovery by IMRPhenomD

FIG. 4. Recovery of θJN for IMRPhenomHM injection (top row) and hybrid-NR injections (bottom row) for inclinations 0°, 60°, and 90°
and with IMRPhenomHM and IMRPhenomD as recovery waveform models. Inclination recovery for q ¼ 2, 4, 8 configurations are shown in
the left, centre, and right columns, respectively, with the recovery for each inclination separated by horizontal dashed black lines. The
true value of the injections are given in dashed black, blue, and red lines for 0°, 60°, and 90°.
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shows a similar bimodal behavior and mostly follows the
prior, as discussed above. Inclination recovery is unaffected
by mass ratio or inclination value for the quadrupole-only
model and thus it is not possible to differentiate between a
noninclined and inclined system.
For IMRPhenomHM recovery, the bimodality for the incli-

nation posterior persists, but the posteriors are better con-
strained. At face-on configurations for IMRPhenomHM and
hybrid-NR injections, IMRPhenomHM sees the system as
strongly face-onor face-off. For60° IMRPhenomHM injections,
the recovered inclination is peakednear the truevalue and the
constraint on the inclination improves with increasing mass
ratio. The edge-on IMRPhenomHM injection posteriors show a
similar behavior. For hybrid-NR injections, inclination
recovery for 60° is peaked just off the true value and for
edge-on q ¼ ð2; 4Þ systems, the recovery is strongly biased.
This is not surprising: the systematic errors in the
IMRPhenomHM model enter almost entirely into the higher

multipoles, and so the largest systematic errors will be
observed for edge-on systems, where the higher multipoles
contributemost to the signal.We find, however, that it is only
for the edge-on cases that this bias appears. Since edge-on
systems are still roughly half as strong as equivalent face-on
systems, they are eight times less likely to be observed.

B. Distance recovery

Recall that injections were made such that the signal’s
SNR was 25 in all cases. Since the signal strength decreases
as mass ratio increases, and also as the inclination varies
from face-on to edge-on, the edge-on q ¼ 8 system is
injected at a much smaller distance (199 Mpc) than the
face-on q ¼ 2 system (895 Mpc). Although there is some
variation in the injection distance between the IMRPhenomHM

and hybrid-NR injections, due to the differences in their
higher-multipole content, these are small and are always

FIG. 5. Posteriors of intrinsic parameters ðMc; q;Mtotal; χeffÞ for hybrid-NR waveform injected at q ¼ 2, q ¼ 4, q ¼ 8 with θJN ¼ 0°,
60°, and 90°. Posteriors for q ¼ 2 (q ¼ 4) [q ¼ 8] are shown in blue (gray) (orange) with the opacity of each determined from the
maximum likelihood value of that run. The variation of opacity over the likelihood values is shown at the bottom of each graph.
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less than 10%. All of the injection distances are given in the
caption to Fig. 6.
Figure 6 shows the results for distance recovery. We plot

the relative percent distance error, which we define as

ΔdL ¼ 100

�
pðdposteriorL Þ − dinjectedL

dinjectedL

�
: ð13Þ

For IMRPhenomHM injections, the true distance value lies
within the 90% confidence intervals for most of IMRPhenomD

and all of IMRPhenomHM recovered posteriors. At larger
inclinations, the quadrupole model tends to overestimate
the distance to the binary. For q ¼ 2 hybrid-NR injections,
at inclinations 60° and 90°, 90% CIs for dL recovered by
IMRPhenomHM do not include the true value. For all other

FIG. 6. Recovered percent distance error ΔdL [see Eq (13)] recovery for IMRPhenomHM injection (top row) and hybrid-NR injections
(bottom row) for inclinations 0°, 60°, and 90° with IMRPhenomHM and IMRPhenomD as recovery waveform models. Distance recovery
for q ¼ 2, 4, 8 configurations are shown in the left, center, and right columns, respectively. The ΔdL ¼ 0 line is shown in horizontal
dashed black line, with the vertical dashed lines separating recovery for different inclinations. The injected distance value for
IMRPhenomHM injection for q ¼ ð2; 4; 8Þ 0° is (895, 624, 388) [880, 639, 398] Mpc, 60° is (537, 404, 258) [523, 376, 249] Mpc, and for
90° is (387, 307, 199) [367, 253, 183] Mpc. Fore q ¼ 8, 90°, hybrid-NR recovery by IMRPhenomD, ΔdL extends up to 400%.
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situations though, 90% CIs for dL recovered by
IMRPhenomHM contain the true injected value.
For quadrupole-only templates, as the recovered incli-

nation is the same for all injected inclinations, the recovered
distance for nonzero inclinations tend toward overall larger
values leading to larger ΔdL. For IMRPhenomHM injection—
IMRPhenomHM recovery, where injected θJN lies within the
90% CIs of recovered θJN, the real distance is recovered at
all times. For the q ¼ 2 and q ¼ 4 hybrid-NR injection—
IMRPhenomHM template, recovered θJN at 60° (90°), is
slightly (completely) off the true value which causes the
recovered distance to be overestimated from the true
value. This is likely due to the different mode content in
the signal and template and the waveform inaccuracies in
IMRPhenomHM. But, these results do indicate that use of
multimode template waveform will lead to better distance
measurements.
The improved constraints on inclination for

IMRPhenomHM recovery translate to improved constraints
on the measured distance of the system as compared to
IMRPhenomD recovery. We see this behavior for all the
configurations. At face-on configurations, IMRPhenomHM

constrains the distance about ∼20%–25% better as com-
pared to IMRPhenomD. For higher inclinations, the constraint
improves by about ∼30%–60%.

VI. CONCLUSIONS

This is the first study that quantifies the accuracy of
inferred source parameters using a multimode aligned-spin
model waveform. To do that, we consider two families of
nonspinning multimode signal waveforms (IMRPhenomHM

and hybrid-NR) over a range of mass ratios (q ¼ 2; 4; 8)
and inclinations (face-on, 60°, and edge-on), with fixed
total mass, and compare the parameters recovered by
multimode and quadrupole-only templates. In all cases,
we consider an SNR of 25. We fix the total mass of injected
signals at 100 M⊙; for three reasons (i) the relative
measurable signal power in the higher modes increases
with mass, and so the choice of a high mass allows us to
provide an estimate of the largest impact of higher modes in
likely LIGO-Virgo observations, for which total binary
masses above 100 M⊙ will be rare. (ii) IMRPhenomHM is an
approximate waveform model of the subdominant modes
that is not tuned to NR waveforms, and the most uncertain
part of the IMRPhenomHM modeling is in the merger and
ringdown phases. Hence, the choice of a high total mass
also allows us to also make a conservative estimate of
the systematic errors due to waveform inaccuracies.
(iii) IMRPhenomHM is a more computationally expensive
model than its quadrupole-only counterpart, and signals
with total mass 100 M⊙ allow us to quickly perform a large
PE study. Although, as previous studies have shown
[33–35], systematic errors due to neglecting higher-order
modes in template waveforms increase at higher masses.
Optimized versions of the model will make it easier to

perform a much more extensive study over a wider range of
parameters, including much lower masses.
Here is a summary of our main results.
Our key results on measurements of intrinsic parameters

are in Figs. 2 and 5. For face-on systems, there is no
appreciable bias in the quadrupole-only recovery at any
mass ratio. There are biases in the total mass of up to 10%
at 60° inclination and 20% or 30% for edge-on configu-
rations. For the edge-on q ¼ 8 configuration (IMRPhenomHM

injection), the signal matches the quadrupole-only model so
poorly that the recovery is bimodal. Mass ratio is strongly
biased toward equal-mass recovery for small mass ratios,
but shows less bias at higher mass ratios. (This point is
relevant to the observation GW170729 [8], where the
templates with higher-order modes were able to resolve
q between 1.25 and 3.3 at 90% confidence interval, i.e.,
providing strong evidence that the mass ratio was bounded
away from equal mass, while quadrupole-only models gave
a 90% CI from q ¼ 1 up to q ¼ 2.5.) The effective spin χeff
shows a bias of up to 0.2 for 60° inclination and cannot be
measured at all in some edge-on cases. Our results suggest
that bimodal parameters or, in less extreme cases, double-
peaked posteriors, might occur (for some cases) when
measuring high-mass-ratio systems with a quadrupole-only
model which could be resolved with multimode models.
The overall lower likelihood of recovered parameters by the
quadrupole-only model (compared to multimode model) at
high-mass-ratio high-inclination combination suggests that
the model cannot be trusted for accuracy in that region.
For IMRPhenomHM injections, recovery with a higher-

mode model not only removes these biases (as we would
expect, since the injection and recovery use the same
model), but also increases the precision of the measure-
ment. Figure 3 shows the percentage improvement in the
size of the 90% credible intervals over using a quadrupole-
only model. The improvement is up to 50% for 60°
inclination and up to 80% for edge-on configurations;
the improvement is roughly linear with mass ratio.1

Improvement in parameter recovery was also considered
in Ref. [37], but using a higher-mode model that did not
include spin. We find that the addition of the spin
dimension can significantly increase the widths of the
confidence intervals. For example, recovering a q ¼ 4,
M ¼ 100 M⊙, 60° inclination SNR ¼ 18 signals with a
nonspinnng model leads to an uncertainty in the chirp mass
of ΔMobs=Mobs ¼ 0.056 [37]. If we naively rescale to an
SNR of 25, the uncertainty would decrease to ∼0.04. By
contrast, the uncertainty when using a spinning higher-
mode model is 0.168, i.e., four times larger.
NR-hybrid injections show broadly consistent results,

indicating that the systematic errors in the IMRPhenomHM

model are in general small. The IMRPhenomHM recovery

1Note that improvement of 80% for q ¼ 8 edge-on is due to the
bimodal recovery of quadrupole-only model.
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gives comparable results between the IMRPhenomHM and
NR-hybrid injections, except for biases of up to 5% in the
total mass for q ¼ 4 and q ¼ 8 non-face-on cases; this is
less than the bias incurred by using a quadrupole-only
model. Results show larger differences in the IMRPhenomD

recovery between the two injection sets, but these are cases
where the log-likelihood is poorer, and so we ascribe these
less significance. Our conclusion is that the IMRPhenomHM

model leads to improved parameter measurements over a
quadrupole-only model in all cases; and except for high-
mass high-mass-ratio high-inclination signals with an SNR
of 25 or higher, systematic errors will not affect results.
This is quantified further in Fig. 7. Here we follow

Ref. [36], and plot the ratio of the systematic error to the
statistical error, δβλi , for the parameter λi. By “systematic
error” we mean the difference between the true injected
parameter and the mean of the marginalized one-dimen-
sional (1D) recovered posterior (in Ref. [36], the authors
use the difference between the maximum a posteriori value
and injected value), and by “statistical error” we mean the
standard deviation of the posterior. Since the standard
deviation corresponds to the 68% C.I., δβλi is a more
conservative estimate than if we had used the 90% CI.

As such, if the ratio is below ∼1.645, then the systematic
error is within the 90% CI and the measurement is not
considered to be biased. Figure 7 shows this error ratio for
the chirp mass, total mass, mass ratio, and effective spin.
Also shown are the results from Ref. [36], although care
should be taken in comparing the results, since that study
considered lower masses, higher SNRs, and different mode
content for the injections.
Inclination recovery is always improved when recover-

ing with a higher-mode model. With quadrupole-only
recovery, the distance-inclination degeneracy means that
largely the same posterior is recovered, regardless of
inclination (see Fig. 4), while the higher-mode model is
able to constrain the inclination. The trend in the
IMRPhenomD distance recovery is consistent with expect-
ations: for a signal with a high nonzero inclination, a
quadrupole-only template model gets more support from
nonedge on inclinations, suggesting that the (compara-
tively) weak signal is from further away and therefore dL
would be overestimated. A multimode template model can
better constrain the degeneracy between the inclination,
phase, and polarization values, leading to improved con-
straints on the inclination, which then translates to a better

FIG. 7. We plot the quantity δβλi for the parameters ðMc;Mtotal; q; χeffÞ for hybrid-NR injection results with the solid (dashed) lines
indicating the bias value for IMRPhenomD (IMRPhenomHM) recovery. δβλi for q ¼ 2; 48 are shown in red, black, and blue, respectively. The
systematic bias for the q ¼ 2, 6, M=M⊙ ¼ 51, 56 and SNR ¼ 48 configurations from Ref. [36] are shown in red (green) with the
quadrupole (multimode) recovered bias shown with a star (circle).

KALAGHATGI, HANNAM, and RAYMOND PHYS. REV. D 101, 103004 (2020)

103004-14



constrained measurement of distance. Distance recovery
is greatly improved with the higher-mode model. At face-
on configurations, IMRPhenomHM constrains the distance
about 20%–25% better as compared to IMRPhenomD.
For higher inclinations, the constraint improves by about
30%–60%. With improved multimode models, we can
expect improved inclination constrains and hence, dis-
tance measurements, with additional improvement from
those three-detector observations that have good polari-
zation measurements [53,61].
Systematic errors in IMRPhenomHM are worst for edge-on

higher-mass-ratio systems, where the approximations used
to produce the higher modes are least applicable, and this
shows up in the inclination recovery: we do not identify the
system as so clearly edge-on in the NR-hybrid injections
compared to the IMRPhenomHM injections, as seen in the
top panels of Fig. 4. As it is more likely that systematics
due to the model inaccuracies dominate at larger inclina-
tions, we can expect accurate parameter recovery at lower
inclinations.
As expected, priors can bias results for statistically less

likely configurations, i.e., edge-on, even when using a
higher-mode model. See, for example, the edge-on recov-
ery of the mass ratio q for the q ¼ 8 case in Fig. 2.
We note that this study is limited to binaries with total

mass M ¼ 100 M⊙ and does not include spinning signals,
or precession. The effect of black-hole spin on higher-mode
contributions is much weaker than the effect of mass ratio,
and given that LIGO-Virgo observations to date suggest
that astrophysical black holes in binaries predominantly
have very low spins [6,62], we expect the results of this
study to be relevant to the majority of observations made
with second-generation detectors. Since the impact of
higher modes decreases for lower masses, the results we
report here are likely to represent the largest impact higher
modes will have on GW observations. However, studies

that include spinning configurations, lower masses, and
precession, are still needed, to quantify the impact of higher
modes for yet stronger signals, or larger spins, where their
effects have not yet been quantified. For this study, we had
fixed the azimuth phase to zero and as was shown in [33],
this parameter can strongly affect parameter estimates.
It would be interesting to perform a similar study, but
with different azimuth phase values. Studies that consider
yet higher SNRs will also benefit from more accurate
models tuned to NR simulations, although we expect that
the IMRPhenomHM model will be sufficiently accurate for all
but the most extreme observations.
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