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Abstract

We ask whether a model of the US and Europe trading with the rest of the world

can match the facts of world behaviour in a powerful indirect inference test. One

version has uncovered interest parity (UIP), the other risk-pooling. Both pass the

test but the most probable is risk-pooling. This is consistent with risk-pooling fail-

ing a number of single-equation tests, as has been found in past work; we show

that these tests will typically reject risk-pooling when it in fact prevails. World

economic behaviour under risk-pooling shows much stronger spillovers than

under UIP with opposite monetary responses to the exchange rate. We argue that

the risk-pooling model therefore demands more attention from policy-makers.
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1 | INTRODUCTION

In this paper, we have a twofold empirical aim: to dis-
cover whether a three-country New Keynesian model of
the world economy can match world data behaviour and
as part of that endeavour whether a risk-pooling variant
of that model can also do so. We do this using a testing
and estimation approach, indirect inference, that has
been found in recent work (see Le, Meenagh, Minford,
Wickens, & Xu, 2016 and Meenagh, Minford, Wickens, &
Xu, 2018 for comprehensive surveys of this work) to
heavily dominate other non-Bayesian methods in the
small samples we typically have to deal with in open-
economy macroeconomics. When, as here, there are fun-
damental questions of what modelling assumptions are
appropriate, and the assumptions are the very things we
wish to test, Bayesian methods, which rely on generally
agreed priors, cannot be used. To anticipate our results,
we find that they overturn much of the conventionally
believed previous empirical findings on the issues here. It

is therefore important for readers to be thoroughly aware
of the power of the indirect inference methods we use,
even though they are not yet widely familiar among
open-economy macroeconomists.

A number of efforts have been made to create a
DSGE New Keynesian model of the world economy with
several countries, usually the US, Europe and the rest of
the world. These models however so far have not been
shown to be able to match data behaviour according to
the powerful indirect inference test, for example, Chari,
Kehoe, and McGrattan (2002), Kollmann et al. (2016)
and Le, Meenagh, Minford, and Wickens (2010). These
models have been estimated in various ways but the gen-
eral consensus has been that while some moments can
be matched a general matching of such a model to the
facts of the world economy is not possible. Yet much suc-
cess has been reported in matching single economy
models to these economies' data behaviour; for example,
DSGE models of the United States (e.g., Le, Meenagh, &
Minford, 2016) and China (e.g., Le, Matthews, Meenagh,
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Minford, & Xiao, 2014) separately successfully match
those economies' facts. We review this previous empirical
work on multi-country models below.

On the particular issue of consumer risk-pooling across
borders it is generally agreed according to a variety of
direct empirical tests that there is no evidence of it or even
of a weaker version of it in the form of uncovered interest
parity (UIP). Examples are for UIP Delcoure, Barkoulas,
Baum, and Chakraborty (2003) and Isard (2006), and for
consumption risk-pooling Obstfeld (1989), Backus and
Smith (1993), Canova and Ravn (1996), Crucini (1999),
Hess and Shin (2000), Razzak (2013), Burnside (2019). The
empirical testing in this work has been via predictive tests
on the exchange rate based on the single-equation rela-
tionship for UIP or regression of the single equation for
risk-pooling; co-integration tests are also used. However,
there are considerable difficulties with these approaches,
which we deal with carefully below. In this paper, we
embed these relationships in a full DSGE model and test
the model as a whole. Non-rejection implies success of the
model in all its parts.

In this paper, we attempt to find a simple New
Keynesian model of the world economy where in essence
we take the three-equation set-up of Clarida et al. (1999)
and extend it to embrace three economies, the United
States, Europe and the rest of the world (but this last
included only for its trade and not in a complete model
since our focus here is on the behaviour of the major
developed countries when linked together). We then use
our powerful indirect inference test of its ability to match
the data behaviour in the two economies. It turns out
that because the cross-equation restrictions on a three-
country model are dense, the empirical tests we are using
may have been set at too demanding a level which has
misled some previous researchers, including some of us
ourselves, into premature dismissal of these models.

We focus in particular on the capital movement rela-
tionships in these models: UIP and consumer risk-pooling.
With highly sophisticated financial markets capable of
providing insurance it has seemed a puzzle that the evi-
dence noted above does not favour either UIP or risk-
pooling. However, one of the problems in assessing this
evidence has been that all the variables in these hypothe-
ses are endogenous, creating difficult econometric issues.

Given the financial crisis and the upheavals it has
caused in monetary and regulatory policy, we have had
to approach monetary and related policy issues in a way
that would not complicate our simple set-up by creating
non-linear regime switches to the zero bound and the
accompanying adoption of Quantitative Easing (QE,
aggressive open market operations) and stringent bank
regulation. These are important issues, tackled in recent
work for the US by Le, Meenagh, Minford, Wickens, and

Xu (2016), Le, Meenagh, and Minford (2018) in the con-
text of the closed continental US economy. Instead of
focusing on these issues by such means, we assume that
the relevant interest rate in these models is the corporate
bond rate (AAA rated corporate bond yield for US, and
equally weighted average of France and Germany Corp
bond yield rate for European Area [EA]). This rate did
not hit the zero bound, unlike the rate on government
bonds. By implication of this choice of reference interest
rate, we think of monetary policy as influencing it by var-
ious policy means, including bank regulation, QE and
direct changes in central bank lending/deposit rates for
banks (which of course have gone negative at times).
Thus, our Taylor rule relates to this commercial credit
rate according to this interpretation.

In the rest of this paper, we first describe the model, in
Section 2, in both its standard version with uncovered inter-
est parity (UIP) and non-contingent bonds and also its risk-
pooling version with fully contingent bonds. In Section 3,
we go on to test the two versions, after estimation, against
the data behaviour of the two countries: we carefully discuss
the way our testing method works and the power of the test
we use. In Section 4 we compare and contrast the two ver-
sions, in their responses to shocks. Section 5 concludes.

2 | A SIMPLE OPEN-ECONOMY
FRAMEWORK

2.1 | The standard model with non-
contingent bonds

We model a world economy comprising two countries
(US and EA) and the rest of the world. The US and EA
share the same model structure, while the rest of the
world is included to pick up trade happening indirectly
between the US and EA economies. To save space, we
present in the following the basic model structure from
the point of view of US that we refer to as the “home”
country (denoted with subscript H). Unless necessary, we
omit to present the EA economy, which is “foreign” (den-
oted with subscript F) to US and have variables denoted
with asterisk. In Appendix A we provide the full listing of
the log-linearized model.

2.1.1 | Households

The representative household's preference is given by:

U =E0

X∞
t=0

βtϵt
1

1−σ
C1−σ
t −

1
1+φ

Nt
1+φ

� �
ð1Þ
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where β is the discount factor, ϵt is the time-preference
shock, σ is the inverse of consumption elasticity, φ is the
inverse of labour elasticity, and Ct is the aggregate con-
sumption index defined as:

Ct = 1−αð Þ1ηCH,t
η−1
η + α

1
ηC

η−1
η

F,t

� � η
η−1

ð2Þ

where CH,t =
Ð1
0
Ct hð Þγ−1

γ dh

� �γ−1
γ

is the CES index of goods

produced in home country, and CF,t =
Ð1
0
Ct fð Þγ

�−1
γ� df

� �γ�−1
γ�

is that of goods produced in foreign country. η>0 is the
degree of substitution between domestic and foreign
goods (Armington, 1969). α is the degree of openness
(and we assume α* = α). γ, γ* > 0 are the price elasticities
of differentiated goods.

We assume complete financial market in both the
home and foreign economies. Households who invest
both in domestic and foreign bonds, Bt and B�

t , have bud-
get constraint:

PtCt +Et
Bt+1

1+Rt

� �
+Et

StB�
t+1

1+R�
t

� �
≤Bt + StB

�
t +WtNt +TRt

ð3Þ

where Pt = 1−αð ÞP1−η
H,t + αP1−η

F,t

� � 1
1−η is the consumer price

index (see Gali & Monacelli, 2005), St is the nominal
exchange rate defined as units of home currency per unit
of foreign currency ($/¢), Rt and R�

t are the home and for-
eign nominal interest rates, Wt is the nominal wage, and
TRt is the lump-sum transfer.

The optimization problem of households is to maxi-
mize (1), subject to (3), by choosing Ct, Nt, Bt + 1 and B�

t+1

. The optimal conditions with respect to Ct and Bt+1 lead
to the Euler equation:

β
Etϵt+1

ϵt
EtCt+1

Ct

� �−σ Pt

EtPt+1
1+Rtð Þ=1 ð4Þ

which can be log-linearized to be:

ct =Etct+1−
1
σ

Rt−Etπt+1−�r+Etlnϵt+1− lnϵtð Þ ð5Þ

where ct = lnCt, Etπt + 1 = EtlnPt + 1 − lnPt = Etpt + 1 − pt
is the expected CPI inflation, and �r= β−1−1 is the
steady-state real interest rate.

The optimal conditions with respect to Bt + 1 and B�
t+1

imply:

1+Rt

1+R�
t
=
EtSt+1

St
ð6Þ

which can be log-linearized to find the UIP:

Rt−R�
t =Etst+1−st ð7Þ

where st = lnSt. Let real exchange rate be Qt =
StP�

t
Pt

and

therefore qt = st + p�t −pt in log-linearized form. The UIP
condition can be re-written in real terms as:

Etqt+1−qt = Rt−Etπt+1ð Þ− R�
t −Etπ

�
t+1

� 	 ð8Þ

2.2 | Firms

Following Calvo (1983), we let a fraction (1 − θ) of firms
re-optimize prices Pt(h) in each period, while the rest θ
keep theirs. Firms resetting prices maximize:

E0

X∞
k=0

θkMt,t+ k Pt hð ÞYt+ k hð Þ−PH,t+ kMCt+ kY t+ k hð Þ½ �

ð9Þ

by choosing Pt(h), subject to demand:

Yt+ k hð Þ= Pt hð Þ
PH,t+ k

� �−γ

Yt+ k ð10Þ

where MCt + k is the real marginal cost at t + k. The first

order condition implies the optimal reset price ~Pt hð Þ ,
which can be log-linearized and combined with the price

index of domestic goods

�
PH,t =

Ð 1
0 Pt hð Þ1−γdh

h i 1
1−γ

�
line-

arized around a zero-inflation steady state as usual, to
find the New Keynesian Phillips curve for domestic
inflation:

πH,t = βEtπH,t+1 + λm̂ct ð11Þ

where λ= 1−βθð Þ 1−θð Þ
θ , and ‘⋏’ denotes the percentage devi-

ation of a variable from the steady-state level.
In open economy, the general price level reflects also

imported products. Since the general price index in log-
linearized form is:

pt = 1−αð ÞpH,t + αpF,t: ð12Þ

The CPI inflation can be shown as:
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πt = 1−αð ÞπH,t + α pF,t−pF,t−1

� 	 ð13Þ

which can be further simplified, using the real exchange
rate equation (qt = st + p�t −pt), to:

πt = πH,t +
α

1−2α
qt−qt−1ð Þ ð14Þ

Substituting (14) into (11), it yields the open-economy
New Keynesian Phillips curve:

πt = βEtπt+1 + λm̂ct−
α

1−2α
βEt qt+1−qtð Þ− qt−qt−1ð Þ½ �

ð15Þ

To find the real marginal cost in (15), let the produc-
tion function of the whole economy be:

Yt =AtNt ð16Þ

where At is productivity and Nt is labour input. The unit
cost of output is Wt/Yt, where Wt is the nominal wage
rate. The real marginal cost per unit of output is
therefore:

∂ Wt=PH,tð Þ=Yt

∂Nt
=

Wt

PH,tAt
ð17Þ

which can be log-linearized to:

mct =wt−pH,t−at ð18Þ

where wt = lnWt and at = lnAt.

2.3 | The IS-PC-Taylor rule model

The above model can be condensed to the well-known
IS-Phillips curves model where for our “world model”
variant here we also assume the following trade equa-
tions (All expressed in log; again, seeing US as the home
economy):

Home import from foreign country:

imUS
EA,t = μyt−ψqt ð19Þ

Home import from the rest of the world1:

imUS
W ,t = νyt ð20Þ

Trade balance of the world economy:

ΞimUS
W ,t + 1−Ξð ÞimEA

W ,t = Ϝ�exUSW ,t + 1−Ϝð ÞexEAW ,t ð21Þ
where Ξ and Ϝ are the steady-state import/export ratios,
and the LHS of the equation can be seen as the output of
the rest of the world:

yRoWt =ΞimUS
W ,t + 1−Ξð ÞimEA

W ,t

The world's relative demand for US and EA products
is set by:

exUSW ,t = exEAW ,t +ψRoWqt ð22Þ

Assume that the home economy clears at
Yt = Ct + NXt where NXt is the net export. The national
income identity can be log-linearized and combined with
the Euler equation and the trade equations to find the IS
curve of the home economy:

yt =Etyt+1−c
1
σ
Θ Rt−Etπt+1−rÞ−xz1ΘEtΔy�t+1

�

−xm2ΘEtΔyRoWt+1 −xz3ΘEtΔqt+1 + εISt ð23Þ

where c and x are the steady-state consumption and
export ratios, Θ, z1 and z3 are combinations of structural
parameters, and εISt is the equation error which can be
interpreted as the demand shock (See details of deriva-
tion in Appendix B).

The Phillips curve can be re-written to reflect the rela-
tionship between CPI inflation and the “output gap” by
combining (15) and (18), using the national income iden-
tity, to be:

πt = βEt πt+1ð Þ+ κa yt−yptð Þ− α

1−2α
βEt qt+1−qtð Þ½

− qt−qt−1ð Þ�+ εPPt ð24Þ

where κa= λ σ 1
cΘ

−1 +φ
� 	

, and εPPt is the supply shock. In
particular, we assume that “potential output” ypt follows a
random walk process with drift (in the log form) as:

ypt −ypt−1 =Γyp + δ ypt−1−ypt−2ð Þ+ εypt ð25Þ

to reflect permanent impact of the productivity shock (εypt ).
Γyp in (25) is the deterministic trend of the potential out-
put, and δ<0 ensures that the process is trend stationary.

The model can be closed by setting a rule for mone-
tary policy, which we let it follow a Taylor rule:

1996 MINFORD ET AL.



Rt = ρRt−1 + 1−ρð Þ ϕππt +ϕy yt−yptð Þ� �
+ϕq qt−qsst

� 	
+ εRt

ð26Þ

where ρ measures the inertia of policy, ϕπ and ϕy are the
responses to inflation and output, and εRt is the policy
error. Here we allow for international monetary coopera-
tion such that monetary policy also responds to fluctua-
tions of the real exchange rate. On this occasion, the
home interest rate rises if the home currency depreciates;
the responsiveness is measured by ϕq.

Thus, Equations (19)–(26), together with the UIP con-
dition (8) and the ‘foreign’ equations omitted for the EA,
constitute a simple “world” model that we list in full in
Appendix A and treat as the benchmark model.

2.4 | The risk-pooling and UIP variants
of the model

As was noted by Chari et al. (2002), given that this model
has bond UIP via non-contingent nominal bonds, it pro-
duces real UIP which generates expected risk-pooling
from an initial position. That is to say that from wherever
the real exchange rate is today, it is expected that future
consumption in the two countries will move together
adjusting for movement in the real exchange rate. This
comes about because the real interest rate differential is
equal to the expected change in the real exchange rate
(due to UIP) and also to the expected change in the con-
sumption differential (adjusted for the risk-aversion
parameter) due to the two Euler equations. Therefore,
expected consumption will move together in the two
countries apart from the effect of the changing real
exchange rate.

This risk-pooling is “dynamic” because it is disturbed
by shocks to consumption preferences (there is no shock
to UIP in the model because second moments are all con-
stant). Viewed over time from some initial date, risk-
pooling is close to being delivered (exactly if utility is log-
arithmic in consumption). But there is no insurance
against preference shocks. If however consumers have
access to contingent nominal bonds, full risk-pooling
occurs, insuring against all shocks, so that the real
exchange rate is deterministically related to the ratio of
foreign to home consumption; this case also implies UIP.

This can be shown formally as follows—following
Chari et al. (2002):

a) Full risk-pooling via state-contingent nominal
bonds:

let the price at time t = 0 (when the state was x0) of a
home nominal state-contingent bond paying 1 (home
currency) in state xt be:

n xt,x0ð Þ= βf xt,x0ð ÞUc xt,x0ð Þ
P xt,x0ð Þ =

Uc x0ð Þ
P x0ð Þ ð27Þ

where β is time-preference and f(xt, x0) is the probability
of xt occurring given x0 has occurred. Now note that for-
eign consumers can also buy this bond freely via the for-
eign exchange market (where S is home currency per
foreign currency as above) and its value as set by them
will be:

n xt,x0ð Þ= βf xt,x0ð ÞU
�
c xt,x0ð ÞS xt,x0ð Þ
P� xt,x0ð Þ =

U�
c x0ð ÞS x0ð Þ
P� x0ð Þ ð28Þ

Here they are equating the expected marginal utility
of acquiring this dollar bond with foreign currency, with
the marginal utility of a unit of foreign currency at time
0. Plainly, the price paid by the foreign consumer must
be equal by arbitrage to the price paid by the home con-
sumer. Equating these two equations yields:

Uc xt,x0ð Þ
P xt,x0ð Þ =

Uc x0ð Þ
P x0ð Þ =

U�
c xt,x0ð ÞS xt,x0ð Þ
P� xt,x0ð Þ: =

U�
c x0ð ÞS x0ð Þ
P� x0ð Þ

ð29Þ

Now we note that the terms for the period t = 0 are
the same for all xt so that for all t from t = 0 onwards:

Uc xt,x0ð Þ
U�

c xt,x0ð Þ = κ
P xt,x0ð ÞS xt,x0ð Þ

P� xt,x0ð Þ: ð30Þ

where κ= Uc x0ð Þ
P x0ð Þ =

U�
c x0ð ÞS x0ð Þ
P� x0ð Þ is a constant.

Let us parameterize as above U =C 1−σð Þ
t ϵ= 1−σð Þ and

let qt = −pt + p�t + st be the real exchange rate (where a
rise is a US, Home, depreciation) as in our notation else-
where; ϵ is the shock to time-preference. Then this yields
the risk-pooling condition:

σ ct−c�t
� 	

= qt−vt ð31Þ

ignoring the constant: v is the difference between the logs
of the two countries' time-preference errors (These errors
will also form part of the two IS shocks).

To see that this implies the UIP relationship, use the
Euler equations for consumption (e.g., for home con-
sumers ct = − 1

σ
Rt−Etπt+1

1−B−1 − lnϵt

 �

, where B
−1 is the forward

operator keeping the date of expectations constant).
Substituting for consumption into the risk-pooling equa-
tion gives us UIP: Etqt+1−qt = Rt−Etπt+1ð Þ− R�

t −Etπ�t+1

� 	
.

b) When there are only non-contingent bonds then
arbitrage forces UIP. When this is substituted back into
the Euler equations it yields:

σ 1−B−1
� 	

ct−c�t
� 	

= 1−B−1
� 	

qt−vtð Þ ð32Þ
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Hence now the risk-pooling condition occurs in
expected form from where it currently is. But any shocks
may disturb it in the future.

Thus with full risk-pooling under state-contingent
bonds relative consumption is exactly correlated with the
real exchange rate and time-preference shocks. But under
non-contingent bonds it is subject to all shocks: it is only
expected to be correlated exactly from where it cur-
rently is.

We continue with the model under both these vari-
ants: our “default” variant contains UIP, and we consider
the risk-pooling variant as an explicit alternative where
the UIP Equation (8) is replaced with the risk-pooling
Equation (31).

3 | SINGLE-EQUATION TESTS OF
UIP AND RISK-POOLING

3.1 | Single-equation tests of UIP

As noted in the introduction, there is a large empirical lit-
erature testing UIP and risk-pooling by single-equation
methods. Begin with the UIP equation:
Rt−Etπt+1ð Þ− R�

t −Etπ�t+1

� 	
−Etqt+1 + qt =0.

Here the usual single-equation test is a predictive test,
to see whether the actual future real exchange rate obeys
the rational expectation prediction of the equation. Thus
qt + 1 = Etqt + 1 + et + 1; and so:

qt+1 = Rt−Etπt+1ð Þ− R�
t −Etπ

�
t+1

� 	
+ qt + et+1 ð33Þ

becomes a predictive equation. Many authors have found
it predicts poorly and have concluded that UIP does not
hold. On the assumption of negligible transaction costs
so that Covered Interest Parity holds, the right hand side
is equal to the real forward rate, ft. So the prediction
question can then be thought of as how well does the for-
ward rate predict the future spot rate?

We can bootstrap our IS-PC-Taylor rule model to rep-
licate the property of this test under the null hypothesis
of UIP. We do it for the real exchange rate. The analysis
is carried out as follows: we first create 1,000 bootstrap
samples by bootstrapping all the model errors; we then
test for H0 : �e=0, for each sample, at the 5% significance
level, with test statistic calculated as in standard forecast-

ing tests by Z= �ei−�e
std eitð Þ= ffiffiffi

T
p where i is the ith bootstrap and

T is the sample size; we then compute the rejection rate
of these sample, treating each as a single-equation test of
the null hypothesis. We find that the test is heavily biased
towards rejection, with a rejection rate of 16.9% (instead

of 5%), as can be seen from Table 1 What this means is
that the test is rejecting the (true) zero mean forecasting
error of UIP nearly three times too much, 16.9% against
the 5% the unbiased test would give. This is equivalent to
applying a normal deviate of 1.37 as the rejection thresh-
old compared with the appropriate 1.96. Equivalently the
t-values of the test are over-stated by a third.

What is the reason for this bias in the test? It is small
sample bias. In a small sample, the tails of the population
distribution will be under-represented in a number of
samples, so that their standard deviation is smaller than
the population standard deviation. Such samples will
reject the zero mean hypothesis too often. There will also
be samples in which the tails are over-represented, to
compensate, keeping the average standard deviation
across all samples in line with the population standard
deviation. These will under-reject the zero mean hypoth-
esis. But there are less of these samples than the former
because the probability of getting tail draws in a sample
is low compared with that of not getting them. Hence the
rise in the number of rejections across all samples from
the 5% nominal rate was observed.

A more widely used test of UIP is to estimate the
regression of
qt+1−qt = a+ b Rt−Etπt+1ð Þ− R�

t −Etπ�t+1

� 	� �
+ et+1, and

then test a = 0 and b = 1. To examine the extent of the
bias in this regression we use the same Monte Carlo
experiment in which we assume the model with UIP is
true, creating 1,000 samples from this model. We then
run the OLS regression on each sample and see how
often the null hypothesis of a = 0 and b = 1 is rejected at
the usual 5% threshold using the F test. We find, as
reported in Table 2, a rejection rate of over 70%, whereas
with an unbiased test it would be just 5%—again, a mas-
sive bias towards rejection.

What is the source of this bias? Again it is due to
small sample bias: the small samples on which the
regression is being run. The true relationship across the
whole population is a = 0 and b = 1. But in any one sam-
ple the relationship can vary according to the data drawn
in that sample from the model bootstraps; these data
draws have high variance because all the model's shocks
are drawn to create both the interest differential and the
real exchange rate movement. Thus here the sample vari-
ation causes wide variations in the OLS estimates: notice
that in our test above of forecasting accuracy, we imposed

TABLE 1 Monte Carlo forecasting test of UIP

Forecasting equation:
qt+1 = Rt−Etπt+1ð Þ− R�

t −Etπ�t+1

� 	
+ qt + et+1

Reject rate of H0 : �e=0 at the 5% level 16.9%
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a = 0, b = 1, so preventing this OLS source of bias, and
merely getting the bias due to tail draws. We can illus-
trate this OLS bias by showing 10 samples side by side,

each with their OLS regression line; and compare them
with the regression line for all samples pooled together,
creating a large sample. It is plain, as we show in Figure 1,
how variable the 10 sample slopes are, whereas the large
sample pooled regression has approximately a = 0 and
b = 1 showing a slope of unity passing through the (0, 0)
intercept as assumed in the true model.

3.2 | Single-equation tests of risk-pooling

If we turn now to the single-equation time-series tests of
the risk-pooling equation, we see that they examine two
time series—of the consumption differential and the real
exchange rate—allowing for a random i.i.d. error:

TABLE 2 Monte Carlo OLS estimates of UIP

UIP regression:
qt+ 1−qt =a+b Rt−Etπt+ 1ð Þ− R�

t −Etπ�t+ 1

� 	� �
+ et+ 1

a b

“True” values 0 1

Mean OLS estimates −0.1624 (s.e.
0.2128)

0.8990 (s.e.
0.2481)

Reject rate of H0 : a = 0,
b = 1 at the 5% level

72.7%

FIGURE 1 Samples of OLS regression with simulated data [Colour figure can be viewed at wileyonlinelibrary.com]
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ct−c�t
� 	

= a+ bqt + et ð34Þ

Here the question is whether the error created from
the difference between the two time series behaves in line
with the risk-pooling hypothesis. Because both the con-
sumption ratio and the real exchange rate are non-sta-
tionary, one may here carry out a co-integration test, to
see whether the two series vary together as the risk-
pooling hypothesis states: this test tests whether the error
from an OLS regression is stationary or not, using the
ADF test. Typically studies find a lack of co-integration,
rejecting the hypothesis.

The problem however is that the risk-pooling equa-
tion includes the relative shock to consumers' time-pref-
erence, vt, as derived in (31). This is an exogenous
variable, not an i.i.d. shock. It could be recovered from
the two countries' Euler equations; but this is not usually
done and if done would need to respect the rational
expectations restrictions on expected future consumption
in the Euler equation coming from the whole model solu-
tion. It is plainly an important time-series shock, which
is included in the macro model. Simply leaving it out of
the regression creates omitted variable bias for the esti-
mated equation—a serious and possibly fatal specifica-
tion error.

To find out what this problem might do to these co-
integration tests, we again run a Monte Carlo experiment
as above; but on this occasion, we generate bootstrap
samples for the consumption differential and the real
exchange rate from the risk-pooling variant of the model,
in which there is co-integration by construction. We then

compute how frequently co-integration is rejected, by
testing the stationarity of the residual of the risk-pooling
regression (34) for each sample (Co-integration is rejected
if the ADF test fails to reject the null hypothesis of
unit root).

Table 3 shows that, depending on exact lags and trend
assumptions used in the test, the rejection rate of co-inte-
gration at the 5% level lies between 70–93%. Thus, the
test is very strongly biased against co-integration: the
risk-pooling model from which these errors come implies
co-integration on the true equation, but the general lack
of co-integration comes from the omitted relative shock
to consumers' time-preference (vt) in the risk-pooling
regression. Effectively it is this omitted shock that
ensures co-integration.

Another widely used test of the risk-pooling hypothe-
sis tests the estimates of a and b of the risk-pooling
regression, in a similar way to the F test applied to the
UIP regression reviewed above. The difference is that on
this occasion the null hypothesis changes to H0 : α = 0,
b = 1/σ, as implied by the macro model. We can use the
same Monte Carlo experiment as above to examine the
bias of the test at the 5% threshold.

Table 4 shows the mean OLS estimate of a to be
−1.99 against a true value of zero, and that of b to be 0.23
against a true value of 0.63. Clearly, these estimates are
highly biased. The average estimate of b has an average t-
value of only 1.2, so clearly these regressions will typi-
cally find an insignificant coefficient for b. The rejection
rate of the null hypothesis of α = 0 and b = 1/σ is near
85%, which is massively over-sized compared to the 5%
level.

What we have found therefore is that if the risk-
pooling model is correct the regressions performed on
sample data generated from it will find an insignificant
relationship between the real exchange rate and relative
consumption and also a lack of co-integration because
the key error in this relationship is omitted—an impor-
tant mis-specification. In addition small sample bias will
occur here as for UIP, with data variation in the small
samples high relative to that in the population. This
strong bias towards rejection of risk-pooling in single-
equation tests is thus coming from omitted variable bias

TABLE 4 Monte Carlo OLS estimates of risk-pooling

RP regression: ct−c�t
� 	

=a+ bqt + et

a b(=1/σ)

‘True’ values 0 0.6269

Mean OLS estimates −1.9904 (s.e.
0.3135)

0.2331 (s.e.
0.1917)

Reject rate of H0 : a = 0,
b = 1/σ at the 5% level

84.5%

TABLE 3 Rejection rate of co-

integration between consumption

differential and real exchange rate

ADF test with drift

Lag = 1 Lag = 2 Lag = 3 Lag = 4 Lag = 5 Lag = 6 Lag = 7 Lag = 8

69.8% 75.6% 77.9% 82.5% 83.7% 85.6% 87.1% 87.9%

ADF test with drift and trend

Lag = 1 Lag = 2 Lag = 3 Lag = 4 Lag = 5 Lag = 6 Lag = 7 Lag = 8

76.6% 82.4% 86.9% 89.2% 91.0% 92.6% 92.7% 93.3%
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on top of the small sample bias that also bedevils the UIP
tests.

4 | EMPIRICAL METHODS

4.1 | Indirect inference

We now turn to an indirect inference test of full models
with either UIP or risk-pooling embedded in them. The
idea is that any major fault in these models should lead
to their rejection with high likelihood; this power of our
test is something we establish below with Monte Carlo
simulations. Plainly either UIP or risk-pooling are key
relationships in the model that if wrong should produce
rejection: both have strong implications for the behaviour
of all the model's variables.

Indirect Inference is a relatively unfamiliar method of
estimation and testing. We use it here because we need a
method that will powerfully reject a mis-specified model
in the small sample that we have (around 168 quarterly
observations). The two main alternatives today are Bayes-
ian estimation with strong priors or Maximum Likeli-
hood (equivalent to Bayesian estimation with flat priors).

The former is an appropriate method when much is
already known about the issue at hand, so that priors can
be set out that command general assent; often the case in
the physical sciences and indeed in some parts of the
social sciences. However, this condition does not apply
here: the macroeconomics of the world economy is not
much explored and remains controversial.

Maximum Likelihood estimation is based on mini-
mizing the model's now-casting prediction errors and its
associated test is based on the likelihood implied by these

TABLE 5 Rejection rates of

falsified model at the 5% significant

level

Tests with US and EA outputs Tests with US and EA outputs + RXR

Falseness UIP model R-P model UIP model R-P model

1% 28.0 13.7 42.4 27.3

2% 46.8 29.4 55.3 46.8

3% 81.0 69.6 81.6 77.3

5% 100.0 99.6 100.0 100.0

7% 100.0 100.0 100.0 100.0

10% 100.0 100.0 100.0 100.0

15% 100.0 100.0 100.0 100.0

20% 100.0 100.0 100.0 100.0

FIGURE 2 Observed data series in both models [Colour figure can be viewed at wileyonlinelibrary.com]
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errors. The two main difficulties of this method are first
that it exhibits high estimation bias in small samples and
second that the power of the test in small samples is also
rather limited and in particular its power to reject a mis-
specified model is close to zero, because such a model
can be fitted closely to the data, so creating small errors.
Le, Meenagh, Minford, Wickens, and Xu (2016) carried
out a Monte Carlo comparison of this method with indi-
rect inference, treating the widely used Smets and
Wouters (2007) model of the US as the true model, and
concluded that, while indeed ML methods suffered from
these problems, by contrast indirect inference offered
very low bias and potentially large power. The method

involves first describing the data behaviour in the sample
by an “auxiliary model,” for which we use a VAR; and
then simulating the DSGE model by bootstrapping its
innovations to create many parallel samples (or histories)
from each of which implied auxiliary model coefficients
are estimated, generating a distribution of these coeffi-
cients according to the DSGE model. We then ask whether
the VAR coefficients found in the actual data sample
(actual history) came from this distribution with a high
enough probability to pass the Wald test (where we put
the test threshold at 5%). Notice that when we bootstrap
these shocks we do so by time vector, that is to say we
draw all the innovations for one period together when we
randomly select shocks. This preserves any simultaneous
correlation between them which may well be important
because a single event source can trigger shocks all over
the economy—as in the recent financial crisis.

4.2 | The auxiliary model

The state-space representation of log-linearized DSGE
model in general has a restricted VARMA representation
for the endogenous variables or a finite order VAR
model. However, if the observed data are non-stationary,
following Meenagh et al. (2018) and Le, Meenagh, and
Minford (2016), an unrestricted version of VECM can be
used as an auxiliary model when errors are stationary.
The VECM model is an approximation of the reduced
form of DSGE model and can be represented as a coi-
ntegrated VAR with exogenous variables (VARX) model.

Suppose the structural model can be written in log-
linearized form as:

A Lð Þyt =B Lð ÞEtyt+1 +C Lð Þxt +D Lð Þet ð35Þ

where yt is a vector of endogenous variables with dimen-
sion p × 1 and xt is a vector of exogenous variables with
dimension q × 1. We assume xt are non-stationary and
follows a unit root process:

Δxt = a Lð ÞΔxt−1 + d+ c Lð Þϵt ð36Þ

The disturbances et and ϵt are both vectors of i.i.d.
error processes with zero means. L denotes the lag opera-
tor and A(L), (B(L), a(L), c(L) are polynomial functions
having roots lying outside the unit circle.

The general solution of yt is given by:

yt =G Lð Þyt−1 +H Lð Þxt + f +M Lð Þet +N Lð Þϵt ð37Þ

where f is a vector of constants and polynomial functions
in lag operator. Since yt and xt are both non-stationary,
the solution has p cointegrating relationships such that:

TABLE 6 Fixed parameters and steady-state ratios

Parameter Definition Value

β Discount factor 0.99

μ Income elasticity of US import from
EA

1.00

ν Income elasticity of US import from
RoW

1.00

ψ Exchange rate elasticity of US import
from EA

0.80

μ* Income elasticity of EA import from
US

1.00

ν* Income elasticity of EA import from
RoW

1.00

ψ * Exchange rate elasticity of EA import
from US

0.80

ψRoW Exchange rate elasticity of RoW
import from US relative to EA

0.80

c Steady-state US consumption to US
output ratio

0.66

x Steady-state US export to US output
ratio

0.12

c* Steady-state EA consumption to EA
output ratio

0.55

x* Steady-state EA export to EA output
ratio

0.30

m1 Steady-state US export to EA to US
output ratio

0.02

m2 Steady-state US export to RoW to US
output ratio

0.10

n1 Steady-state US import from EA to US
output ratio

0.03

n2 Steady-state US import from RoW to
US output ratio

0.09

F Steady-state US export to RoW to RoW
output ratio

0.60

Ξ Steady-state US import from RoW to
RoW output ratio

0.40

2002 MINFORD ET AL.



yt = I−G Lð Þ½ �−1 H Lð Þxt + f½ �
=Πxt + g ð38Þ

where Π is a p × p matrix with a rank 0 ≤ r < p, with r
being the number of linearly independent cointegrating
vectors. In long run, the solution to the model is
given by:

�yt =Π�xt + g ð39Þ

�xt = 1−a 1ð Þ½ �−1 dt+ c 1ð Þξt½ � ð40Þ

ξt =
Xt−1

i=0

ϵt−s ð41Þ

where �yt and �xt are the long run solution to yt and xt
respectively. The generic solution of �xt can be
decomposed into a deterministic trend �xtd = 1−a 1ð Þ½ �−1dt
and a stochastic trend �xts = 1−a 1ð Þ½ �−1c 1ð Þξt .

TABLE 7 Estimated parameters

Calibration II estimation

Parameter Calibration UIP R-P UIP R-P

US EA US EA US EA US EA

σ Inv. of inter-temporal cons. Elasticity 1.380 1.390 1.380 1.390 3.550 2.051 1.595 1.540

φ Inv. of labour elasticity 1.830 2.500 1.830 2.500 2.658 3.460 3.507 2.052

θ Calvo-non-adjusting probability 0.660 0.960 0.660 0.960 0.653 0.669 0.832 0.877

λ 1−βθð Þ 1−θð Þ
θ 0.179 0.027 0.179 0.027 0.188 0.167 0.036 0.018

κα λ σ 1
cΘ

−1 +φ
� 	

0.665 0.008 0.665 0.008 1.628 1.234 0.221 0.092

α Degree of openness 0.400 0.400 0.400 0.400 0.158 0.158 0.236 0.236

ρ Monetary policy inertia 0.810 0.960 0.810 0.960 0.217 0.561 0.940 0.776

ϕπ Monetary policy response to inflation 2.040 1.690 2.040 1.690 2.618 3.944 2.385 2.017

ϕy Monetary policy response to output 0.12 0.120 0.12 0.120 0.591 0.117 0.893 0.752

ϕq Monetary policy response to RXR 0.500 0.500 0.500 0.500 0.143 0.128 0.949 0.876

Wald percentile 100 100 92.6 80.4

T-stat (p-value) 6.60 12.17 1.413(0.074) 0.847(0.196)

FIGURE 4 Structural shocks implied by the risk-pooling model: 1971–2011 [Colour figure can be viewed at wileyonlinelibrary.com]
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The solution of yt in Equation (37) can be re-written
as in the cointegrated VECM with a mixed moving aver-
age process ωt:

Δyt = − I−G Lð Þ½ � yt−1−Πxt−1ð Þ+P Lð ÞΔyt−1 +Q Lð ÞΔxt
+ f +ωt

ð42Þ
ωt =M Lð Þet +N Lð Þϵt

The VECM can be approximated by:

Δyt = −K yt−1−Πxt−1ð Þ+R Lð ÞΔyt−1 + S Lð ÞΔxt + g+ ζt
ð43Þ

where ζt is an i.i.d. process with zero mean. Since
g=�yt−1−Π�xt−1, the VECM can also be written as:

Δyt = −K yt−1−yt−1Þ−Π xt−1−xt−1Þð �+R Lð ÞΔyt−1ð½
+ S Lð ÞΔxt + h+ ζt ð44Þ

Either of Equation (43) or (44) can serve as the auxil-
iary model. In particular, Equation (44) distinguishes
between the effect of the trend component of xt and the
temporary deviation of xt from trend; it can be re-written
to be a VARX (1) in level:

yt = I−K½ �yt−1 +ΠK�xt−1 + ηt + vt ð45Þ

where �xt−1 contains the stochastic trends in the exoge-
nous variables, ηt is included to pick up the deterministic
trends in yt, and vt is a vector of the error terms.

For doing the Wald test, we calculate the Wald statis-
tic where we account for the VAR coefficients of the
lagged endogenous variables (I − K) and the variances of
the VAR errors Var(vt) that we take as descriptors of the
data. We are not interested in matching the time trends
and the coefficients of the exogenous variables (the two
potential outputs on this occasion), and we assume that
the model coefficients yielding these balanced growth
paths and effects of trend productivity on the steady state
are chosen accurately.

4.3 | Choosing the variables to be
matched by indirect inference

A central question to be addressed in testing a model by
indirect inference is choosing the power of the test. In
practice, this is equivalent to choosing which variables to
put in the auxiliary model—which here we put in the
form of a VAR. Other forms of auxiliary model could be

used instead, such as moments or IRFs, with similar
results, as discussed in Le, Meenagh, Minford, Wickens,
and Xu (2016). Le, Meenagh, Minford, Wickens, and
Xu (2016) show that, as the number of variables and the
order of the VAR rise, the power of the test increases up
to the point where the full reduced form VAR of the
model is reached. For example in Smets and
Wouters (2007), the full reduced from is a VAR (4) in
seven variables, implying some 200 VAR coefficients in
all. Plainly each of these carries additional information
about the implications of the model for the data.

Policy-maker using a macro model (or any other user)
would like to find a model that passes the test, in order to
make progress in assessing the effects of policy and also
the accuracy of the assessment. A model that does not
pass the test cannot be of any use in this respect. On the
other hand the test needs also to have considerable power
in order to discriminate between good and bad models
and to ensure that the model chosen is reasonably accu-
rate. Thus the most powerful II test will reject any model
that is as little as 1% inaccurate; effectively only admit-
ting a model that “is the real world.” The least powerful
may admit models of considerable inaccuracy.

To assess how many variables should be included and
what order of VAR requires us to examine the power of
various combinations on the type of model we are inves-
tigating. This can be done by Monte Carlo simulation.
After some experimentation with different variables and
VAR orders we found that just two key variables in a
VAR (1)—the two outputs from each country—provide
substantial power in testing this two-country model. We
include these two variables and also the variances of their
residuals in our auxiliary model.

4.3.1 | The power of test for a two-
variable VARX (1): Some Monte Carlo
experiments

In this section, we examine the relative power of the II
test on alternative false models. We do so by first estimat-
ing both the UIP and risk-pooling models which we treat
as the “true” models, and then using them to generate
1,000 sets of simulated data by bootstrapping the struc-
tural shocks identified over the sample period. These sim-
ulated data are then fitted to a VARX (1) for a
distribution of the VAR parameters to be found. This also
gives us a distribution of the Wald statistics of the true
models which we know at the 95 percentile (i.e., at the
5% level of significance) 5% of the true model simulations
will be rejected. The corresponding Wald statistic is the
critical value of the Wald test at the 5% significance level.
To evaluate the power of the test against the two models,
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in the next step we falsify each of them by biasing their
parameters by a percentage and generate false simula-
tions with the biased models. We then find the distribu-
tion of the Wald statistics just as before, but in this case
we calculate the rejection rate by using the 5% critical
values found with the true models. We try different
degrees of falseness.

The Monte Carlo experiment results for each of the
models are reported in Table 5. It can be seen that the
power of the test with just the two outputs is very
high. When all parameters of the UIP model are falsi-
fied by only 5%, the model is rejected 100% of the
time; with only 3% falsification it is rejected 81% of
the time. The test power for the risk-pooling model is
similar. If we add just one variable to the two outputs,
the real exchange rate, the power rises sharply for
both models.2

4.4 | Data and calibration

We now confront the model described above to the quar-
terly US and euro area data between 1970Q1 and 2011Q4
which we plot in Figure 2. Certain parameters are fixed
throughout; others are calibrated to begin with and then
re-estimated by indirect inference.

Of the fixed parameters, we set the discount factor (β)
for both economies to 0.99 to imply a steady-state annual
real interest rate of 4%. The steady-state consumption-to-
output ratio (c) is set to 0.66 for US and 0.55 for EA,
while the export ratios (x) are 0.12 and 0.30, respectively.
Other fixed parameters/steady-state ratios are detailed in
Table 6.

For the parameters that are to be re-estimated later,
we mainly follow Smets and Wouters (2007) in setting
the starting values: the inter-temporal elasticity of substi-
tution σ and elasticity of labour supply φ are set to 1.38
and 1.83, respectively; the Calvo non-adjusting probabil-
ity is 0.66, which suggests nominal prices are on average
adjusted every three quarters. The persistence of nominal
interest rate is set to 0.81, while the response to inflation
is 2.04 and that to output gap is 0.12. In our specification,
we let nominal interest rate respond also to changes in
real exchange rate and the response is 0.5. For the euro
area, we follow Smets and Wouters (2003): thus σ and φ
are 1.39 and 2.50, respectively; the Calvo parameter is
0.9; the Taylor rule coefficients are 0.96 (persistence),
1.69 (inflation response) and 0.12 (output response), and
we let the real exchange rate response be the same as that
of the US. These calibrated values are listed in Table 7 in
comparison to the estimated values.

4.5 | The models' performance

In Table 7, we report the test results for the two models
according to indirect inference. Not surprisingly, the cali-
brated models are severely rejected. However, after re-
estimation, the UIP model can jointly match the behav-
iour of the two outputs with a t-statistic of 1.4 and Wald
percentile of 92.6, thus a p-value of 0.074. This result is in
line with the empirical finding of Le, Meenagh, Minford,
and Ou (2013) that a large UIP-based world model of the
US and the EA, essentially following the full Smets–
Wouters specification in both continents, matched a VAR
using the subset of the two outputs.

FIGURE 3 Structural shocks implied by the UIP model: 1971–2011 [Colour figure can be viewed at wileyonlinelibrary.com]

MINFORD ET AL. 2005

http://wileyonlinelibrary.com


What is an entirely new finding is that a model with
risk-pooling, a stronger hypothesis than UIP, will also
jointly match the same behaviour. Furthermore, it does
so with a considerably higher probability, with a t-statis-
tic of 0.8 and a Wald percentile of 80.4, thus a p-value of
0.196—nearly three times that of UIP.

4.6 | How accurate are these estimates?
robustness considerations

The error in the R-P equation is shown in the paper (Fig-
ure 4 as detailed in the next section): this is created by
the consumption preference errors, observed here as the
residual of the R-P equation. Consumption itself is
substituted out of the model into the IS curve for total
demand. This error process is only observed from the R-P
equation itself, which is imposed in the model; to derive
it, we assume, as in the model, CRRA consumption pref-
erences, which gives the additive error, vt, and the param-
eter 1

σ on qt, in the equation. CRRA utility is standard
across these macro models—partly because this utility

form ensures a balanced growth path and partly because
it is generally found to fit the consumption data—and
sigma is the estimated parameter of risk-aversion. Given
that the model as a whole is estimated as the most proba-
ble based on data behaviour, what we can say about
robustness—that is, “how confident can we be about the
truth of the model?”—emerges from our Monte Carlo
experiment on power. This experiment asks how far from
the true model parameters must be to be rejected 100% of
the time by our test. We establish through this that the
true model parameters, including consumer risk-aversion,
cannot in general lie more than 5% from the estimated
ones, since the latter passed our test. We also know from
other work on similar macro models (Le, Meenagh,
Minford, Wickens, & Xu, 2016; Meenagh et al., 2018) that
model mis-specification is rejected 100% of the time; so we
can be entirely confident that entirely different specifica-
tions (including of consumption utility) cannot be correct.
To put these results another way, we can give assurance—
and be robust in our belief—that the true model, including
in its consumption aspects, lies fairly close to the model
and parameters we have estimated.

TABLE 8 Stationarity and

persistence of shock processesShocks
P-value

Persistence
US UIP R-P Stationarity UIP R-P

Demand 0.01 0.00 I(0) + trend 0.88 0.62

Productivity 0.52 0.52 I (1) 0.95 0.95

Supply 0.00 0.00 I(0) 0.45 0.63

Policy 0.01 0.04 I(0) + trend 0.83 0.76

EA

Demand 0.00 0.05 I(0) + trend 0.96 0.81

Productivity 0.73 0.73 I (1) 0.95 0.95

Supply 0.00 0.00 I(0) 0.57 0.03

Policy 0.00 0.08 I(0) + trend 0.83 0.92

Risk-pooling — 0.09 I(0) + trend — 0.94

TABLE 9 Variance decomposition

over 2 years (UIP)
US EA

Shocks y π r y* π* r* RXR NXR

US demand 17.52 0.92 8.93 0.12 0.52 5.00 2.73 0.18

US productivity 1.59 0.94 2.17 0.09 0.16 0.02 0.19 0.22

US supply 1.14 16.18 14.05 0.39 0.53 2.78 1.53 3.58

US policy 70.31 76.25 68.19 10.56 8.97 6.82 43.42 84.73

EA demand 4.17 0.96 0.62 61.41 11.78 32.69 29.74 4.63

EA productivity 0.11 0.20 0.27 0.59 0.17 0.33 0.08 0.07

EA supply 1.00 0.79 1.86 3.58 38.47 44.74 8.50 0.40

EA policy 4.13 3.79 3.90 23.25 39.30 7.62 13.82 6.18

Total 100 100 100 100 100 100 100 100
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Notice that here we have not, as is often done with
robustness tests, tested many different variants of the
model for whether they would pass our test, since we are

rather confident they would not, due to our having esti-
mated the model tightly via indirect inference, a procedure
with very low small sample bias (Meenagh et al., 2018).

FIGURE 5 Impulse responses to a US demand shock under UIP and risk-pooling [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 6 Impulse responses to a EA demand shock under UIP and risk-pooling [Colour figure can be viewed at

wileyonlinelibrary.com]
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TABLE 10 Variance

decomposition over 2 years (risk-

pooling)

US EA

Shocks y π r y* π* r* RXR NXR

US demand 3.27 0.02 8.34 0.19 4.60 1.69 2.01 0.26

US productivity 1.54 0.18 0.08 0.08 8.64 1.82 1.00 0.07

US supply 7.62 3.76 8.58 0.45 1.21 2.34 4.38 0.10

US policy 64.85 76.31 68.33 11.60 12.07 1.97 14.64 89.93

EA demand 13.75 3.80 0.25 39.33 0.14 77.05 31.11 6.02

EA productivity 0.00 0.93 1.24 1.02 11.30 0.96 2.42 0.15

EA supply 0.41 0.06 0.03 1.20 13.21 7.22 0.96 0.14

EA policy 8.08 11.16 8.96 34.74 24.17 3.81 35.84 7.00

Risk-pooling 0.64 3.76 4.17 11.39 24.66 3.14 7.64 0.33

Total 100 100 100 100 100 100 100 100

FIGURE 7 Historical decomposition for US output (UIP) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Historical decomposition for EA output (UIP) [Colour figure can be viewed at wileyonlinelibrary.com]
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Instead we discover via Monte Carlo the range around our
estimated values where the true model could lie.

4.7 | Previous empirical work on multi-
country modelling

The principle other work on multi-country models (usu-
ally consisting of the US, the EA [the euro-zone], and the
RoW) of which we are aware is Chari et al. (2002),
reviewed in detail by Le et al. (2010) and Kollmann
et al. (2016). For testing procedures, Chari et al. (2002)
used an informal moments-matching method to examine
a calibrated model of the US-EA world economy, while
Le et al. used formal indirect inference methods to esti-
mate and test their model against moments and VAR
coefficients, which Meenagh et al. (2018) show are equiv-
alent methods. Kollmann et al. (2016) by contrast uses
Bayesian estimation, without any formal overall
model test.

All these models assume UIP, though Chari et al. also
look at an R-P specification. All of them share a New
Keynesian specification, where they mainly differ in how
the models are calibrated/estimated and tested (or not).

What emerges from these different approaches is that
the informal testing method of Chari et al. does not give
us a statistically based test. Le et al. discuss this point in
detail, showing that an estimated multi-country model
similar to that of Chari et al. is rejected formally when
several groups of variables are selected to be matched by
the model. This can however be explained by the Monte
Carlo experiment as in our paper here. This shows that
with three or more variables being chosen for matching
of either their VAR coefficients or equivalently their
moments, the test power is excessive, such that rejection
will certainly occur at very small levels of inaccuracy,
implying that reasonable models will be universally
rejected. It is necessary to use only two variables—here
we use the two countries' outputs only—to get high but
not excessive power to test these multi-country models.
As can be seen the model here passes this rather power-
ful test.

Comparison of our model parameters with those from
other models is complicated by the fact that they have
different structures, as well as being largely calibrated,
rather than estimated by indirect inference as ours are.
The exception is Le et al., which used indirect inference,
like us, to estimate their model; however, comparison
here is impossible because Le et al. used a full structural
model as against our three-equation small open-economy
model. For the other authors' models, in general one can
say that in our modelling we initiated estimation gener-
ally from calibrated values for parameters that we felt

followed the existing consensus—that is, we started from
broadly similar values to other authors. However the
final estimates are entirely dictated by estimation,
whereas of these other authors, for example Chari et al.
used calibration throughout and Kollmann et al. used
Bayesian methods that allow the initial prior (calibrated)
parameters to dominate the posterior estimates. Thus our
parameter estimates are largely not comparable to those
of these other authors, being determined by the data
solely, whereas others' are effectively calibrated.

Because these other modelling approaches do not
apply the statistical tests we apply here to our model,
they cannot establish the validity of UIP or R-P when
embedded in their multi-country model. Our paper tests
these hypotheses via indirect inference in a full multi-
country model—it should be noted that we have updated
the tests of Le et al. by using strictly a two-variable auxil-
iary model, which has ideal power as explained in our
work. As noted above, it is the first time the R-P hypothe-
sis has been tested in this way.

5 | THE MODEL'S WORKINGS

5.1 | The shock processes

We can extract the structural shocks of both models from
the unfiltered data and fit each of them to a time-series
process to check their properties. (For productivity of the
two countries, we simply use the potential output data
that we extracted from the time series of outputs using
the HP filter). We plot these processes in Figures 3 and 4.
For each of them, we test their stationarity using the
ADF test. Table 8 shows the two productivity processes
are I (1) processes, which supports our specification for
them (as in Equation 25). The two demand shocks and
the two monetary policy shocks are trend stationary,
while the two supply shocks are stationary.

We fit all the shock series to an AR (1) process (while
the two productivities are kept to be ARIMA [1,1,0] pro-
cesses as assumed). We estimate the persistence of all
these processes using the Limited Information Maximum
Likelihood method (McCallum, 1976; Wickens, 1982)
and report the estimates in the same table.

5.2 | Impulse response functions

5.2.1 | The standard UIP model

What emerges from our results for the standard UIP
model is that the two continents are essentially self-con-
tained. Spillovers on real variables are small, as can be
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seen from the UIP variance decomposition over any
length of period (as detailed below in Table 9, and
Tables D1 and D3 in Appendix D). They are frustrated
partly by movements in interest rates and in the real
exchange rate. Both central banks respond to the real
exchange rate with interest rate changes, while the real
exchange rate in turn responds to real interest rate differ-
entials. This pattern conforms to a standard model of the
open economy under floating, where the floating
exchange rate allows interest rate movements in each
country to dampen its own shocks as well as any spill-
overs from shocks abroad. Central banks in effect control
cross-continent integration by pursuing their own objec-
tives and forcing the exchange rate to adjust. Thus home
shocks dominate the home economy real variables; for-
eign shocks are largely neutralized.

This pattern can be seen in the IRFs for individual
shocks, where in all cases spillovers to foreign output and
consumption are small. Thus for example a US demand
shock (see Figure 5) raises US output on impact by 1.4%,
raises EA inflation and interest rates and so lowers EA
output by 0.2%, while an EA demand shock (Figure 6)
raises EA output by 1.5%, raises US real interest rates and
so lowers US output by 0.4%.

5.2.2 | The risk-pooling model

The risk-pooling model in effect opens up a direct chan-
nel of insurance between consumers in different conti-
nents, removing power from central banks to separate
the economies. One can think of this risk-pooling

FIGURE 9 Historical decomposition for US interest rate (UIP) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Historical decomposition for EA Interest Rate (UIP) [Colour figure can be viewed at wileyonlinelibrary.com]

2010 MINFORD ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


mechanism as enabling foreign consumers to transfer
resources directly to home consumers hit by a downturn;
these resources are then spent by home consumers who
thereby bid for foreign supplies, their own being short.
This raises the relative price of foreign supplies, causing a
real depreciation in the home exchange rate. What mat-
ters here for the real exchange rate reaction is the elastic-
ity of foreign supply which in this New Keynesian model
is dictated by the Calvo stickiness parameter. The esti-
mated stickiness of the US and EA are similar enough to
imply that both EA and US output supply have a similar
inelasticity.

The risk-pooling model therefore creates much
greater integration of the two economies. Both US and

EA shocks now spill over into the other continent. Take
the demand shock below as an example. The US demand
shock raises US output by 1.4% and EA output by 0.6%,
while the US real exchange rate depreciates by nearly 2%.
Central banks react to the home effects of the home
shocks in a familiar way, in this case raising interest
rates; but the foreign central banks, while reacting nor-
mally to the spillovers, react mainly to the sharp real
exchange rate movements which push them in a direc-
tion opposite to the familiar one. Thus on the US demand
shock EA interest rates fall in the attempt to dampen the
real appreciation of the euro, while on the EA demand
shock US interest rates fall to dampen the real apprecia-
tion of the dollar. In effect, central banks are being forced

FIGURE 11 Historical decomposition for US output (risk-pooling) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Historical decomposition for EA output (risk-pooling) [Colour figure can be viewed at wileyonlinelibrary.com]
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to help the spillover process by dampening the real
exchange rate reaction coming from supply inelasticity.
Hence whereas central banks largely frustrate the ability
of consumers to profit from spillovers under UIP, under
risk-pooling consumers make free use of spillovers and
force central banks to help the process along.

To save space we report the impulse responses of the
other shocks in Appendix C (Figures C1–C7).

5.3 | Variance decomposition

If we now turn to the variance decomposition of the two
models, we find that the real spillovers under risk-

pooling are substantially larger than under UIP, as
emerged from our impulse response functions. Taking
the short-run (the two-year case) as an example, when
there are demand shocks under UIP the variance share of
the output spillover is 0.7% of that of the home output for
the US demand shock and 7% for the EA demand shock
(See Table 9). The corresponding percentages under risk-
pooling are 6% and 35% (Table 10).

In Appendix D we also report the decompositions for
longer horizons (10 years and 40 years). As one would
expect, the longer the time horizon the more the vari-
ances are dominated by productivity shocks. Indeed, we
find too under risk-pooling there are spillovers, but none
to speak of under UIP (Tables D1–D4).

FIGURE 13 Historical decomposition for US interest rate (risk-pooling) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Historical decomposition for EA interest rate (risk-pooling) [Colour figure can be viewed at wileyonlinelibrary.com]
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5.4 | Historical decomposition

When we compare the historical decomposition of the
two models, we see that the UIP model is the lack of
spillovers (all in yellow) into output of either continent
from the other (Figures 7 and 8). We also see that interest
rates in each continent are a key instrument by which
these spillovers are frustrated since the other continent's
shocks (in yellow) bulk large in each continent's mone-
tary responses (Figures 9 and 10). When we turn to the
case of the risk-pooling model, we see larger output spill-
overs (again in yellow) in both directions (Figures 11 and
12). As for interest rates again we see how in each conti-
nent interest rates respond to foreign shocks (Figures 13
and 14)—here because of their effects on the exchange
rate, the response pattern is quite different.

6 | CONCLUSION

In this paper, our first aim was to find a world model
of two continents plus a Rest of World sector that
could match selected data in a powerful indirect infer-
ence test. Our second aim was to discover whether
there was risk-pooling in such a model. We did find
such a model both in a UIP version in which there
was “dynamic” risk-pooling from non-contingent bonds
tradeable across borders; and also in a version with
full risk-pooling provided by state-contingent bonds, a
stronger hypothesis than UIP which implies it, but is
not implied by it. Of these two versions, the risk-
pooling one was considerably more probable than the
UIP version but both passed our tests.

In the UIP version of this model, we found rather
familiar features: each continent, US and EA, responds
almost entirely to its own non-stationary productivity
shocks, with stationary demand/supply shocks having
limited spillover effects. Each economy is largely insu-
lated from the other by the floating exchange rate, with
monetary policy largely unresponsive to it. By contrast,
in the risk-pooling version, behaviour turned out to be
materially different. The two continents were in this
closely integrated by private insurance markets achieved
through contingent assets. Shocks in one continent cause
consumers to acquire resources in the other where they
spend them, driving up relative prices (the real exchange
rate) to generate supply. These real exchange rate move-
ments then force monetary policy to lean against them
and so boost these spillovers.

Previous statistical tests of both UIP and risk-pooling
have used single-equation methods, which we explain
are likely to reject the model spuriously; and we confirm
this from Monte Carlo experiments. This is to our

knowledge the first time that a powerful statistical test
has been performed on a full world model embodying
both these hypotheses with their distinctive effects on the
behaviour of all variables. The fact that the full risk-
pooling hypothesis has passed this test with a high p-
value suggests that it deserves serious attention from pol-
icy-makers looking for a relevant model with which to
discuss international monetary and other business cycle
policy.
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ENDNOTES
1 We assume import from RoW is only affected domestic income
for simplicity.

2 In recent work (Meenagh et al., 2018) on Indirect Inference in
small samples, it has been found that the test power tends to rise
with the number of variables in the auxiliary VAR as we find
here. However, the test power is rather insensitive to which vari-
ables are included in the auxiliary VAR; thus here we would
expect similar test power with any other two variables, such as
the two consumptions, or the two interest rates. The test power is
also fairly insensitive to whether one uses a VAR for the two vari-
ables or a set of moments or a set of impulse response functions
(IRFs), provided the number of each in the auxiliary model is sim-
ilar. Thus a two-variable VAR (1) implies four VAR coefficients
plus the two VAR error variances, six “descriptors” in all. Around
the same number of moments or IRFs should be selected for simi-
lar power.

3 This is found by imposing the long-run restriction of trade bal-
ance (thus, nxt = 0) on the US net export equation and solving for
the real exchange rate.
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APPENDIX A: Listing of model

• US
IS curve:

yt =Etyt+1−c
1
σ
Θ Rt−Etπt+1−rÞ−xz1ΘEtΔy�t+1

�

−xm2ΘEtΔyRoWt+1 −xz3ΘEtΔqt+1 + εISt ðA:1Þ

Phillips curve:

πt = βEt πt+1ð Þ+ κa yt−yptð Þ− α

1−2α
βEt qt+1−qtð Þ�cr½

− qt−qt−1ð Þ�+ εPPt ðA:2Þ

Taylor rule:

Rt = ρRt−1 + 1−ρð Þ ϕππt +ϕy yt−yptð Þ� �
+ϕq qt−qsst

� 	
+ εRt

ðA:3Þ

Productivity:

ypt −ypt−1 =Γyp + δ ypt−1−ypt−2ð Þ+ εypt ðA:4Þ

US import from EA:

imUS
EA,t = μyt−ψqt ðA:5Þ

US import from RoW:

imUS
W ,t = νyt ðA:6Þ

• EA.
IS curve:

y�t =Ety
�
t+1−c�

1
σ�

Θ� R�
t −Etπ

�
t+1−r�Þ−x�z2Θ�EtΔyt+1

�

+ x�m2Θ�EtΔyRoWt+1 + x�z3Θ�EtΔqt+1 + εIS
�

t ðA:7Þ

Phillips curve:

π�t = β�Etπ
�
t+1 + κ�α y�t −yp�t

� 	
+

α�

1−2α�
β�EtΔqt+1−Δqtð Þ+ εPP

�
t

ðA:8Þ

Taylor rule:

R�
t = ρ�R�

t−1 + 1−ρ�ð Þ ϕ�
ππ

�
t +ϕ�

y y�t −yp�t
� 	h i

−ϕ�
q qt−qsst
� 	

+ εR
�

t

ðA:9Þ
Productivity:

yp�t −yp�t−1 =Γyp� + δ� yp�t−1−yp�t−2ð Þ+ εyp�t ðA:10Þ

EA import from US:

imEA
US,t = μ�y�t +ψ�qt ðA:11Þ

EA import from RoW:

imEA
W ,t = ν�y�t ðA:12Þ

• Rest of the world.
World trade balance:

ΞimUS
W ,t + 1−Ξð ÞimEA

W ,t =ϜexUSW ,t + 1−Ϝð ÞexEAW ,t ðA:13Þ

World output:

yRoWt =ΞimUS
W ,t + 1−Ξð ÞimEA

W ,t ðA:14Þ

World’s relative demand for US and EA products:

exUSW ,t = exEAW ,t +ψRoWqt ðA:15Þ

• Real exchange rate determination.
- UIP variant:

Etqt+1−qt = Rt−Etπt+1ð Þ− R�
t −Etπ

�
t+1

� 	 ðA:16Þ

- Risk-pooling variant:

σ ct−c�t
� 	

= qt−vt ðA:17Þ

• Real exchange rate in the steady state3:

qsst =
n1μ+n2ν−m2Ξν

n1ψ +m1ψ� +m2 1−Ϝð Þψ RoW
ypt

−
m1μ� +m2 1−Ξð Þν�

n1ψ +m1ψ� +m2 1−Ϝð Þψ RoW
yp�t

ðA:18Þ

• All shocks in the model are assumed to follow an
AR (1) process.
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APPENDIX B: 8 Derivation of the IS curve (US
example)

Given the Euler equation ct =Etct+1− 1
σ Rt−Etπt+1−�r+Etlnϵt+1− lnϵtÞð ,

and the market clearing condition in its log-linearized
form yt = cct+ xnxt (where net export nxt is defined as
nxt = lnXt− lnMt =m1imEA

US,t +m2exUS
W ,t− n1imUS

EA,t + n2imUS
W ,t

� 	
),

we substitute the latter into the former to replace ct, as
the following:

a. Solve for ct using the market clearing condition:

ct =
1
c

yt−xnxtf g

=
1
c

yt−x m1 μ�y�t +ψ�qt
� 	

+m2 yRoWt + 1−Fð Þψ RoWqt
� 	�


−n1 μyt−ψqtð Þ−n2 νytð Þ�g

=
1
c

1+ x n1μ+n2vð Þ½ �yt−x m1μ
�ð Þy�t −x m2ð ÞyRoWt




−x m1ψ
� + 1−Fð Þm2ψ

RoW +n1ψ
� �

qtg

=
1
c
Θ−1yt−xz1y

�
t −xm2y

RoW
t −xz3qt

� 	

where z1 = m1μ
*, z2 = n1μ + n2v, z3 = m1ψ

* + (1 − F)
m2ψ

RoW + n1ψ , Θ−1 = 1 + xz2.
b. Substitute the solution for ct into the Euler equa-

tion to find:

1
c
Θ−1yt−xz1y

�
t −xm2y

RoW
t −xz3qt

� 	

=Et
1
c
Θ−1yt+1−xz1y

�
t+1−xm2y

RoW
t+1 −xz3qt+1

� 	�

−
1
σ

Rt−Etπt+1−r+Etlnϵt+1− lnϵtÞð �

and then rearrange to find the IS equation allowing for
demand disturbance:

yt =Etyt+1−c
1
σ
Θ Rt−Etπt+1−rÞ−xz1ΘEtΔy�t+1

�

−xm2ΘEtΔyRoWt+1 −xz3ΘEtΔqt+1 + ϵISt

where εISt = c 1σΘ Etlnϵt+1− lnϵtð Þ.
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APPENDIX C: Other impulse response functions

• Productivity shock

FIGURE C1 Impulse responses to a US Productivity shock under UIP and risk-pooling [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE C2 Impulse responses to a EA Productivity shock under UIP and risk-pooling

• Monetary policy shock [Colour figure can be viewed at wileyonlinelibrary.com]
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APPENDIX D: Variance decomposition over
longer horizons

FIGURE C3 Impulse responses to a US policy shock under UIP and risk-pooling [Colour figure can be viewed at

wileyonlinelibrary.com]
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FIGURE C4 Impulse responses to a EA policy shock under UIP and risk-pooling

• Supply shock [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE C5 Impulse responses to a US supply shock under UIP and risk-pooling [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE C6 Impulse responses to a EA supply shock under UIP and risk-pooling

• Risk-pooling shock [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE C7 Impulse responses to a risk-pooling shock under risk-pooling model [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE D1 Model with UIP—
10 years

US EA

Shocks y π r y* π* r* RXR NXR

US demand 13.43 1.30 10.70 0.18 0.57 7.18 2.84 0.24

US productivity 42.38 7.10 14.34 0.42 1.15 0.19 7.05 8.24

US supply 0.46 11.76 8.72 0.20 0.30 2.09 0.82 2.35

US policy 35.78 68.97 56.50 6.38 7.52 4.72 32.00 70.57

EA demand 2.76 1.25 0.61 50.89 11.89 42.67 27.28 4.98

EA productivity 0.08 0.28 0.33 5.01 0.32 0.51 2.04 1.51

EA supply 0.34 0.49 0.98 1.54 18.48 28.42 3.86 0.22

EA policy 4.78 8.85 7.82 35.44 59.76 14.23 24.12 11.89

Total 100 100 100 100 100 100 100 100

TABLE D2 Model with risk-

pooling—10 years
US EA

Shocks y π r y* π* r* RXR NXR

US demand 2.15 1.59 1.61 0.18 0.48 0.04 1.14 0.39

US productivity 59.35 26.57 41.22 3.22 40.33 22.49 35.65 2.41

US supply 2.64 3.98 3.72 0.24 0.36 0.12 1.31 0.08

US policy 24.82 20.07 3.68 6.69 0.72 0.11 4.70 77.87

EA demand 4.34 7.084 0.20 18.75 0.12 53.99 8.74 4.36

EA productivity 0.01 16.03 27.66 8.09 25.37 13.19 10.74 0.54

EA supply 0.12 0.02 0.01 0.53 0.00 0.04 0.24 0.09

EA policy 5.91 12.24 8.48 42.77 18.24 5.23 27.52 13.69

Risk-pooling 0.66 12.42 13.42 19.53 14.38 4.79 9.96 0.58

Total 100 100 100 100 100 100 100 100
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TABLE D3 Model with UIP—
40 years

US EA

Shocks y π r y* π* r* RXR NXR

US demand 1.78 1.03 7.87 0.04 0.42 5.99 0.63 0.08

US productivity 91.64 14.94 27.93 0.42 2.25 0.42 53.10 45.28

US supply 0.07 11.92 8.18 0.10 0.28 2.22 0.23 1.05

US policy 5.18 59.88 45.42 2.63 6.06 4.29 7.73 27.03

EA demand 0.32 0.89 0.40 17.10 7.79 31.56 5.35 1.55

EA productivity 0.05 1.03 1.12 60.30 1.10 1.98 24.37 19.15

EA supply 0.07 0.61 1.13 0.92 21.43 37.24 1.34 0.12

EA policy 0.87 9.70 7.94 18.49 66.67 16.31 7.35 5.74

Total 100 100 100 100 100 100 100 100

TABLE D4 Model with risk-

pooling—40 years
US EA

Shocks y π r y* π* r* RXR NXR

US demand 0.18 1.69 1.51 0.04 0.02 0.46 0.11 0.17

US productivity 95.47 30.37 40.28 14.65 33.13 40.30 61.90 31.16

US supply 0.28 1.92 1.32 0.06 0.06 0.13 0.15 0.04

US policy 2.67 19.92 6.14 1.88 0.09 0.43 0.56 43.55

EA demand 0.39 3.91 0.06 4.42 24.71 0.04 0.88 2.04

EA productivity 0.05 31.28 43.38 54.42 34.24 42.06 30.10 12.36

EA supply 0.02 0.03 0.00 0.18 0.07 0.00 0.04 0.06

EA policy 0.84 8.72 4.94 15.93 3.68 8.74 4.38 10.14

Risk-pooling 0.11 2.16 2.36 8.42 3.99 8.13 1.88 0.47

Total 100 100 100 100 100 100 100 100
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