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IV. Aims 
The overriding theme of this thesis is to produce a series of new benzo-fused-phosphole and 

benzo-fused-arsole derived compounds. By introducing sulfur, nitrogen and oxygen 

heteroatoms into the pnictole ring core, an interesting comparison and exploration into the 

fundamental properties and reactivity of this highly interesting but ultimately 

underexplored class of compound will be achieved. To elaborate further, a multitude of 

modern-day techniques, including multinuclear NMR spectroscopy, EPR spectroscopy, 

absorption and emission spectroscopy, single crystal X-ray diffraction and DFT calculations 

will be employed to bring this class of heterocycle into the 21st century.   

In Chapter 2 the aim is to synthesise a series of novel benzo-fused-phosphole and benzo-

fused-arsole derived compounds, which bear a halogen co-ligand. This will create a library 

of complexes which will be used to explore the structural and electronic properties as well 

as provide pre-cursors to use in subsequent reactions.  

The aims of Chapter 3 are firstly to look at performing substitution of the chloride co-ligand 

to generate a N-centred paddlewheel. Secondly, the compounds from Chapter 2 will be used 

to synthesise the corresponding phosphenium and arsenium cations, and as they are 10π 

aromatic, investigate the optical properties. Lastly, the final objective is to reduce the benzo-

fused diaza-chloro-phosphole and benzo-fused diaza-chloro-arsole to form the 

corresponding dimeric complex.  

Chapter 4 is inspired by the recent use of the closely related diazaphospholene complexes 

as pre-catalysts in hydroboration reduction catalysis. Thus, Chapter 4 has the main aim of 

using the phosphorus and arsenic compounds from Chapters 2 and 3, as well as producing 

a benzyloxy-phosphosphole and benzyloxy-arsole, to undergo hydroboration catalysis and 

give a comparison on the catalytic performance of using phosphorus vs. arsenic.  
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V. Nomenclature 
 

 Phosphane: The saturated hydrides of trivalent phosphorus of the 

general formula PnH2n+1. The simplest phosphane is PH3. 

 Arsane: The saturated hydrides of trivalent arsenic of the general 

formula AsnH2n+1. The simplest arsane is AsH3. 

 Phosphine: Organophosphorus compounds derived from PH3 by 

replacing one, two or three of the hydrogen atoms. Primary (RPH2), 

secondary (R2PH) and tertiary (R3P) phosphines respectively (R≠ H). 

 Arsine: Organoarsenic compounds derived from AsH3 by replacing one, 

two or three of the hydrogen atoms. Primary (RAsH2), secondary 

(R2AsH) and tertiary (R3As) arsines respectively (R≠ H). 

 

Phosphole: A five membered ring phosphorus heterocycle with the 

chemical formula C4H4PH. 

 

Arsole: A five membered ring arsenic heterocycle with the chemical 

formula C4H4AsH. 

 Diazaphospholene: N-heterocyclic phosphine contained within a five 

membered unsaturated ring. 

 Diazaarsolene: N-heterocyclic arsine contained within a five 

membered unsaturated ring. 

 

 Diazaphospholidine: N-heterocyclic phosphine contained within a five 

membered saturated ring. 

 Diazaarsolidine: N-heterocyclic arsine contained within a five 

membered saturated ring. 

 

Benzo-fused dithia-chloro-phosphole: Five membered ring 

phosphorus compound with a benzene ring backbone and the inclusion 

of sulfur and chloride atoms. 
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Benzo-fused dithia-chloro-arsole: Five membered ring arsenic 

compound with a benzene ring backbone and the inclusion of sulfur 

and chloride atoms. 

 

 Benzo-fused diaza-chloro-phosphole: Five membered ring 

phosphorus compound with a benzene ring backbone and the inclusion 

of nitrogen and chloride atoms. 

 

 Benzo-fused diaza-chloro-arsole: Five membered ring arsenic 

compound with a benzene ring backbone and the inclusion of nitrogen 

and chloride atoms. 

 

 

Benzo-fused dioxa-chloro-phosphole: Five membered ring 

phosphorus compound with a benzene ring backbone and the inclusion 

of oxygen and chloride atoms. 

 

 

Phosphenium: Two coordinate phosphorus(III) complex that has a 

formal positive charge on the phosphorus heteroatom and takes the 

form [PR2]+. 

 

Arsenium: Two coordinate arsenic(III) complex that has a formal 

positive charge on the arsenic heteroatom and takes the form [AsR2]+. 

 

Phosphonium: Phosphorus(V) oxidation state compound with the 

general formula PR4
+. 

 

Arsonium: Arsenic(V) oxidation state compound with the general 

formula AsR4
+. 

 

Nomenclature derived from IUPAC: IUPAC. Compendium of Chemical Terminology, 2nd ed. 

(the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific 

Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-

8. https://doi.org/10.1351/goldbook. 
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VI. Compounds Synthesised in This Thesis 
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VIII. Abstract 
The work described in this thesis relates to the synthesis and exploration of benzo-fused 

phosphole and benzo-fused arsole complexes, which have been modified by the inclusion 

of sulfur, nitrogen and oxygen heteroatoms in the pnictole ring, along with the inclusion of 

a halogen co-ligand. Chapter 2 synthesised the dithiaphospholes, dithiarsoles, 

diazaphospholes, diazarsoles and dioxaphospholes by adding the appropriate ligand to 

phosphorus trihalides (PCl3, PBr3 or PI3) or arsenic trichloride. Structural determination 

found that these compounds have an envelope geometry and an exocyclic halogen co-

ligand. Chapter 3 then made use of these compounds to firstly synthesise an intriguing 

looking N-centred paddlewheel complex. After this, halide abstraction was performed to 

acquire phosphenium and arsenium cations. UV-visible spectroscopy performed on the 

diazaphospheniums and diazarseniums revealed the shape and positioning of the 

absorption bands is highly dependent on the choice of cation (P or As) and counterion 

(AlCl4−, GaCl4− or OTf−). Lastly, Chapter 3 synthesised a P–P dimer from the diazaphosphole, 

which by using EPR spectroscopy underwent homolytic cleavage at 350 K in toluene solvent. 

Interestingly, the corresponding As–As dimer had formed but underwent oxidative addition 

to form 2-iodo-1,3-diisopropyl-benzodiazarsole. Having established fundamental insight 

into the structure and reactivity of these heterocycles, Chapter 4 used these compounds as 

pre-catalysts for hydroboration reduction catalysis of aldehydes. The benzyloxy-diazarsole 

was found to be highly effective for this, as using 5 mol% pre-catalyst loading effectively 

hydroborated a wide variety of electron donating and electron withdrawing substrates, as 

well as more sterically demanding ones. When using the phosphole and phosphenium 

compounds as pre-catalysts, the diazaphosphenium triflate proved to be the most effective 

for the catalysis, but required higher catalytic loading (10 mol%) and longer reaction times 

for quantitative conversion to occur. Comparing the arsenic and phosphorus pre-catalysts 

found that the benzyloxy-diazarsole was superior to the diazaphosphenium triflate.
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1: Introduction 

Chapter 1.1 Examples of Group 15 Heterocycles and Cations   

1.1.1 The rise of main group chemistry 

Over the past 50 years the field of main group chemistry has garnered ever more attention, 

driven principally by the growing need to move away from the use of rare, expensive and in 

some cases toxic transition metals, but additionally by scientific curiosity. It has been 10 

years since Philip Power’s review titled ‘Main-Group Elements as Transition Metals’, which 

compared how heavier main group elements bear similarities with transition metals and 

highlighted a number of key discoveries in the field.1 One particular field to have emerged 

in main group chemistry since the start of the millennium is frustrated Lewis pairs (FLPs); 

reported by Stephan and workers it uses the concept of increasing steric bulk between the 

Lewis acid and Lewis base, which in turn prevents the formation of a classic adduct.2 Initially 

observed by the work of Piers,3 FLPs have been utilised in a wide plethora of reactions.4,5 

Another key area to have grown is the discovery of multiple bonding in the heavier main 

group elements, with Lappert’s stannylene6,7 and West’s disilene.8  

Since Powers’ review, the last 10 years has seen a number of key findings. A recent review 

by Weetman and Inoue on this very topic discussed the rise of biradicaloid complexes, which 

have been used for small molecule activation, as well as the growth of s-block chemistry.9 

Perhaps though the biggest advance in the past ten years was the progress made in 

dinitrogen activation, a feature that was previously exclusive to transition metals.10 This 

challenging feat was finally achieved in 2018 by the group of Braunschweig, who reacted the 

complex [(Dur)B(CAAC)Br2]  (Dur = 2,3,5,6-tetramethylphenyl, 

CAAC = 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with excess KC8 

to form the dicoordinate borylene complex, which when exposed to an N2 atmosphere at 

−80 °C gave the N2 activated product (Figure 1.1).11  

Figure 1.1: Examples of the advancements in main group chemistry. 

These recent discoveries show that main group chemistry is thriving and ever evolving. 

Despite this though many areas are still underexplored and underexploited, and one such 

field is the use of heavier group 15 (pnictogen) heterocycles; phospholes and arsoles.  
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1.1.2 Introduction to phospholes and arsoles 

Heterocycles form the largest and arguably most interesting class of compound in organic 

chemistry, with their uses widespread in the pharmaceutical sector.12 Moreover, the five 

membered ring heterole class form a very common class of heterocycles, with compounds 

including pyrrole, furan and thiophene, which have the inclusion of nitrogen, oxygen and 

sulfur respectively. These compounds are well-known and as a result have been extensively 

studied for their fundamental properties and reactivity.13–15 However, although the inclusion 

of a nitrogen heteroatom is well-understood, exchanging this for the heavier group 15 

elements phosphorus or arsenic leads to the much less explored phosphole and arsole 

compounds. 

Phosphole is formally defined as a five membered ring heterocycle with the chemical 

formula C4H4PH; it is the phosphorus analogue of pyrrole. Likewise, arsole is a five 

membered ring heterocycle with the chemical formula C4H4AsH. Although these compounds 

are not as familiar as pyrrole, 1,2,3,4,5-pentaphenylphosphole was first discovered in 1959 

by two independent groups16 and the parent 1H-phosphole was first described by the group 

of Mathey in 1983 by low temperature protonation of phospholyl anions.17  Meanwhile, the 

history of arsoles is more extensive, with the first potential arsole reported in the early 

1920’s by Turner and Burrows while working at the University of Sydney. However, when it 

came to publication the editor of Journal and Proceedings of the Royal Society of New South 

Wales rejected the name arsole given the structure was the arsenic version of indole.18 

Unlike the 1H-phosphole, the 1H-arsole has not been synthesised, but the arsole moiety was 

produced by Braye, Hübel and Caplier in 1961 when they synthesised 1,2,3,4,5-

pentaphenylarsole (Figure 1.2).19 Further synthesis involving the arsole ring was continued 

by the work of Märkl and Hauptmann.20,21  

Figure 1.2: Early examples of phosphole and arsole compounds. 

Given that phospholes and arsoles are the heavier analogues to pyrroles, questions started 

to be raised over the extent of aromaticity these compounds possess, if any. At first it may 

appear that phospholes and arsoles would be non-aromatic, given the phosphorus and 
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arsenic centre preferably adopt a trigonal pyramidal geometry as opposed to lying planar 

(Figure 1.3).16 This is a consequence of the lack of efficient overlap between the 

phosphorus/arsenic lone pair and the rest of the phosphole/arsole core; an effect which is 

more prominent in arsoles.22  

 

 

Figure 1.3: Pyrrole (left), phosphole (middle) and arsole (right) showing lone pair. 

Early reactivity studies of arsoles showed them to react in a way of non-aromatic 

compounds19 and early reports in 1973 by Mathey and colleagues claimed results from 

photoelectron spectroscopy gave “direct proof of the non-aromaticity of phospholes and 

arsoles”.23 These observations support the initial assessment that these compounds are not 

aromatic. However, this “direct proof” was later discredited by the work of Epiotis who used 

one electron molecular orbital (MO) analysis to prove phospholes and arsoles have a degree 

of aromaticity.24 Further work into the aromaticity was performed,25,26 but it was not until 

recently when Johansson and Juselius used the computational method gauge-including 

magnetically induced currents (GIMIC) method that a widely accepted answer was given.27 

In this method, which computationally models the paramagnetic and diamagnetic current 

within the heterocycle, Johansson and Juselius found that the 1H-phosphole has 

approximately 60% the induced ring current strength of pyrrole, whereas 1H-arsole is a little 

lower at 47%, when calculated at BP86 level of theory. Therefore, applying a magnetic 

aromaticity criterion suggests that phospholes and arsoles are to a certain point aromatic, 

although it should be noted that this result directly contradicts additional work which uses 

an energetic criterion for aromaticity.28,29  

Indeed, it seems that the aromaticity of these compounds is far from simple and highly 

depends on how one defines aromaticity. The group of Heeney have recently synthesised a 

luminescent phosphole and arsole derived complex and applied the harmonic oscillator 

model of heterocyclic electron delocalisation (HOMHED) to determine experimentally the 

aromaticity (Figure 1.4). This approach uses experimentally determined bond lengths from 

X-ray crystallography and compares them to “optimal” bond lengths. This then gives a 

HOMHED value, which lies between 1 and 0 (fixed at the aromaticity of benzene and its 

theoretical Kekulé form accordingly), where a value >0.5 is considered aromatic. Using 

HOMHED Heeney and colleagues found that phospholes and arsoles are aromatic, with 
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HOMHED values of 0.8015 and 0.6863 respectively;30 a result that agrees with the work of 

Johansson and Juselius that phospholes are more aromatic than arsoles.               

 

 

 

 

Figure 1.4: Luminescent phosphole and arsole used for HOMHED calculations. 

1.1.3 Optical properties of phospholes and arsoles 

Given its aromatic nature, pyrrole has been extensively studied with regards to its optical 

applications.31–34 However, the fundamental properties of phospholes are vastly different to 

that of pyrrole, which allows for different material characteristics. As just discussed, the 

aromaticity of the phosphole ring is controversial but it is at least significantly reduced 

compared to pyrrole; the phosphorus centre adopts a trigonal pyramidal geometry as 

opposed to planar (due to insufficient n-π orbital interaction) and the LUMO energy level 

lies at a lower energy level, which is a result of the effective σ*(P–R)-π*(1,3-diene) 

interaction. These differences along with the ability to tune the electronics by modifying the 

phosphorus centre, such as through oxidation, alkylation or coordination to metals, mean 

that phospholes offer an intriguing moiety for materials design. Matano and Imahori,35 and 

more recently Hissler and colleagues16 have produced reviews discussing the application of 

phospholes in solid-state devices and discuss the matter at great length. 

Organic light emitting diodes (OLEDs) have received great attention in recent times due to 

their use in screen technology,36 and the first example of a phosphole incorporated into one 

was from Réau, Wu and colleagues.37 They prepared three different fluorophores based on 

the phosphole moiety, the first with a free lone pair on phosphorus, the second with a P(V) 

bound sulfur and the third coordinated to gold(I). Since then a number of reports have been 

produced using phospholes in OLEDs.16 Another important emerging solid-state device is 

dye-sensitised solar cells (DSSCs), which are a promising alternative to traditional silicon 

solar cells. Again phospholes have been used in the design of these, with their first use from 

the group of Imahori and workers who showed that 1-hydroxy-1-oxodithieno-phospholes 

could be used as anchoring groups to the TiO2 electrode.38 Furthermore, in 2014 Mantano 

synthesised copolymers that incorporated π-conjugated phospholes that were used in a 

bulk heterojunction organic solar cell (Figure 1.5).39       
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Figure 1.5: Examples of phosphole compounds used in optical devices. 

In contrast to phospholes, the photophysical properties of arsoles are significantly 

underexplored, a consequence perhaps of their toxicity. Nevertheless, the use of arsoles in 

such solid-state devices could be advantageous over their phosphorus analogues given their 

greater oxygen tolerance40 and high inversion barrier of the trigonal pyramidal coordination 

geometry.22 The Naka group in 2015 published the synthesis of 2,5-diarylarsoles which 

showed intense emission in both solution and solid-state. The diarylarsole (where R = H) in 

solution showed an absorption band at 374 nm in chloroform solvent and an emission 

maximum at 458 nm, with accompanying quantum yield of 59%. Meanwhile, solid-state 

measurements gave emission at 482 nm and a reduced quantum yield of 21%. The 

diarylarsole with R = o-OMe had absorption and emission maxima that were red-shifted 

from the former unsubstituted 2,5-diarylarsoles. The diarylphosphole (where R = H) was also 

synthesised to act as a comparison, and it was found that the absorption and 

photoluminescent values were very similar to diarylarsole. In addition to this, Naka and 

colleagues controlled the optical properties of the diarylarsole by coordinating it to Au(I)Cl, 

which after coordination the quantum yield in solution increased to 86%, although it was 

only 17% in the solid-state.41 Later in 2016 Naka followed up on this work by showing that 
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these 2,5-diarylarsoles can undergo mechanochromism because of their molecular packing 

in the crystalline state, which showed only weak intermolecular interactions exist. Crystals 

of the diarylarsoles were ground in a mortar, and measurements of these now ground 

crystals displayed a hypsochromic shift (blue shift) compared to the starting crystals 

(Figure 1.6).42     

 

 

 

 

 

Figure 1.6: Examples of arsole and phosphole compounds used by the Naka group. 

1.1.4 Introduction to diazaphospholenes and diazarsolenes 

Heterocyclic phosphorus and arsenic chemistry certainly expands beyond the traditional 

phosphole and arsole ring. Another class of group 15 heterocycle that is closely related to 

phospholes are diazaphospholenes (DAPs), which are N-heterocyclic phosphines contained 

within a five membered unsaturated ring. Gudat has recently written an excellent review 

into this topic and so their chemistry will not be exhaustively discussed, with just the key 

features mentioned.43 Initial interest in diazaphospholenes intensified in the 1990s when it 

was discovered that they could act as precursors to phosphenium cations (which are 

isoelectronic to NHCs; vide infra),44 resulting in their structure, bonding and reactivity to be 

more closely examined. From these studies an interesting feature to emerge was the 

possibility of 6π-delocalisation in the five-membered ring unit, however to achieve this the 

σ*(P–X)-antibonding orbital is required. This in turn reduces the bond order of the P–X bond 

and transfers additional negative charge on the X atom. Thus, a compromise is reached 

where greater energetic stabilisation in the DAP ring is achieved but at the cost of a loss of 

the degree of covalency in the P–X bond. The extent of this hyperconjugation was found to 

be highly dependent on the nature of the exocyclic X atom.45 Expanding on this theme 

further, Gudat and colleagues looked to synthesise a diazaphospholene where X = H to look 

at what effect this would have on the electronics. The result was ground breaking as it was 

found that unlike classical systems where the reactivity of P–H bonds is governed by the 

protic character of the hydrogen atom, in diazaphospholenes because of donation of π-

electron density into the σ*(P–H) orbital the P–H bond is hydridic.46 This finding would prove 



7 
 

pivotal later when these compounds would be used in catalysis (see section 1.3). Scheme 1.1 

below highlights a number of reactions where the umpolung reactivity of the P–H bond has 

been exploited, including in phosphenium generation,46,47 reduction of SiCl447 and 

stabilisation of metal(0) complexes.48  

Synthetically diazaphospholene compounds are straight forward to produce and commonly 

involve a one-pot synthesis from the appropriate diazadiene and phosphorus trihalide in the 

presence of auxiliary reagents. When using PCl3 as the phosphorus trihalide triethylamine is 

also used, giving the salt HNEt3Cl as a by-product, whereas cyclohexene is used with PBr3, 

giving 1,2-dibromocyclohexane. Alternatively, DAPs may be synthesised in a two-step 

procedure starting by reducing the diazadiene to its dianion (such as by using lithium or 

sodium metal) and then undergoing metathetic ring closure.43 Both procedures are 

displayed below in Scheme 1.2.     

 

 

 

 

 

 

 

 

 

 

Scheme 1.1: Selected stoichiometric reactions involving the use of diazaphospholenes 

(COD = 1,5-cyclooctadiene). Scheme adapted from Gudat review.43  
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Scheme 1.2: Synthesis of diazaphospholene. (i) One pot synthesis from diazadienes and PX3. 

(ii) Two step procedure, M = metal (Li or Na). Scheme adapted from Gudat review.43  

The arsenic analogue of the diazaphospholene is termed diazarsolene. Early examples of 

diazarsolidines (five membered ring heterocycle containing arsenic but a saturated 

backbone) were reported by Wolf49 and Cowley,50 but a literature search into diazarsolenes 

gave few results. Minkin and colleagues computationally looked at the energy barrier of 

pyramidal inversion in diazarsolenes,51 but synthetic work is rare. However, Nieger et al. 

previously reported the synthesis of 2-halogeno-1,3,2-diazarsolenes (Figure 1.7). In this 

work the diazarsolene was prepared from α-amino-aldimine via base-induced 

dehydrohalogenation with AsCl3, with tert-butyl or mesityl groups on the nitrogen atoms. 

Single crystal X-ray diffraction and spectroscopic analyses showed that as is the case in 

diazaphospholenes, diazarsolenes are stabilised by π-delocalisation effects, leading to 

elongation in the As–X bond.52 As is shown below in Scheme 1.5, the diazarsolene with 

mesityl groups was then used by Gudat to synthesise the corresponding arsenium cation 

and coordinate it to a transition metal.53 Note that later work by Ragogna used a 

diazarsolene moiety with a conjugated bithiophene backbone to act as precursors for cation 

synthesis. This was achieved by abstracting the chloride using trimethylsilyl 

trifluoromethanesulfonate (TMS triflate), after which the cation was coordinated to 

Pt(PPh3)4.54               
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Figure 1.7: Examples of diazarsolidines and diazarsolenes.  

1.1.5 Use of diazaphospholenes to make dimers. 
One use diazaphospholene compounds have seen is in the formation of P–P dimers, which 

are synthesised by their reduction with metals (typically Mg, Na or Li). The possibility that 

these compounds can undergo homolytic cleavage when heated and form radicals has been 

a major driving force for their research interest, with the groups of Gudat,55–57  Masuda58 

and Wright59 all having reported examples of these dimers. Gudat and colleagues have 

previously synthesised the 1,1’-3,3’-tetrahydro-2,2’-bi-1,3,2-diazaphosphole dimer and by 

using variable-temperature electron paramagnetic resonance (VT-EPR) studies found that 

the bond dissociation energy is 79 KJ mol-1.56 Gudat also found that the corresponding 

radical that is formed may be reacted with ammonium salts to form a mixture of secondary 

phosphanes and chlorophosphanes (Scheme 1.3).57 Meanwhile, Masuda has showed that 

the P–P bond may be oxidatively cleaved by reacting it with chalcogens and P4 to yield the 

related phosphinic acid anhydride, sulphide/disulphide, selenide, telluride and a 

perphospha-bicyclo-butadiene structure with trans,trans-geometry (Scheme 1.4). Although 

the As–As dimer is known, which was prepared from AsCl(CH(SiMe3)2)2, literature examples 

from diazarsolene compounds is not.60    
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Scheme 1.3: General synthesis for forming the P–P dimer, subsequent radical formation and 

reactivity with ammonium salt.   

   

 

Scheme 1.4: Oxidative addition of P–P dimer using chalcogens and P4. 

Dipp = 2,6-diisopropylphenyl. 
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Chapter 1.2 Recent Interest in Phosphorus and Arsenic Lewis Acids   

1.2.1 Introduction to phosphenium and arsenium compounds 

If the heterocycles described above contain a halogen atom adjoining the 

phosphorus/arsenic centre they may undergo halide abstraction using simple Lewis acids, 

such as AlCl3 or GaCl3, or by salt metathesis, for example with triflate salts, to form the 

corresponding phosphenium or arsenium cations.61,62 First reported by Dimroth and 

Hoffmann in 1964,63 a phosphenium cation is defined as a two coordinate phosphorus 

complex that has a formal positive charge on the phosphorus heteroatom and takes the 

form [PR2]+. Phosphenium cations possess a lone pair of electrons and a have a vacant 

p-orbital, which means they have ambiphilic properties of both a Lewis acid and Lewis base. 

N-heterocyclic phospheniums (NHPs) with their divalent nature and similar frontier orbital 

layout (Figure 1.8) means comparisons can be made with the familiar Arduengo N-

heterocyclic carbenes (NHCs). NHCs and NHPs are isolobal with each other, but the latter 

has inverse electronic properties of being a weaker σ-donor but much stronger π-acceptor; 

a consequence of the formal positive charge and +3 oxidation state at phosphorus.64,65      

 

 

 

Figure 1.8: Comparison of the frontier orbitals shown in an NHC and NHP.  

As a result of their inherent properties, traditionally phosphenium cations have been utilised 

as ligands for low valent late transition metals,65–70 with theoretical calculations suggesting 

that the bonding is dominated by their acceptor properties.45,71 An interesting feature with 

using NHPs as ligands in coordination chemistry is that they closely resemble the nitrosyl 

ligand NO+, not only with regards to the cationic charge but also as they are able to adopt 

two different binding modes (Figure 1.9). When coordinated to an electron rich metal, the 

NHP adopts a pyramidal geometry to the metal centre, suggesting the lone pair is not 

involved in the bonding, such as that seen in Cp*(CO)2Fe–(NHPMe).72 On the other hand, 

when coordinated to an electron poor metal a planar geometry at phosphorus of the NHP 

is preferred, where it acts as both a σ-donor and π-acceptor. A resulting double bond is 

formed between the NHP and metal centre, an example of which is seen in Cp–

(CO)2Mo(NHPMe).73 The use of a phosphenium cation offers potential benefits as a ligand 

when compared to NO+ as the former may be tailored to have certain electronic properties 
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through changing the ligand scaffold, which in turn can also change the steric properties of 

the NHP.   

 

 

 

 

 

 

 

Figure 1.9: Bonding modes of the NO+ and NHP ligands to a transition metal (M). Note the 

use of the lone pair in the bonding model for the right hand side structures.    

Much of what was described for phosphenium cations is true for the heavier arsenium 

cations, in that they are divalent arsenic compounds with a positive charge. Synthesised first 

by Burford in the 1990’s,74 unlike their phosphorus counterpart these cations are much 

rarer, though examples are known.50,54,75,76 Although a lone pair and a vacant p-orbital still 

are present, their bonding to transition metals is typically confined to Lewis acid chemistry, 

where there is little to no σ-donation from the lone pair.62,77 This is due to the heavier 

pnictogen elements having a greater reluctance to form a trigonal planar geometry and so 

the lone pair adopts more s-orbital character.53 Consequently, well characterised double 

bonded carbene analogues to the transition metal centre are not common. Indeed, although 

the complex [CpMo(CO)2=EMe2] (E = As, Sb) was observed from matrix isolation 

techniques,78 the first formal double bond arsenium–metal complex was not reported until 

Gudat and colleagues prepared [Co(AsR2)(CO)3] from the reaction of 2-chloro-1,3,2-

diazarsolenes with Tl[Co(CO)4] in 2005 (Scheme 1.5).53       

Scheme 1.5: Formation of [Co(AsR2)(CO)3] with an As=Co double bond.   

1.2.2 Lewis acidity of phosphenium and arsenium cations 

The reactivity of phosphenium and arsenium cations is dominated by their formal positive 

charge, empty 3p/4p-orbital and lone pair of electrons. The Lewis acidity of phosphenium 
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cations can be clearly observed by their formation of classic Lewis acid-base adducts, such 

as with phosphines,65 carbenes,79 amines80 and imines,81 whereas arsenium cations have 

been known to form Lewis acid-base type dimeric structures with sulfur atoms interacting 

with arsenic in solution.74 One of the first attempts to measure quantitatively the Lewis 

acidity of phosphenium and arsenium cations though was by Wolf et al. who measured their 

Lewis acidity based on their ability to coordinate pyridine. By looking at the change in the 

chemical shift of the C-4 carbon in pyridine by 13C{1H} NMR spectroscopy the equilibrium 

constant Kc was determined, which in turn was used to measure the Lewis acidity. This study 

found that the trend in Lewis acidity was cyclic<acyclic, diamino<dithia and rather 

interestingly arsenium<phosphenium.82  

The Lewis acidity of phosphenium cations has more recently been explored by Slattery and 

Hussein using the computationally determined Fluoride Ion Affinity (FIA). In this method the 

attraction the Lewis acidic phosphenium has for the Lewis basic fluoride is measured and 

the negative enthalpy of reaction is the FIA; a greater enthalpy signifies greater Lewis acidity. 

These FIA calculations found that the inclusion of π-donor substituents help stabilise the 

phosphenium cation, which in turn reduces the Lewis acidity, a feature seen by Wolf.82 

Further reductions in Lewis acidity were caused by inductive as well as steric effects, where 

it was found the use of very bulky ligands significantly reduce the FIA. Some of the FIA values 

calculated are shown in Figure 1.10.83      

Figure 1.10: Example FIA values of phosphenium cations, theory MP2 (RI-)BP86/SV(P). 

1.2.3 Introduction to phosphonium and arsonium compounds 

Although not necessarily heterocyclic compounds, it is worth briefly discussing 

phosphonium and arsonium compounds when discussing group 15 Lewis acids. Unlike 

phosphenium and arsenium compounds, which are formally in a +3 oxidation state, 

phosphonium and arsonium complexes are in a +5 oxidation state. They have the general 

formula PR4
+/AsR4

+ where R = alkyl, aryl, halide or H. Pentacoordinate phosphorus/arsenic 

compounds with electron withdrawing substituents have been known for some time to be 

Lewis acidic due to the presence of a low lying σ*-orbital and these complexes are known 

to form traditional Lewis acid and Lewis base adducts.84 The formation of a phosphonium or 

arsonium cation can proceed by a number of routes, but perhaps the most recognised is by 

the alkylation of organophosphines, such as the reaction of triphenylphosphine with methyl 
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iodide to give methyltriphenylphosphonium iodide. This is the precursor to a Wittig 

reagent.85 Historically this is the biggest use of phosphonium compounds; their use in the 

Wittig reaction which transforms aldehydes and ketones to alkenes.86 

More recently the phosphonium cation has received significant attention from the group of 

Stephan as part of their FLP work. They have also written an extensive review on the 

subject.87 Stephan and co-workers have previously reported the irreversible sequestration 

of CO2 using an aminophosphonium salt, which was prepared by the reaction of 

o-phosphinoaniline with XeF2. Subsequent addition of tBuLi and fluoride abstraction 

generated the amidophosphorane Ph2PF(o-C6H4NMe). Exposure of the amidophosphorane 

to 1 atm of CO2 at room temperature gave insertion into the P–N bond, giving the product 

Ph2PF(o-C6H4NMe)(CO2) (Scheme 1.6). This reactivity is believed to stem from the P–N FLP 

behaviour.88              

Scheme 1.6: Use of phosphonium in CO2 sequestration. 

The growing use of highly electrophilic fluorophosphonium cations (EPCs) led to a number 

of studies to try and quantify how Lewis acidic these compounds are. Deriving their Lewis 

acidity from low lying P–F σ*-orbital, attempts to perform the experimentally well-known 

Gutmann-Beckett (coordination with triethylphosphine oxide) or Childs methods 

(coordination to crotonaldehyde) are plagued with difficulty, so in 2015 Stephan and 

colleagues synthesised an array of these EPCs and computationally measured the Lewis 

acidity using Fluoride Ion Affinity (FIA) calculations. FIA is defined as the negative of the 

reaction enthalpy of adding a fluoride to the phosphonium. As expected, the electrophilicity 

of the phosphonium species were found to increase with more electron withdrawing 

substituents added, and in fact when two -C6F5 groups were added, the Lewis acid B(C6F5)3 

was not able to abstract the fluoride. Using the theory level WB97XD/def2TZV, the 

phosphonium [tBu3PF]+ was found to have an FIA of 163 KJ mol-1, [Ph3PF]+ 200 KJ mol-1 and 
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[(C6F5)3PF]+ 311 KJ mol-1. For reference, using this theory level B(C6F5)3 has an FIA of 

260 KJ mol-1.89 Another computational method for determining Lewis acidity is the Global 

Electrophilicity Index (GEI), which simply put is a measure of the ability of molecules to take 

up electrons. It is often denoted as ω. In 2018 Stephan applied this to phosphonium 

compounds, which generally speaking follow the same trend as the FIA calculations.89 To try 

to make EPCs more accessible, a range of phenoxy-substituted phosphonium cations were 

prepared, and whereas their GEI was lower than [(C6F5)3PF]+, the addition of fluorine atoms 

to the phenoxy ring does increase their Lewis acidity.90 

A nice example that ties together P(III) and P(V) chemistry (which would help inspire Kinjo 

to catalytically use diazaphospholenes for catalysis; see Chapter 1.3) is the work by 

Radosevich, who first reported the reversible two-electron redox cycling of P(III)/P(V), which 

enabled it to be used for transfer hydrogenation reactions. This was achieved by using a 

three-coordinate phosphorus species with an NO2 type pincer ligand that forced a strained, 

planar T-shaped geometry. The reaction of catalytic (10 mol%) trivalent phosphorus species 

with ammonia-borane gives the dihydridophosphorane intermediate, which transfers 

hydrogen to azobenzene. It was proposed that this occurs by the ammonia-borane firstly 

protonating the trivalent phosphorus species, generating a phosphonium intermediate, 

which then abstracts a hydride from the aminoborane. The transfer of hydrogen to 

azobenzene gives the product diphenylhydrazine and regenerates the catalyst 

(Scheme 1.7).91       

 

 

 

 

Scheme 1.7: Transfer hydrogenation and redox cycling between P(III) and P(V). 

As is the theme of this introduction, there is much less reported on arsonium cations than 

their phosphorus counterpart. The rise of the Wittig phosphonium ylide led to the arsonium 

ylide, driven principally by the fact that phosphonium ylides are relatively unreactive 

towards certain substrates, such as ketones. These ylides are typically prepared in an 

analogous fashion to their phosphonium counterparts.92 The chemistry of arsonium ylides 

has previously been reviewed.92,93 However, unlike growth in EPCs, examples of highly 
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electrophilic fluoroarsonium cations are not known, despite fluorinated stibonium94 and 

bismuthonium95 salts being reported.  

1.2.4 Phosphorus and arsenic super Lewis acids 

On the theme of Lewis acids, it is worth touching on the rise of group 15 strong Lewis acids, 

which have been used in FLP chemistry as well as catalysis.87,96 Given the Stephan group’s 

interest in Lewis acids, they have recently reported a η5-pentamethylcyclopentadienyl 

phosphorus dication that is a super Lewis acid. Here a super Lewis acid is defined as a species 

that can abstract a fluoride from the anion [SbF6]−, which would correspond to an acceptor 

number greater than 100 using the Gutmann-Beckett method determination of Lewis 

acidity.97 This super Lewis acid was first prepared by abstracting a fluoride from Cp*PF2 with 

two equivalents of the silylium salt [Et3Si][B(C6F5)4], giving [(η5-Cp*)P][B(C6F5)4]2. This was 

then shown to be able to abstract a fluoride from [SbF6]−, giving the product 

[(η5-Cp*)PF][B(C6F5)4], as well as meeting the criteria for super Lewis acidity. In probing the 

source of this enhanced Lewis acidity, DFT calculations suggested that the LUMO and 

LUMO+1 energy levels are degenerate in energy and comprise of the vacant p-orbitals on 

the phosphorus atom. Furthermore, NBO analyses found a highly positively charged 

phosphorus atom (+1.08 a.u.).98  

Another example of a phosphorus super Lewis acid is from Dielmann and colleagues, who 

reported a phosphorus dication isoelectronic to silylium cations. This dication was prepared 

by first synthesising the phosphonium salt with B(C6F5)4
− and BArF24

− counterions, which 

involved the addition of phosphorus(III) chloride to excess N-heterocyclic imine, followed by 

exchange of the chloride with weakly coordinating anions. Hydride abstraction of the 

phosphonium salts with trityl salt gave the desired phosphorandiylium ions, and when using 

the Gutmann-Beckett method an acceptor number (A.N.) of 117 was obtained (X = BArF24
−), 

thus confirming super Lewis acidity. Developing this, Dielmann et al. realised that the 

electronic properties of the phosphorus atom could be modified by manipulating the 

imidazoline backbone. With a new N-heterocyclic imine bearing a benzene ring, the same 

synthetic procedure to produce was followed. Remarkably, the Gutmann-Beckett method 

gave an acceptor number of 129 for this phosphorandiylium ions. The enhanced Lewis 

acidity was rationalised by the reduced π-electron donating ability of the latter 

N-heterocyclic imine. DFT methodology suggested the Lewis acidity is a result of the low 

energy level of the LUMO (−6.81 eV).99 The synthesis is shown below in Scheme 1.8.         
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Scheme 1.8: Synthesis of super Lewis acidic phosphorandiylium ions. 

As well as phosphorus, an arsenic super Lewis acid has recently been published, again from 

the group of Stephan. Its synthesis was similar to that of their phosphorus super Lewis acid 

[(η5-Cp*)PF][B(C6F5)4], where double chloride abstraction of Cp*AsCl2 gave the dicationic 

arsenic species [η5-Cp*)As(tol)][B(C6F5)4]2. Again, super Lewis acidity was confirmed by its 

ability to abstract a fluoride from [SbF6]−, giving the product [(η5-Cp*)AsF][B(C6F5)4]. On 

account of its strong Lewis acidity, it was found to react with the Lewis base 2,2’-bipyridine 

(bipy) in 1,2-difluorobenzene (DFB) at −35 °C, giving the product 

[(η1-Cp*)As(bipy)][B(C6F5)4]2. Furthermore, the super Lewis acid was found to participate in 

the activation of THF, giving the product [(η2-Cp*)AsO(CH2)4(THF)][B(C6F5)4]2.100     
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Chapter 1.3 Heterocyclic Phosphorus(III) Lewis Acid Catalysis  

1.3.1 Catalysis performed by Kinjo group  
Much has already been described of the fundamental chemistry of an array of heterocyclic 

pnictole compounds, but recently these compounds have received attention as pre-catalysts 

for a variety of reductions. Gudat first described the hydridic nature of the P–H bond in 

diazaphospholene compounds and showed using stoichiometric quantities that it could 

reduce benzaldehyde.46 Then, Radosevich and co-workers reported the catalytic reduction 

of azobenzene using P(III)↔P(V) redox cycling (Scheme 1.7).91 These two observations led 

to the Kinjo group in 2014 to use 2-H-1,3,2-diazaphospholene as a catalyst for reduction of 

azobenzenes using ammonia-borane. After optimisation, 5 mol% of diazaphospholene with 

four equivalents of ammonia-borane were used for the reduction of a range of 

(E)-azo-compounds, giving the corresponding hydrazine product. Unlike in Radosevich’s 

case, mechanistically this catalysis proceeded firstly by the addition of the P–H bond to the 

N=N bond to give phosphinohydrazine intermediate, then hydrogenolysis of the exocyclic 

P–N bond by hydrogen transfer from ammonia-borane occurs to give the product and 

regenerate the diazaphospholene catalyst (Scheme 1.9).101             

 

 

 

 

 

 

 

 

 

 

Scheme 1.9: Reduction of azobenzenes with ammonia-borane using 

2-H-1,3,2-diazaphospholene as a catalyst. 
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The Kinjo group continued to use 1,3,2-diazaphospholene compounds in catalysis and 

followed this work by reporting the hydroboration reduction catalysis of carbonyl 

compounds with pinacolborane (HBpin). Here catalytic amount of the diazaphospholene 

catalyst was able to reduce aldehydes (using 0.5 mol% cat.) and ketones (using 10 mol% cat.) 

with HBpin (1 equiv and 1.3 equiv respectively). A wide substrate scope was performed and 

the diazaphospholene was found to be tolerant to both aliphatic and aromatic aldehydes as 

well as a variety of ketones. Mechanistically this catalysis proceeds by the formation of an 

alkoxyphosphine intermediate from the addition of diazaphospholene to the carbonyl 

substrate, where subsequent cleavage of the P–O bond and the B–H bond in HBpin gives the 

hydroborated product and regenerates the catalyst. Kinetic studies along with DFT 

calculations found that the bond dissociation is involved in the rate-determining step in the 

transition state TS1 and that the process is stepwise, albeit almost concerted 

(Scheme 1.10).102     

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.10: General scheme for carbonyl reduction. 0.5 mol% cat. for aldehyde reduction 

and 1 equiv HBpin; 10 mol% cat. for ketone reduction and 1.3 equiv HBpin.  

The use of CO2 as a C1 source is potentially very powerful as it offers a non-toxic way to build 

more synthetically useful products in a cheap manner, but also gives a use for this harmful 
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greenhouse gas.103 Because of this in 2015 Kinjo performed hydrophosphination of CO2 with 

2-H-1,3,2-diazaphospholene to give the phosphorus formate product. The formate group 

could then be transferred to Ph2SiH2, which formed Ph2Si(OCHO)2 (Scheme 1.11). 

Interestingly, the use of 5 mol% diazaphospholene was found to catalyse the formate 

transfer step, and as a result of these two reactions, Kinjo et al. undertook the catalytic 

N-formylation of amine compounds with CO2 in a one pot reaction (Scheme 1.12).   

Scheme 1.11: Reaction of DAP with CO2 and subsequent formate transfer to Ph2SiH2. Where 

DAP = diazaphospholene. 

For the catalysis, a wide substrate scope of both primary and secondary amines was used. 

For the secondary amines, less-hindered aliphatic amines gave the N-formylamine in 

excellent yields of >90%, but an increase in sterics afforded N-methylated amines. 

Secondary amines containing aryl substituents were found to be tolerated. Expanding the 

scope, all aliphatic and aromatic primary amines tested were found to work well, with yields 

in the range of 72% to 99%.104   

 

 

 

 

 

 

Scheme 1.12: Catalytic N-formylation of secondary (top) and primary (bottom) amines with 

CO2 using 2-H-1,3,2-diazaphospholene as a catalyst. 

In 2017 Kinjo continued to use 2-H-1,3,2-diazaphospholene as a catalyst, this time for the 

reduction of α,β-unsaturated esters and subsequent C–C coupling with nitriles. Using 

1 mol% catalyst, conjugate transfer hydrogenation from ammonia-borane was found to give 

reduction of the alkene moiety. In addition to this, the diazaphospholene was used to 

catalyse the 1,4-hydroboration of these α,β-unsaturated esters. The hydroborated product 
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could then be coupled with nitriles to generate substituted amino diesters or 1,3-imino 

esters, depending on the nature of the α,β-unsaturated ester. Mechanistically the transfer 

hydrogenation and hydroboration is similar and involves a 1,4-hydrophosphination of the 

α,β-unsaturated ester to give a phosphinyl enol ether. Cleavage of the P–O bond in this ether 

by ammonia-borane gives an enol intermediate, which after tautomerisation gives the 

saturated ester. Meanwhile, cleavage of the P–O bond by HBpin by σ-bond metathesis 

produces a boryl enolate intermediate, which is then able to undergo the coupling reaction 

with nitriles. The general reactions are given below in Scheme 1.13.105      

 

Scheme 1.13: Conjugate transfer hydrogenation and 1,4-hydroboration of α,β-unsaturated 

esters.  

Having successfully showed the diversity of reactions 2-H-1,3,2-diazaphospholene can 

catalyse, in 2018 Kinjo looked at using phosphenium cations as pre-catalysts. For this, a wide 

range of phosphenium triflate complexes were synthesised and then used as potential 

pre-catalysts for the hydroboration of pyridines with HBpin. Screening results showed that 

using 5 mol% phosphenium triflate was highly efficient for this catalysis, giving both regio- 

and chemoselectivity to the hydroborated product. A substrate scope showed that the 

phosphenium cation had good functional group tolerance when the pyridine ring was 

substituted in the meta-position, however when in the ortho- and para-position these 

substrates proved challenging. Mechanistically this catalysis proceeds in a different way to 

the hydroboration of carbonyl compounds using 2-H-1,3,2-diazaphospholene, given the 

cationic nature of the phosphenium. Investigating the mechanism, Kinjo and colleagues 

found that the first step involves hydride transfer from HBpin to the phosphenium, 

generating 1,3-di-tert-butyl-2,3-dihydro-1H-benzo-1,3,2-diazaphosphole (III) and the 



22 
 

boronium salt [(py)2Bpin]OTf. The second step is then reduction of the activated pyridine 

using the diazaphosphole intermediate I (Scheme 1.14).106 

Scheme 1.14: General scheme and catalytic cycle for pyridine reduction.  

1.3.2 Catalysis performed by Speed group  
During the time the Kinjo group were performing this reduction catalysis, the Speed group 

were also interested in exploiting the inherent reactivity of diazaphospholene compounds. 

In 2017 Speed and workers reported the use of a diazaphospholene pre-catalyst that 

efficiently reduces imines with HBpin. Unlike Kinjo who used the diazaphospholene hydride, 

Speed used a neopentyloxy-diazaphospholene pre-catalyst that could be handled in air and 

would form the highly air and moisture sensitive 2-H-1,3,2-diazaphospholene catalyst upon 

addition with HBpin via σ-bond metathesis. Mechanistically after this the catalysis proceeds 

in an analogous way to the carbonyl reduction shown by Kinjo (Scheme 1.10).102 To 

synthesise the pre-catalyst, the appropriate diimine was added to stoichiometric 

phosphorus(III) bromide and three equivalents of cyclohexane to form the 

bromodiazaphospholene, which was then added to stoichiometric neopentyl alcohol to give 

the neopentyloxy-diazaphospholene (Scheme 1.15). 

Optimisation reactions for the imine reduction found that the optimal conditions to use for 

the catalysis were 2 mol% pre-catalyst and one equivalent of HBpin at room temperature. A 
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host of amines were used in the substrate scope, with sterically hindered indanone-derived 

imine and aldimines with different steric demand tolerated. A Lewis basic pyridyl ring was 

found to give no detrimental effect and, using a p-methoxybenzyl (PMB) protecting group 

gave the expected reduced product. Having successfully reduced imines, Speed et al. looked 

to investigate the potential of the pre-catalyst and perform conjugate reduction with HBpin. 

Increasing the catalytic loading to 10 mol%, it was able to reduce conjugated ketones and 

esters (Scheme 1.16).107     

Scheme 1.15: Formation of neopentyloxy-diazaphospholene pre-catalyst from a diimine.  

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.16: Imine (top) and conjugate (bottom) reduction using neopentyloxy-

diazaphospholene as a pre-catalyst, imcluding selected substrate scope results. Bonds in 

bold indicate previous imine or alkene. Isolated yields after work-up.  

The Speed group quickly followed up this result by reporting the first example of chiral 

diazaphospholene assisted catalysis, with asymmetric imine reduction with HBpin 
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(Scheme 1.17). Needing a source of chirality, a chiral diimine was used and the synthesis 

route of the chiral pre-catalyst followed that of the achiral neopentyloxy-diazaphospholene. 

Using the same optimised conditions as before, albeit with THF not CH3CN, a substrate scope 

of imines flanked by aromatic groups revealed high enantiometric ratios of up to 88:12, with 

these results at the time being the best reported for alkyl imine hydroboration with HBpin.108  

Scheme 1.17: Chiral diazaphosphole and selected substrate scope for chiral hydroboration 

of imines. Isolated yields after work-up. Enantiomeric ratio determined by HPLC analysis of 

the amine on a chiral stationary phase.  

Continuing this theme, the Speed group in 2017 again published another example of imine 

reduction, but this time using a 1,2,4,3-triazaphospholene, which is believed to be the first 

example of this heterocycle partaking in catalysis. The triazaphospholene ring is similar to 

that of a diazaphospholene, except it contains three nitrogen atoms instead of two. Initial 

work led to triazaphospholene being synthesised by firstly reacting a bulky amidrazone with 

phosphorus(III) bromide and triethylamine, giving the triazaphospholene bromide. Treating 

the bromide intermediate with sodium benzyloxide substituted the bromide for an alkoxy 

group, which when added to catecholborane (HBcat) gave the triazaphospholene hydride, 

although it was not isolated (Scheme 1.18). 

 A series of less hindered triazaphospholene compounds were then made, and screening 

results found that the triazaphospholenes IV and V (Scheme 1.19) were the most suitable to 

proceed with a substrate scope. Using 10 mol% catalyst, a variety of imines were found to 

readily undergo hydroboration, but more interestingly imines derived from aniline were also 

readily reduced. Note this is of interest as these substrates do not undergo reduction using 

diazaphospholene catalysts. Mechanistically this catalysis is intriguing as unlike the other 

catalytic examples discussed so far, Speed found no evidence of P–H bond formation. 

Instead, V is ionised in MeCN, giving the cation, leading to an interaction between the 
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positively charged phosphorus on V and N atom from the imine. Hydride transfer via a six-

membered transition state then occurs, after which the active catalyst is regenerated by 

releasing the borylated amine. The catalytic cycle is given below in Scheme 1.19.109  

Scheme 1.18: Reaction scheme for synthesising triazaphospholenes. 

Dipp = 2,6-diisopropylphenyl.  

Scheme 1.19: Catalytic cycle for imine reduction with HBpin, using triazaphospholene V as 

a pre-catalyst. Anion = Cl− and is omitted for clarity.  
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Returning to the neopentyloxy-diazaphospholene pre-catalyst in 2018, Speed looked at its 

further potential and investigated the hydroboration of pyridines with HBpin, similar to the 

work of Kinjo with a phosphenium cation.106 In this work, using 2.5 mol% catalyst proved 

effective for the catalysis, with a range of meta-substituted pyridines efficiently being 

hydroborated, although regioselectivity in some case was problematic. As in the case of 

Kinjo, the use of ortho- and para-position substituents proved challenging. Mechanistically 

the catalysis proceeds differently to phosphenium catalysed pyridine reduction, with the 

formation of the diazaphospholene hydride being the first step. After this, pyridine 

reduction occurs from hydride delivery and then B–P hydride transfer gives the desired 

hydroborated pyridine product and regenerates the catalyst (Scheme 1.20).110        

 

 

 

 

 

 

 

 

 

 

 

 

   

Scheme 1.20: Proposed catalytic cycle for the hydroboration of pyridines using 

neopentyloxy-diazaphospholene pre-catalyst.   

Lastly, the Speed group in 2019 presented the first example of chiral phosphenium catalysis 

with enantioselective reduction of imines using HBpin. Using the same ligand scaffold as 

their chiral diazaphospholene, the diimine was added to phosphorus(III) bromide, giving the 

diazaphospholene bromide, after which the bromide was abstracted using TMS triflate to 
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give the chiral phosphenium (Scheme 1.21). Proceeding with this, 1 mol% pre-catalyst and 

1.2 equivalents of HBpin were used in the substrate scope of cyclic imines, giving aryl 

pyrrolidines as products, where enantiomeric ratios of up to 97:3 were obtained. Moreover, 

imines incorporating functional groups such as pyridyl rings and thiophenes which are 

traditionally challenging for transition metal catalysts were reduced using the phosphenium 

cation. Mechanistically this catalysis is believed to proceed in a similar fashion to that 

reported by Kinjo,106 where the phosphenium cation abstracts a hydride from HBpin and 

delivers it to the subsequent imine-borenium complex. In addition to this, screening of other 

reductants found that phosphenium can promote the asymmetric hydrosilylation of 

imines.111       

Scheme 1.21: Synthesis of chiral phosphenium triflate. 

1.3.3 Catalysis performed by Cramer group  
Given the groups interest in chiral ligand design, Cramer and colleagues in 2018 reported 

enantioselective conjugate reduction using a chiral 1,3,2-diazaphospholene bearing a 

methoxy group as a pre-catalyst. To begin with, a number of chiral pre-catalysts were 

synthesised, but screening results found that the diazaphospholene pre-catalyst, which 

contains 3,5-xylyl substituents, gave the best performance for the conjugate reduction of 

acyl pyrrole. A substrate scope of a variety of α,β-unsaturated acyl pyrroles using the 

conditions 5 mol% pre-catalyst and 1.5 equivalents of HBpin in toluene solvent gave reduced 

products in yields and enatiomeric ratios of up to 97% and 93.5:6.5 respectively. In addition, 

chalcones were found to reduce smoothly to the corresponding ketone and more 

challenging α,β-unsaturated amides were tolerated, with an enantiomeric ratio of up to 

86:14. Upon explaining the origin of enantioselectivity, knowing that the P–H bond in the 

active catalyst is in a perpendicular position as a result of the pyramidal geometry, two 

accessible quadrants are available away from the bulky aromatic backbone. This led to 

Cramer proposing the depicted stereoselectivity shown in Figure 1.11. Mechanistically 
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Cramer proposed two potential catalytic cycles for the catalysis; Path A and Path B. In Path 

A, the diazaphospholene hydride is the active catalyst, where the hydride is delivered upon 

addition of the conjugated substrate, after which regeneration of the active catalyst occurs 

via addition of HBpin; in turn giving a boron enolate. After hydrolytic work-up the final 

product is given. Alternatively, in Path B the first part of the catalytic cycle is the same, but 

the coordinated intermediate undergoes σ-bond metathesis with pinBOMe, regenerating 

the pre-catalyst and giving the boron enolate (Scheme 1.22).112      

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.22: Proposed catalytic cycle for conjugate reduction.  

 

 

 

 

 

 

Figure 1.11: Chiral pre-catalyst and selectivity model for the asymmetric reduction.  
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This work was followed up by the Cramer group in 2019 by using a diazaphospholene as a 

pre-catalyst to perform a reductive Claisen rearrangement (Scheme 1.23). Using 1 mol% of 

the benzyloxy-diazaphospholene pre-catalyst and 2.5 equivalents of HBpin at ambient 

temperature, a wide array of allylic acrylates bearing various functional groups were found 

to be tolerated for the rearrangement, which was also enantiospecific for substrates with 

existing stereogenic centres. Investigations into the diasteroselectivity found it could be 

tuned by varying the solvent as well as changing the diazaphospholene catalyst. Mechanistic 

studies found that a number of pathways exist depending on the nature of the pre-catalyst 

and substrate.113  

 

 

 

 

 

 

Scheme 1.23: Claisen rearrangement catalysed by a diazaphospholene pre-catalyst. 
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Chapter 1.4 Conclusion 
In this chapter the heterocycles phosphole and arsole have been introduced, which have 

been defined as being the phosphorus and arsenic analogues of pyrrole respectively. A 

discussion has been presented about their aromaticity, which found using both 

experimental and computational methodology that phospholes are more aromatic than 

arsoles; but both are significantly less aromatic than pyrrole. This is a consequence of their 

non-planar nature due to insufficient n-π orbital interaction. However, the differences 

between phospholes and arsoles vs. pyrrole can be advantageous for optical applications, 

where greater tunabilty may be achieved through modification of the electronics of the 

phosphorus or arsenic centre. The phosphole/arsole ring may be modified to by including 

nitrogen heteroatoms, which produces the heterocycle diazaphospholene or diazarsolene 

accordingly. Diazaphospholenes act as precursors to N-heterocyclic phosphenium cations, 

which are divalent phosphorus species that have a formal positive charge; [PR2]+. 

Diazaphospholene compounds have also recently been used for catalysis in a number of 

organic transformations, with the groups of Kinjo, Speed and Cramer all presenting 

examples. Generally speaking, the catalysis mechanistically proceeds via the formation of a 

diazaphospholene–hydride species, which then transfers the hydride and reduces the 

organic substrate.   
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Chapter 2: Synthesis of Dithia-, Diaza-, and Dioxa-based 

Benzophospholes and Benzoarsoles 

Chapter 2.1 Synthesis of Benzo-Fused Dithiaphospholes and Dithiarsoles  
In advance of any structural or reactivity analyses of phosphole and arsole derived 

compounds, a series of them firstly needed to be synthesised. To begin with, either 

commercially available toluene-3,4-dithiol or benzene-1,2-dithiol was used as the starting 

ligand, which when reacted with a phosphorus trihalide would generate the first phosphole 

derived species to investigate. The synthesis of the dithiaphospholes and their structural 

scrutiny is described below.   

2.1.1 General synthesis and NMR spectroscopy analysis of benzo-fused dithiaphopholes 

The synthesis of the benzo-fused dithiaphospholes (shortened herein to dithiaphospholes) 

proceeded in a similar fashion to that first described by Baudler.1 This involved the addition 

of either toluene-3,4-dithiol or benzene-1,2-dithiol to the phosphorus trihalide, PX3, in 

CH2Cl2 solvent and stirring at room temperature for 24 hours (Scheme 2.1). The liberation 

of HX gas proceeded during this time. Upon the removal of volatiles and subsequent 

pentane washings, the dithiaphosphole compounds were isolated in good to excellent yields 

of 73–96%. The products 2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a), 2-bromo-

5-methylbenzo-1,3,2-dithiaphosphole (1b), 2-chlorobenzo-1,3,2-dithiaphosphole (2a) and 

2-bromobenzo-1,3,2-dithiaphosphole (2b) were obtained as white powders, whereas 

2-iodo-5-methylbenzo-1,3,2-dithiaphosphole (1c) and 2-iodobenzo-1,3,2-dithiaphosphole 

(2c) are orange and red powders respectively.2   

 

 

 

 

 

Scheme 2.1: Synthesis of dithiaphosphole compounds 1a–2c. 

For the reactions of toluene-3,4-dithiol with phosphorus trihalide (phosphorus trichloride, 

phosphorus tribromide or phosphorus triiodide), giving products 1a–1c, 31P{1H} NMR 

spectroscopy was first employed to confirm product formation. 31P NMR spectroscopy is a 

very powerful and highly useful characterisation technique for diamagnetic complexes that 

contain phosphorus. The 31P nuclei is NMR active with a nuclear spin of I = ½, 100% isotopic 

abundance and has a relatively high gyromagnetic ratio (γ = 108 × 106 rad s-1 T-1, cf. 1H where 
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γ = 268 × 106 rad s-1 T-1). Unlike in a typical 1H NMR spectrum, which is performed over a 

spectral width that covers δ = 13–0 ppm, a 31P NMR spectrum will usually cover a chemical 

shift range from δ = +250 to −250 ppm with respect to 85% H3PO4; a spectral width of several 

hundred ppm and much wider than a 1H NMR spectrum. Moreover, the characteristics of 

31P NMR spectroscopy are different to 1H NMR spectroscopy, in that the 1H NMR spectrum 

is dominated by the magnitude of the diamagnetic shielding tensor (σd), meaning that the 

nuclei are sensitive to the electron donating and withdrawing nature of the bound 

substituent. On the other hand, the 31P NMR spectrum (and any nuclei heavier than 1H) is 

governed by the paramagnetic shielding tensor (σp). σp involves interactions between the 

circulation of electrons in the ground state and higher energy excited states caused by the 

external magnetic field. The results of the magnitude of σp give rise to the large spectral 

width seen in the 31P NMR spectrum.3 

As the paramagnetic shielding tensor, which as just described is the mixing of the ground 

state and excited state wavefunctions, is largely responsible for the chemical shift in the 31P 

NMR spectrum, the oxidation state and coordination geometry are vastly important in 

chemical shift determination. For example, triethylphosphine has a chemical shift of 

δ = −20.0 ppm in the 31P NMR spectrum, whereas the chemical shift for triethylphosphine 

oxide is shifted downfield to δ = +48.3 ppm. It is important to stress though that the 31P 

chemical shift is independent of the formal oxidation state but instead is dependent on the 

electron density on the phosphorus atom, as well as the geometry and degree of π-bonding 

present.3   

31P{1H} NMR spectroscopic analysis of 1a–1c revealed loss of the starting phosphorus 

trihalide, cf. δ = 218, 227 and 178 ppm for PCl3, PBr3 and PI3 respectively, and an upfield 

singlet resonance at δ = 160.4 (X = Cl), δ = 163.3 (X = Br) and δ = 155.0 (X = I) ppm 

corresponding to the product (Figure 2.1). 31P{1H} NMR chemical shifts of 1a–1c are 

interesting as they do not correlate to a simple trend based on electronegativity arguments 

alone. That is, it would be expected to observe an upfield shift from 1a (X = Cl) to 1c (X = I). 

However, 1b is found to be slightly downfield (by ca. 3 ppm) to 1a, which is also seen in the 

PCl3 vs. PBr3 
31P NMR chemical shifts in the starting trihalides.  

Given the nature of the structure in the dithiaphosphole the 1H and 13C{1H} NMR spectra of 

1a–1c showed little change when compared to the toluene-3,4-dithiol starting material, 

although the 1H NMR spectrum showed loss of the two dithiol signals at cf. δ = 3.70 and 

3.60 ppm. Using 1a as an example, the 1H NMR spectrum shows three aromatic signals, 
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corresponding to the three aromatic protons at δ = 7.55, 7.50 and 7.12 ppm.  Given the NMR 

active nature of the 31P nuclei (vide supra), coupling to the phosphorus heteroatom is seen 

in the splitting pattern of the aromatic protons, with 4JPH = 1.2 Hz and even 5JPH = 0.6 Hz 

observed (see experimental chapter). The methyl group from the ligand backbone is a 

singlet at δ = 2.39 ppm.     

 

 

 

 

 

 

 

 

 

 

Figure 2.1: 31P{1H} NMR (202 MHz, CDCl3, 295 K) spectrum of the dithiaphosphole 1a.  

Similar observations to those discussed above were found for the reactions of benzene-1,2-

dithiol with phosphorus trihalides (phosphorus trichloride, phosphorus tribromide or 

phosphorus triiodide), giving products 2a–2c (Scheme 2.1). 31P{1H} NMR spectroscopy of the 

products showed loss of starting phosphorus trihalide and singlet signals at δ = 158.3 (X = Cl), 

δ = 160.9 (X = Br) and δ = 152.4 (X = I) ppm, which are comparable to their counterparts 1a–

1c (δ = 160.4, 163.3 and 155.0 ppm respectively). The highly symmetric nature of 2a–2c 

resulting from the C2 axis present results in chemically equivalent aromatic protons in the 

1H NMR spectrum, meaning that only two aromatic proton signals are seen (cf. three in 1a–

1c). Using 2a as an example, the first aromatic chemical shift splits into a doublet of doublet 

of doublets centred at δ = 7.69 ppm (3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 4JPH = 1.3 Hz). This coupling 

pattern arises due to the fact that both chemically and magnetically inequivalent protons 

are present. The second aromatic signal is a doublet of doublets positioned at δ = 7.32 ppm, 

with 3JHH = 5.9 Hz and 4JHH = 3.3 Hz coupling constant values (Figure 2.2). 
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Figure 2.2: 1H NMR (400 MHz, CDCl3, 295 K) spectrum showing aromatic resonances of the 

dithiaphosphole 2a.  

2.1.2 Single crystal X-ray diffraction analysis of benzo-fused dithiaphospholes 

As one of the aims of this thesis is to understand better the fundamental bonding and 

structure of this class of heterocycle, single crystal X-ray diffraction was used to visualise 

and examine their geometry. Single crystal X-ray diffraction would prove to be an invaluable 

method throughout this thesis for compound characterisation and analysis. Crystals of 1a–

1c suitable for single crystal X-ray diffraction were grown from saturated solutions of CH2Cl2 

with a few drops of pentane and cooled to −40 °C (Figure 2.3). Upon data collection and 

refinement, the solid-state structures of 1a–1c were found to crystallise in the monoclinic 

space group P21/c with one molecule in the asymmetric unit (Z’); increasing to four 

molecules in the unit cell (Z). Structure solution revealed the anticipated three-coordinate 

phosphorus centre, in which the halogen co-ligand (X = Cl, Br or I) is exocyclic to the fused 

rings. The dithiaphosphole ring itself is not planar but instead adopts an envelope-type 

geometry, as seen in the structure of cyclopentane, in which there is a fold angle about the 

S···S vector (Figure 2.4). The fold angle for 1a was calculated to be 26.07(6)°, whereas for 1b 

this fold angle is 24.19(10)° and 19.45(14)° for 1c. That is, upon descending down group 17 

for the co-ligand, the fold angle decreases and the structure tends towards molecular 

planarity. An explanation for this is that due to the larger steric hinderance caused by the 

bromide and iodide co-ligand, the lone pair on the phosphorus heteroatom is forced to 

donate into the dithia pnictole ring and better n-π orbital overlap takes place; hence 

planarity. A similar feature is observed with phospholes where an increase in bulky 

Ha 

Hb 
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substituents around phosphorus promotes planarity by increasing the barrier of pyramidal 

inversion.4 Although the P–S bond lengths and S–P–S interior bond angles remain similar in 

1a–1c, the bond length of the P–X bond appreciably changes and increases upon descending 

group 17. The P–X bond lengths are 2.1134(7) Å (1a), 2.3153(9) Å (1b), and 2.5730(12) Å (1c) 

(Table 2.1). Furthermore, the P–X bond lengths show slight elongation compared to typical 

values, with standard P–X bond lengths of 2.008 Å (P–Cl), 2.206 Å (P–Br) and 2.490–2.493 Å 

(P–I).5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Solid-state structures of dithiaphospholes 1a–1c (top: 2-chloro-5-methylbenzo-

1,3,2-dithiaphosphole (1a), middle: 2-bromo-5-methylbenzo-1,3,2-dithiaphosphole (1b), 

bottom: 2-iodo-5-methylbenzo-1,3,2-dithiaphosphole (1c)). Thermal ellipsoids drawn at 

50% probability and H-atoms removed for clarity. 
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 Figure 2.4: Figure of the dithia C2S2P 5-membered ring which shows the envelope geometry. 

The C2S2 atoms lie in the plane, whereas the phosphorus atom (and by proxy the chloride) 

are above the plane at an angle θ. This angle θ is what is meant by the term fold angle.   

 Table 2.1: Selected bond lengths and interior bond angles for compounds 1a–1c. 

 

The presence of the methyl group on the benzene backbone in theory could give rise to 

enantiomers, with chirality being centred on the phosphorus heteroatom. However, the 

space group P21/c, which 1a–1c crystallise in, is centrosymmetric and consequently contains 

an inversion centre. The presence of this inversion centre means that a 50:50 mixture of 

both enantiomers is observed.    

When looking at the packing arrangement of the dithiaphosphole 1a, the phosphorus and 

sulfur atoms display short contacts with the chloride of the neighbouring dithiaphosphole, 

with contacts measuring 3.47378(8) Å and 3.42797(9) Å for the P···Cl and S···Cl contacts 

respectively (Figure 2.5). These values are within the van der Waals radii distances of 

355 ppm for both P···Cl and for S···Cl. Interestingly such close contacts do not exist for 

compounds 1b and 1c and no meaningful close contacts are found.  

Selected bond  1a/ Å (X = Cl) 1b/ Å (X = Br) 1c/ Å (X = I) 

P(1)–S(1) 2.0936(7) 2.0791(12) 2.0941(15) 

P(1)–S(2) 2.0954(7) 2.0853(12) 2.0898(14) 

S(1)–C(1) 1.769(2) 1.766(3) 1.767(4) 

S(2)–C(2) 1.7714(17) 1.763(3) 1.761(4) 

P(1)–X 2.1134(7) 2.3154(9) 2.5730(12) 

    

Selected angle 1a/ ° 1b/ ° 1c/ ° 

S(1)–P(1)–S(2) 95.43(3) 96.00(5) 96.13(6) 
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Figure 2.5: Close contacts that exist in the unit-cell in compound 1a. Dashed lines show the 

close contacts between phosphorus, sulfur and chloride atoms. Orange: phosphorus, 

yellow: sulfur, green: chlorine.  

 
Crystals of 2a–2c suitable for single crystal X-ray diffraction were grown as described above. 

2a crystallises in the monoclinic space group P21/n with one molecule in the asymmetric 

unit; increasing to four in the unit cell. On the other hand, compounds 2b and 2c crystallised 

in the reduced symmetry lattice triclinic space group P-1, with two molecules in the 

asymmetric unit but four molecules in the unit cell (Figure 2.6). A fold angle about the S···S 

vector is again observed, with molecular planarity arising upon descending group 17 in the 

co-ligand. The fold angle is 28.65(6)° for 2a, 26.45(9)° and 26.57(9)° for the two 

crystallographically independent molecules in 2b and 28.38(14)° and 23.93(11)° for the two 

crystallographically independent molecules in 2c. Interestingly, despite the only structural 

difference in 2a–2c compared to 1a–1c being the lack of methyl group on the benzene 

backbone, the fold angles present in 2a–2c are consistently lower than the analogous 

complex in 1a–1c. For comparison the fold angles present in 1a–1c were 26.07(6)° 

24.19(10)° and 19.45(14)° respectively. Further structural features mirror that of 1a–1c, with 

the P–X bond lengths approximately the same, although the internal S(1)–P(1)–S(2) for 2b 

and 2c do show a small contraction compared to the analogous 1b and 1c. These metrics 

are given in Table 2.2 below.  

 

 

 

 

 

 

 

P···Cl contact distance: 3.47378(8) Å 

S···Cl contact distance: 3.42797(9) Å 
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Figure 2.6: Solid-state structures of dithiaphospholes 2a–2c (Top: 2-chlorobenzo-1,3,2-

dithiaphosphole (2a), middle: 2-bromobenzo-1,3,2-dithiaphosphole (2b), 

bottom: 2-iodobenzo-1,3,2-dithiaphosphole (2c)). Thermal ellipsoids drawn at 50% 

probability and H-atoms removed for clarity. 

 

Inspection of the unit cell packing of 2a does not show the P···Cl and S···Cl short contacts as 

seen in the analogous 1a, instead close contacts between pairs of neighbouring sulfur atoms 

are present, that are within 0.112 Å of the van der Waals radii. Structures 2b and 2c do not 

show any significant short contacts within the unit cell.     

 



44 
 

Table 2.2: Selected bond lengths and interior bond angles for compounds 2a–2c. 

 

2.1.3 Computational analysis of benzo-fused dithiaphospholes 

To understand better the structural features of these compounds, density functional 

calculations (DFT) were performed on the complexes 1a–2c. Initially a series of different 

functionals and basis sets were screened to determine the most appropriate combination 

that gave the closest fit to the single crystal data. With that, for the chloro- and 

bromo-dithiaphosholes (1a, 1b, 2a and 2b) the Minnesota 06-2X6 (commonly abbreviated 

to M06-2X) was chosen with the Pople basis set 6-311+G(2d,p).7 However, given the heavier 

nature of the iodide co-ligand, the 6-311+G(2d,p) basis set is inappropriate to use. This is 

firstly because of the increased computational time required due to the increased number 

of electrons, but secondly and arguably more importantly, the need to describe relativistic 

effects of core electrons of heavier atoms. Consequently, effective core potentials (ECPs) 

are commonly used for heavier atoms and the Karlsruhe basis set Def2-TZVP8 (triple zeta 

valence polarisation) was employed for the iodine atom of 1c and 2c. Again M06-2X was 

used as the functional and the 6-311+G(2d,p) basis set was used for the remaining atoms. 

Geometry optimisation and vibrational frequency calculations on 1a–2c were initially 

performed, ensuring that each structure was a true minimum on the potential energy curve, 

after which natural bond orbital (NBO) calculations were undertaken.9 NBO calculations are 

a powerful tool as they allow the fundamental bonding model of a molecule to be probed 

Selected bond  2a/ Å (X = Cl) 2b/ Å (X = Br) 2c/ Å (X = I) 

P(1)–S(1) 2.08668(8) 
2.0898(11)– 

2.0907(11) 

2.0842(19)– 

2.0947(16) 

P(1)–S(2) 2.0863(8) 
2.0789(15)– 

2.0886(12) 

2.0873(16)– 

2.0940(17) 

S(1)–C(1) 1.7625(17) 1.763(4)–1.770(3) 1.760(5)–1.761(4) 

S(2)–C(2) 1.7654(19) 1.755(4)–1.759(3) 1.761(5)–1.771(4) 

P(1)–X 2.1038(9) 
2.2908(7)– 

2.2981(9) 

2.5188(11)– 

2.5295(13) 

    

Selected angle 2a/ ° 2b/ ° 2c/ ° 

S(1)–P(1)–S(2) 95.40(3) 
95.33(5)– 

95.67(5) 

95.22(7)– 

95.58(7) 
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and provide great structural detail which can complement the results of the crystallography. 

When performed on 1a, NBO calculations revealed a high level of polarisation in the P–Cl 

bond, with natural charges of +0.53 and −0.32 on the phosphorus and chloride atoms 

respectively. Further to this, the P–Cl bond exhibits a small reduction in single bond 

character, with a Wiberg bond order of 0.86. Given the interesting result of this reduced 

bond order, it was investigated further by looking at the orbital interactions that exist in 1a. 

This was done by analysis of the second-order perturbative estimates of donor-acceptor 

interactions, which in short looks at any donations of electron density from filled bonding 

orbitals into vacant (or partially filled) orbitals. This analysis showed there was π-electron 

density from the bonding orbitals of the P–S bonds and donation from the lone pairs on the 

sulfur atoms both donating into the σ*-antibonding orbital of the P–Cl bond. The lone pair 

donation from the sulfur atoms contribute much more to the stabilisation energy gained, at 

58 KJ mol-1 for each sulfur atoms compared to 6 KJ mol-1 from each P–S bond. That is to say 

dithiaphosphole 1a gains approximately 128 KJ mol-1 in stabilisation energy than if these 

donations did not take place. This donor-acceptor analysis therefore explains the reason 

behind why the P–Cl bond length is elongated, as it is the donation of electron density into 

the σ* P–Cl orbital which reduces the bond order and thus elongates it.   

 

 

 

Figure 2.7: NBO analysis of dithiaphosphole compounds 1a–1c. All atoms treated with 

M06-2X functional and 6-311G+(2d,p) basis set, with the exception of 1c, which used Def2-

TZVP for the I atom. aAverage values taken. 

NBO analysis was then used to compare the series of the three dithiaphospholes 1a–1c, to 

see what effect, if any, the change in co-ligand has on the electronic properties. Upon 

moving from chloride to bromide to iodide as the co-ligand, a reduction in the polarisation 

of the bond was calculated (Figure 2.7). That is the phosphorus heteroatom has less positive 

charge build-up (+0.46 in 1b and +0.36 in 1c) and the bromide and iodide co-ligand have less 

negative charge (−0.27 in 1b and −0.17in 1c). The Wiberg bond order remained 

approximately constant when changing the co-ligand to bromide and iodide; 0.87 for 1b and 

P–X bond order: 0.86 

P–S bond ordera: 1.04 

C–S bond ordera: 1.05 

P–X bond order: 0.87 

P–S bond ordera: 1.05 

C–S bond ordera: 1.05 

P–X bond order: 0.90 

P–S bond ordera: 1.04 

C–S bond ordera: 1.05 



46 
 

0.90 for 1c. Meanwhile the partial charges on the sulfur atoms were found to remain largely 

unchanged. It should be noted that NBO analysis on 2a–2c showed comparative results to 

their analogues 1a–1c as expected. Their results are also summarised in Figure 2.8.   

 

 

 

 

Figure 2.8: NBO analysis of dithiaphosphole compounds 2a–2c. All atoms treated with 

M06-2X functional and 6-311G+(2d,p) basis set, with the exception of 1c, which used 

Def2-TZVP for the I atom. aAverage values taken. 

2.1.4 General synthesis and NMR spectroscopy analysis of benzo-fused dithia-chloro-arsoles 
In a similar fashion to the synthesis of the dithiaphospholes, the synthesis of the benzo-

fused dithia-chloro-arsoles (shortened herein to dithiarsoles) involved the addition of either 

toluene-3,4-dithiol or benzene-1,2-dithiol to arsenic trichloride in CH2Cl2 solvent and stirred 

at room temperature for 24 hours (Scheme 2.2). Vigorous effervescence was immediately 

observed and the solution turned yellow. When using toluene-3,4-dithiol as the starting 

ligand the product 2-chloro-5-methylbenzo-1,3,2-dithiarsole (3) was obtained as a yellow 

powder in an 86% yield, whereas using benzene-1,2-dithiol produced the product 

2-chlorobenzo-1,3,2-dithiarsole (4), again as a yellow powder and in 85% yield.10  

 

 

 

 
Scheme 2.2: Synthesis of dithiarsole compounds 3 and 4. 

In contrast to the dithiaphosphole synthesis, NMR spectroscopy analysis is less useful as a 

characterisation technique. The 75As nucleus, which is the only active arsenic NMR nucleus, 

has 100% natural abundance and is quadrupolar with I = 3/2. Despite its moderately high 

gyromagnetic ratio (γ = 45.6 × 106 rad s-1 T-1), solution-phase 75As NMR spectroscopy is not 

routinely performed. This is principally because the large quadrupole moment 

(Q = 0.3 × 10-24 cm2) leads to shorter relaxation times due to the subsequent quadrupole 

   

   

   

P–X bond order: 0.86 

P–S bond ordera: 1.04 

C–S bond ordera: 1.06 

P–X bond order: 0.87 

P–S bond ordera: 1.05 

C–S bond ordera: 1.06 

P–X bond order: 0.90 

P–S bond ordera: 1.04 

C–S bond ordera: 1.06 
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relaxation mechanisms, which in turn leads to line broadening. This line broadening is often 

so severe that even in small molecules with symmetrical environments, resonances may 

cover several ppm.11,12 Although 75As NMR spectroscopy cannot practically be used, 1H and 

13C{1H} NMR spectroscopy is unaffected by the quadrupolar 75As nuclei and proceeds as 

normal. 1H NMR spectroscopy shows loss of the two dithiol protons, at cf. 3.70 and 3.60 

ppm, and the expected three aromatic signals for 3 and two for 4. The dithiarsole 3 also 

shows the methyl group with a singlet resonance centred at δ = 2.37 ppm. With that, other 

characterisation methods were more heavily relied on for characterisation. High resolution 

mass spectrometry (HRMS), using the electron ionisation (EI) method, helped further 

confirm the synthesis of 3 and 4, with [M]+ [C7H6AsClS2]+ for 3 at 263.8810 (theoretical: 

263.88099) and [M]+ [C6H4AsClS2]+ for 4 at 249.8655 (theoretical: 249.86534).    

2.1.5 Single crystal X-ray diffraction analysis of benzo-fused dithiarsoles 

Needing further confirmation of the formation of the two dithiarsoles 3 and 4, attention 

turned to X-ray crystallography. Crystals of 3, solved by Dr John Davies, suitable for single 

crystal X-ray diffraction were grown by Dr Rebecca Melen from either MeOH (3α) or MeCN 

(3β) (Figure 2.9), giving two separate polymorphs, whereas crystals of 4 were grown from a 

saturated solution of THF (Figure 2.10), again by Dr Rebecca Melen. When recrystallised 

from MeOH, the structure of 3α was the same as previously reported (CSD identifier code: 

DAXLOD) and crystallised in the P21/c space group. On the other hand, recrystallisation from 

MeCN produced a new polymorph, 3β, which crystallised in the triclinic space group P-1. 

This new polymorph 3β has two molecules in the asymmetric unit, which increases to four 

molecules in the unit cell. For reference, 3α has one molecule in the asymmetric unit and 

four molecules in the unit cell. Similarly to 3β, 4 crystallised in the triclinic space group P-1. 

However, unlike 3β, 4 possesses 17 molecules in the asymmetric unit, which increases to 34 

in the unit cell. Having 17 molecules in the asymmetric unit is crystallographically unusual, 

as excluding this structure there are only 10 other structures with Z’ ≥ 17 in the Cambridge 

Structural Database (CSD).13  

Looking at the structural features of the dithiarsoles 3α and 3β, they are in essence 

equivalent and show similarities to the dithiaphospholes described above. That is the 

arsenic heteroatom is three-coordinate with an exocyclic chloride to the fused benzarsole 

ring. The As–Cl bond length was found to measure 2.2498(5) Å in 3α and 2.2582(7) Å and 

2.2540(8) Å (Table 2.3) for the two crystallographically independent molecules in 3β 

(cf. standard As–Cl bond length 2.268 Å).5  In addition, a fold angle about the S···S vector is 

observed, which for 3α is 23.60(4)° and for 3β 19.44(8)° and 21.51(8)° for the two 
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crystallographically independent molecules. These fold angles are lower than that found in 

the dithiaphosphole analogue 1a, which was 26.07(6)° (vide supra), suggesting that the 

dithiarsole tends more to molecular planarity than the dithiaphosphole analogue 

(Table 2.3).            

Analysis of the packing of the unit cell of 3α shows no significant close contacts and instead 

appears to be directed by As···π interactions between the arsenic heteroatom and the fused 

benzene ring. In contrast, the packing in 3β shows interactions between the arsenic atom 

and chloride on the neighbouring dithiarsole; similar to that observed in 1a. However, unlike 

1a these contacts do not fall in the range of the sum of the van der Waals radii.  

 

 

 

 

 

 

 

Figure 2.9: Solid-state structure of 3β. Thermal ellipsoids drawn at 50% probability and 

H-atoms removed for clarity. 

Figure 2.10: Solid-state structure of 4 showing the 17 molecules in the asymmetric unit. 

Dashed lines show the close contacts between arsenic and chloride atoms. Pink: arsenic, 

yellow: sulfur, green: chlorine.  
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Similar structural analysis of 4 shows comparable results to that just described for 3. The 

As–Cl bond length ranges from 2.27436(4) Å to 2.31361(4) Å and the fold angle has a mean 

value of 14.28°. The packing of the 17 molecules in 4 in the asymmetric unit is highly 

interesting as it is found that all 17 molecules participate in forming dimers between the 

arsenic heteroatom and the neighbouring chloride. This is similar to what occurs in 3β but 

these As···Cl contacts in 4 are shorter than the sum of the van der Waals radii. These close 

contacts are made up of 8 distinct crystallographic dimers and one dimer which is situated 

about an inversion centre (Figure 2.10).  

 Table 2.3: Selected bond lengths and interior bond angles for compounds 3β and 4.  

 

2.1.6 Computational analysis of benzo-fused dithiarsoles 

As was done for the dithiaphospholes, DFT calculations were performed on the dithiarsoles 

to understand the structural features of 3 and 4 as well as to compare to their phosphorus 

analogues 1a and 2a respectively. The M06-2X functional and 6-311+G(2d,p) basis set were 

again employed on all atoms, except for the arsenic heteroatom. Due to the relatively heavy 

nature of arsenic, the ECP Los Alamos National Laboratory 2-double-zeta14–16 

(commonly abbreviated to LANL2DZ) basis set was used in conjunction with M06-2X. NBO 

analysis on 3 shows the As–Cl bond is polarised, with natural charges of +0.81 and −0.42 for 

the arsenic and chloride atoms respectively. Furthermore, the As–Cl bond possesses 

reduced single bond character, with a Wiberg bond index of 0.76. As was the case with the 

dithiaphospholes, this reduction in bond length is explained by the donation of electron 

density from the C2S2 unit into the σ*-antibonding orbital of the As–Cl bond. The lone pairs 

on the sulfur atom again each attribute 60 KJ mol-1 in stabilisation energy, whereas electron 

density from each As–S bond contributes 4 KJ mol-1. Unsurprisingly, given the structural 

Selected bond  3β/ Å (R = Me) 4/ Å (R = H) 

As(1)–S(1) 2.2180(9)–2.2212(9) 2.188(7)–2.227(7) 

As(1)–S(2) 2.2099(8)–2.2147(7) 2.196(7)–2.224(7) 

S(1)–C(1) 1.765(2)–1.773(2) 1.75(2)–1.773(11) 

S(2)–C(2) 1.760(3)–1.766(3) 1.748(14)–1.776(13) 

As(1)–Cl(1) 2.2540(8)–2.2582(7) 2.27436(4) –2.31361(4) 

   

Selected angle 3β/ ° 4/ ° 

S(1)–As(1)–S(2) 92.77(3)–93.08(3) 92.2(2)–93.9(3) 
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similarities to 3, NBO results of 4 were largely similar. There is again the same build-up of 

positive charge on the arsenic heteroatom (+0.81) and negative charge on the chloride 

co-ligand (−0.42). The sulfur heteroatoms in both 3 and 4 are mostly neutral, with natural 

charges of −0.03 and −0.02 respectively (Figure 2.11). This is a similar feature as was seen 

with the dithiaphospholes.   

 

 

 

 

 

Figure 2.11: NBO analysis of dithiarsole compounds 3 and 4. All atoms treated with M06-2X 

functional and 6-311G+(2d,p) basis set, with the exception of As, which used LANL2DZ. 

aAverage values taken. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

As–Cl bond order: 0.76 

As–S bond ordera: 0.98 

C–S bond ordera: 1.06 

As–Cl bond order: 0.76 

As–S bond ordera: 0.98 

C–S bond ordera: 1.06 
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Chapter 2.2 Synthesis of Benzo-Fused Diazaphospholes and Diazarsoles 
Having synthesised and explored the structural and electronic properties of the 

dithiaphosphole and dithiarsole complexes, attention then turned to using a new class of 

starting ligand which would presumably offer a different variation on these fundamental 

characteristics. Swapping the sulfur for nitrogen heteroatoms in the five-membered ring 

would give rise to diazaphosphole and diazarsole structures, which given the 

electronegativity differences between sulfur and nitrogen (S = 2.58, N = 3.04 by Pauling 

scale) was expected to offer significant changes, which would then be exploited later with 

regards to their reactivity. 

2.2.1 General synthesis and NMR spectroscopy analysis of benzo-fused diazaphopholes 

Synthesis of the benzo-fused diazaphospholes (shortened herein to diazaphospholes) first 

required an appropriate diamine starting ligand. The ligand N,N’-diisopropylbenzene-

1,2-diamine (5) was chosen, in part due to its relatively simple synthesis, and was produced 

as described by Weber and Fox,17 which in short involved reacting o-phenylenediamine with 

excess 2-iodopropane and potassium carbonate (Scheme 2.3). After heating under reflux for 

two hours, the product was extracted in hexane solvent which gave the crude product as a 

brown oil. This oil was then purified using a Kugelröhr short-path distillation (180 °C, 5 mbar) 

to yield a colourless oil. The formation of ligand 5 was confirmed by NMR spectroscopy as 

analysis of the 1H NMR spectrum showed a septet centred at δ = 3.65 ppm (3JHH = 6.3 Hz) 

and a doublet centred δ = 1.32 ppm (3JHH = 6.3 Hz), which are assigned to the isopropyl 

groups. A broad singlet signal at δ = 3.23 ppm with an integral of two was also observed 

which could be assigned to the NH group present. 

Scheme 2.3: Synthesis of diamine ligand and diazaphospholes. 

Formation of the diazaphospholes proceeded via the addition of the diamine ligand to either 

phosphorus trichloride or phosphorus tribromide, with triethylamine acting as a base. The 

ammonium salt by-product was removed by filtration (using a cannula filter) of the resulting 

solution, followed by removal of the solvent in vacuo. Subsequent pentane washings and 

drying in vacuo yielded the product 2-chloro-1,3-diisopropyl-benzodiazaphosphole (6a) or 
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2-bromo-1,3-diisopropyl-benzodiazaphosphole (6b) respectively in high yields of 84% and 

76% respectively (Scheme 2.3).18 Again, multinuclear NMR spectroscopy confirmed the 

formation of 6a and 6b. In the case of 6a, 31P{1H} NMR spectroscopy showed a singlet 

resonance at δ = 147.2 ppm, which is similar but more upfield to that of 1a (δ = 160.4), and 

full consumption of the phosphorus trichloride starting material. The 1H NMR spectrum of 

6a showed loss of the broad NH signal seen in 5. More interestingly though, it only showed 

one singlet resonance for the aromatic signals, appearing at δ = 7.08 ppm, suggesting rapid 

molecular rotation in solution causing these protons to become equivalent on the NMR 

timescale (Figure 2.12). Note this was not seen for the dithiaphospholes. The isopropyl 

groups are shifted slightly downfield compared to the free ligand and have chemical shifts 

of δ = 4.32 and 1.69 ppm, with 3JHH = 6.6 Hz. 

The synthesis of 6b was analogous to that as described for 6a and made use of phosphorus 

tribromide as the starting phosphorus trihalide. 31P{1H} NMR spectroscopy showed 

formation of 6b with a singlet resonance at δ = 169.2 ppm (appreciably more downfield than 

6a) and complete loss of phosphorus tribromide precursor. The 1H NMR spectrum shares 

the same features as 6a with the exception that the aromatic resonances are not a 

well-defined singlet but instead appear as a multiplet. 

     

 

 

 

 

 

 

 

 

Figure 2.12: 1H NMR (400 MHz, CDCl3, 295 K) spectrum of the diazaphosphole 6a.  

 

Ha/Hb 

Hc 

Hd 
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2.2.2 Single crystal X-ray diffraction analysis of 2-chloro-1,3-diisopropyl-

benzodiazaphosphole 

Crystals of 6a suitable for single crystal X-ray diffraction were grown in collaboration with 

Alex Rigby from a saturated solution of CH2Cl2 with a few drops of pentane added and cooled 

to −40 °C (Figure 2.13). Upon structure refinement by Dr Lewis Wilkins, 6a was found to 

crystallise in the triclinic space group P-1 and contain two molecules in the asymmetric unit. 

This increases to four molecules in the unit cell. As was observed in the dithiaphospholes, 

the solid-state structure of 6a shows that the phosphorus is three-coordinate with an 

exocyclic chloride. Structurally it possesses an envelope-type geometry, with a fold angle 

about the N···N vector of 8.82(11)° and 11.2(2)° for the two crystallographically independent 

molecules. These diazaphospholes therefore tend much more towards molecularly planarity 

than their dithiaphosphole counterparts, which have a significantly increased fold angle (cf. 

1a fold angle = 26.07(6)° and 2a fold angle = 28.65(6)°).  

6a shows significant elongation in the P(1)–Cl(1) bond, with a bond length of 2.3240(7) Å 

and 2.3377(7) Å (Table 2.4), which was a similar feature to the dithiaphospholes and is 

explained further using DFT calculations; vide infra. For reference a typical P–Cl bond length 

is 2.008 Å and the P–Cl bond length observed in 1a was 2.1134(7) Å.5 Further to this, the C–

N bond lengths are slightly shorter than typical values (1.47 Å), measuring 1.403(2)–

1.405(2) Å. The N(1)–P(1)–N(2) internal bond angle is 90.95(8)° and 91.04(8)°, which is 

notably contracted compared to 1a. Analysis of the packing in the unit cell of 6a did not 

show any short interactions between the chloride and phosphorus atom, such as that seen 

in 1a and no meaningful close contacts were found.    

 

 

 

 

 

 

 

Figure 2.13: Solid-state structure of 6a. Thermal ellipsoids drawn at 50% probability and 

H-atoms removed for clarity. 
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 Table 2.4: Selected bond lengths and interior bond angles for compounds 6a.  

 

 

 

 

 

 

 

 

 

 

2.2.3 Computational analysis of benzo-fused diazaphospholes 

DFT calculations were performed on the diazaphospholes to obtain a better understanding 

of the fundamental structure and bonding that is exhibited, which could also then be 

compared against the dithiaphospholes. Geometry optimisation and vibrational frequency 

calculations of both 6a and 6b were initially performed, using the functional and basis set 

M06-2X and 6-311+G(2d,p) respectively, after which NBO analysis was undertaken 

(results are summarised in Figure 2.14). The solid-state structure of 6a showed substantial 

elongation in the P–Cl bond length, which was a similar observation to that found in the 

dithiaphospholes. This elongation is more extreme in the diazaphosphole case though, with 

a Wiberg P–Cl bond order of just 0.67. This compares to a Wiberg P–Cl bond order of 0.86 

for the dithiaphosphole 1a. The reasoning for this bond elongation is the same as for 1a, in 

that electron density from the C2N2 unit donates into the σ*-antibonding orbital of the P–Cl 

bond. Examination of the second-order perturbative estimates of donor-acceptor 

interactions shows how significant this donation is, with a stabilisation energy gain of 

139 KJ mol-1 from electron density from each C–N bond to P–Cl σ*-antibonding orbital. 

Further to this, the P–Cl bond is polarised, with natural charges of +1.29 and −0.49 for the 

phosphorus and chloride atoms accordingly. Again, comparing to the dithiaphosphole 1a 

this polarisation is more extreme in 6a, with 1a having natural charges of +0.53 and −0.32 

for phosphorus and chloride atoms respectively. The nitrogen heteroatoms both have 

natural charges of −0.82. Interestingly, the P–N bond order in 6a is also low; calculated at 

just 0.84. Once more this can be explained by the donation of π electron density from the 

Selected bond  6a/ Å  

P(1)–N(1) 1.6713(16)–1.6733(18) 

P(1)–N(2) 1.6728(17)–1.6740(15) 

N(1)–C(1) 1.403(2)–1.403(3) 

N(2)–C(2) 1.403(3)–1.405(3) 

P(1)–Cl(1) 2.3240(7)–2.3377(7) 

  

Selected angle 6a/ ° 

N(1)–P(1)–N(2) 90.95(8)–91.04(8) 
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fused benzene ring into the P–N antibonding orbital, as second-order perturbative estimates 

of donor-acceptor interactions finds a 46.3 KJ mol-1 stabilisation gain from this donation.  

NBO analysis on 6b showed similar results as seen in 6a. The P–Br bond is highly polarised, 

with natural charges of +1.25 and −0.49 for the phosphorus and bromide atoms respectively. 

For comparison, in the dithiaphosphole 1b, natural charges of +0.46 and −0.27 for the 

phosphorus and bromide atoms respectively were observed. Like 6a, the P–Br bond also 

exhibits significant reduced single bond character, with a Wiberg P–Br bond order of 0.63. 

The reasoning for this is the same as 6a. The nitrogen heteroatoms both have natural 

charges of −0.81. 

 

 

 

 

 

Figure 2.14: NBO analysis of compounds 6a and 6b. All atoms treated with M06-2X 

functional and 6-311G+(2d,p) basis set. aAverage values taken. 

2.2.4 General synthesis and NMR spectroscopy analysis of benzo-fused diazaphopholes 

The synthesis of the benzo-fused diaza-chloro-arsole (shortened herein to diazarsoles), 

originally undertaken with Alex Rigby, followed the same procedure as described above for 

the diazaphospholes; reacting arsenic trichloride with the ligand N,N’-diisopropylbenzene-

1,2-diamine (5) and excess triethylamine (Scheme 2.4). Again, after filtering to remove the 

ammonium salt by-product, the solvent was removed in vacuo and the product was washed 

with pentane and further dried in vacuo. 2-chloro-1,3-diisopropyl-benzodiazarsole (7) was 

obtained as a yellow solid in high yield of 83%.18   

 
 
 
 
 
 
 

Scheme 2.4: Synthesis of 2-chloro-1,3-diisopropyl-benzodiazarsole. 

P–Cl bond order: 0.67 

P–N bond ordera: 0.84 

C–N bond ordera: 1.05 

P–Cl bond order: 0.68 

P–N bond ordera: 0.85 

C–N bond ordera: 1.06 
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As was encountered with the dithiarsoles, NMR spectroscopy analysis is less useful than for 

the diazaphospholes, given the difficulties of performing 75As NMR spectroscopy. 1H NMR 

spectroscopy is still useful however as the 1H NMR spectrum of 7 showed loss of the broad 

signal at δ = 3.23 ppm, corresponding to the NH group, indicating coordination to arsenic. 

In addition, the septet resonance that is observed at δ = 3.65 ppm in the free ligand is shifted 

appreciably downfield to δ = 4.46 ppm in 7. Likewise, the doublet resonance of the isopropyl 

group is shifted downfield from δ = 1.32 ppm to δ = 1.70 ppm upon coordination to arsenic. 

Moreover, as was seen in the diazaphosphole 6a, the aromatic signals appear as a singlet, 

with a resonance centred at δ = 7.04 ppm. Like the dithiarsoles, mass spectrometry was 

highly informative in the characterisation, with a [M]+ [C12H18AsN2Cl]+ peak found at 

300.0376 (theoretical: 300.0374) using ES+.    

2.2.5 Single crystal X-ray diffraction analysis of 2-chloro-1,3-diisopropyl-benzodiazarsole 

As before, crystals of 7 suitable for single crystal X-ray diffraction were grown in 

collaboration with Alex Rigby from a saturated solution of CH2Cl2 with a few drops of 

pentane added and cooled to −40 °C (Figure 2.15). From structure solution and refinement 

by Dr Lewis Wilkins, diazarsole 7 crystallises in the monoclinic space group Cc, with one 

molecule in the asymmetric unit and four molecules in the unit cell. Structurally the 

diazarsole shows the expected three coordinate arsenic centre with an exocyclic chloride; 

an envelope type geometry is also present. The fold angle about the N···N vector measures 

6.4(2)°, which is lower than that seen in 6a (cf. 8.82(11)° and 11.2(2)°) and therefore tends 

even more to molecular planarity. This trend of the diazarsole having a reduced fold angle 

compared to the diazaphosphole is the same as the dithiarsole and dithiaphosphole 

(vide supra). Elongation in the As(1)–Cl(1) bond length is found, measuring 2.4440(13) Å 

(cf. standard As–Cl bond length of 2.268 Å)5 (Table 2.5).  

The As–N bond lengths were found to be 1.812(3) Å and 1.809(3) Å, whereas the C–N bond 

lengths measure 1.394(5) Å and 1.390(5) Å. These are just shorter than a standard C–N bond 

length (1.47 Å). Lastly, the N(1)–As(1)–N(2) internal bond angle is 86.45(14)°, which is 

considerably less than that seen in 6a, where the N(1)–P(1)–N(2) internal bond angle 

measured 90.95(8)° and 91.04(8)°. Upon investigating the packing of 7, no short contacts 

exist between the chloride and arsenic atom, such as that seen in 4. Indeed, no meaningful 

short contacts exist in the packing structure of 7. 
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Figure 2.15: Solid-state structure of 7. Thermal ellipsoids drawn at 50% probability and 

H-atoms removed for clarity. 

 

 Table 2.5: Selected bond lengths and interior bond angles for compounds 7.  

 

 

 

 

 

 

 

 

 

 

2.2.6 Computational analysis of 2-chloro-1,3-diisopropyl-benzodiazarsole 

In an analogous fashion to the diazaphospholes 6a and 6b, the diazarsole 7 was first 

geometry optimised, after which a vibrational frequency calculation was performed. The 

M06-2X functional and 6-311+G(2d,p) basis set was employed on all atoms with the 

exception of the arsenic heteroatom. As was the case for the dithiarsoles 3 and 4, the ECP 

LANL2DZ basis set was used along with M06-2X for arsenic. Following this optimisation, NBO 

calculations were performed on 7, which allowed for a comparison to the diazaphosphole 

6a and the dithiarsoles. As has been well established now, these heterocycles possess a 

polarised E–X bond (where E = P/As and X = halogen), and indeed this is true for 7 as well. 

The arsenic heteroatom has a natural charge of +1.49 and the chloride −0.54, which is 

comparable to the diazaphosphole, albeit slightly more polarised, but the arsenic atom has 

Selected bond  7/ Å  

As(1)–N(1) 1.812(3) 

As(1)–N(2) 1.809(3) 

N(1)–C(1) 1.394(5) 

N(2)–C(2) 1.390(5) 

As(1)–Cl(1) 2.440(13) 

  

Selected angle 7/ ° 

N(1)–As(1)–N(2) 86.45(14) 
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much more positive charge build-up than in the dithiarsoles 3 and 4 (+0.81 for both). As was 

the case with the P–Cl bond in 6a, the As–Cl bond exhibits a very low Wiberg bond order of 

just 0.60; much lower than the 0.76 bond order in the dithiarsoles 3 and 4. The reasoning 

for this is the same as was discussed for 6a. The nitrogen atoms have a natural charge of 

−0.86 each (Figure 2.16).  

 

 

 

 

 

 

Figure 2.16: NBO analysis of compounds 7. All atoms treated with M06-2X functional and 

6-311G+(2d,p) basis set, with the exception of As, which used LANL2DZ. aAverage values 

taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As–Cl bond order: 0.60 

As–N bond ordera: 0.74 

C–N bond ordera: 1.08 
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Chapter 2.3 Synthesis of Benzo-Fused Dioxaphospholes 

2.3.1 General synthesis and NMR spectroscopy analysis of benzo-fused dioxaphopholes 

The synthesis of the benzo-fused dioxaphospholes (shortened herein to dioxaphospholes) 

proceeded by the addition of catechol to the phosphorus trihalide in the presence of 

triethylamine, using toluene as a solvent. After stirring at ambient temperature for 24 hours, 

the solution was filtered to remove the ammonium salt by-product and the solvent was 

removed in vacuo. At this point 31P{1H} NMR spectroscopy revealed that two products 

existed in the resulting yellow coloured oil, with chemical shifts of δ = 173.6 and 129.2 ppm 

for 2-chlorobenzo-1,3,2-dioxaphosphole (8a) and δ = 195.3 and 129.2 ppm for 

2-bromobenzo-1,3,2-dioxaphosphole (8b) (Figure 2.17). In order to purify the 

dioxaphospholes, an air-sensitive distillation was performed on both 8a and 8b, with 8a 

distilling at 44–52 °C under 5 mbar vacuum and 8b distilling at 60–62 °C under the same 

vacuum pressure. These distillations yielded the desired dioxaphospholes as colourless oils 

in moderate yields of 36% for 8a and 41% for 8b (Scheme 2.5).2 The moderate yields can be 

explained as a combination of both loss of product from the distillation and formation of 

undesired side product.  

  

 

 

 

 

Scheme 2.5: Synthesis of the dioxaphospholes compounds 8a and 8b. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: 31P{1H} NMR spectrum (202 MHz, CDCl3, 295 K) of 8b before distillation. 
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Figure 2.18: 31P{1H} NMR spectrum (202 MHz, CDCl3 295 K) of 8b after distillation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: 1H NMR spectrum (500 MHz, 295 K, CDCl3) of 8b after distillation. 

 

31P{1H} NMR spectroscopy was performed on the dioxaphospholes after the air-sensitive 

distillation, which showed only one phosphorus containing species at δ = 173.6 ppm for 8a 

and δ = 195.3 ppm for 8b (Figure 2.18). It is unclear the identity of the impurity at δ = 129.2 

ppm. These 31P NMR values for 8a and 8b match those previously reported in the 

literature.19,20 The positioning of the chemical shift for 8a is more downfield than for the 

dithiaphosphole and diazaphosphole analogues 1a, 2a and 6a previously discussed, which 

Ha 

Hb 
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have 31P{1H} NMR chemical shifts of δ = 160.4, δ = 158.3 and δ = 147.2 ppm respectively. 

Inspection of the 1H NMR spectra for 8a displayed the expected two aromatic signals, but 

the coupling could not be resolved, thus two multiplets were reported at δ = 7.19–7.17 and 

δ = 7.07–7.05 ppm. 8b also showed the expected two aromatic signals, however the 

coupling was resolved (Figure 2.19). Both chemical and magnetic inequivalence was 

observed, with the first aromatic signal centred at δ = 7.31 ppm splitting into a doublet of 

doublet of doublets; coupling constant values of 3JHH = 5.9 Hz, 4JHH = 3.4 Hz, 4JPH = 0.8 Hz. The 

second aromatic signal does not show 5JPH coupling and splits into a doublet of doublets, 

with coupling constant values of 3JHH = 5.9 Hz, 4JHH = 3.4 Hz.  

2.3.2 Computational analysis of benzo-fused dioxaphospholes 

In a similar vain to both the dithiaphospholes and diazapholes, computational studies were 

performed on the dioxapholes to better understand compounds 8a and 8b. Geometry 

optimisation and vibrational frequency calculations of both 8a and 8b were initially 

performed, using the functional and basis set M06-2X and 6-311+G(2d,p) respectively, after 

which NBO analysis was undertaken. The results of the NBO calculations follow a similar 

pattern to before, with a P–X bond that is reduced from single bond character. Both 8a and 

8b have a Wiberg bond index of 0.87. The explanation of the P–X single bond character 

reduction is similar to that as described before, vide supra, with this time the lone pairs on 

the oxygen responsible for donation into the P–X σ*-antibonding orbital. For 8a this 

stabilisation energy gain is worth 56 KJ mol-1 per oxygen atom; which is substantially less 

than the 139 KJ mol-1 stabilisation energy gain found in 6a but much more comparable to 

the 58 KJ mol-1 gain seen in 1a from the lone pairs on the sulfur atom. The donation of 

bonding electrons from the C−O bond make up an insignificant 2 KJ mol-1 stabilisation 

energy gain. For 8b the stabilisation from oxygen lone pair donation is similar to 8a, at 

61 KJ mol-1.  

The P–X bond in both 8a and 8b is polarised as well as elongated, with natural charges +1.40 

and +1.36 for the phosphorus atoms and −0.36 and −0.33 for the chloride and bromide 

atoms in 8a and 8b respectively. This build-up of positive charge is greater than that seen in 

either the dithiaphospholes or diazaphospholes, although the halogen atom receives more 

negative charge in the diazaphospholes. The oxygen atoms have a natural charge of −0.79 

in both 8a and 8b, which is comparable to the natural charges of −0.82 and −0.81 observed 

in 6a and 6b accordingly (Figure 2.20).  
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Figure 2.20: NBO analysis of dioxaphosphole compounds 8a and 8b. All atoms treated with 

M06-2X functional and 6-311G+(2d,p) basis set. aAverage values taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P–Cl bond order: 0.87 

P–O bond ordera: 0.72 

C–O bond ordera: 0.95 

P–Br bond order: 0.87 

P–O bond ordera: 0.72 

C–N bond ordera: 0.95 
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Chapter 2.4 Conclusion 
In this chapter the synthesis of a range of novel benzophosphole and benzoarsole 

compounds has been presented (Figure 2.21). Initially, commercially available toluene-3,4-

dithiol or benzene-1,2-dithiol was used as a starting ligand and reacted with both 

phosphorus and arsenic trihalides to yield the desired dithiaphosphole and dithiarsole. From 

here the N,N’-diisopropylbenzene-1,2-diamine ligand was synthesised and when reacted 

with phosphorus and arsenic trihalides and triethylamine gave the corresponding 

diazaphospholes and diazarsoles. The last class of heterocycles produced were the 

dioxaphospholes. These were produced in a similar vein to the diazaphospholes, with the 

phosphorus trihalide reacting with catechol and excess triethylamine. However, the 

dioxaphospholes required an air-sensitive distillation due to the formation of an impurity as 

detected by 31P{1H} NMR spectroscopy. 

The solid-state structures of the dithia and diaza pnictoles were obtained which showed that 

these complexes possess an envelope-type geometry, with fold angles about the S···S and 

N···N vector. Generally speaking, the arsenic species had lower fold angles than their 

phosphorus counterparts, a result of their high inversion barrier of the trigonal pyramidal 

coordination geometry.21 The dithia pnictoles also had a greater fold angle than the diaza 

pnictoles, which can be explained by the greater aromaticity, and therefore planarity, in the 

latter (see Chapter 3). DFT calculations found that the P/As–X (X = Cl, Br or I) bond has 

reduced single bond character due to donation of electron density into the σ*-antibonding 

orbital of the P/As–X bond and that the electronic structure of the pnictole greatly differs 

depending on the inclusion of S, N or O in the five membered ring. A summary of these 

results is given in Figure 2.21 and Tables 2.6 and 2.7 below.        
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Figure 2.21: Summary of the complexes synthesised in Chapter 1. 
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Table 2.6: Summary of characteristics of phosphole derived compounds synthesised.  

aCalculated Wiberg bond order from NBO analysis. bCalculated from NBO analysis.  

 1a 1b 1c 2a 2b 

31P NMR 

chemical 

shift/ppm 

160.4 163.3 155.0 158.3 160.9 

Fold 

angle/ ° 
26.07(6) 24.19(10) 19.45(14) 28.65(6) 26.45(9)–

26.57(9) 

P–X bond 

length/ Å 
2.1134(7) 2.3154(9) 2.5730(12) 2.1038(9) 

2.2908(7)– 

2.2981(9) 

P–X bond 

ordera 
0.86 0.87 0.90 0.86 0.87 

P natural 

chargeb 
+0.53 +0.46 +0.36 +0.53 +0.46 

X natural 

chargeb 
−0.32 −0.27 −0.17 −0.32 −0.27 

S/ N/ O 

natural 

chargeb 

+0.06 +0.07 +0.07 +0.06 +0.07 

 2c 6a 6b 8a 8b 

31P NMR 

chemical 

shift/ppm 

152.4 147.2 169.2 173.6 195.3 

Fold 

angle/ ° 

23.93(11)–

28.38(14) 

8.8(2)–

11.2(2) 
N/A N/A N/A 

P–X bond 

length/ Å 

2.5188(11)– 

2.5295(13) 

2.3240(7)–

2.3377(7) 
N/A N/A N/A 

P–X bond 

ordera 
0.90 0.67 0.68 0.87 0.87 

P natural 

chargeb 
+0.36 +1.29 +1.25 +1.40 +1.36 

X natural 

chargeb 
−0.16 −0.49 −0.49 −0.36 −0.33 

S/ N/ O 

natural 

chargeb 

+0.07 −0.82 −0.81 −0.79 −0.79 
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Table 2.7: Overview of characteristics of arsole derived compounds synthesised.  

 

 

 

 

 

 

 

 

 

 

 

aCalculated Wiberg bond order from NBO analysis. bCalculated from NBO analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3β 4 7 

Fold angle/ ° 19.44(8)–21.51(8) 14.28 6.4(2) 

As–Cl bond 

length/ Å 

2.2540(8)–

2.2582(7) 

2.27436(4) – 

2.31361(4) 
2.440(13) 

As–Cl bond ordera 0.76 0.76 0.60 

As natural chargeb +0.81 +0.81 +1.49 

Cl natural chargeb −0.42 −0.42 −0.54 

S/ N natural 

chargeb 
−0.03 −0.02 −0.87 
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Chapter 3: Reactivity of Dithiaphospholes, Dithiarsoles, Diazaphospholes 

and Diazarsoles 

Chapter 3.1 Paddlewheel Synthesis from Dithiaphosphole and Dithiarsole   
With a series of phosphorus and arsenic compounds in hand (Chapter 2), these were then 

used as precursors for a range of reactions to explore further their reactivity and obtain 

additional fundamental insight. The first of these reactions made use of the dithiaphosphole 

1a and dithiarsole 3, which underwent substitution reactions to generate a nitrogen centred 

paddlewheel, in which a central N atom was flanked by three dithiaphosphole or dithiarsole 

moieties.1  

3.1.1 Synthesis of tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine: (MeC6H3S2P)3N  

To begin with, using 2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a), substitution of the 

chloride co-ligand was achieved by reacting 1a with stoichiometric lithium 

bis(trimethylsilyl)amide (LiHMDS, Li[N(SiMe3)2]) in toluene. After removal of volatiles and 

subsequent pentane washings this gave the intermediate 5-methyl-N,N-

bis(trimethylsilyl)benzo-1,3,2-dithiaphosphol-2-amine (9). The solvent was exchanged for 

acetonitrile and 9 was reacted with two further equivalents of 1a. The reaction was heated 

to reflux for 16 hours and then cooled in an ice bath. After filtration via a filter cannula, a 

white solid was removed, which was washed with pentane. Drying in vacuo gave the desired 

paddlewheel product tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine, (MeC6H3S2P)3N 

(10), as a white solid (Scheme 3.1). 

   

 

 

 

 

 

 

 

 

Scheme 3.1: Synthesis of N-based paddlewheel structure 10 from 1a.  
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31P{1H} NMR spectroscopy was initially used for characterising the intermediate 9, which 

showed a significant upfield shift of the P environment compared to the starting 

dithiaphosphole 1a, with a singlet resonance detected at δ = 93.9 ppm. Further to this, 

1H NMR spectroscopy revealed the trimethylsilyl (TMS) groups as a doublet centred at 

δ = 0.27 ppm, with a 4JPH coupling constant of 1.9 Hz. The expected three aromatic signals 

and methyl group from the toluene backbone were also present (Figure 3.1).    

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: 31P{1H} NMR (202 MHz, CDCl3, 295 K) spectrum (top) and 1H NMR 

(500 MHz, CDCl3, 295 K) spectrum (bottom) of intermediate 9.  

Ha, Hb, Hc 

Hd 

He 
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Similar to 9, 31P{1H} NMR spectroscopy was first used to characterise the paddlewheel 

structure 10. In this case the 31P{1H} NMR spectrum showed a slight upfield shift from 9 with 

a resonance at δ = 86.6 ppm. This is significantly upfield from the precursor 1a; 

δ = 160.4 ppm. The 1H NMR spectrum again showed the expected three aromatic and one 

methyl signals.  

3.1.2 Solid-state structure of (MeC6H3S2P)3N  

The solid-state structure of the paddlewheel (MeC6H3S2P)3N was obtained by crystals grown 

by Dr Thao Tran (University of Windsor) from a saturated CH2Cl2 solution cooled to −20 °C. 

Upon structure solution and refinement by Professor Jeremy Rawson (University of 

Windsor) 10 (Figure 3.2) was found to crystallise in the rhombohedral space group P-3, with 

1/3 molecule in the asymmetric unit (the N atom sits on the three-fold axis) and eight in the 

unit cell. The solid-state structure of 10 revealed the expected three-coordinate N centre, 

with a P(1)–N(1)–P(1’) bond angle of 119.19(8)°. The approximate 120° bond angle reveals 

an sp2 centred N, meaning that the lone pair present on the N atom is of p-orbital character. 

A fold angle about the S···S vector is still present in the dithiaphosphole ring, but is 

significantly lower than what is observed in the precursor 1a, with the fold angle in 10 

measuring 20.7(2)° compared to 26.07(6)° in 1a. Furthermore, the P(1)–N(1) bond distance 

is found to be 1.7314(18) Å (Table 3.1), which lies within the expected bond distance (1.70–

1.77 Å).2 Lastly, when looking at the packing arrangement in the unit cell of 10, the eight 

paddlewheel structures form four supramolecular dimers via six S···S contacts. Interestingly, 

these S···S contacts generate an S6 chair-type geometry and measure 3.511 Å, which is less 

than the  sum of the van der Waals radii (3.60 Å) (Figure 3.3).       

 

 

 

 

 

 

 

  

 

Figure 3.2: Solid-state structure of 10. Thermal ellipsoids drawn at 50% probability and 

H-atoms removed for clarity. 
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Figure 3.3: Packing of 10 showing the supramolecular dimer formed through S···S contacts. 

Dashed lines show the close contacts between sulfur atoms. Orange: phosphorus, yellow: 

sulfur, blue: nitrogen.  Thermal ellipsoids drawn at 50% probability and H-atoms removed 

for clarity. 

 

Table 3.1: Selected bond lengths and interior bond angles for paddlewheel 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3 Synthesis of tris(5-methylbenzo-1,3,2-dithiarsol-2-yl)amine: (MeC6H3S2As)3N  

In an analogous fashion to the procedure used for the synthesis of 10, synthesis of a 

dithiarsole derived paddlewheel tris(5-methylbenzo-1,3,2-dithiarsol-2-yl)amine firstly 

involved reacting 3 with stoichiometric LiHMDS in toluene. This was left to stir at ambient 

temperature overnight and formed the intermediate 5-methyl-N,N-bis(trimethylsilyl)benzo-

Selected bond 10/ Å  

N(1)–P(1) 1.7314(18) 

P(1)–S(1) 2.125(2) 

P(1)–S(2) 2.105(2) 

S(1)–C(1) 1.748(7) 

S(2)–C(2) 1.782(5) 

  

Selected angle 10/ ° 

S(1)–P(1)–N(1) 94.41(9) 

S(1)–P(1)–S(1) 104.6(2) 

Symmetry equivalent S···S  

contact distance: 3.511 Å 
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1,3,2-dithiarsol-2-amine (11). Reacting 11 with two further equivalents of 3 in acetonitrile 

and again heating to reflux for 16 hours gave the product tris(5-methylbenzo-1,3,2-

dithiarsol-2-yl)amine (MeC6H3S2As)3N (12) as a white solid (Scheme 3.2).  

 

 

 

 

 

 

 

 

Scheme 3.2: Synthesis of N-based paddlewheel structure 12 from 3. 

Unlike in the synthesis of the dithiaphosphole-derived paddlewheel, multinuclear NMR 

spectroscopy was less useful in characterising the dithiarsole-derived paddlewheel 

structure. This again was due to the practical difficulty in performing 75As NMR spectroscopy, 

as discussed in the previous chapter. For the intermediate 5-methyl-N,N-

bis(trimethylsilyl)benzo-1,3,2-dithiarsol-2-amine 11, 1H NMR spectroscopy did again show 

the TMS groups as a singlet centred at δ = 0.16 ppm. The three aromatic and methyl signals 

from the toluene group were additionally seen. For 12, the 1H NMR spectrum showed the 

expected three aromatic and one methyl signal, but furthermore revealed the loss of the 

TMS groups. Mass spectrometry was more useful in confirming the formation of both 11 

and 12. The electron ionisation (EI) method was used for intermediate 11 and gave a [M]+ 

[C13H24NAsS2Si2]+ of 389.0101 (theoretical mass = 389.00992), whereas electrospray 

ionisation (ES) was used for 12 and detected [M+H]+ [C21H19S6As3N]+ at 701.7516 (theoretical 

mass = 701.7490).  

3.1.4 Solid-state structure of (MeC6H3S2As)3N  

Crystals suitable for single crystal X-ray diffraction were grown by Dr Thao Tran from a 

saturated CH2Cl2 solution cooled to −20 °C. Upon structure solution and refinement by 

Professor Jeremy Rawson, 12 was found to crystallise in the triclinic space group P-1, with 

one molecule in the asymmetric unit and two in the unit cell (Figure 3.4). The geometry of 

the dithiarsole derived paddlewheel is similar to that of 10, in that 12 has a three-coordinate 

central N atom with As–N–As bond angles ranging from 115.8(4)° to 117.9(4)°. This again 
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means that the N atom is approximately sp2 hybridised, with the lone pair being of p-orbital 

character. The characteristic fold angle is still observed in the dithiarsole ring, measuring 

13.8(13)°–17.0(2)°, which is a reduction when compared to the fold angle present in 3α and 

3β. The As–N bond distance is measured to be 1.843(7)–1.862(7) Å, which are within typical 

values. The As(1)–S(1) and As(1)–S(2) bond distances were found to be 2.215(3) Å and 

2.252(3) Å, respectively (Table 3.2), which are comparable to that found in precursor 3. 

When looking at the packing of 12 in the unit cell, the two molecules present form a dimer 

similar to that seen in 10 via short S···S contacts. These contacts form a chair type 

configuration with the S···S intermolecular interactions measuring 3.428(4)–3.568(4) Å, 

which are well within the sum of the van der Waals radii of 3.60 Å.    

Table 3.2: Selected bond lengths and interior bond angles for paddlewheel 12. 

 

 

 

 

 

 

 

 

 

 

Selected bond 12/ Å  

N(1)–As(1) 1.843(7) 

N(1)–As(2) 1.862(7) 

N(1)–As(3) 1.843(9) 

As(1)–S(1) 2.215(3) 

As(1)–S(2) 2.252(3) 

S(1)–C(1) 1.741(10) 

S(2)–C(2) 1.747(12) 

  

Selected angle 12/ ° 

As(1)–N(1)–As(2) 117.9(4) 

S(1)–As(1)–N(1) 101.2(3) 

S(1)–As(1)–S(1) 91.14(11) 
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Figure 3.4: Top: Solid-state structure of 12. Bottom: Packing of 12 showing the 

supramolecular dimer formed through S···S contacts. Dashed lines show the close contacts 

between sulfur atoms. Pink: arsenic, yellow: sulfur, blue: nitrogen. Thermal ellipsoids drawn 

at 50% probability and H-atoms removed for clarity.  

 

 

 

 

 

 

 

S···S contact distance: 

3.428(4)–3.568(4) Å 
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Chapter 3.2 Cation Formation 
Proceeding from the substitution of the chloride co-ligand reaction to generate paddlewheel 

type structures, focus then turned to the formation of cationic phosphenium and arsenium 

complexes.1,3,4 These cations were made from the abstraction of the chloride co-ligand using 

a range of simple Lewis acids. As described in the introduction, the phosphenium cation is a 

two-coordinate phosphorus species with a formal positive charge on the phosphorus 

heteroatom, which is isovalent to Arduengo’s well-known N-heterocyclic carbenes, but with 

inverse electronic properties. That is, they are weaker σ-donors, but better π-acceptors.5 

Likewise, the analogous arsenium cation is a divalent arsenic species with a formal positive 

charge,6 however due to the reduced σ-donation ability compared to phosphenium cations, 

a Lewis acid description of bonding is more appropriate when describing their coordination 

to transition metals.7,8  

3.2.1 Synthesis of dithiaphospheniums and dithiarseniums 

3.2.1.1 Synthesis and NMR analysis of dithiaphosphenium cations from dithiaphosphole   
Using the dithiaphosphole 1a, the corresponding cationic phosphenium species were 

generated by employing stoichiometric aluminium trichloride or gallium trichloride in CH2Cl2 

and leaving them to stir at ambient temperature; the solutions immediately turned orange. 

These orange solutions were left to stir at ambient temperature for six hours, after which 

the solvent was removed in vacuo and the orange solids washed with pentane. After further 

drying in vacuo the dithiaphosphenium products 5-methylbenzo-1,3,2-dithiaphosphenium 

tetrachloroaluminate (13a) and 5-methylbenzo-1,3,2-dithiaphosphenium tetrachlorogallate 

(13b) were obtained as orange solids in excellent yields of 83% and 79%, respectively 

(Scheme 3.3). These compounds are called dithiaphospheniums from herein.  

Notably, the use of trimethylsilyl trifluoromethanesulfonate (TMS triflate) failed to give the 

cationic dithiaphosphenium complex with a triflate counterion using the same conditions 

described above. Exchanging the solvent for toluene and heating, as well as increasing the 

reaction time, still failed to give the dithiaphosphenium complex. Throughout these 

reactions 31P NMR spectroscopy only showed the starting precursor 1a. Moreover, when 

using silver triflate as the triflate source, which would generate silver chloride as the by-

product, the reaction still failed to give the desired dithiaphosphenium compound. The 

intolerance of the triflate counterion is in direct contrast to the diazaphosphole and TMS 

triflate reaction (vide infra).  
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Scheme 3.3: Synthesis of dithiaphosphenium compounds from dithiaphosphole 1a. 

Initial characterisation of the dithiaphosphenium compounds was attempted by 31P NMR 

spectroscopy. The dithiaphosphenium compounds proved to be partially soluble in CDCl3 

but more soluble in CD2Cl2 and bromobenzene-d5 (C6D5Br). When looking at the 31P NMR 

spectrum of the dithiaphosphenium compounds they were initially puzzling, as it was 

expected that the NMR signal should be shifted significantly downfield from the precursor 

1a due to the build-up of positive charge on the phosphorus heteroatom. Contrary to this 

the 31P NMR spectrum of both 13a and 13b showed a signal significantly upfield of 1a, with 

a resonance detected at δ = 57.4 ppm for 13a and δ = 58.0 ppm for 13b. Additionally, these 

signals were a well-defined doublet with a coupling constant of 700 Hz and 690 Hz 

respectively as opposed to being the predicted singlet (or very weak 3JPH/4JPH present).  

Some clarity on this confusing result was achieved by recording the 31P{1H} NMR spectrum, 

which showed that the doublet collapses into a singlet resonance (Figure 3.5). Given the 

magnitude of the coupling constant and the fact that JPH coupling was present, it was clear 

that 13a and 13b had oxidised to a +5 phosphorus species. This is because of the large 

coupling constant which is very typical of a P(V) 1JPH.9 The results of the 31P and 31P{1H} NMR 

spectra strongly indicated that hydrolysis of the dithiaphosphenium cations had taken place, 

despite the use of dried solvent. This illustrated just how air/moisture sensitive the 

dithiaphosphenium compounds are. In addition, the 1H NMR spectrum showed the 1JPH 

coupling, as a doublet resonance centred at δ = 9.37 ppm was seen with the same magnitude 

1JPH coupling constant. As the dithiaphosphenium cations clearly proved too sensitive to 

attain multinuclear NMR characterisation, solid-state characterisation was heavily relied 

upon. Mass spectrometry, using EI method, confirmed the presence of the cation, with the 

mass for [M]+ [C7H6PS2]+ found at 184.9650 (theoretical = 184.9649). In addition, single 

crystal X-ray diffraction confirmed the structure of 13b. 
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Figure 3.5: 31P NMR (top) and 31P{1H} NMR (bottom) (162 MHz, CD2Cl2, 295 K) spectra of 

dithiaphosphenium 13a. 

3.2.1.2 Solid-state structures of dithiaphospheniums  
The dithiaphosphenium cations proved difficult to characterise by multinuclear NMR 

characterisation on due to insolubility and instability issues, so with only mass spectrometry 

results to go by, X-ray crystallography was employed. The solid-state structure of 13a has 

previously been reported by Cameron and Linden.10 On the other hand, the solid-state 

structure of 13b has not previously been described. Therefore, single crystals of 13b suitable 
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for X-ray diffraction were grown from a saturated solution of CH2Cl2 with a few drops of 

pentane added and cooled to −40 °C. Despite multiple recrystallisation attempts and use of 

different crystallisation methods, crystals of 13b were consistently plagued with twinning. 

In this context twinning is where two (or more) crystals of the same material are intergrown, 

meaning the unit cell of the first crystal is related to the second by a symmetry element. To 

combat this twinning problem during the refinement process, the twin law 

−1 0 0 0 −1 0 0 0 1 as given in TwinRotMat (within Platon11) was used in the refinement of 

13b alongside the BASF command, which helped remedy the twinning and in turn bring the 

R1 and wR2 values to satisfactory levels (R1 = 7% and wR2 = 21%). 

 

 

 

 

 

Figure 3.6: Solid-state structure of the dithiaphosphenium 13b. Thermal ellipsoids drawn at 

50% probability and H-atoms removed for clarity. 

With the refinement completed to an adequate level, 13b was found to crystallise in the 

monoclinic space group P21/c, with one molecule in the asymmetric unit and four in the unit 

cell (Figure 3.6). Closer inspection of the solid-state structure of 13b reveals that there are 

a number of key differences to the geometry when compared to the precursor 1a. Notably, 

although there is still the five membered PS2C2 dithiaphosphole ring, the distinctive fold 

angle about the S···S vector that is seen in 1a is effectively no longer present, with a fold 

angle of just 1.3(3)° measured for 13b. This in turn means that the dithiaphospheniums tend 

to being molecularly planar, which along with their 10-π electrons fulfils the requirements 

for Hückel aromaticity. The delocalisation of electrons within the 10-π aromatic system 

along with 3p-3p π-conjugation explains the shorter P–S bond metrics, with P–S bond 

lengths now measuring 2.004(3)–2.022(4) Å. That compares to P–S bond lengths of 

2.0936(7) Å and 2.0954(7) Å in the precursor 1a. The S(1)–P(1)–S(2) bond angle also 

expands in relation to 1a, increasing from 95.43(3)° to 98.37(15)° (Table 3.3).  When looking 

at the packing structure of the unit cell of 13b, the closest cation···anion association is a 

P···Cl contact at 3.3175(5) Å, which is well within the combined van der Waals radii of 3.55 Å.   



79 
 

 Table 3.3: Selected bond lengths and interior bond angles for dithiaphosphenium 13b. 

 

 

 

 

 

 

 

 

3.2.1.3 Computational analysis of dithiaphosphenium cation  

To obtain a deeper understanding on the structure and bonding present in the 

dithiaphosphenium cation, DFT studies were employed. Geometry optimisation and 

vibrational frequency calculations were performed on the cationic part of the 

dithiaphosphenium cation (13+); the counterion was neglected in the calculations as focus 

was on the changes that occur to the C2S2P five membered ring. As was the case with the 

dithiaphospholes, the functional M06-2X and basis set 6-311+G(2d,p) were employed, 

which would allow for a direct comparison to 1a. NBO calculations performed on 13+ 

showed the expected large build-up of positive charge on the phosphorus heteroatom, with 

a natural charge of +0.53. Interestingly, this positive charge is the same as was seen in 1a, 

which again highlights how polarised the P–Cl bond in 1a is.  

 

 

 

 

Figure 3.7: NBO analysis of dithiaphosphenium cation 13+. All atoms treated with M06-2X 

functional and 6-311G+(2d,p) basis set. aAverage values taken. 

On the other hand, the sulfur heteroatoms show an increase in positive charge with respect 

to that seen in 1a, with natural charges of +0.06 in 1a and +0.29 in 13+ (Figure 3.7). As was 

seen in the solid-state structure of 13b, the P–S bonds were shorter than those measured in 

1a, which was rationalised by the 10-π aromatic nature and 3p-3p π-conjugation present. 

Selected bond 13b/ Å (X = GaCl4) 

P(1)–S(1) 2.022(4) 

P(1)–S(2) 2.004(3) 

S(1)–C(1) 1.760(9) 

S(2)–C(2) 1.717(8) 

  

Selected angle 13b/ ° 

S(1)–P(1)–S(2) 98.37(15) 

P–S bond ordera: 1.36 

C–S bond ordera: 1.14 
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This observation is supported by NBO analysis when looking at the Wiberg bond order of 

the P–S bonds, which increases from an average of 1.04 in 1a to 1.36 in 13+.   

 

 

 

 

 

 

Figure 3.8: Images of the HOMO (top) and LUMO (bottom) of 2-chloro-5-methylbenzo-1,3,2-

dithiaphosphole (1a). Blue = positive area of electron density, red = negative area of electron 

density. Calculated at M06-2X and 6-311+G(2d,p) level.  

Molecular orbitals are an important concept in chemistry as they help describe not only the 

nature of the bonding in a given complex but can also help explain the reactivity it possesses. 

This is because traditionally structures with a large energy gap between the highest 

molecular orbital (HOMO) and lowest molecular orbital (LUMO) are more stable and 

unreactive, whereas structures with a low HOMO–LUMO energy gap are more reactive.12 

Given the cationic nature of 13+ and the delocalisation of electron density, the HOMO–

LUMO was visualised to see exactly how this electron density was distributed. For 

comparison, molecular orbital calculations were also performed on the precursor 1a. The 

HOMO in 1a is delocalised over the entire structure, including the P–Cl bond, and is of 

π-symmetry. The LUMO is also delocalised over the entire complex, vide supra (Figure 3.8). 

Turning attention to the dithiaphosphenium 13+, the HOMO looks similar to 1a, in that it is 

delocalised over the entire structure and is of π-symmetry, but has the obvious exception 

of the exclusion of the P–Cl bond. The LUMO on the other hand shows some localisation in 

the p-orbitals of phosphorus and sulfur in the PS2C2 ring with some delocalisation over the 
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fused toluene ring (Figure 3.9). Although DFT methodology when using common functionals 

is known to have difficulty in accurately calculating orbital energies,12,13 it can nevertheless 

be useful for comparing the relative HOMO–LUMO energy differences between different 

molecules. On that theme, the HOMO–LUMO energy barrier decreases by 1.8 eV (band 

gap is 7.1 eV in 1a and 5.3 eV in 13+) upon abstraction of the chloride and formation of the 

dithiaphsophenium 13+, with both the HOMO and LUMO lower in energy for the latter. 

 

 

 

 

 

 

 

 

 

Figure 3.9: Images of the HOMO (top) and LUMO (bottom) of 5-methylbenzo-1,3,2-

dithiaphosphenium (13+). Blue = positive area of electron density, red = negative area of 

electron density. Calculated at M06-2X and 6-311+G(2d,p) level.   

3.2.1.4 Synthesis and NMR analysis of dithiarsenium cations from dithiarsole   

Formation of the dithiarsenium cations have previously been reported by Burford and 

Royan.14 The synthesis of these cations proceeded in an analogous way to the 

dithiaphosphenium cations. Starting from the dithiarsole precursor, 3, stoichiometric 

aluminium trichloride or gallium trichloride was added in CH2Cl2 solvent. A dark red solution 

immediately formed and was left to stir at room temperature for six hours. After this period 

the solvent was removed in vacuo and the resulting solid was washed with pentane. Upon 

drying the products 5-methylbenzo-1,3,2-dithiarsenium tetrachloroaluminate (14a) and 

5-methylbenzo-1,3,2-dithiarsenium tetrachlorogallate (14b) were isolated as red solids in 

excellent yields of 89% and 82% accordingly (Scheme 3.4). Once more the triflate counterion 

was attempted through the reaction of 3 with TMSOTf and AgOTf, but again no reaction was 

found to occur.  
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Scheme 3.4: Synthesis of dithiarsenium compounds from dithiarsole 3. 

Interestingly, unlike in the dithiaphosphenium case, the solubility of the dithiarseniums was 

higher, as C6D6 proved to be a good NMR solvent. In the case of 14a the presence of AlCl4− 

as the counterion meant that 27Al NMR spectroscopy could be performed, which showed a 

sharp singlet resonance at δ = 104.6 ppm, which is known to correspond to AlCl4
−.15 Analysis 

of the 1H NMR spectrum of both 14a and 14b did not show 1JAsH coupling, which strongly 

suggests hydrolysis of the dithiarseniums does not occur in solution, as was seen with the 

dithiaphospheniums. Indeed the 1H NMR spectra of 14a and 14b show the expected three 

aromatic signals along with the one methyl resonance. To further support the formation of 

the arsenium cations, mass spectrometry using EI method found [M]+ [C7H6S2As]+ of 

228.9131 for 14a and 228.9132 for 14b (calculated = 228.9121).       

3.2.1.5 Solid-state structures of dithiarseniums  
As mentioned above, the dithiarsenium cations have previously been reported, but notably 

analysis of the structural properties is absent. The closely related [(CH2)2S2As]+ cation has 

been reported with both AlCl4− and GaCl4− counterions; here the salts form centrosymmetric 

dimers of the type [(CH2)2S2As]2[MCl4]2 (M = Al or Ga).16 As the solid-state structures of 14a 

and 14b had not been reported, single crystals suitable for X-ray diffraction of both 14a and 

14b were grown by Dr Rebecca Melen from slow evaporation of CH2Cl2 (Figures 3.10 and 

3.11). Structure refinement by Dr John Davies showed that both 14a and 14b crystallise in 

the monoclinic space group P21/m, with two molecules in the asymmetric unit; increasing 

to four molecules in the unit cell. 14a and 14b do not form dimers as seen in [(CH2)2S2As]+ 

but instead remain as two crystallographically independent structures. The characteristic 

fold angle seen in the dithiarsole 3 is no longer present, and in fact both 14a and 14b are 

rigorously planar with no fold angle about the S···S vector. This is in contrast to the 

dithiaphospheniums where a very small fold angle was measured (vide supra).  
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Figure 3.10: Solid-state structure of the dithiarsenium 14a. Thermal ellipsoids drawn at 50% 

probability and H-atoms removed for clarity. 

When measuring the As–S bond lengths in 14a, they are found to have metrics 2.148(5)–

2.161(6) Å, whereas in 14b they measure 2.1417(9)–2.1514(11) Å. In both cases the As–S 

bond lengths are shorter than in the dithiarsole precursor, which like the 

dithiaphospheniums is attributed to the π-bonding in the formally 10-π aromatic system. 

The S(1)–As(1)–S(2) bond angle in 14a shows expansion compared to 3β and 4, measuring 

94.8(2)° and 94.5(2)° for the two crystallographically independent molecules. In 14b the 

S(1)–As(1)–S(2) internal bond angle is 94.38(3)° and 94.81(4)° (Table 3.4). When looking at 

the close packing structures of 14a and 14b As···Cl cation···anion contacts were found, 

measuring 3.2946(10)–3.5376(10) Å, which are well within the combined sum of the van der 

Waals radii of 3.60 Å. 

 

 

 

 

 

 

 

Figure 3.11: Solid-state structure of the dithiarsenium 14b. Only one molecule shown. 

Thermal ellipsoids drawn at 50% probability and H-atoms removed for clarity. 
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 Table 3.4: Selected bond lengths and interior bond angles for diazarseniums 14a and 14b.  

 

 

 

 

 

 

 

 

 

3.2.1.6 Computational analysis of dithiarsenium cation  

As with the dithiaphospheniums, NBO analysis on the dithiarsenium cation part (14+) was 

undertaken. Geometry optimisation and vibrational frequency calculations were performed 

on the cationic part of the dithiarsenium using the functional M06-2X and basis set 

6-311+G(2d,p) on all atoms, with the exception of the arsenic heteroatom. Again for arsenic 

heteroatom the ECP LANL2DZ basis set was used. As expected, a large build-up of positive 

charge was seen on the arsenic heteroatom, with a natural charge of +0.76. The two sulfur 

atoms have an average natural charge of +0.19, which like the dithiaphosphenium case is a 

small increase compared to the dithiarsole precursor, which had an average natural charge 

of −0.03. The As–S bond shows a deviation from single bond character and has an average 

Wiberg bond order of 1.27 (Figure 3.12), which is in line with the shortened As–S bond 

lengths when compared to 3. The As–S Wiberg bond order in 3 was 0.98.  

 

 

 

 

Figure 3.12: NBO analysis of dithiarsenium cation 14+. All atoms treated with M06-2X 

functional and 6-311G+(2d,p) basis set, with the exception of As, which used LANL2DZ. 

aAverage values taken. 

Selected bond  14a/ Å (X = AlCl4) 14b/ Å (X = GaCl4) 

As(1)–S(1) 2.148(5)–2.161(6) 2.1417(9)–2.1461(10) 

As(1)–S(2) 2.155(6)–2.160(7) 2.1459(11)–2.1514(11) 

S(1)–C(1) 1.72(2)–1.75(2) 1.729(3)–1.734(3) 

S(2)–C(2) 1.76(2)–1.786(19) 1.730(2)–1.734(3) 

   

Selected angle 14a/ ° 14b/ ° 

S(1)–As(1)–S(2) 94.5(2)–94.8(2) 94.38(3)–94.81(4) 

As–S bond ordera: 1.27 

C–S bond ordera: 1.15 
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Molecular orbitals of the dithiarsenium cation 14+ as well as the dithiarsole 3 were then 

visualised (Figure 3.13). Dealing with the former first, the HOMO and LUMO in 14+ have the 

same visual appearance to the dithiaphosphenium 13+ where the HOMO shows 

delocalisation over the entire structure. The LUMO is of p-orbital character in the C2S2As ring 

and shows some delocalisation in the attached toluene ring; the HOMO–LUMO energy gap 

is 4.9 eV. Comparing this to the precursor 3, the visual appearance of the HOMO and LUMO 

is as described for the dithiaphosphole 1a, with a greater HOMO–LUMO energy gap of 6.6 

eV. In addition, the HOMO and LUMO in the dithiarsenium are both lower in energy than 

the dithiarsole (3: HOMO −7.6 eV, LUMO −1.0 eV; 14+: HOMO −12.3 eV, LUMO −7.4 eV). 

This decrease in frontier orbital energy upon cation formation was seen in the 

dithiaphosphole/phosphenium case above. Figure 3.14 below shows the frontier orbital 

energy levels for the dithia pnictole compounds 1a, 13+, 3 and 14+.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Top: HOMO (left) and LUMO (right) of 2-chloro-5-methylbenzo-1,3,2-dithiarsole 

(3). Bottom: HOMO (left) and LUMO (right) of 5-methylbenzo-1,3,2-dithiarsenium (14+). 

Blue = positive area of electron density, red = negative area of electron density. Calculated 

at M06-2X and 6-311+G(2d,p) level with the exception of As, which used LANL2DZ.  

 



86 
 

Figure 3.14: Frontier orbital energy levels of the dithiaphosophole 1a, dithiaphosphenium 

cation 13+, dithiarsole 3 and dithiarsenium cation 14+. Values in eV. Calculated at M06-2X 

and 6-311+G(2d,p) level with the exception of As, which used LANL2DZ.  

3.2.2 Synthesis of diazaphosphenium cations  

3.2.2.1 Synthesis and NMR analysis of diazaphosphenium cations from diazaphosphole   

In an analogous fashion to the dithiaphosphole case, cation formation proceeded by 

reacting the diazaphosphole 6a with halide abstracting reagents. 6a was added to 

stoichiometric amounts of either aluminium trichloride or gallium trichloride in CH2Cl2 

solvent and left to stir at ambient temperature for two hours. During this time the solution 

had turned red/yellow. The solvent was removed in vacuo and the solids were washed with 

pentane. After drying the products 1,3-diisopropyl-benzodiphosphenium 

tetrachloroaluminate (15a) and 1,3-diisopropyl-benzodiphosphenium tetrachlorogallate 

(15b) were obtained as red-yellow solids. In the case of using TMS triflate 1.2 equivalents 

were used, otherwise the reaction proceeded as just described to give the product 

1,3-diisopropyl-benzodiphosphenium triflate (15c). Note that unlike for the 

dithiaphosphenium case where the triflate counterion was not tolerated, the synthesis here 

proceeded smoothly (Scheme 3.5). 

 

 

 

 

 

Scheme 3.5: Synthesis of dithiaphosphenium compounds from dithiaphosphole 1a. 

HOMO 
−7.7 eV 

LUMO 
−0.6 eV 

HOMO −12.5 eV 

LUMO 
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HOMO 
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HOMO −12.3 eV  
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−7.4 eV 
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Unlike in the dithiaphosphenium case where hydrolysis readily occurred in solution, 31P{1H} 

NMR spectroscopy of the diazaphosphenium cations showed the expected downfield shift 

compared to the starting precursor 6a. The 31P{1H} NMR chemical shifts for 15a–c were 

δ = 207.7 ppm (X = AlCl4), δ = 212.9 ppm (X = GaCl4) and δ = 216.0 ppm (X = OTf) respectively, 

which is typical for compounds of this type. For reference, the 31P{1H} NMR chemical shift is 

at δ = 147.2 ppm for 6a. In the case of 15a, 27Al NMR spectroscopy showed a singlet signal 

at δ = 103.8 ppm, confirming the presence of AlCl4
−. For 15c, 19F NMR spectroscopy could be 

used due to the CF3 group present in the triflate counterion. The 19F NMR spectrum showed 

a singlet centred at δ = −78.4 ppm, which corresponds to the triflate counterion. 

Unfortunately, although gallium has two NMR active nuclei, 69Ga and 71Ga, both are 

quadrupolar and yield very broad signals.17,18 Thus, gallium NMR spectroscopy is not 

routinely performed. Using 15a as an example, the 1H NMR spectrum showed four signals; 

the aromatic signals do not coalesce into one like in 6a (Chapter Two). The aromatic signals 

appear as broad multiplets at δ = 7.30 and 7.22 ppm and both integrate to two. The septet 

and doublet corresponding to the isopropyl group have approximately the same chemical 

shift as in 6a; their chemical shifts are at δ = 4.45 and 1.50 ppm respectively (Figure 3.15).  
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Figure 3.15: Top: 31P{1H} NMR (162 MHz, C6D5Br, 295 K), middle: 1H NMR spectrum 

(500 MHz, C6D5Br, 295 K), bottom: 27Al NMR spectrum (130 MHz, C6D5Br, 295 K) of 

diazaphosphenium 15a. 

Ha, Hb Hc 

Hd 
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3.2.2.2 Solid-state structures of diazaphospheniums  
With the diazaphosphenium well characterised by multinuclear NMR spectroscopy, single 

crystals of 15a–c suitable for X-ray diffraction were then grown in collaboration with Alex 

Rigby from a saturated solution of CH2Cl2 with a few drops of pentane added and cooled to 

−40 °C (Figures 3.16, 3.17 and 3.18). Upon data collection, solution and refinement by Dr 

Lewis Wilkins, 15a and 15b were found to crystallise in the orthorhombic space group Pbca 

with one molecule in the asymmetric unit, increasing to eight in the unit cell. On the other 

hand, 15c crystallised in the monoclinic space group P21/n with one molecule in the 

asymmetric unit and four in the unit cell. The diazaphospheniums show a tendency towards 

molecular planarity, a feature that was seen in the dithiaphospheniums. The fold angle 

across the N···N vector slightly increases upon moving from 15a to 15c; for 15a it is 

calculated at 0.66(13)°, 0.76(14)° for 15b and 1.01(11)° for 15c. The molecular planarity is 

again attributed to the 3p-3p π-conjugation and delocalisation of electrons within the 10-π 

aromatic system. 

 

 

 

 

 

 

 

Figure 3.16: Solid-state structure of 1,3-diisopropyl-benzodiphosphenium 

tetrachloroaluminate 15a. Thermal ellipsoids drawn at 50% probability and H-atoms 

removed for clarity.   
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In 15a, the P–N bond lengths are 1.6543(17) Å and 1.6550(17) Å, which are shorter than that 

seen in the precursor 6a (cf. 1.6713(16)–1.6740(15) Å). Moreover, this decrease is larger 

than that seen in the dithiaphosphole to dithiaphosphenium case and is rationalised by the 

aromatic nature of 15a. Like 13b, 15a shows an expansion in the N(1)–P(1)–N(2) bond angle, 

increasing from 90.95(8)°–91.04(8)° in 6a to 92.00(9)° (Table 3.5). Inspection of the close 

packing in the unit cell of 15a shows the closest cation···anion association is a P···Cl contact 

at 3.4967(7) Å. This is inside the combined van der Waals radii of 3.55 Å. Additionally, P···π 

interactions between the phosphorus heteroatom and the fused benzene ring of a 

neighbouring dithiaphosphenium was seen, similar to that in the solid-state packing 

arrangement in 3α.    

 

 

 

 

 

 

 

Figure 3.17: Solid-state structure of 1,3-diisopropyl-benzodiphosphenium 

tetrachlorogallate 15b. Thermal ellipsoids drawn at 50% probability and H-atoms removed 

for clarity.  

 

 

 

 

 

 

Figure 3.18: Solid-state structure of 1,3-diisopropyl-benzodiphosphenium triflate (15c). 

Thermal ellipsoids drawn at 50% probability and H-atoms removed for clarity.  
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15b and 15c show similar features to that just detailed for 15a, with P–N bond lengths that 

are contracted and an increase in the N(1)–P(1)–N(2) bond angle compared to the precursor 

6a. The closest cation···anion contact in 15b is again between the phosphorus and chloride, 

which measures 3.4963(9) Å, and also shows the P···π interactions detailed in 15a. For 15c 

the closest cation···anion association is a P···O contact at 3.5455(18) Å, which is just within 

the sum of the combined van der Waals radii. 

Table 3.5: Selected bond lengths and interior bond angles for diazaphospheniums 15a–c.  

  

3.2.2.3 Computational analysis of diazaphosphenium cation 

Geometry optimisation and vibrational frequency calculations were then performed on the 

cation of the diazaphosphenium (15+), with the counterion ignored. Again the functional 

M06-2X and basis set 6-311+G(2d,p) were utilised. NBO calculations performed on 15+ 

showed a large build-up of positive charge on the phosphorus heteroatom, with a natural 

charge of +1.24. This is much greater than what is seen for the dithiaphosphenium 13+ 

(cf. +0.53) but again comparable to the precursor 6a; highlighting the high polarisation 

present in the P–Cl bond. The N heteroatoms have a natural charge of −0.70, which is a small 

decrease compared to 6a. Like 13+, which showed an increase in P–S bond order upon 

cation formation, 15+ has an increase in the P–N bond order. In 6a the Wiberg P–N bond 

order was found to be low, at just 0.84, which was explained by donation of electron density 

into the antibonding P–N orbital. In 15+ this bond order increases to 1.04 (Figure 3.19). 

Although donation into the P–N antibonding orbital is still observed, the stabilisation energy 

gain from this is much lower, at 6.4 KJ mol-1 (cf. 46.3 KJ mol-1 in 6a).       

Selected bond  15a/ Å (X = AlCl4) 15b/ Å (X = GaCl4) 15c/ Å (X = OTf)  

P(1)–N(1) 1.6543(17) 1.6549(19) 1.6526(16) 

P(1)–N(2) 1.6550(17) 1.6553(19) 1.6470(17) 

N(1)–C(1) 1.395(3) 1.390(3) 1.393(3) 

N(2)–C(2) 1.389(3) 1.384(3) 1.396(2) 

    

Selected angle 15a/ ° 15b/ ° 15c/ ° 

N(1)–P(1)–N(2) 92.00(9) 91.82(10) 91.92(8) 
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Figure 3.19: NBO analysis of diazaphosphenium cation 15+. All atoms treated with M06-2X 

functional and 6-311G+(2d,p) basis set. aAverage values taken. 

 

 

 

 

 

 

 

 

Figure 3.20: Images of the HOMO (top) and LUMO (bottom) of 1,3-diisopropyl-

benzodiphosphenium (15+). Blue = positive area of electron density, red = negative area of 

electron density. Calculated at M06-2X and 6-311+G(2d,p) level.  

The frontier orbitals of 15+ were visualised, which showed that the HOMO was delocalised 

over the entire species and of π-symmetry, similar to that seen in 13+. The LUMO is also 

fully delocalised and includes the p-orbital on the phosphorus heteroatom (Figure 3.20). The 

energy difference between the HOMO and LUMO is 6.3 eV (HOMO −11.8 eV, 

LUMO −5.5 eV), which is 1.0 eV higher than 13+ but is lower, albeit just, than in the precursor 

6a. In 6a the HOMO–LUMO energy difference is 6.8 eV, with both the HOMO and LUMO 

lying higher in energy (HOMO −6.9 eV, LUMO −0.1 eV). Visual representations of the frontier 

orbitals of 6a are shown below (Figure 3.21). 

P–N bond ordera: 1.04 

C–N bond ordera: 1.11 



93 
 

 

Figure 3.21: Images of the HOMO (left) and LUMO (right) of 2-chloro-1,3-diisopropyl-

benzodiazaphosphole (6a). Blue = positive area of electron density, red = negative area of 

electron density. Calculated at M06-2X and 6-311+G(2d,p) level.  

3.2.2.4 Synthesis and NMR analysis of diazarsenium cations from diazarsole   

 

 

 

 

 

Scheme 3.6: Synthesis of diazarsenium compounds from diazarsole 7. 

Similarly to the diazaphosphenium case, the diazarsole precursor 7 was added to 

stoichiometric quantities of the halide abstraction reagents aluminium trichloride or gallium 

trichloride in CH2Cl2 solvent. The reaction was left to stir at ambient temperature for two 

hours, and after solvent removal, pentane washings and further drying, the products 

1,3-diisopropyl-benzodiarsenium tetrachloroaluminate (16a) and 1,3-diisopropyl-

benzodiarsenium tetrachlorogallate (16b) were obtained as red-orange solids in excellent 

yields of 87% and 84% respectively. In the case of using TMS triflate 1.2 equivalents were 

again used, giving the product 1,3-diisopropyl-benzodiarsenium triflate (16c) in 82% yield 

(Scheme 3.6). 27Al NMR spectroscopy and 19F NMR spectroscopy showed a signal at 

δ = 104.5 ppm for the former and at δ = −78.1 ppm for the latter, confirming formation of 

the respective counterions. 1H NMR spectroscopy showed the expected two aromatic 

signals as well as the two signals for the isopropyl groups. In addition to multinuclear NMR 

spectroscopy, high resolution mass spectrometry (ES+ method) confirmed the cation 
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formation, which using 16a as an example gave a mass of [M]+ [C12H18AsN2]+ 265.0692 

(theoretical 265.0686). The use of single-crystal X-ray diffraction gave further evidence of 

product formation. 

3.2.2.5 Solid-state structures of diazarseniums 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Solid-state structures of 1,3-diisopropyl-benzodiarsenium tetrachloroaluminate 

(16a) and 1,3-diisopropyl-benzodiarsenium tetrachlorogallate (16b). Thermal ellipsoids 

drawn at 50% probability and H-atoms removed for clarity. 

Single crystals of 16a–c suitable for X-ray diffraction were grown in collaboration with Alex 

Rigby from a saturated solution of CH2Cl2 with a few drops of pentane added and cooled to 

−40 °C (Figures 3.22 and 3.23). Upon data collection, solution and refinement by Dr Lewis 

Wilkins, the diazarsoles were found to crystallise in the monoclinic space group P21/n with 

one molecule in the asymmetric unit, increasing to four in the unit cell. The distinctive fold 

angles about the N···N vector are lower than in 7, but are greater than that seen in the 

dithiarseniums where no fold was observed and are rigorously planar. For 16a and 16b the 
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fold angles were measured at 0.82(13)° and 0.93(16)° accordingly, whereas for 16c the fold 

angle is noticeably lower at just 0.03(16)°. The diazarseniums show contraction in the As–N 

bond lengths, a feature that has been seen in the cationic complexes already discussed. For 

example, in 16a the two As–N bond lengths measure 1.7987(19) Å and 1.8053(19) Å, 

compared to 1.809(3) Å and 1.812(3) Å for 7. The N(1)–As(1)–N(2) bond angle is expanded, 

but not by as much as was witnessed in the diazaphospheniums, with the N(1)–As(1)–N(2) 

bond angle in 16a measuring 86.85(8)° (cf. 86.45(14)° in 7) (Table 3.6). The close-packing 

structure of 16a and 16b are analogous and show As···Cl cation···anion contacts that are well 

within the combined sum of the van der Waals radii (3.5677(8)–3.5754(6) Å, combined van 

der Waals radii = 3.80 Å). Similarly, in the case of 16c As···O cation···anion contacts are 

observed, which also fall within the range of the van der Waals radii.  

 

 

 

 

 

 

 

 

 

Figure 3.23: Solid-state structures of 1,3-diisopropyl-benzodiarsenium triflate 16c. Thermal 

ellipsoids drawn at 50% probability and H-atoms removed for clarity. 
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 Table 3.6: Selected bond lengths and interior bond angles for diazaphospheniums 16a–c.  

 

3.2.2.6 Computational analysis of diazarsenium cation 

Geometry optimisation and vibrational frequency calculations were performed on the 

cation, 16+, using the functional M06-2X and basis set 6-311+G(2d,p) on all atoms, with the 

exception of the arsenic heteroatom. Again, for the arsenic heteroatom the ECP LANL2DZ 

basis set was used. NBO calculations on 16+ showed the expected build-up of positive 

charge on the arsenic heteroatom, with a natural charge of +1.35, which is significantly 

greater than that seen in the dithiarsenium 14+ (cf. natural charge = 0.76). Nevertheless, 

this does fit the theme seen in the dithiaphosphenium vs. diazaphosphenium where the 

phosphorus heteroatom is much more positively charged in the latter. The natural charge 

of the nitrogen heteroatom was averaged at −0.74, which is comparable to the 

diazaphosphole (−0.70) (Figure 3.24).    

 

 

 

 

 

Figure 3.24: NBO analysis of diazarsenium cation 16+. All atoms treated with M06-2X 

functional and 6-311G+(2d,p) basis set, with the exception of As, which used LANL2DZ. 

aAverage values taken. 

 

Selected bond 16a/ Å (X = AlCl4) 16b/ Å (X = GaCl4) 16c/ Å (X = OTf) 

As(1)–N(1) 1.8053(19) 1.797(2) 1.796(2) 

As(1)–N(2) 1.7987(19) 1.801(2) 1.797(3) 

N(1)–C(1) 1.375(3) 1.371(4) 1.377(4) 

N(2)–C(2) 1.380(3) 1.375(4) 1.377(3) 

    

Selected angle 16a/ ° 16b/ ° 16c/ ° 

N(1)–As(1)–N(2) 86.85(8) 86.794(2) 86.61(2) 

P–N bond ordera: 0.91 

C–N bond ordera: 1.17 
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Figure 3.25: Top: HOMO (left) and LUMO (right) of 2-chloro-1,3-diisopropyl-benzodiazarsole 

(7). Bottom: HOMO (left) and LUMO (right) of 1,3-diisopropyl-benzodiarsenium (16+). 

Blue = positive of electron density, red = negative area of electron density. Calculated at 

M06-2X and 6-311+G(2d,p) level with the exception of As, which used LANL2DZ.  

 

After NBO calculations were performed, molecular orbitals of the diazarsenium cation 16+ 

and the diazarsole precursor 7 were undertaken (Figure 3.25). As was seen in the 

dithiaphosphole vs. diazaphosphole case, the HOMO and LUMO of 16+ look the same as was 

seen in the diazaphosphenium 15+; vide supra. Both the HOMO and LUMO of 16+ are 

delocalised over the full structure and are of π-symmetry. The HOMO–LUMO energy barrier 

is 5.7 eV, which is 0.8 eV higher in energy than the dithiarsenium cation 14+, with both 

frontier orbitals at lower energy in 16+ (HOMO −12.3 eV, LUMO −7.4 eV in 14+ and 

HOMO −11.5 eV, LUMO −5.8 eV in 16+). For the diazarsole precursor 7, again the HOMO and 

LUMO orbitals visually look the same as the diazaphosphole 6a, with an increased HOMO–

LUMO energy barrier compared to 16+ also observed. In 7 this energy barrier is 6.4 eV, with 

the HOMO at −6.8 eV and LUMO −0.4 eV. These are both significantly at higher energy than 

the diazarsenium. These orbital energies are visualised below in Figure 3.26.      
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Figure 3.26: Frontier orbital energy levels of the diazaphosophole 6a, diazaphosphenium 

cation 15+, dizarsole 7 and diazarsenium cation 16+. Values in eV.  Calculated at M06-2X and 

6-311+G(2d,p) level with the exception of As, which used LANL2DZ. 

3.2.3 Attempted Synthesis of dioxphosphenium cations from dioxaphosphole   

 

 

 

Scheme 3.7: Attempted synthesis of dioxaphosphenium compounds.  

In analogous fashion to the synthesis of the cationic complexes described so far, the 

formation of the dioxaphosphenium cation was attempted using simple Lewis acids 

(Scheme 3.7). Here though using CH2Cl2 solvent and addition of the halide abstraction 

reagent (aluminium trichloride, gallium trichloride and TMS triflate), tracking the reaction 

via in situ 31P NMR spectroscopy showed no formation of the desired phosphenium cation, 

with only the starting dioxaphosphole observed. Indeed, using toluene as a solvent and 

increasing the reaction temperature to 90 °C still resulted in no product formation. It is 

possible that given the calculated large Lewis acidity of the dioxaphosphenium, vide infra, 

the “free” cation is too unstable to exist in solution and the cation would need to be 

stabilised. The addition of 1,4-diazabicyclo[2.2.2]octane (DABCO) would potentially achieve 

this, but as the free cation was desired this reaction was not attempted.     

3.2.4 Lewis acidity and aromaticity of phospheniums and arseniums 

Given the cationic nature and presence of a vacant p-orbital of the phosphenium and 

arsenium cations, an interesting question to ask was how Lewis acidic these compounds are. 

One popular method that is widely used for experimentally determining this is the Gutmann-

Beckett method,19,20 which has been extensively used for triarylboranes.21 In this test, a 

given Lewis acidic species is added to triethylphosphine oxide and the 31P NMR spectrum is 

HOMO 
−6.9 eV 

HOMO −11.8 eV 

LUMO 
−0.1 eV 

LUMO 
−5.5 eV 

HOMO −6.8 eV 

HOMO −11.5 eV 

LUMO −0.4 eV 

LUMO−5.8 eV 
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recorded. The adduct formation between the molecular species and triethylphosphine oxide 

gives a chemical shift in the 31P NMR spectrum, and by using Equation 3.1 an acceptor 

number is generated. An acceptor number (AN) of zero corresponds to the weak Lewis 

acidity of hexane solvent to triethylphosphine oxide, whereas an acceptor number of 100 is 

the value of the strongly Lewis acidic SbCl5. Acceptor numbers greater than 100 usually 

correspond to super Lewis acids. As the dithiaphospheniums underwent complete 

hydrolysis it was decided that they should not be used for this experiment, but as there was 

no issue with the dithiarsenium, diazaphosphenium and diazarsenium, these would be used. 

As the Gutmann-Beckett experiment is sensitive to solvent choice, reactions were used in 

CDCl3 solvent. For the dithiarsenium 14b, with GaCl4− counterion, the 31P NMR spectrum 

gave a chemical shift of δ = 80.8 ppm, which gave a corresponding acceptor number of 88.2, 

thus showing how highly Lewis acidic the dithiarseniums are (Figure 3.27). In contrast to 

this, the diazaphospenium triflate, 15c, and diazarsenium triflate, 16c, were significantly less 

Lewis acidic. The former had a 31P NMR chemical shift of δ = 56.9 ppm and acceptor number 

of just 35.1, whereas the latter showed a 31P NMR chemical shift of δ = 54.3 ppm, which 

gave an even lower acceptor number of 29.4. For reference the well-known strong Lewis 

acid tris(pentafluorophenyl)borane, BCF, in CDCl3 has an acceptor number of 77.5 

(Table 3.7). The difference in Lewis acidity between the dithiarsenium and 

diazaphosphenium/diazarsenium is significant, but may be explained due to the greater 

π-donation from the N atoms in the diaza pnictole ring.22  

𝐴𝑁 =  (𝛿 − 41.0)
100

86.14 − 41.0
    

Equation 3.1: Gutmann-Beckett equation. Where δ is the chemical shift of the adduct in the 

31P NMR spectrum. 
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Table 3.7: Gutmann-Beckett method Lewis acidity values. Pn = P or As, E = S or N and R = Me 

or H. 

 

 

 

 

Figure 3.27: 31P NMR (162 MHz, CDCl3, 295 K) spectrum of Gutmann-Beckett method for 5-

methylbenzo-1,3,2-dithiarsenium tetrachlorogallate (14b). Spectrum referenced to PPh3 in 

CDCl3 at δ = –5.21 ppm.  

The Lewis acidity of these cations was then further investigated computationally by 

determining their Fluoride Ion Affinity (FIA). As the fluoride ion is relatively small and highly 

basic, it will interact with most Lewis acids.23 Calculating the reaction enthalpy of this 

interaction can therefore give a good indication to the Lewis acidity and this is what is known 

as the FIA. Previous work by Slattery, at MP2 (RI-)BP86/SV(P) level of theory, has looked at 

Compound 
31P NMR chemical 

shift/ ppm 
Acceptor number 

Relative Lewis 

acidity/ % 

14b 80.8 88.2 100 

15c 56.9 35.1 40 

16c 54.3 29.4 33 

B(C6F5)3 76.0 77.5 88 

PPh3 in CDCl3 reference, 

δ = –5.21 ppm 



101 
 

the FIA of a wide range of phosphenium cations and included a dithiaphosphenium, 

diazaphosphenium and dioxaphosphenium.24 Here the trend was that the 

dioxaphosphenium was by far the most Lewis acidic, with an FIA of 874 KJ mol-1, after which 

the dithiaphosphenium has an FIA of 771 KJ mol-1 and diazaphosphenium 683 KJ mol-1. As 

the work of Slattery did not include arsenium cations, the FIA for 14+ and 16+ was 

calculated, using M06-2X/6-311G+(2d,p) (LANL2DZ for As heteroatom) theory level, which 

gave an FIA for 14+ of 758 KJ mol-1 and 667 KJ mol-1 for 16+ (Figure 28). Thus, the FIA 

calculations support the Gutmann-Beckett findings that the dithiarsenium cation is much 

more Lewis acidic than the diazaphosphenium/diazarsenium. Note that when calculating 

the FIA of 14+ and 16+, a counterpoise correction was performed at the end; this is because 

of the effect known as basis set superposition effect (BSSE), which gives rise to error when 

studying an intermolecular reaction using an incomplete basis set.25 In short, the 

coordinated complex (for example 14–F) has a larger number of basis sets available to it 

than the two monomers, in this case the cation and F−, which gives a more flexible 

description of the wavefunction and in turn lower energy for the coordinated complex. To 

remedy this, it is possible to use a very large basis set, but as this is computationally very 

expensive a counterpoise correction is generally used instead. This keeps the description of 

the coordinated complex the same and provides the two monomers with a basis set of 

identical size to the product.       

𝐿𝐴+  + 𝐹− → 𝐿𝐴 − 𝐹   

Equation 3.2: General definition of a Fluoride Ion Affinity, where LA = Lewis acid, F− = fluoride 

ion and LA–F = coordinated complex.   

 

 

 

 

 

 

Figure 28: Top: FIA of phosphenium cations calculated by Slattery (MP2 (RI-)BP86/SV(P)). 

Bottom: FIA of arsenium cations (M06-2X/6-311G+(2d,p) (LANL2DZ for As heteroatom)).   



102 
 

In addition to Lewis acidity, the aromaticity of these compounds is an interesting area to 

explore, especially as it has been mentioned throughout this chapter but not yet been 

quantified. In the introduction an experimental method for quantifying the aromaticity of 

heterocycles was presented; harmonic oscillator model of heterocyclic electron 

delocalisation, or HOMHED for short. This was first used by Matins and colleagues but 

recently adopted by the group of Heeney to discuss the aromaticity of phospholes and 

arsoles.26 HOMHED, which is given by Equation 3.3, works by comparing bond lengths 

determined from X-ray diffraction (Ri) with “optimal” bond lengths (Ropt), which are 

calculated by inputting reference single (Rs) and double (Rd) bond lengths into Equation 3, 

where ω is given the value 2. α is a normalisation constant and takes into account the 

difference between the bond types and n is the total number of bonds measured. The end 

result is a value between 0 and 1 (aromaticity of benzene), where HOMHED >0.5 shows 

aromatic character, between 0 and 0.5 no aromatic character and negative values indicate 

anti-aromatic behaviour.  

HOMHED = 1 −
1

𝑛
∑ 𝛼(𝑅opt − 𝑅𝑖)

2
   

𝑛

𝑖=1

 

𝑅opt =
𝑅s + 𝜔𝑅d

1 + 𝜔
    

𝛼 = 2 [(𝑅opt − 𝑅s)
2

+ (𝑅opt − 𝑅d)
2

]
−1

   

Equations 3.3, 3.4 and 3.5: Equations used in determining the aromaticity of the 

phosphenium and arsenium complexes by the HOMHED methodology.  

Using this HOMHED methodology, it was applied to determine how aromatic the 

dithiaphosphenium (13+), dithiarsenium (14+), diazaphosphenium (15+) and diazarsenium 

cations (16+) are. Tables 3.8 and 3.9 show the values used to determine HOMHED for the 

phospheniums and arseniums respectively, while Table 3.10 gives the HOMHED value. 

Looking at the results from Table 3.10 it is clear to see that firstly the cations are all aromatic, 

with HOMHED values all > 0.5. Secondly, the dithiaphosphenium and dithiarsenium are 

approximately as aromatic as each other (HOMHED ≅ 0.86), as are the diazaphosphenium 

and diazarsenium (HOMHED = 0.9295 for 15+ and 0.9504 for 16+). This is particularly 

surprising given that phospholes have been shown to be more aromatic than arsoles.26 Lastly 

it can also been seen from Table 3.10 that the diazaphosphenium and diazarsenium 

complexes are more aromatic than the dithiaphosphenium and dithiarsenium compounds.   
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 Table 3.8: Values used for calculating HOMHED of phosphenium cations. 

 

  

Table 3.9: Values used for calculating HOMHED of arsenium cations. 

 

 

Table 3.10: HOMHED values for phoshenium and arsenium cations. 

 

 

 

 

 

 

 

 

 

 

 C–C C–S C–N S–As N–As 

Rs (Å) 1.530 1.819 1.474 2.275 1.858 

Rd (Å) 1.316 1.599 1.271 2.083 1.762 

Ropt (Å) 1.387 1.672 1.339 2.147 1.794 

α 78.6 74.4 87.4 97.7 391 

 C–C C–S C–N S–P N–P 

Rs (Å) 1.530 1.819 1.474 2.132 1.718 

Rd (Å) 1.316 1.599 1.271 1.954 1.599 

Ropt (Å) 1.387 1.672 1.339 2.013 1.639 

α 78.6 74.4 87.4 114 254 

 13+ 14+ 15+ 16+ 

HOMHED 0.8632 0.8553 0.9295 0.9504 
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Chapter 3.3 Photophysical Properties of Diazaphosphenium and Diazarsenium Cations   
Following structural analyses of the diazaphosphenium and diazarsenium complexes which 

showed close-contact interactions in the solid-state, the photophysical properties were 

probed on account of the 10-π Hückel aromaticity.3 To date, there are few examples in the 

literature where the optical properties of phosphole derived compounds have been 

investigated,27–30 and much fewer cases where these properties have been looked at in 

arsoles.31,32 Furthermore, when looking for examples of the absorption and/or emission of 

phosphenium and arsenium complexes, no relevant literature could be sourced.  

On that note, for these photophysical studies, the diazaphosphole 2-chloro-1,3-diisopropyl-

benzodiazaphosphole (6a) and diazaphosphenium complexes 1,3-diisopropyl-

benzodiphosphenium tetrachloroaluminate (15a), 1,3 diisopropyl-benzodiphosphenium 

tetrachlorogallate (15b) and 1,3-diisopropyl-benzodiphosphenium triflate (15c) were 

chosen. The arsenic analogues 2-chloro-1,3-diisopropyl-benzodiazarsole (7), 1,3-

diisopropyl-benzodiarsenium tetrachloroaluminate (16a), 1,3-diisopropyl-benzodiarsenium 

tetrachlorogallate (16b) and 1,3-diisopropyl-benzodiarsenium triflate (16c) were 

additionally utilised. This would allow for a thorough comparison between not only the 

effect of using different counterions but the effect of changing the heteroatom. 

3.3.1 Absorption Properties  

The UV-visible (UV-vis) absorption spectra of diaza pnictole species 6a, 15a–c, 7 and 16a–c 

were performed in collaboration with Dr Samuel Adams and Professor Simon Pope from 

degassed solutions of acetonitrile and chloroform (Table 3.11). These spectra are complex 

but revealed changes on varying the cationic heteroatom, counterion and the solvent. With 

regards to the former, the diazaphosphole 6a shows two absorption shoulders at λabs = 269 

and 280 nm in CHCl3, whereas changing the heteroatom from phosphorus to arsenic, 7, 

showed an absorption band at λabs = 332 nm, as well as two shoulder peaks at 282 and 269 

nm. Comparing 6a and 15a–c, the absorption band positions are identical with the exception 

of 15a, which was the only species to exhibit a discrete peak between 300 and 400 nm. More 

differences were observed in the appearance of the spectra when comparing the arsenic 

complexes 7 and 16a–c, suggesting a greater degree of cation-anion aggregation in solution 

for these compounds. For example, the acetonitrile solution of 16a showed a band at 

λabs = 284 nm and a shoulder at 247 nm, whereas for 16b bands appear at λabs = 310 nm and 

254 nm.     
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Interestingly, while performing the UV-vis measurements it was noted that the spectra in 

the more polar acetonitrile solution were blue shifted (decrease in wavelength; 

hypsochromic shift) with respect to the chloroform solutions (dielectric constant ε = 37.5 

and 4.81 accordingly), which may be ascribed to the inherent (ground state) dipole moment 

caused by the P+/As+ centre (Figure 3.29). In all cases these bands are ascribed to 1π → π* 

transitions, which is supported by time-dependent DFT (TD-DFT) calculations.  

Figure 3.29: UV-Visible absorption spectra of diazarsole and diazaphosphole derivatives in 

chloroform (a and b respectively) and acetonitrile (c and d respectively). Counterions are Cl- 

(red), AlCl4− (black), GaCl4− (green) and OTf− (blue). C = 1.0 × 10−5 M. 

For the TD-DFT, the diazaphosphenium cation 15+ was used; geometry optimised and 

vibrational frequency calculations proceeded as before but made use of a polarisable 

continuum solvation model (PCM) of acetonitrile. Use of PCM is common in computational 

chemistry when the inclusion of solvation is important and it works by modelling the solvent 

as a polarisable continuum as opposed to looking at every single solvent molecule, which 

would be computationally prohibitively expensive.33 After this, excited states and UV-vis 

calculations were performed on the free cation 15+, again using the PCM acetonitrile model, 

which showed that the lowest energy transition corresponds from the HOMO to LUMO.  
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 Table 3.11: Absorption spectroscopy data for compounds 6a, 15a–c, 7 and 16a–c.  

 

3.3.2 Emissive Properties  

The diazaphosphole and diazarsole derivatives were found to be emissive following 

irradiation of the lowest energy absorption bands (λexc = 310 nm) (Table 3.12). Like the 

absorption measurements, emission spectra were recorded by Dr Samuel Adams and 

Professor Simon Pope in degassed solutions of chloroform and acetonitrile. The appearance 

of the emission spectra is generally similar and shows broad bands with some vibrational 

features centred at 393 and 384 nm respectively. Quantum yields for the excitation were 

calculated and are within the range of 0.1–2%, thus the emission is poorly efficient. 

Intriguingly, the quantum yield increased when using acetonitrile as a solvent as opposed to 

chloroform. Time-resolved emission measurements at λexc = 295 nm produced profiles that 

fit best to a biexponential decay, giving a short lifetime component of approximately 1 ns 

and a second longer component ranging from 2.8 ns for 15c in chloroform to 9.9 ns for 7 in 

chloroform. The biexponential decay suggests two species are present in the decay process 

and potentially may be explained by the hemi-lability of the counterion. 

Compound Solvent λabs/ nm (ε/ 104 M-1 cm-1) 

6a 
CHCl3 269 (8.3) sh, 280 (4.5) sh 

MeCN 250 (6.1), 287 (1.6) sh 

15a 
CHCl3 269 (7.0) sh, 280 (5.2) sh, 333 (1.6) 

MeCN 251 (6.5), 325 (1.1) 

15b 
CHCl3 269 (8.9) sh, 280 (5.7) sh 

MeCN 250 (7.2), 287 (1.6) sh 

15c 
CHCl3 269 (7.6) sh, 280 (4.9) sh 

MeCN 250 (6.5), 287 (2.7) sh 

7 
CHCl3 269 (8.0) sh, 282 (4.3) sh, 332 (1.6) 

MeCN 265 (3.7) sh, 315 (1.4) 

16a 
CHCl3 269 (8.8) sh, 282 (5.1) sh 

MeCN 247 (5.4) sh, 284 (1.9) 

16b 
CHCl3 269 (7.9) sh, 282 (4.4) sh, 355 (2.7) 

MeCN 254 (7.3), 310 (1.6) 

16c 
CHCl3 269 (8.4) sh, 282 (4.5) sh, 341 (2.0) 

MeCN 254 (8.0), 310 (1.8) 
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Analysis of the lifetime of emissions showed that in the case of the 

diazaphosphole/diazaphospheniums a variation of lifetime was observed as a function of 

counterion choice, although in general it was found that the decays were shorter than the 

arsenic counterparts. Nevertheless, the lifetimes in both cases suggested a fluorescence 

process. The fluorescent lifetimes of the diazarsole/diazarsenium complexes also show a 

trend in solvent choice, as the longer lifetime component decreases when moving from 

chloroform to acetonitrile. For example, in 7 the longer lifetime component decreased from 

9.0 ns in chloroform to 5.0 ns in acetonitrile. Note that this trend is not seen in the 

diazaphosphole/diazaphosphenium case. Due to the relatively small Stokes shifts of the 

emission, short lifetimes (nanosecond timescale) and small shifts (9 nm) in emission maxima 

between using chloroform or acetonitrile, the emissive state of these spectra is ascribed to 

1π → π* character (Figure 3.30). 

Figure 3.30: Steady-state emission spectra of diazarsole and diazaphosphole derivatives in 

chloroform (a and b respectively) and acetonitrile (c and d respectively). Counterions are Cl- 

(red), AlCl4− (black), GaCl4− (green) and OTf− (blue). λexc = 330 nm, C = 1.0 × 10−5 M. 
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Table 3.12: Emission spectroscopy data for compounds 6a, 15a–c, 7 and 16a–c. aValues in 

parentheses are the percentage the lifetime contributes to the overall decay. 

 

 

Compound Solvent λmax/ nm τ/ nsa φ/ % 

6a 

CHCl3 384 
1.4 (32%) 

8.3 (68%) 
0.5 

MeCN 393 
1.3 (51%) 

5.9 (49%) 
0.7 

15a 

CHCl3 384 
1.3 (57%) 

 5.1 (43%) 
0.1 

MeCN 393 
1.5 (50%) 

 5.7 (50%) 
1.7 

15b 

CHCl3 384 
0.9 (45%)  

3.7 (55%) 
0.3 

MeCN 393 
1.4 (51%) 

 5.9 (49%) 
1.4 

15c 

CHCl3 384 
0.8 (33%) 

 2.8 (67%) 
0.2 

MeCN 393 
1.3 (49%) 

 5.0 (51%) 
1.7 

7 

CHCl3 387 
1.6 (39%) 

 9.9 (61%) 
0.09 

MeCN 393 
1.6 (54%) 

 5.0 (46%) 
1.1 

16a 

CHCl3 384 
1.2 (45%)  

8.6 (55%) 
0.3 

MeCN 393 
1.3 (52%) 

 5.0 (48%) 
0.5 

16b 

CHCl3 384 
1.3 (54%) 
 8.9 (46%) 

0.08 

MeCN 393 
1.6 (49%)  

6.1 (51%) 
0.7 

16c 

CHCl3 384 
1.1 (34%) 

 9.5 (66%) 
0.1 

MeCN 393 
1.6 (46%) 

 5.4 (54%) 
1.2 
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Chapter 3.4 Reduction of Diazaphosphole and Diazarsole 
Further to substitution and cation formation, reduction of the starting diazaphosphole was 

undertaken to form a dimeric species using magnesium turnings.3 This reduction has 

previously been performed on the related diazaphospholene compounds, with the groups 

of Gudat,34–36 Masuda37 and Wright38 all having examples of these dimers. 

3.4.1 Synthesis and multinuclear NMR analysis of benzodiazaphosphoryl dimer 

To synthesise the desired dimer, the diazaphosphenium 6a was dissolved in THF solvent and 

a small excess of magnesium turnings were added. A crystal of iodine was added to initiate 

the reaction and left to stir at ambient temperature for 24 hours. After this time the solvent 

was removed in vacuo and CHCl2 was added. This was to reduce the solubility of the 

magnesium chloride by-product. The resulting orange solution was filtered through Celite 

twice and the solvent was removed in vacuo to afford the pure product 1,3-diisopropyl-

benzodiazaphosphoryl dimer (17) in good yield (78%) (Scheme 3.8). 

 

 

 

Scheme 3.8: Synthesis of 1,3-diisopropyl-benzodiazaphosphoryl dimer (17). 

Initial characterisation of dimer 17 came from 31P{1H} NMR spectroscopy, which gave a 

significantly upfield chemical shift of δ = 87.2 ppm compared to the starting diazaphosphole 

(cf. δ = 147.2 ppm). The 1H NMR spectrum of 17 is different to 6a; there are two aromatic 

resonances for 17 as opposed to the one for 6a, but more interestingly the isopropyl groups 

are no longer equivalent and two signals are now observed for the CH3 groups, with chemical 

shifts of δ = 1.44 and 1.05 ppm. However, there still remains one CH signal from the 

isopropyl group at δ = 3.63 ppm. 

3.4.2 Solid-state structures of benzodiazaphosphoryl dimer 
Single crystals of 17 suitable for X-ray diffraction were grown in collaboration with Alex Rigby 

from a concentrated solution of CH2Cl2 with a few drops of pentane added and cooled to 

−40 °C (Figure 3.31). Structure solution and refinement performed by Dr Lewis Wilkins 

showed that 17 crystallises in the monoclinic space group P21/c with half a molecule present 

in the asymmetric unit; increasing to four in the unit cell. The solid-state structure of the 

dimer showed an anti-configuration, where the two diazaphosphole units are on opposite 

sides of the central P–P bond and form a Z-like structure. Presumably this anti-configuration 
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is favoured over the syn-configuration due to the minimisation of steric repulsion between 

the isopropyl groups on the two diazaphosphole units. This is further evidenced by the 

inequivalence of the isopropyl groups in the 1H NMR spectrum; vide supra. The central P–P 

bond length is 2.2379(8) Å, which is comparable to other dimers of this type.38 The 

dizaphosphole ring has metrics that are different to the starting diazaphosphole 6a. The P–

N bond length is appreciably elongated in 17, measuring 1.7275(16) Å and 1.7264(15) Å 

respectively. This compares to P–N bond lengths of 1.6713(16)–1.6740(15) Å in 6a. The N–

C bond lengths in the PN2C2 unit also show a small increase compared to 6a. This bond 

elongation is accompanied by an expansion in the N(1)–P(1)–N(2) bond angle, which 

increases from 90.95(8)°–91.04(8)° in 6a to 93.88(7)° in 17 (Table 3.13).      

 

 

 

 

 

 

 

Figure 3.31: Solid-state structures of 1,3-diisopropyl-benzodiazaphosphoryl dimer 17. 

Thermal ellipsoids drawn at 50% probability and H-atoms removed for clarity. 

 

 

 

 

 

 



111 
 

Table 3.13: Selected bond lengths and interior bond angles for 1,3-diisopropyl-

benzodiazaphosphoryl dimer 17. 

 

 

 

 

 

 

 

 

 

3.4.3 EPR measurements on benzodiazaphosphoryl dimer 

Given the possibility for the benzodiazaphosphoryl dimer to homolytically break and form a 

radical species, electron paramagnetic resonance (EPR) studies were performed by Dr Emma 

Richards (Scheme 3.9). In the solid-state 17 was found to be EPR silent, even when heated 

to 350 K (76.9 °C). When dissolved in toluene the isotropic solution-state EPR spectrum did 

not show a resonance, but when heated to 350 K a well-defined doublet signal, centred at 

giso = 2.0025, was observed (Figure 3.32). The hyperfine coupling had a value of 

aiso = 130 MHz, which arises from the unpaired electron to one 31P nucleus. This is 

comparable with previous reports of similar radical species formed upon P–P bond cleavage 

of [(CH)2(NR)2P]2 dimers. Although no further hyperfine coupling could be resolved, despite 

using an experimental modulation amplitude of 0.5 G, inclusion of two equivalent 14N nuclei 

with aiso = 10 MHz resulted in an improved fit to the experimental line shape.    

 

 

 

 

Scheme 3.9: Formation of radical species 17’ from 1,3-diisopropyl-benzodiazaphosphoryl 

dimer (17).  

 

Selected bond 17/ Å  

P(1)–N(1) 1.7275(16) 

P(1)–N(2) 1.7264(15) 

N(1)–C(1) 1.417(3) 

N(2)–C(2) 1.408(2) 

P(1)–P(1’) 2.2379(8) 

  

Selected angle 17/ ° 

N(1)–P(1)–N(1) 93.88(7) 
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Figure 3.32: (a) Continuous-wave EPR spectrum recorded at 350 K of a toluene solution of 

17. (a’) The corresponding EPR simulation. 

2.4.4 Computational Analysis of Benzodiazaphosphoryl Dimer 

DFT calculations were performed on the radical species by Dr James Platts using the ORCA 

package,39 which predicted an aiso value of 113.7 MHz from P and 8.6 MHz from N, which 

are both in good agreement with the experimental data. Informatively the DFT results 

supported the localisation of the radical on the phosphorus heteroatom, with spin charges 

of 0.67 e on P and 0.11 e on each N lying in p-orbitals perpendicular to the N–P–N plane 

(Figures 3.33, 3.34 and 3.35). 

 

 

 

 

 

 

    

 

Figure 3.33: Theoretical spin density top/down view plot of the radical 17’ formed from 17. 
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Figure 34: Theoretical spin density side view plot of the radical 17’ formed from 17. 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: C6H4N2(iPr)2P· radical spin density contour plot of 17’. 

3.4.5 Attempted synthesis and characterisation of benzodiazarsole dimer 

In an equivalent fashion to the formation of the benzodiazaphosphoryl dimer, the arsenic 

analogous reaction was attempted (Scheme 3.10). This followed the same procedure as 

described above. Analysis of the 1H NMR spectrum of the product revealed differences 

compared to 17; principally the aromatic protons appeared as one singlet as opposed to two 

signals and the methyl groups of the isopropyl groups were magnetically equivalent. This is 

in contrast to the two isopropyl signals witnessed in 17. The observations from the 1H NMR 

spectrum therefore casted doubt about the formation of the diazarsole derived dimer. 

Needing further information to determine the nature of the formed product, attention 

turned to single crystal X-ray diffraction. Crystals were grown from a concentrated solution 

of CH2Cl2 with a few drops of pentane added and cooled to −40 °C (Figure 3.36). Structure 

solution and refinement performed by Dr Lewis Wilkins showed that the desired As–As 

dimer had not formed, but instead the product was 2-iodo-1,3-diisopropyl-benzodiazarsole 
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(18). The formation of 18 initially proved puzzling, but it is hypothesised that the desired As–

As dimer had formed in situ, but then undergoes oxidative addition with the iodine present 

in the reaction to form 18.  

Scheme 3.10: Attempted synthesis of diazarsole derived dimer; actually formed product 18. 

The fact that under the same conditions 18 formed from the synthesis described above 

whereas the benzodiazaphosphoryl dimer 17 was successfully produced shows that the As–

As bond is much weaker and in turn more reactive than the P–P bond. Further attempts 

were undertaken to synthesise the diazarsole derived dimer, including using 

1,2 dibromoethane as the initiator and grinding magnesium turnings to remove the oxide 

surface. In these cases the 1H NMR spectra proved to be complicated with multiple signals 

present and as a result attempts to synthesise the dimer had terminated. It is believed that 

the As–As dimer is too unstable and reactive to be isolated.             

3.4.6 Solid-state structure of 2-chloro-1,3-diisopropyl-benzodiazarsole 

The solid-state structure of 18 crystallises in the monoclinic space group Cc and revealed a 

similar geometry and metrics to that already discussed for 2-chloro-1,3-diisopropyl-

benzodiazarsole (7). The arsenic heteroatom is three-coordinate with an exocyclic iodide 

co ligand. The As–I bond length is 2.9442(10) Å, which although typical As–I bond metrics 

are not readily available, it is significantly longer than the 2.579 Å and 2.590 Å seen in the 

CSD database40 for an arsenic(III) complex with two As–I bonds (CSD search code OPIMAS). 

The characteristic fold angle about the N···N vector is still observed, measuring 2.2(5)°, 

which is substantially less than in 7 (cf. 6.4(2)°) (Table 3.14). Inspection of the unit cell of 18 

showed four molecules in the unit cell, contrasted to the one in the asymmetric unit, with 

close contacts between the iodide co-ligand on one diazarsole and the arsenic heteroatom 

on another that are well within the sum of the combined van der Waals radii 

(van der Waals radii = 3.83 Å, contact distance = 3.449 Å).       
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Figure 3.36: Solid-state structure of 18. Thermal ellipsoids drawn at 50% probability and 

H-atoms removed for clarity. 

 

Table 3.14: Selected bond lengths and interior bond angles for 18. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Selected bond  18/ Å  

As(1)–N(1) 1.820(8) 

As(1)–N(2) 1.808(10) 

N(1)–C(1) 1.377(15) 

N(2)–C(2) 1.400(11) 

As(1)–I(1) 2.9442(10) 

  

Selected angle 18/ ° 

N(1)–As(1)–N(2) 86.8(4) 
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Chapter 3.5 Conclusion 
In this chapter the dithiaphospholes, diazaphospholes, dithiarsoles and diazarsoles 

synthesised in Chapter 2 were used as precursors for additional reactions in which a range 

of new products were formed. To begin with, the dithiaphosphole 1a and dithiarsole 3 were 

used to make novel paddlewheel structures, where a central N atom is flanked by three 

dithiaphosphole or dithiarsole moieties. From paddlewheel construction attention moved 

to phosphenium and arsenium cationic generation. In the case of the dithia pnictoles 1a and 

3, the halide abstraction reagents aluminium trichloride and gallium trichloride were used, 

which generated the corresponding cations with AlCl4− and GaCl4− counterions. Attempts 

were made to give the triflate counterion but no reactivity was found to occur. Furthermore, 

the dithiaphospheniums proved to be highly air and moisture sensitive, with complete 

hydrolysis observed in the 31P NMR spectra. Contrary to this, the diazaphospheniums and 

diazarseniums proved much more stable and were synthesised with AlCl4
−, GaCl4− and OTf – 

counterions. The Lewis acidity of the cations were evaluated using the Gutmann-Beckett 

method, which found that the dithiarseniums are much more Lewis acidic than either the 

diazaphospheniums and diazarseniums, which was further supported by Fluoride Ion 

Affinity computational calculations. After this the aromaticity was probed, which revealed 

that the cations are all aromatic, but the diazaphospenium and diazarsenium complexes are 

more aromatic than the dithiaphosphenium and dithiarsenium compounds.   

With the diazaphosphole (6a), diazaphospheniums (15a–c), diazarsole (7) and 

diazarseniums (16a–c), their photophysical properties were investigated. The absorption 

spectra showed that the band positions depended on both the cationic heteroatom (i.e. 

phosphorus or arsenic) and the counterion; the variance in wavelength with the counterion 

choice suggested a degree of cation-anion aggregation in solution. These complexes were 

also found to be emissive when irradiating at λexc = 330 nm, with broad bands which 

exhibited some vibrational features centred at 393 and 384 nm. Quantum yields were low, 

at 0.1% to 2%.  

Lastly, having achieved substitution and cationic generation from the starting phosphole and 

arsole compounds, reduction of the diazaphosphole and diazarsole was attempted. This was 

achieved by reacting the diazaphosphole 6a with magnesium turnings and leaving to stir for 

24 hours. The product of this reaction is a benzodiazaphosphoryl dimer, which possesses a 

central P–P bond and has an anti-configuration, as found by single crystal X-ray diffraction. 

EPR measurements were recorded on this dimer, which showed that at 350 K homolytic 

cleavage takes places, as was seen by the well-defined doublet in the EPR spectrum. 
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Chapter 4: Aldehyde Reduction Catalysis Using Dithia- and Diaza-

Derived Phosphole and Arsole Complexes 

Chapter 4.1 Hydroboration of Aldehydes Using Benzo-Fused Dithiarsoles and 

Diazarsoles   

4.1.1 Pre-catalyst synthesis and NMR spectroscopy characterisation 

To probe the reactivity of the arsenic complexes described in this thesis, the dithiarsole and 

dithiarsenium compounds 3 and 14a as well as the diazarsole and diazarsenium complexes 

7, 16a and 16c were used as pre-catalysts for the hydroboration reduction of aldehydes 

(Figure 4.1).1,2 These compounds were all prepared as previously discussed, vide supra. The 

use of the diazarsenium triflate (16c) would be particularly interesting to use as the 

phosphorus analogue, diazaphosphenium 15c which we first reported, was used previously 

by the group of Kinjo to hydroborate pyridines with pinacolborane (HBpin). Thus, one of the 

objectives with this catalytic study was to compare how the diazarsenium triflate would fare 

against the diazaphosphenium triflate.  

 

 

 

 

 

 

Figure 4.1: Range of arsenic compounds from Chapters 2 and 3 used as pre-catalysts. 

A literature search into related reduction catalysis showed that the use of an alkoxy-derived 

co-ligand was advantageous. This is highlighted by the groups of Kinjo, Speed and Cramer 

who have used the very closely related diazaphospholene species with a benzyloxy (Bn), 

neopentyloxy (Np) or methoxy co-ligand for hydroboration chemistry with the reductant 

HBpin.3–7 It should be noted that much of this catalysis is recent and was undertaken during 

the time of this thesis. Given this it was decided to synthesise both dithiarsole and diazarsole 

complexes that had an alkoxy-derived co-ligand that could also be used as a pre-catalyst for 

reduction. The dithiarsole 3 and diazarsole 7 were both added to one equivalent of benzyl 

alcohol (BnOH) and triethylamine in CH2Cl2 and left to stir at ambient temperature for 72 

hours. After this the solvent was removed in vacuo and toluene was added, which reduced 

the solubility of the ammonium salt by-product. Filtering the mixture via a Celite plug and 
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further solvent removal and drying produced the products 2-(benzyloxy)-5-methylbenzo-

1,3,2-dithiarsole (19) and 2-(benzyloxy)-1,3-diisopropyl-1,3,2-diazarsole (20) as oils in 

moderate yields of 57% and 43% respectively (Scheme 4.1).8 19 and 20 are herein referred 

to as benzyloxy-dithiarsole and benzyloxy-diazarsole accordingly. The yields of both 19 and 

20 are appreciably lower than their precursor dithiarsole and diazarsole complexes and the 

majority of the compounds so far discussed in this thesis. Predominantly this is due to the 

quantity of ammonium salt produced, which requires a large volume of toluene to recover 

the desired product from the crude mixture during the filtering process. A greater volume 

of toluene solvent results in a higher yield, as more product is recovered from the crude 

mixture. On the other hand, this increased usage of toluene means much more time is 

required to remove the solvent, which due to its relatively high boiling point can be 

expensive with respect to time.    

 

 

 

 

Scheme 4.1: Synthesis of arsenic pre-catalysts containing a benzyloxy group.  

1H NMR spectroscopy proved useful for 19 and 20. For 19 the 1H NMR spectrum showed the 

expected aromatic signals, which integrated collectively to eight, but more informatively a 

singlet centred at δ = 4.34 ppm was observed. This singlet, which integrated to two, 

corresponds to the –CH2 group of the benzyloxy co-ligand and gave strong evidence for the 

formation of 19. The methyl group from the toluene backbone has a chemical shift of 

δ = 2.36 ppm. For 20 similar observations were seen with the aromatic signals, but more 

interestingly the isopropyl groups that were chemically equivalent in 7 are no longer in 20, 

with chemical shifts of δ = 1.54 and 1.52 ppm respectively (Figure 4.2). Problematically the 

–CH2 group of the benzyloxy moiety has a chemical shift of δ = 4.15 ppm, which overlaps 

with the septet corresponding to the –CH group of the isopropyl group. Nevertheless, both 

the –CH2 and –CH groups could be identified and again the presence of the former from the 

benzyloxy moiety helped confirm the identity of 20.  
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Figure 4.2: 1H NMR spectrum (500 MHz, CDCl3, 295 K) of the diazarsole pre-catalyst 20.  

4.1.2 Solid-state structural analysis of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiarsole and 

2-(benzyloxy)-1,3-diisopropyl-1,3,2-diazarsole 
1H NMR spectroscopy proved useful in characterising the benzyloxy-dithiarsole and 

benzyloxy-diazarsole, but NMR spectroscopy alone was not conclusive. Although high 

resolution mass spectrometry gave molecular ion peaks fitting those of the expected 

products, to get further evidence of the formation of 19 and 20, single crystals suitable for 

X-ray diffraction were grown. Again, these were grown from a saturated solution of CH2Cl2 

with a few drops of pentane added and cooled to −40 °C. The resulting structure solution 

and refinement revealed both 19 and 20 crystallise in the monoclinic space group P21/c, 

with one molecule in the asymmetric unit for 19 and two for 20 (Figure 4.3). This increases 

to four and eight molecules in the unit cell for the former and latter. The solid-state 

structures both showed the expected connectivity of the pre-catalysts benzyloxy-dithiarsole 

and benzyloxy-diazarsole, with the exocyclic chloride in 3 and 7 substituted for the 

benzyloxy group. In 3 the S(1)–As(1)–Cl(1) and S(2)–As(1)–Cl(1) bond angles for the exocyclic 

chloride co-ligand measure 99.619(18)° and 99.863(18)° respectively. The corresponding 

Ha, Hb, HAr Hc 

Hd 

He, Hf 
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S(1)–As(1)–O(1) and S(2)–As(1)–O(1)  bond angles are marginally expanded in 19, measuring 

102.31(8)° and 102.74(7)° respectively. On the other hand, for 20 no expansion in this bond 

angle is seen, with the N–As–Cl and N–As–O bond angles roughly comparable. In 7 the N(1)–

As(1)–Cl(1) bond angle is 102.53(12)° and the N(2)–As(1)–Cl(1) bond angle 101.45(11)°, 

whereas the N–As–O bond angle ranges from 100.89(7)° to 102.68(7)°. 

The characteristic fold angle about the S···S vector resulting from the envelope-type 

geometry in the dithiarsole ring is preserved in 19, albeit it is significantly reduced when 

compared to precursor 3 (19.44(8)–21.51(8) in 3β and 9.66(9)° in 19). For the two benzylozy-

diazarsole molecules in the asymmetric unit of 20 the fold angles about the N···N vector are 

4.95(11)° and 4.94(11)°, which is a small but not significant decrease when compared to the 

fold angle in precursor 7 (6.4(2)°). The As(1)–O(1) bond length in 19 were found to be 

1.789(2) Å, whereas in 20 they are 1.8196(16) Å and 1.8241(15) Å for the two molecules in 

the asymmetric unit (Table 4.1). The As(1)–O(1)–C(7) interior bond angle measures 123.1(2) 

in 19, which is comparable to the As(1)–O(1)–C(13) interior bond angle present in 20, which 

is 119.06(12)° and 120.79(12)° for the two crystallographically independent molecules. 

When looking at the metrics of the dithia pnictole ring, the As–S bond lengths in 19 are 

2.2285(8) Å and 2.2325(9) Å, which shows slight lengthening when contrasted to 3β. For the 

diaza pnictole ring in 20, the As–S bond lengths range from 1.8355(17) to 1.8389(17), which 

again shows elongation in comparison to 7. 

 

 

 

 

 

 

     

 

 

Figure 4.3: Solid-state structure of benzyloxy-dithiarsole 19 (left) and benzyloxy-diazarsole 

(right). Thermal ellipsoids drawn at 50% probability and H-atoms removed for clarity.  
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Inspection of the unit cell of the four benzyloxy-dithiarsole species shows a packing 

arrangement where the benzyloxy co-ligand alternates between pointing up and down 

along the crystallographic a axis (Figure 4.4). This positioning of the benzyloxy group allows 

for short contacts to exist between pairs of benzyloxy-dithiarsole complexes, with the sulfur 

atom from the dithia ring of one species having a close contact to the oxygen atom of 

another. This contact measures 3.186 Å, which is well within the combined sum of the van 

der Waals radii (3.32 Å). A similar packing arrangement exists for 20, except the benzyloxy 

groups alternate between pointing up and down along the c axis of the unit cell. Unlike 19 

analogous short contacts between the nitrogen and oxygen atoms do not exist.   

    

 

 

 

 

 

 

 

 

Figure 4.4: Packing arrangement in the unit cell of 19. Pink: arsenic, yellow: sulfur, red: 

oxygen.  Dashed lines show the close contact between the sulfur and oxygen atom. Thermal 

ellipsoids drawn at 50% probability and H-atoms removed for clarity. 

 

 

 

 

 

 

 

 

S···O contact  

distance: 3.186 Å 
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Table 4.1: Selected bond lengths and interior bond angles for pre-catalysts 19 and 20. 

 

4.1.3 Computational analysis of alkoxy derived dithiarsole and diazarsole 

 

 

 

 

 

 

 

Figure 4.5: NBO analysis of analogous compounds 19’ and 20’. All atoms treated M06-2X 

functional and 6-311G+(2d,p) basis set, with the exception of As, which used LANL2DZ. 

aAverage values taken. 

 

To understand better the fundamental bonding in the benzyloxy-dithiarsole and benzyloxy-

diazarsole pre-catalysts, NBO calculations were performed. This again made use of the 

M06-2X functional and 6-311+G(2d,p) basis set on all atoms except for the arsenic 

heteroatom, which again used the ECP LANL2DZ functional. Given the relatively large size of 

the pre-catalysts, geometry optimisation and vibrational frequency calculations made use 

Selected bond 19/ Å (E = S) 20/ Å (E = N) 

As(1)–E(1) 2.2325(9) 1.8375(18)–1.8376(17) 

As(1)–E(2) 2.2285(8) 1.8355(17)–1.8389(17) 

E(1)–C(1) 1.762(3) 1.394(3)–1.398(3) 

E(2)–C(2) 1.762(3) 1.393(2)–1.394(2) 

As(1)–O(1) 1.789(2) 1.8196(16)–1.8241(15) 

   

Selected angle 19/ ° 20/ ° 

E(1)–As(1)–E(1) 92.65(3) 85.73(8)–85.79(7) 

As(1)–O(1)–C(7/13) 123.1(2) 119.06(12)–120.79(12) 

As–O bond order: 0.61 

As–S bond ordera: 0.95 

C–S bond ordera: 1.06 

As–O bond order: 0.60 

As–N bond ordera: 0.75 

C–S bond ordera: 1.08 
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of a methoxy co-ligand as opposed to the benzyloxy group, which significantly reduced 

computational time. Comparisons where applicable between the solid-state structure 

obtained from single crystal X-ray diffraction and the computational model gave good 

agreement. Analysing the results from the NBO calculations showed polarisation in the As−O 

bond, akin to that seen in the precursors 3 and 7 with the As−Cl bond. The natural charge 

on the arsenic heteroatom was found to be +1.09 in 19’ and +1.54 in 20’, whereas the 

natural charge on the oxygen atom is −0.91 and −0.87 for 19’ and 20’ respectively. Like the 

precursor compounds 3 and 7 the Wiberg As−O bond orders are low, and were found to be 

0.61 and 0.60 for the former and latter accordingly. The sulfur heteroatom in 19 has an 

average natural charge of −0.07 and the nitrogen heteroatom in 20 has an average natural 

charge of −0.83. The results are summarised in Figure 4.5.    

4.1.4 Homogeneous hydroboration reduction using arsenic pre-catalysts  

With a wide range of arsenic containing species that could potentially act as pre-catalysts in 

hand, these compounds were tested in the hydroboration of aldehydes with pinacolborane 

(HBpin). To begin with, 4-(trifluoromethyl)-benzaldehyde was used as a test substrate as this 

allowed for the reaction conversion to be easily monitored via in situ 19F NMR spectroscopy. 

Using 10 mol% pre-catalyst loading, one equivalent of aldehyde, one equivalent of HBpin 

and toluene as the solvent, the suitability and activity of the arsenic complexes was first 

screened (Table 4.2).  

Use of the chloride precursors 3 and 7 showed poor activity for the reduction catalysis, giving 

just 38% and 49% conversion, respectively, after 24 hours. The benzyloxy derived pre-

catalysts 19 and 20 showed an improvement on this, producing 64% product conversion 

after 12 hours for the former and impressively quantitative conversion after 30 minutes for 

the latter benzyloxy-diazarsole. Differing to this, use of the dithiarsenium and diazarsenium 

compounds proved less effective, despite using an array of solvents. In the case of the 

diazarsenium compounds 16a and 16c, the highest product conversion was 50% when using 

16c in CH2Cl2 after 24 hours. For 16a just 28% product conversion could be achieved when 

using bromobenzene-d5 (C6D5Br). Comparing this to the dithiarsenium 14a, which proved to 

be highly insoluble in most solvents except C6D5Br, quantitative conversion was achieved 

after 12 hours. This result showed a marked difference in activity between the dithiarsenium 

and diazarsenium cations. Although there were a number of positive results, clearly the 

results just discussed revealed that the benzyloxy-diazarsole 20 was the best pre-catalyst to 

proceed with.  



126 
 

Table 4.2: Screening of arsenic pre-catalysts. 

aConversion measured using in situ 19F NMR spectroscopy. 

Knowing pre-catalyst 20 was the most active pre-catalyst, the reaction conditions were 

optimised (Table 4.3). Reducing the catalytic loading from 10 mol% to 5 mol% gave no 

deleterious effects, however further decreases to 2 mol% and 1 mol% gave poorer 

conversion, with 78% and 51% of the reduced product 21a detected respectively by in situ 

19F NMR spectroscopy. Proceeding with 5 mol% pre-catalyst loading, the reaction conditions 

were further optimised. Solvent effects were examined, using a range of coordinating, 

non-coordinating, polar and non-polar solvents. The catalysis using 5 mol% 20 proved 

effective with most solvents used, with toluene, CH2Cl2, CHCl3, Et2O, CD3CN and C6D6 all 

affording quantitative conversion within 30 minutes. Note that the use of deuterated 

chloroform (CDCl3) proved problematic for the catalysis and gave much lower conversion 

than CHCl3. On the other hand, use of THF and C6D5Br were detrimental to the catalysis, with 

41% and 58% conversion to 21a detected after six hours. Although a number of solvents 

were found to be effective, for the purpose of evaluating the substrate scope C6D6 was 

 

Entry Pre-catalyst 
Loading/ 

mol% 
Solvent 

Time/ 
hr 

Conversion/ 
%a 

1 None N/A toluene 24 <10 

2 3 10 toluene 24 38 

3 7 10 toluene 24 49 

4 19 10 toluene 12 64 

5 20 10 toluene 0.5 >95 

6 14a 10 C6D5Br 12 >95 

7 16a 10 CH2Cl2 24 27 

8 16a 10 MeCN 24 19 

9 16a 10 C6D5Br 24 28 

10 16c 10 toluene 24 48 

11 16c 10 CH2Cl2 24 50 

12 16c 10 MeCN 24 10 

13 16c 10 C6D5Br 24 15 
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chosen as the solvent of choice. Primarily this was to allow easy in situ monitoring of the 

catalysis. This would be in combination with 5 mol% 20 pre-catalyst loading and one 

equivalent of both aldehyde and HBpin.   

Table 4.3: Optimisation reaction conditions. 

aConversion measured using in situ 19F NMR spectroscopy. 

 

 

 

 

 

 

 

 

 

 

Entry Loading/ mol% Solvent Time/ hr Conversion/ %a 

1 10 toluene 0.5 >95 

2 5 toluene 0.5 >95 

3 2 toluene 12 78 

4 1 toluene 12 51 

5 5 CH2Cl2 0.5 >95 

6 5 CHCl3 0.5 >95 

7 5 Et2O 0.5 >95 

8 5 CD3CN 0.5 >95 

9 5 C6D6 0.5 >95 

10 5 THF 6 41 

11 5 C6D5Br 6 58 
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Scheme 4.2: Hydroboration of aldehydes using pre-catalyst 20. 0.6 ml C6D6 solvent, NMR 

yield calculated from in situ 1H NMR spectrum, value in parentheses isolated yield. a5 mol% 

20. b10 mol% 20. c20 mol% 20; 2 equiv HBpin. 
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Using the optimised conditions, the substrate scope was expanded to evaluate the 

effectiveness of pre-catalyst 20 for hydroboration reduction catalysis (Scheme 4.2). Electron 

withdrawing aldehydes proved very effective for the catalysis, with most substrates 

undergoing full conversion within 30 minutes as detected by in situ 1H NMR spectroscopy. 

4-(trifluoromethyl)-benzaldehyde has already been demonstrated to undergo conversion to 

the hydroborated product 21a within 30 minutes. On that theme the fluorinated aldehydes 

4-fluorobenzaldehyde, 3-fluorobenzaldehyde, 2-fluorobenzaldehyde and 2,3,4,5,6-

pentafluorobenzaldehyde were all readily converted to the products 21b–d and 21f 

respectively within 30 minutes, as shown by both 1H and 19F NMR spectroscopy. These 

results showed that pre-catalyst 20 is not sensitive to the substitution pattern of the 

substituent around the benzaldehyde moiety. The di-fluoro substituted 

2,6-difluorobenzaldehyde was reduced to 21e within two hours.  

In a similar vein, other electron withdrawing substituents worked well, with the bromo-, 

chloro- and cyano-substituted benzaldehydes giving quantitative conversion within 30 

minutes. Again, the use of 4-bromobenzaldehyde and 2-bromobenzaldehyde which 

smoothly produced 21g and 21h accordingly highlights the substitution pattern versatility 

of 20 as a pre-catalyst. The mixed poly-halo 4-bromo-2-fluorobenzaldehyde was an 

interesting substrate, but nevertheless proceeded to give full product conversion to 21i 

within 30 minutes. In all cases described so far isolated yields were excellent, and generally 

>90%.  

Having showed that electron withdrawing substituents worked well, attention turned to 

more electron neutral and electron donating substituents. Under the initial optimised 

conditions this proved problematic, with a number of substrates failing to go to quantitative 

conversion within 24 hours. To remedy this the temperature was increased to 70 °C, but it 

was soon noticed that precipitate was forming in the NMR tube, which was assumed to be 

pre-catalyst degradation. It was at that point decided to instead increase the pre-catalyst 

loading from 5 mol% to 10 mol% and re-run the electron neutral/donating substrates at 

ambient temperature. Benzaldehyde worked well under these conditions, giving full 

conversion within 30 minutes. The series of methyl substituted benzaldehydes also worked 

well and were all successfully converted to products 21m–o after 30 minutes. For the 

conjugated aromatic naphthaldehydes, initial use of 5 mol% pre-catalyst loading led to 59% 

conversion of 1-naphthaldehyde after 24 hours. However, after using 10 mol% pre-catalyst 

loading gave quantitative conversion after just 30 minutes. Contrary to this, 

2-naphthaldehyde was fully hydroborated using 5 mol% pre-catalyst after 2 hours. The 
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difference in performance between 1-naphthaldehyde and 2-naphthaldehyde can be 

explained by steric arguments.  

More electron-rich aldehydes were also successfully reduced, with 4-methoxybenzaldehyde 

giving the hydroborated product 21r in a 92% isolated yield after two hours using 10 mol% 

pre-catalyst. In the case of the bis aldehyde terephthaldehyde, where the aldehyde group is 

present in the 1- and 4-positions of the benzene moiety, hydroboration of both aldehyde 

groups was observed when using two equivalents of HBpin. 20 mol% pre-catalyst loading 

was used in this case (10 mol% for each aldehyde group) and a longer reaction time of six 

hours was required to give full conversion to 21s, with 89% isolated yield. In addition to 

aromatic aldehydes, aliphatic aldehydes were probed with pre-catalyst 20. Use of both 5 

mol% and 10 mol% pre-catalyst loading was trialled, however only 33% and 44% conversion 

of pentanal and cyclohexanecarbaldehyde was detected after 24 hours using 10 mol% pre-

catalyst loading.  

Recent work by the groups of Speed and Kinjo has shown that pyridines can be reduced with 

HBpin using diazaphospholene6 and diazaphosphenium9 based pre-catalysts. With that 

pre-catalyst 20 was used in the attempted reduction of pyridine as well as the more reactive 

2-chloropyridine and 3,5-dibromopyridine with HBpin. All these substrates showed little 

consumption after 24 hours using 10 mol% pre-catalyst loading at ambient temperature. In 

fact 10 mol% of the diazarsenium triflate 16c was used as a pre-catalyst at room 

temperature to attempt the hydroboration of pyridine, analogous to the work of Kinjo using 

a diazaphosphenium.9 In this case again no conversion to the hydroborated product was 

observed. The lack of reactivity to pyridines was further exemplified when using the 

substrate 4-(2-pyridyl)benzaldehyde, which has a pyridine group in the 4-position of the 

benzaldehyde. In this case exclusive reduction of the aldehyde was observed, with the 

pyridine group remaining untouched and the product 21t detected after 30 minutes using 

10 mol% pre-catalyst. This result clearly demonstrates differences in the reactivity and 

selectivity between the use of phosphorus and arsenic based catalysts. This idea is explored 

further in this chapter; vide infra.    
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During the course of the substrate scope, additional functional groups were also trialled. 

The ketones acetophenone, 4'-fluoroacetophenone, 4'-methoxyacetophenone, 

4'-nitroacetophenone and benzophenone were used, but using the optimised conditions 

used for the aldehydes minimal conversion was largely observed by both 1H NMR and 11B 

NMR spectroscopy. The exception was the case of 4'-nitroacetophenone, where full 

consumption of HBpin occurred, however the 1H NMR spectrum did not show the 

characteristic signal expected at approximately 5.0 ppm, corresponding to the proton 

delivered from HBpin to give the tertiary carbon centre. It is unknown what the product 

from this reaction was. In addition to ketones, imines were also attempted. The substrate 

scope made use of (E)-N,1-diphenylethan-1-imine, (E)-1-(4-fluorophenyl)-N-phenylethan-1-

imine, (E)-1-(4-nitrophenyl)-N-phenylethan-1-imine, (E)-1-(4-methoxyphenyl)-N-

phenylethan-1-imine and (E)-N-(perfluorophenyl)-1-phenylethan-1-imine, but in all cases 

although some consumption of HBpin was detected by 11B NMR spectroscopy, additional 

resonances that did not match up to the expected reduced products were seen in the 1H 

NMR spectrum. As a result, it was decided not to pursue with the hydroboration of imines 

with HBpin. These attempted substrates are shown below in Figure 4.6.      

  

Figure 4.6: Pyridine, ketone and imine substrate limitations in the hydroboration catalysis 

with pre-catalyst 20.  
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Having evaluated the effectiveness of 20 as a pre-catalyst, mechanistic insight was 

investigated. This was first done by reacting 20 with stoichiometric HBpin, which gave a clear 

colour change from orange to deep red within five minutes. Analysis of the 1H NMR 

spectrum taken after 15 minutes in C6D6 solvent showed a clear downfield shift in the CH2 

protons of the benzyl group, from δ = 4.03 to 4.77 ppm. Meanwhile the 11B NMR spectrum 

displayed loss of the doublet resonance at δ = 28.4 ppm and formation of a new singlet 

signal at δ = 22.8 ppm. These two spectroscopic observations are consistent with the loss of 

HBpin and the formation of 2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (BnO–

Bpin). In addition to the formation of BnO–Bpin, the arsenic hydride species 1,3-diisopropyl-

2,3-dihydro-1H-benzo-1,3,2-diazarsole (22) is synthesised by the addition of HBpin to 20. 

Although the hydridic proton in 22 was not seen in the 1H NMR spectrum, the formation of 

22 was detected HRMS. The arsenic hydride complex 22 is believed to be the active catalyst 

and the synthesis proceeds via a σ-bond metathesis step from pre-catalyst 20 and HBpin; 

this step is known from the work of Kinjo to be rate limiting.3 From here the active catalyst 

22 is postulated to react with the aldehyde substrate to give the second catalytic 

intermediate 23. This was confirmed by the stoichiometric 1:1:1 addition of pre-catalyst 20 

to HBpin and the aldehyde 4-(trifluoromethyl)benzaldehyde, where intermediate 23 was 

detected again by HRMS and BnO–Bpin was seen by both 1H and 19F NMR spectroscopy. At 

this point HBpin reacts with the second intermediate 23 to give the desired hydroborated 

aldehyde and reform the first catalytic intermediate 22, and catalytic turnover occurs 

(Scheme 4.3). 

Scheme 4.3: Proposed catalytic cycle for the hydroboration of aldehydes using benzyloxy-

diazarsole (20) as a pre-catalyst. 
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With the catalytic cycle established, the reactivity difference between pre-catalysts 19 and 

20 were investigated, as from the optimisation studies use of 19 as the pre-catalyst only 

gave 64% after 12 hours when using toluene solvent, whereas pre-catalyst 20 gave 

quantitative conversion after just 30 minutes. Knowing that the σ-bond metathesis step was 

rate limiting,3 19 was added to stoichiometric HBpin and the reaction was monitored by 

in situ  1H and 11B NMR spectroscopy. This spectroscopic analysis revealed a much slower 

reaction compared to using 20, where 11B NMR spectroscopy showed it took six hours for 

loss of the doublet signal corresponding to HBpin and formation of BnO–Bpin. Therefore, it 

can be concluded that formation of the active catalyst is at least partly responsible for the 

difference in catalytic performance of 19 and 20.        

Interestingly, when looking at the formation of the active catalyst from the pre-catalyst by 

computational methods, a large thermodynamic free energy gain is seen. This free energy 

gain for the diazarsole active catalyst 22 along with BnO–Bpin was found to be 75 KJ mol-1 

lower in energy than the pre-catalyst 20 and HBpin, whereas for the analogous dithiarsole 

case an 85 KJ mol-1 decrease occurs. This therefore suggests that for the benzyloxy-

dithiarsole it is the slow kinetic rate in forming the active catalyst, as demonstrated above, 

and not thermodynamics that results in its poor ability to act as a pre-catalyst. Further to 

this, the diazarsole 7 was also investigated given it was also a very poor pre-catalyst. In this 

case going from 7 to the active catalyst 22 gave a small free energy increase of 6 KJ mol-1, 

suggesting that this reaction is not particularly favourable. The results of this are 

summarised in Figure 4.7.  
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Figure 4.7: Free energy graph going from pre-catalyst and HBpin to active catalyst and 

BpinOMe or BpinCl. All atoms treated with M06-2X functional and 6-311G+(2d,p) basis set, 

with the exception of As, which used LANL2DZ. aAverage values taken. 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

Chapter 4.2 Hydroboration of Aldehydes Using Benzo-Fused Dithiaphospholes and 

Diazaphospholes  

4.2.1 Pre-catalyst synthesis and NMR spectroscopy characterisation 

Knowing that the diazarsole 20 was an effective pre-catalyst for hydroboration reduction 

catalysis, the question of how these arsenic derived pre-catalysts compare with their less 

toxic phosphorus counterparts arose. Some insight could immediately be given to this from 

the studies reported by Kinjo, Speed and Cramer when using the closely related 

diazaphospholene complexes as pre-catalysts,3–7 which show that they are highly active for 

this catalysis, but nevertheless these are not true comparisons to the arsenic complexes 

used above. With that, a series of dithiaphosphole and dithiaphosphenium complexes were 

used in the hydroboration reduction of aldehydes with HBpin, with emphasis focussed on 

how they compared to their arsenic analogues.10 

 

 

 

 

 

 

 

 

Figure 4.8: Range of phosphorus compounds from Chapters 2 and 3 used as pre-catalysts. 

 

For this catalysis, compounds 1a–1c, 6a, 6b, 8a, 8b, 13a, 13b and 15c were used as pre-

catalysts (Figure 4.8).1,2,10 As was seen in the diazarsole case, the use of a benzyloxy co-ligand 

was very effective for the catalysis, so this was emulated for the phosphole catalysis. To that 

end, benzyl alcohol or neopentyl alcohol was added to dithiaphosphole 1a, which was 

dissolved in CH2Cl2 solvent, and stoichiometric triethylamine was added. This solution was 

left to stir at ambient temperature for 24 hours, after which the solvent was removed in 

vacuo and toluene was added. This solution was filtered to remove the ammonium salt 

by-product and the resulting solvent was removed in vacuo. Washes with pentane and 

further drying gave the products 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole (24a) 
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and 5-methyl-2-(neopentyloxy)benzo-1,3,2-dithiaphosphole (24b) as yellow oils in 

moderate yields of 63% and 65% respectively (Scheme 4.4). This is shortened to benzyloxy-

dithiaphosphole and neopentyloxy-dithiaphosphole respectively. As was discussed with the 

synthesis of the benzyloxy-dithiarsole and benzyloxy-diazarsole, the moderate yields are 

attributed to the filtering of the ammonium salt by-product.  

 

 

 

 

 

 

Scheme 4.4: Synthesis of benzyloxy-dithiaphosphole and neopentyloxy-dithiaphosphole 

pre-catalysts.  

Confirmation of the synthesis of both 24a and 24b was first determined by 31P NMR 

spectroscopy, which revealed upfield shifts compared to 1a of δ = 124.5 and 123.6 ppm for 

24a and 24b respectively (cf. 1a δ = 160.4 ppm). These signals were triplets, with 3JPH 

coupling constant values of 6.6 Hz and 6.1 Hz for 24a and 24b respectively. The coupling is 

due to the presence of the adjoining benzyloxy/neopentyloxy group; vide infra. For 24a the 

1H NMR spectrum showed the expected signals already discussed for the toluene backbone, 

but in addition a doublet resonance with a 3JPH = 6.5 Hz coupling constant centred at 

δ = 4.22 ppm was observed for the –CH2 group of the benzyloxy co-ligand. The aromatic 

signals from the phenyl group were also seen but overlapped with the signals from the 

toluene backbone. In the case of compound 24b, the 1H NMR spectrum again showed a 

doublet resonance at δ = 2.85 ppm with a coupling constant of 3JPH = 6.1 Hz. Note the more 

upfield position of the –CH2 moiety in 24a than 24b. Furthermore, the tert-butyl group on 

the neopentyloxy co-ligand has a distinctive singlet resonance centred at δ = 0.77 ppm. The 

31P NMR and 1H NMR spectrum of 24a are shown below in Figures 4.9 and 4.10.    
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Figure 4.9: 31P NMR spectrum (162 MHz, CDCl3, 295 K) of the benzyloxy-dithiaphosphole 

pre-catalyst 24a.  

 

 

 

     

 

 

 

 

 

 

 

 

Figure 4.10: 1H NMR spectrum (400 MHz, CDCl3, 295 K) of the benzyloxy-dithiaphosphole 

pre-catalyst 24a.  

Ha, Hb, Hc, HAr 

Hd 

He 
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This synthetic procedure was extended to synthesise the alkoxy-derived diazaphosphole 

and dioxaphosphole species. In the case of the former, addition of the starting precursor 6a 

with benzyl alcohol and triethylamine gave the desired product, with the 31P NMR spectrum 

showing a singlet at δ = 95.3 ppm. However, a much smaller intensity doublet signal was 

also observed centred at δ = 6.0 ppm (1JPH = 643 Hz), which is believed to arise due to partial 

hydrolysis of the product. This is despite multiple attempts with the use of dried solvents 

and starting material. The reaction of 6a with neopentyl alcohol and triethylamine had a 

similar fate and the in situ 31P{1H} NMR spectrum showed four species were present, with 

signals at δ = 147.0, 138.3, 95.3 and 6.0 ppm (Figure 4.11). The signal at δ = 147.0 ppm could 

be assigned to the starting product 6a, δ = 95.3 ppm the desired product and δ = 6.0 ppm 

partial hydrolysis. The identity of the product with a moderately intense signal at 

δ = 138.3 ppm remains unknown. Given the inability to produce pure complexes of the 

diazaphosphole with an alkoxy derived co-ligand it was decided not to pursue these further.  

On the other hand, for the dioxaphosphole the synthesis proceeded smoothly as described 

above and the products 2-(benzyloxy)benzo-1,3,2-dioxaphosphole (25a) and 

2-(neopentyloxy)benzo-1,3,2-dioxaphosphole (25b) were obtained as dark yellow/orange 

coloured oils in moderate yields of 68% and 64% respectively (Scheme 4.5). These are 

abbreviated to benzyloxy-dioxaphosphole and neopentyloxy-dioxaphosphole for 

compounds 25a and 25b. Analysis of the multinuclear NMR spectra for 25a and 25b revealed 

similar observations to the benzyloxy-dithiaphosphole and neopentyloxy-dithiaphosphole 

complexes, with the 31P{1H} NMR spectra again showing upfield signals at δ = 126.9 and 

127.4 ppm accordingly. The 1H NMR spectra of 25a and 25b showed the coordination of the 

alkoxy-derived co-ligand and is similar to 24a and 24b already discussed. 

            

 

 

 

 

 

Scheme 4.5: Synthesis of benzyloxy-dioxaphosphole and neopentyloxy-dioxaphosphole 

pre-catalysts.  
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Figure 4.11: In situ 31P{1H} NMR spectrum (162 MHz, CDCl3, 295 K) of the neopentyloxy-

diazaphosphole pre-catalyst reaction. 

4.2.2 Solid-state structural analysis of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole 

In addition to mutinuclear NMR characterisation, for the benzyloxy-dithiaphosphole 24a the 

solid-state structure was determined (Figure 4.12). Crystals suitable for single-crystal X-ray 

diffraction were grown by slow vapour diffusion from a CH2Cl2 solution. It should be noted 

that multiple attempts were undertaken to crystallise 24a and this proved the most effective 

way. Problems soon arose with the quality of the single crystals as the diffraction pattern on 

the diffractometer proved weak (given the relative molecular weight of the phosphorus 

atom present) and potentially twinned. Nevertheless, a data set was collected which 

allowed for structure solution and refinement.  

During the structure solution and refinement process the toluene ring backbone showed 

significant disorder (arisen due to the relatively poor data set due to problematic crystal 

growth), with bond lengths and angles that meant that the ring was non-planar and non-

hexagonal. To remedy this, the geometrical constraint AFIX 66 was used, which forces the 

six carbon atoms to form a planar regular hexagon. The thermal ellipsoids showed slight 

elongation on the toluene ring but not so severe that modelling by-parts was required, with 

the exception of the methyl group. In this case no suggestion of a second site appeared in 

the .lst file and no obvious Q peak was present in the difference Fourier map that would be 

suitable, thus it was again decided not to model this disordered thermal ellipsoid. The end 

Product signal at δ = 95.3 ppm. 
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result of the structure refinement gave a relatively high R1 = 11% and wR2 = 26%, but 

nevertheless showed the connectivity of the benzyloxy-dithiaphosphole.  

24a crystallises in the monoclinic space group P21/c with one molecule in the asymmetric 

unit; increasing to four molecules in the unit cell. Although the structure shows significant 

disorder, metrics can still be measured from the dithia pnictole ring as the disorder is 

localised on the toluene backbone. The characteristic envelope geometry is still preserved 

in 24a, with a fold angle about the S···S vector of 21.16(15)°, which is appreciably lower than 

seen in the precursor 1a (26.07(6)°). The P–S bond lengths are marginally longer than in 1a, 

with metrics of 2.117(3) Å for P(1)–S(1) and 2.110(3) Å for P(1)–S(2). A decrease in the S–P–

S interior bond angle compared to 1a accompanies the slight elongation in the P–S bond 

length, with the S(1)–P(1)–S(2) interior bond angle measuring 94.18° in 24a, whereas in 1a 

this bond angle is 95.43(3)° (Table 4.4). Given the disorder on the toluene backbone no 

further parameters were measured. When looking at the unit cell, no significant close 

contacts were found to exist in the packing structure of 24a.      

Table 4.4: Selected bond lengths and interior bond angles for pre-catalyst 24a. 

 

 

 

 

 

 

 

 

 

 

 

Selected bond 24a/ Å  

P(1)–S(1) 2.117(3) 

P(1)–S(2) 2.110(3) 

S(1)–C(1) 1.744(5) 

S(2)–C(2) 1.781(5) 

P(1)–O(1) 1.618(4) 

  

Selected angle 24a/ ° 

S(1)–P(1)–S(2) 94.18(10) 

P(1)–O(1)–C(8) 123.0(4) 
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Figure 4.12: Solid-state structure of benzyloxy-dithiaphosphole 24a. Thermal ellipsoids 

drawn at 50% probability and H-atoms removed for clarity.  

4.2.3 Computational analysis of alkoxy derived dithiaphosphole and dioxaphosphole 

 

 

 

 

 

Figure 4.13: NBO analysis of analogous compounds 24’ and 25’. All atoms treated with 

M06-2X functional and 6-311G+(2d,p) basis set. aAverage values taken. 

 

As was performed for the arsenic analogues, NBO calculations were undertaken for the 

alkoxy-derived dithiaphosphole and dioxaphosphole pre-catalysts, using the functional 

M06-2X and 6-311+G(2d,p) basis set. Again, due to the relatively large size of these 

compounds geometry optimisation and vibrational frequency calculations made use of a 

methoxy co-ligand as opposed to the benzyloxy and neopentyloxy groups (Figure 4.13). Like 

the arsenic complexes 19’ and 20’, the P–O bond of the alkoxy co-ligand in 24’ and 25’ was 

found to be highly polarised, with a Wiberg bond order in both cases of approximately 0.70. 

This translates to natural charges of +0.85 and +1.60 for the phosphorus heteroatom and 

−0.86 and −0.85 for the oxygen atom in 24’ and 25’ respectively. Indeed, the electronics in 

these two alkoxy-derived phospholes are very different, as the averaged natural charge on 

the sulfur heteroatoms in 24’ is almost neutral, whereas for the oxygen heteroatoms in the 

P–O bond order: 0.70 

P–S bond ordera: 1.00 

C–S bond ordera: 1.05 

P–O1 bond order: 0.69 

P–O2/3 bond ordera: 0.72 

C–S bond ordera: 0.93 



142 
 

dioxaphosphole ring in 25’ is −0.79. This difference is further exemplified when looking at 

the Wiberg bond order of the P–S bond vs. the P–O bond in the respective dithiaphosphole 

and dioxaphosphole ring. As is seen in Figure 4.13 these values are 1.00 and 0.72 for the 

former and latter accordingly.  

4.2.4 Homogeneous hydroboration reduction using phosphorus pre-catalysts 

To attempt to answer the question of how these heterocyclic phosphorus compounds 

compare in catalytic performance to their arsenic counterparts, the hydroboration of 

aldehydes was repeated. Procedurally this was the same as the arsenic catalysis and made 

use of compounds 1a–1c, 6a, 6b, 8a, 8b, 13a, 13b, 15c, 24a, 24b, 25a and 25b. To begin with 

the phosphorus complexes were screened to determine which was the most active and 

therefore best to proceed with (Table 4.5). With that, 4-(trifluoromethyl)-benzaldehyde was 

again used as a test substrate and added to stoichiometric HBpin and 10 mol% pre-catalyst. 

CDCl3 was used as the solvent for the initial optimisation and the conversion was detected 

by multinuclear NMR spectroscopy.  

The dithiaphosphole 1a proved to be catalytically inactive under these conditions, with <5% 

conversion seen in the 1H NMR spectrum after 24 hours. A small improvement occurred 

when using 1b, with 14% conversion found in the 1H NMR spectrum after 24 hours. More 

interestingly though was the use of 1c, which gave a considerable improvement of 60% 

product conversion after 24 hours. These differences between compounds 1a to 1c can be 

rationalised by their structural electronic properties, which was discussed in Chapter 2. In 

short, the P–X bond undergoes significant change with respect to partial charges upon 

changing X from Cl, Br and I.  

The diazaphosphole and dioxaphosphole pre-catalysts 6a, 6b, 8a and 8b all failed to give 

product conversion, with <5% conversion detected. On the other hand, moving to the 

cationic complexes 13a, 13b and 15c saw considerable improvement and all gave 

quantitative conversion to the hydroborated product 21a. In the case of the 

dithiaphosphenium cations 13a and 13b this took 12 hours, whereas for the 

diazaphosphenium 15c this was reduced to six hours. Knowing that it was possible for 

dynamic exchange to occur in solution between one of the chlorides on AlCl4
− and the 

phosphorus centre to reform 1a and give free AlCl3 (Chapter 3), a control reaction was 

undertaken in which 10 mol% AlCl3 was used as the pre-catalyst for the hydroboration 

catalysis. Using AlCl3, 1H NMR spectroscopy showed that after 24 hours a reduced 

conversion of 68% to the reduced hydroborated product 21a had occurred. Likewise, a 
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control reaction was performed using TMS triflate as the catalyst to ensure SiMe3 was not 

responsible for the catalysis. Using TMS triflate, 1H NMR spectroscopy revealed that after 24 

hours only 56% conversion to the reduced hydroborated product had occurred. It should be 

noted that from Chapter 3 the dithiaphospheniums 13a and 13b in solution are likely to be 

hydrolysed. 

Table 4.5: Optimisation of pre-catalysts.  

aConversion measured using in situ 1H NMR spectroscopy. 

Of interest was the use of the benzyloxy and neopentyloxy derived pre-catalysts 24a–25b, 

which all failed to give quantitative conversion after 24 hours. 24a and 24b gave 9% and 8% 

product conversion respectively, whereas 25a and 25b gave a moderate increase of 30% 

and 35% conversion accordingly. From these results it was therefore clear that the 

 

Entry Pre-catalyst 
Loading/ 

mol% 
Solvent 

Time/ 
hr 

Conversion/ 
%a 

1 None N/A CDCl3 24 <5 

2 1a 10 CDCl3 24 <5 

3 1b 10 CDCl3 24 14 

4 1c 10 CDCl3 24 61 

5 6a 10 CDCl3 24 <5 

6 6b 10 CDCl3 24 <5 

7 8a 10 CDCl3 24 <5 

8 8b 10 CDCl3 24 <5 

9 13a 10 CDCl3 12 >95 

10 13b 10 CDCl3 12 >95 

11 15c 10 CDCl3 6 >95 

12 24a 10 CDCl3 24 9 

13 24b 10 CDCl3 24 8 

14 25a 10 CDCl3 24 30 

15 25b 10 CDCl3 24 35 

16 AlCl3 10 CDCl3 24 68 

17 TMSOTf 10 CDCl3 24 56 



144 
 

phosphenium species were the most active pre-catalysts and given the faster rate that 15c 

provided, the diazaphosphenium 15c was used for future study (Table 4.5). 

As 15c was the most suitable pre-catalyst, the reaction conditions were optimised 

(Table 4.6). Again using 4-(trifluoromethyl)-benzaldehyde, stoichiometric HBpin and now 10 

mol% 15c, a variety of solvents were utilised to examine their effects on the catalytic 

performance. The use of CDCl3 has been discussed but switching to CH2Cl2 still gave 

quantitative conversion, albeit it took 12 hours to complete. The difference may be 

explained by the almost double dielectric constant value CH2Cl2 has compared to CDCl3 

(ε = 8.93 and 4.81 respectively). Moving away from halogenated solvents, MeCN and THF 

gave deleterious effects to the catalysis, with 39% and 76% product conversion detected 

respectively by 1H NMR spectroscopy after 24 hours. In addition, toluene was attempted as 

a solvent but the pre-catalyst proved to be partially insoluble and thus the catalysis was not 

attempted.  

Knowing that CDCl3 was the best solvent, the conditions were further optimised. Reducing 

the catalytic loading from 10 mol% to 5 mol% still gave full product conversion, but 12 hours 

were needed compared to six hours for 10 mol%. When reducing the catalytic loading lower 

to 2 mol% and 1 mol% the product conversions were reduced to 48% and 27% respectively. 

Although the catalysis still worked well using 5 mol% pre-catalyst loading, it was decided to 

use 10 mol% when investigating the substrate scope. Lastly, two equivalents of HBpin was 

trialled as well as using 10 mol% pre-catalyst and CDCl3 solvent, but as before quantitative 

conversion proceeded after six hours and so no benefit was found from the increased HBpin. 
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Table 4.6: Optimisation of solvent and pre-catalyst loading.  

aConversion measured using in situ 1H NMR spectroscopy. bConversion measured using 

in situ 19F NMR spectroscopy. 

With the optimised conditions of 10 mol% of the diazaphosphenium triflate 15c, one 

equivalent of HBpin and CDCl3 solvent, a substrate scope was performed to evaluate how 

effective 15c was for this reduction catalysis (Scheme 4.6). As already discovered from the 

optimisation reactions 4-(trifluoromethyl)-benzaldehyde was hydroborated to 21a in six 

hours. On that theme, the fluorinated aldehydes 4-fluorobenzaldehyde, 

3-fluorobenzaldehyde, 2-fluorobenzaldehyde were readily converted to 21b, 21c and 21d 

accordingly within 12 hours. Furthermore, other electron withdrawing aldehydes were 

investigated. The aldehydes 4-bromobenzaldehyde and 4-formylbenzonitrile gave >95% 

conversion to the respected reduced products 21e and 21u within 12 hours. Contrary to 

this, when using 4-nitrobenzaldehyde only 67% conversion to 21v was detected by 1H NMR 

spectroscopy. 

 

 

 

 

 

 

 

 

Entry 
Loading/ 

mol% 
Solvent 

HBpin/ 
equiv 

Time/ 
hr 

Conversion/ % 

1 10 CDCl3 1.0 6 >95a 

2 10 CH2Cl2 1.0 12 >95b 

3 10 MeCN 1.0 24 39b 

4 10 THF 1.0 24 76b 

5 10 CDCl3 2.0 6 >95a 

6 5 CDCl3 1.0 12 >95a 

7 2 CDCl3 1.0 24 48a 

8 1 CDCl3 1.0 24 27a 
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Scheme 4.6: Hydroboration of aldehydes using 1,3-diisopropyl-benzodiphosphenium 

triflate (15c). 0.6 ml CDCl3 solvent, NMR yield calculated from in situ 1H NMR spectrum. a10 

mol% 15c. b20 mol% 15c; 2.0 equiv HBpin.  

Moving away from electron withdrawing aldehydes, benzaldehyde was much slower to 

undergo hydroboration, but nevertheless went to full completion to product 21l within 24 

hours. The related terephthalaldehyde, which has an aldehyde moiety in the 1- and 

4-position, was reduced to 21s in six hours, albeit 20 mol% catalytic loading was used due 

to the double aldehyde group presence. The electron donating dimethylamino functional 

group was also tolerated, with the starting aldehyde 4-(dimethylamino)benzaldehyde 



147 
 

reduced to 21w in six hours. The more sterically hindered 2-naphthaldehyde was readily 

reduced to 21p in 12 hours. Lastly, hydroboration on the aliphatic pivalaldehyde was 

attempted, which gave 46% conversion to 21x after 24 hours. The approximate half 

conversion can in part be explained by the high steric demand.  

While performing the substrate scope, 4-methoxybenzaldehyde, 4-methylbenzaldehyde 

and 2,4,6-trimethylbenzaldehyde substrates were also examined. In these cases the 1H NMR 

spectra gave additional unidentified signals that did not correspond to the reactant or 

product formation and consequently although consumption of the starting aldehyde was 

observed, their results are not included in Scheme 4.6. As well as aldehydes, the ketone 

4'-fluoroacetophenone was also trialled in the substrate scope, giving 57% consumption as 

detected by 19F NMR spectroscopy. However, additional signals to the reactant or product 

formation were identified. 

As was the case for the diazarsole catalysis, once the substrate scope was completed 

attention turned to investigating the catalytic cycle to explain how the catalysis proceeds 

(Scheme 4.7). The cationic nature of diazaphosphenium 15c means that the catalytic cycle 

is different to the neutral benzylozy-diazarsole 20. To rule out that the diazaphosphenium 

cation simply acts as a Lewis acid, 15c was added to a stoichiometric amount of 

4-(trifluoromethyl)benzaldehyde, where no appreciable change in the 31P NMR spectrum 

occurred. The lack of a strong interaction and any adduct formation between the pre-

catalyst and aldehyde substrate eliminated the possibility of Lewis acid catalysis, and instead 

the catalysis was presumed to follow a similar route to the hydroboration of pyridines with 

HBpin using a diazaphosphenium pre-catalyst, which was recently reported by the Kinjo 

group.9  

Initially a B–H bond activation takes place to generate the diazaphosphenium hydride 27 

and aldehyde·Bpin·OTf (28) complex. From the ground breaking work of Gudat, which 

showed the hydridic nature of the P–H bond in the closely related diazaphospholene 

species,11 it is believed that 27 also exhibits this feature. This nucleophilicity of the P–H bond 

in 27 is supported by the recent work by Cheng et al. who developed a method to determine 

the hydridic nature of the P–H bond in these heterocyclic phosphorus compounds. Cheng 

and colleagues found that the diazaphosphole 2-chloro-1,3-di-tert-butyl-

benzodiazaphosphole (27 but with isopropyl groups) was significantly nucleophilic and 

comparable to the diazaphospholenes.12 From here a second aldehyde substrate is 

introduced and forms the boronium complex 29, which gives rise to the activated aldehyde 
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intermediate. One of the aldehyde substrates is then reduced via hydride transfer from 27 

to give the hydroborated product, releasing the aldehyde and regenerating the pre-catalyst.  

Upon trying to observe these catalytic cycle intermediates, stoichiometric amounts of 15c 

were added to HBpin to form the active catalyst 27. However, 31P NMR spectroscopy instead 

revealed significant product decomposition and the formation of phosphine, PH3, as 

identified by a quartet signal centred at δ = −238.5 ppm, with a 1JPH = 189 Hz. Furthermore, 

the intermediate en route to PH3 was also observed in the 31P NMR spectrum, with a low 

intensity triplet centred at δ = −79.5 ppm and 1JPH = 199 Hz. This suggested the formation of 

a primary phosphine with two P–H bonds formed via endocyclic cleavage. Similar  

observations have previously been reported by the Speed group for the catalytic reduction 

of imines using a diazaphospholene pre-catalyst.5  

Lastly, given the poor performance of the alkoxy-derived dithiaphosphole and 

dioxaphosphole pre-catalysts, their activity was investigated by reacting 24a and 25a with 

stoichiometric amount of HBpin in CDCl3 to monitor how quickly the respective active 

hydride species formed. In the case of the former, after 24 hours both the 31P and 11B NMR 

spectra of 24a showed little appreciable change, with no indication of the desired active 

hydride catalyst being formed. For the latter, multinuclear NMR spectroscopy again showed 

no formation of the active catalyst being formed after 24 hours, with only a small quantity 

of hydrolysis product detected, as identified by a doublet resonance centred at δ = −7.7 ppm 

(1JPH = 706 Hz) in the 31P NMR spectrum. It should be noted that neither case showed the 

formation of the by-product BnO–Bpin which would also be expected.  Therefore, it can be 

concluded from these studies that the slow formation of the active hydride catalyst is the 

cause of the poor activity in complexes 24a, 24b, 25a and 25b, as was seen in the case for 

the benzyloxy-dithiarsole. 
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Scheme 4.7: Proposed catalytic cycle for the hydroboration of aldehydes using 

1,3-diisopropyl-benzodiphosphenium triflate (15c) as a pre-catalyst. 
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Chapter 4.3 Comparing the Phosphorus and Arsenic Pre-Catalysts 
Given the large number of phosphorus and arsenic compounds used in this chapter, it is 

interesting to compare their ability to act as pre-catalysts for hydroboration reduction of 

aldehydes with HBpin (Figure 4.14). Firstly, when comparing the precursor dithiaphosphole 

and diazaphosphole species 1a and 6a against their arsenic analogues 3 and 7, the results 

taken from the optimisation Tables 3 and 7 showed less than 5% conversion of the 

hydroborated product of 4-(trifluoromethyl)-benzaldehyde when using 10 mol% of 1a and 

6a respectively in CDCl3 solvent. Contrary to this, using 10 mol% of 3 and 7 gave 38% and 

49% product conversion to the reduced aldehyde when using toluene as the solvent. 

Although none of these four complexes proved good pre-catalysts, these results 

nevertheless clearly show the dithiarsole and diazarsole as the more active species. 

Although the solvent choices were different, repeating the optimisation reactions with 

toluene as the solvent for 1a and 6a gave <5% and 8% conversion after 24 hours respectively.  

As the benzyloxy-diazaphosphole was not possible to synthesise purely, a direct comparison 

cannot be made between this and the arsenic analogue 20, however a comparison can be 

made between the benzyloxy-dithiaphosphole 24a and the benzyloxy-dithiarsole 19. The 

optimisation Tables 3 and 7 show that for 24a 9% conversion to the hydroborated product 

was achieved after 24 hours, meanwhile the same reaction for 19 achieved a much more 

impressive 64% product conversion after 12 hours. Again, the former was performed in 

CDCl3 whereas the latter in toluene, but when 19 was repeated in toluene only 6% 

conversion was detected. From the results so far, it can be concluded that for the neutral 

species the arsenic complexes (despite their high toxicity) perform much better as 

pre-catalysts for hydroboration reduction than the phosphorus species.  

A less clear picture emerges though when comparing the cationic phosphorus and arsenic 

complexes. For 10 mol% of the dithiaphosphenium 13a and dithiarsenium 14a, both with 

the tetrachloroaluminate (AlCl4
−) counterion, 13a and 14a gave quantitative conversion in 

12 hours to the hydroborated product. On the other hand, when looking at the 

diazaphosphenium 15c and diazarsenium 16c, with the triflate (OTf−) counterion, the 

diazaphosphenium proved significantly better. Full product conversion was seen for 15c in 

six hours with CDCl3 solvent, whereas the diazarsenium only gave 50% conversion with 

CH2Cl2 as the solvent. A less clear conclusion can be drawn from the cationic phosphorus vs. 

arsenic results with regards to which is the superior pre-catalyst choice, however on balance 

the fact that the diazaphosphenium 15c performed so well indicates this is the best cationic 

complex. 
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 Lastly, to evaluate which phosphorus and arsenic compound is the superior pre-catalyst, 

the performance of the diazaphosphenium 15c can be compared to the benzyloxy-

diazarsole 20. In this case the benzyloxy-diazarsole was the clear victor as when operating 

at 10 mol% the rate of hydroboration was much greater than for 15c; 30 minutes vs. six 

hours for full conversion. Furthermore, 20 could be optimised to work with no deleterious 

effects at 5 mol% pre-catalyst loading, whereas when using 15c at 5 mol% for the substrate 

scope a number of problems were found, with most substrates trialled failing to go to 

complete conversion.   
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Figure 4.14: Comparison of phosphorus and arsenic complexes used as pre-catalysts for the 

hydroboration of 4-(trifluoromethyl)-benzaldehyde with HBpin. 
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Chapter 4.4 Conclusion 
In this chapter the metal-free hydroboration of aldehydes with pinacolborane (HBpin) has 

been demonstrated, making use of the first reported example of arsenic homogenous 

catalysis. Optimisation studies found that the benzyloxy-diazarsole, 20, was the most 

effective pre-catalyst to use, with conditions of 5 mol% catalytic loading, room temperature, 

one equivalence of HBpin and C6D6 solvent. The substrate scope showed that electron 

withdrawing aldehydes worked very well, but electron neutral and donating substituents 

proved more difficult. The catalytic cycle was investigated, which found that an arsenic 

hydride species was the active catalyst and its formation proved rate limiting.  

After this the catalysis was performed with the phosphorus analogues so a number of 

comparisons could be made between arsenic and phosphorus catalytic ability. This was to 

see if any underlying trends could be established. This analysis found that the neutral 

dithiarsoles and diazarsoles were better pre-catalysts than the phosphorus versions, 

whether that be with the chloride co-ligand or benzyloxy co-ligand. The diazarsoles were 

also found to be better than the dithiarsoles. Contrary to this, the cationic phospheniums 

proved more active than the arsenium species, with a noticeable discrepancy between the 

diazaphosphenium 15c and the diazarsenium 16c. For the arseniums the diazarsenium was 

more active than the dithiarsenium, but the reverse trend was true for the 

diazaphosphenium vs. dithiaphosphenium. Note though that the dithiaphosphenium is 

likely to be hydrolysed in solution (Chapter 3). The ultimate pre-catalyst though proved to 

be the benzyloxy diazarsole 20, which operated at lower catalytic loadings than the best 

phosphorus pre-catalyst 15c and gave much more rapid conversion times. Thus, it can be 

concluded that despite the increased toxicity surrounding arsenic catalysis, the benzyloxy-

diazarsole 20 proved to be a very effective pre-catalyst for this hydroboration reduction.  
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Chapter 5: Conclusions and Future Work 
The prominent aim of this thesis was to synthesise a range of novel heterocyclic benzo-

fused-phosphole and benzo-fused-arsole derived compounds in order to attain a better 

fundamental insight into this class of underexplored heterocycle. This thesis has succeeded 

in this by producing a range of dithiaphospholes, dithiarsoles, diazaphospholes, diazarsoles 

and dioxaphospholes in Chapter 2, which were characterised by multinuclear NMR 

spectroscopy and X-ray crystallography. The solid-state structures interestingly revealed an 

envelope geometry and an elongated P/As–X (X = Cl, Br or I) bond length.  

Chapter 3 built on this by using these phosphole and arsole compounds as pre-cursors to 

explore their reactivity, something which has notably been missing in the literature as most 

early reports of these compounds have focussed purely on structural analyses. A N-centred 

paddlewheel which is flanked by three dithiaphosphole or dithiarsole species was first 

synthesised, after which attention turned to the production of phosphenium and arsenium 

cations. As there has previously been no attempts to understand the optical properties of 

these cations, their photophysical properties were probed, which showed complex 

absorption spectra but nevertheless a dependence on both the heteroatom (P or As) and 

the choice of counterion. Lastly, Chapter 3 looked at reduction of the diazaphosphole and 

diazarsole. For the former the expected P–P dimer was synthesised, which using EPR 

spectroscopy showed homolytic cleavage at 350 K in solution. Meanwhile, for the latter the 

analogous As–As dimer was not produced and instead single crystal X-ray diffraction 

revealed the diazarsole 2-iodo-1,3-diisopropyl-benzodiazarsole formed from oxidative 

addition. 

Proceeding this, Chapter 4 looked at using these compounds as pre-catalysts for the 

hydroboration of aldehydes with HBpin. Initially the first reported use of arsenic 

homogenous catalysis was explored, which along with using the compounds already 

described also used a benzyloxy-dithiarsole and diazarsole. Optimisation studies revealed 

the benzyloxy-diazarsole was the most active pre-catalyst and proceeding at 5 mol% a wide 

substrate scope was performed, which showed the catalyst was tolerant to a variety of steric 

and electronic effects. For a comparison, the phosphorus complexes were then used as pre-

catalysts, with the diazaphosphenium triflate this time proving to be the most suitable pre-

catalyst. However, compared to the benzyloxy-diazarsole it proved a much poorer with 

respect to catalytic loading and conversion time. The neutral arsenic compounds proved 

better pre-catalysts, but a less clear picture was observed for the cationic complexes. 
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This thesis has described an in-depth study into advancing the knowledge of benzo-fused-

phosphole and benzo-fused-arsole derived compounds. To further advance our 

understanding into this underexplored area, a number of interesting avenues should be 

explored. 

Chapter 2. The benzo-fused dioxarsole should be synthesised and a comparison between 

this and the benzo-fused dioxaphospholes could be performed. 

Chapter 3. It would be interesting to perform photophysical studies of the dithia and dioxa 

derived pnictoles and compare them to their diaza pnictole counterparts. The optical results 

through the introduction of a non-coordinating anion (such as BArF
4

−) to the cations would 

also be important and attempts could be undertaken to increase the quantum yield. With 

regards to the formation of the As–As dimer, further work could be undertaken to 

synthesise this. The use of sodium metal as the reductant could be attempted for this. 

Chapter 4. The main interest in development here would be to increase catalytic 

performance of the arsenic pre-catalysts. From the introduction section the use of tert-butyl 

groups on the nitrogen atoms were used by the groups of Kinjo, Speed and Cramer on 

related systems, so this is the first thing to try. Secondly, formation of the hydride species 

should be performed, as although this will reduce its air/moisture stability, it would prevent 

a rate limiting step. From here a number of different compounds to be reduced could be 

explored, such as imines, and the first example of chiral reduction using arsenic 

homogeneous catalysis performed.       
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Chapter 6: Experimental 

Chapter 6.1 General Experimental 
Unless stated otherwise, all reactions were carried out under an atmosphere of dinitrogen 

using standard Schlenk and glove box techniques. With the exception of THF, Et2O and 

deuterated solvents, all solvents used were dried by passing through an alumina column 

incorporated into an MB SPS-800 solvent purification system, degassed and finally stored in 

an ampoule fitted with a Teflon valve under a dinitrogen atmosphere. THF was dried over 

molten potassium for three days and distilled over argon, whereas Et2O was dried over 

sodium wire and benzophenone before being distilled over argon. Deuterated solvents were 

dried over calcium hydride, distilled, freeze-pump-thawed degassed and stored over 3 Å 

molecular sieves in a glove box. Starting materials were purchased from commercial 

suppliers and used as received. 1H, 13C{1H}, 19F, 11B, 31P, and 27Al NMR spectra were recorded 

on a Bruker Avance 300, 400, or 500 MHz spectrometer. Chemical shifts are expressed as 

parts per million (ppm, δ) and are referenced to CDCl3 (7.26/77.16 ppm), C6D6 

(7.16/128.06 ppm), or C6D5Br (7.28/122.4 ppm for the most downfield resonance) as 

internal standards. Multinuclear NMR spectra were referenced to BF3·Et2O/CDCl3 (11B), 

CFCl3 (19F), H3PO4 (31P), and Al(NO2)3 (27Al). The description of signals includes s = singlet, 

d = doublet, t = triplet, q = quartet, sept = septet and m = multiplet. All coupling constants 

are absolute values and are expressed in Hertz (Hz). IR-Spectra were measured on a 

Shimadzu IR Affinity-1 photospectrometer. The description of signals includes s = strong, 

m = medium, w = weak, sh = shoulder, and br = broad. Mass spectra were measured by the 

School of Chemistry in Cardiff University on a Waters LCT Premier/XE or a Waters GCT 

Premier spectrometer. 
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Chapter 6.2 Experimental for Synthesis of Dithia-, Diaza-, and Dioxa-based 

Benzphospholes and Benzarsoles 

6.2.1 Synthesis of benzo-fused dithiaphopholes and dithiarsoles 

General Procedure 1. Phosphorus(III) chloride (1.2 equiv) or phosphorus(III) bromide 

(1.0 equiv)  was added dropwise to a solution of toluene-3,4-dithiol (1.0 equiv) or benzene 

dithiol (1.0 equiv) in CH2Cl2 (3 mL), with the evolution of gas observed. The reaction was 

allowed to stir at ambient temperature for 24 hours, after which the solvent was removed 

in vacuo. To the resulting oil, pentane (2 mL) was added and cooled to −40 °C for 4 hours to 

give the product 2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a), 2-bromo-

5-methylbenzo-1,3,2-dithiaphosphole (1b), 2-chlorobenzo-1,3,2-dithiaphosphole (2a) or 

2-bromobenzo-1,3,2-dithiaphosphole (2b) as a white powder.  

2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a) 

Compound 1a was synthesised according to general procedure 1 using 

phosphorus(III) chloride (880 mg, 6.40 mmol, 1.2 equiv) and 

toluene-3,4-dithiol (1.00 g, 4.74 mmol, 1.0 equiv). Yield: 1.363 g, 6.18 mmol, 96%. Crystals 

suitable for single crystal X-ray diffraction were grown from a saturated solution of CH2Cl2 

with a few drops of pentane added. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.55 (dd, 3JHH = 8.1 Hz, 4JPH = 1.2 Hz, 1H, Ar–H), 7.50 

(s, 1H, Ar–H), 7.12 (ddd, 3JHH = 8.1 Hz, 4JHH = 1.2 Hz, 5JPH = 0.6 Hz, 1H, Ar–H), 2.39 (s, 3H, CH3). 

13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 137.9 (d, 3JPC = 3.3 Hz, 1C, Ar), 137.3 (1C, Ar), 

134.4 (3JPC = 3.6 Hz, 1C, Ar), 128.1 (1C, Ar), 126.6 (d, 2JPC = 5.5 Hz, 1C, Ar), 125.8 (d, 2JPC = 

5.5 Hz, 1C, Ar), 21.1 (1C, Ar–CH3). 31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 160.4 (s, 1P).  

IR νmax (cm-1): 1458 (m), 1375 (sh), 1258 (w), 1146 (w), 1036 (w), 874 (w), 804 (s), 685 (w) 

and 635 (w). HRMS (EI+) m/z calculated for [M]+ [C7H6ClPS2]+: 219.9337, found: 219.9341. 

Melting point 38–41 °C. 

2-bromo-5-methylbenzo-1,3,2-dithiaphosphole (1b) 

Compound 1b was synthesised according to general procedure 1 using 

phosphorus(III) bromide (346 mg, 1.28 mmol, 1.0 equiv) and toluene 

dithiol (200 mg, 1.28 mmol, 1.0 equiv). Yield: 288 mg, 1.09 mmol, 85%. Crystals suitable for 

single crystal X-ray diffraction were grown from a saturated solution of CH2Cl2 with a few 

drops of pentane added. 
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1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.57 (dd, 3JHH = 8.1 Hz, 4JPH = 1.1 Hz, 1H, Ar–H), 7.51 

(s, 1H, Ar–H), 7.14 (dd, 3JHH = 8.1 Hz, 4JHH = 1.1 Hz, 1H, Ar–H), 2.40 (s, 3H, CH3). 13C{1H} NMR 

(101 MHz, CDCl3, 295 K) δ/ppm: 138.8 (d, 3JPC = 3.2 Hz, 1C, Ar), 137.4 (1C, Ar), 135.3 (d, 3JPC 

= 3.4 Hz, 1C, Ar), 128.2 (1C, Ar), 126.7 (d, 2JPC = 5.6 Hz, 1C, Ar), 125.9 (d, 2JPC = 5.5 Hz, 1C, Ar), 

21.1 (1C, Ar–CH3). 31P{1H} NMR (162 MHz, CDCl3, 295 K) δ/ppm: 163.3 (s, 1P). IR νmax (cm-1): 

1456 (m), 1440 (sh), 1375 (w), 1258 (w), 1142 (w), 1115 (w), 1036 (w), 999 (w), 947 (w), 876 

(w), 817 (s), 687 (w), 635 (w) and 541 (w). HRMS (EI+) m/z calculated for [M]+ [C7H6BrPS2]+: 

263.8832, found: 263.8838. Melting point 60–64 °C. 

2-iodo-5-methylbenzo-1,3,2-dithiaphosphole (1c) 

Phosphorus(III) iodide (334 mg, 0.08 mmol, 1.0 equiv) in CH2Cl2 (2 mL) 

was added dropwise to a solution of toluene-3,4-dithiol (127 mg, 

0.08 mmol, 1.0 equiv) in CH2Cl2 (3 mL). The reaction was allowed to stir at ambient 

temperature for 24 hours, after which time the solvent was removed in vacuo. The resulting 

orange solid was washed with pentane (3 × 2 mL) and again dried in vacuo, to give the 

product 2-iodo-5-methylbenzo-1,3,2-dithiaphosphole as an orange solid. Yield: 185 mg, 

0.59 mmol, 73%. Crystals suitable for single crystal X-ray diffraction were grown from a 

saturated solution of CH2Cl2 with a few drops of pentane added. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.55 (dd, 3JHH = 8.1 Hz, 4JPH = 1.3 Hz, 1H, Ar–H), 7.50 

(s, 1H, Ar–H), 7.15 (ddd, 3JHH = 8.1 Hz, 4JHH = 1.6 Hz, 5JPH = 0.7 Hz, 1H, Ar–H), 2.41 (s, 3H, CH3). 

13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 140.2 (d, 3JPC = 3.1 Hz, 1C, Ar), 137.5 (1C, Ar), 

136.7 (3JPC = 3.1 Hz, 1C, Ar), 128.2 (1C, Ar), 127.0 (d, 2JPC = 5.6 Hz, 1C, Ar), 126.2 (d, 2JPC = 5.6 

Hz, 1C, Ar), 21.1 (1C, Ar–CH3). 31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 155.0 (s, 1P).  

IR νmax (cm-1): 1458 (w), 1379 (w), 1254 (w), 854 (w), 804 (s), 692 (w), 637 (w) and 538 (w). 

HRMS (EI+) m/z calculated for [M]+ [C7H6IPS2]+: 311.8693, found: 311.8687. Melting point 

86–90 °C. 

2-chlorobenzo-1,3,2-dithiaphosphole (2a) 

Compound 2a was synthesised according to general procedure 1 using 

phosphorus(III) chloride (89 mg, 0.65 mmol, 1.2 equiv) and benzene 

dithiol (77 mg, 0.54 mmol, 1.0 equiv). Yield: 104 mg, 0.50 mmol, 93%. Crystals suitable for 

single crystal X-ray diffraction were grown from a saturated solution of CH2Cl2 with a few 

drops of pentane added. 
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1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.69 (ddd, 3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 4JPH = 1.3 Hz, 

2H, Ar–H), 7.32 (dd, 3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 2H, Ar–H). 13C{1H} NMR (101 MHz, CDCl3, 295 

K) δ/ppm: 137.8 (d, 3JPC = 3.3 Hz, 2C, Ar), 126.9 (2C, Ar), 126.1 (d, 2JPC = 5.6 Hz, 2C, Ar). 31P{1H} 

NMR (162 MHz, CDCl3, 295 K) δ/ppm: 158.3 (s, 1P). IR νmax (cm-1): 1441 (m), 1429 (sh), 1252 

(w), 1103 (w), 937 (w), 743 (s) and 662 (w). HRMS (EI+) m/z calculated for [M]+ [C6H4ClPS2]+: 

205.9181, found: 205.9176. Melting point 40–42 °C. 

2-bromobenzo-1,3,2-dithiaphosphole (2b) 

Compound 2b was synthesised according to general procedure 1 using 

phosphorus(III) bromide (186 mg, 0.69 mmol, 1.0 equiv) and benzene 

dithiol (98 mg, 0.69 mmol, 1.0 equiv). Yield: 157 mg, 0.62 mmol, 91%. Crystals suitable for 

single crystal X-ray diffraction were grown from a saturated solution of CH2Cl2 with a few 

drops of pentane added. 

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.70 (ddd, 3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 4JPH = 1.3 Hz, 

2H, Ar–H), 7.33 (dd, 3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 2H, Ar–H). 13C{1H} NMR (101 MHz, CDCl3, 

295 K) δ/ppm: 138.6 (d, 3JPC = 3.3 Hz, 2C, Ar), 127.0 (2C, Ar), 126.3 (d, 2JPC = 5.7 Hz, 2C, Ar). 

31P{1H} NMR (162 MHz, CDCl3, 295 K) δ/ppm: 160.9 (s, 1P). IR νmax (cm-1): 1441 (m), 1425 

(sh), 1252 (w), 936 (w), 741 (s) and 662 (w). HRMS (EI+) m/z calculated for [M]+ [C6H4BrPS2]+: 

249.8675, found: 249.8682. Melting point 62–64 °C. 

2-iodobenzo-1,3,2-dithiaphosphole (2c) 

Phosphorus(III) iodide (517 mg, 1.26 mmol, 1.0 equiv) in CH2Cl2 (2 mL) was 

added dropwise to a solution of benzene dithiol (179 mg, 1.26 mmol, 

1.0 equiv) in CH2Cl2 (3 mL). The reaction was allowed to stir at ambient temperature for 24 

hours, after which time the solvent was removed in vacuo. The resulting red solid was 

washed with pentane (3 × 2 mL) and again dried in vacuo, to give the product  

2-iodobenzo-1,3,2-dithiaphosphole as a red solid. Yield: 312 mg, 1.0 mmol, 83%. Crystals 

suitable for single crystal X-ray diffraction were grown from a saturated solution of CH2Cl2 

with a few drops of pentane added. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.68 (ddd, 3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 4JPH = 1.3 Hz, 

2H, Ar–H), 7.34 (dd, 3JHH = 5.9 Hz, 4JHH = 3.3 Hz, 2H, Ar–H). 13C{1H} NMR (126 MHz, CDCl3, 

295 K) δ/ppm: 140.0 (d, 3JPC = 3.3 Hz, 2C, Ar), 127.0 (2C, Ar), 126.5 (d, 2JPC = 5.7 Hz, 2C, Ar). 

31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 152.4 (s, 1P). IR νmax (cm-1): 1439 (m), 1420 

(sh), 784 (s) and 662 (w). HRMS (EI+) m/z calculated for [M]+ [C6H4IPS2]+: 297.8537, found: 

297.8537. Melting point 76–78 °C. 
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2-chloro-5-methylbenzo-1,3,2-dithiarsole (3) 

Arsenic(III) chloride (0.68 g, 3.84 mmol, 1.2 equiv) in CH2Cl2 (2 mL) was 

added dropwise to a solution of toluene-3,4-dithiol (0.50 g, 3.20 mmol, 

1 equiv) in CH2Cl2 (2 mL) and immediate effervescence occurred. The resulting solution was 

stirred at ambient temperature for 24 hours, after which the solvent was removed in vacuo 

to give a pale yellow solid. The resulting yellow solid was washed with pentane (3 × 2 mL) 

and again dried in vacuo, to give the product 2-chloro-5-methylbenzo-1,3,2-dithiarsole as a 

yellow solid. Yield: 0.73 g, 2.75 mmol, 86%. Crystals suitable for single crystal X-ray 

diffraction were grown from either a saturated solution of MeOH (3α) or MeCN (3β). 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.48 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 7.43 (s, 2H, Ar–H), 

7.05 (s, 3JHH = 8.1 Hz, 2H, Ar–H), 2.37 (s, 3H, Ar–CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) 

δ/ppm: 139.6 (1C, Ar), 136.7 (1C, Ar), 136.1 (1C, Ar), 127.5 (1C, Ar), 127.4 (1C, Ar), 126.7 (1C, 

Ar), 20.9 (1C, Ar). IR νmax (cm-1): 1740 (s), 1458 (w), 1437 (w), 1366 (m), 1229 (m), 1217 (m), 

802 (m) and 536 (w). HRMS (EI+) m/z calculated for [M]+ [C7H6AsClS2]+: 263.88099, found: 

263.8810. Melting point 67–70 °C. 

2-chlorobenzo-1,3,2-dithiarsole (4) 

Arsenic(III) chloride (0.31 g, 1.73 mmol, 1.2 equiv) in CH2Cl2 (2 mL) was 

added dropwise to a solution of benzene dithiol (0.21 g, 1.44 mmol, 

1.0 equiv) in CH2Cl2 (2 mL) and immediate effervescence occurred. The resulting solution 

was stirred at ambient temperature for 24 hours, after which the solvent was removed in 

vacuo to give a pale-yellow solid. The resulting yellow solid was washed with pentane 

(3 × 2 mL) and again dried in vacuo, to give the product 2-chlorobenzo-1,3,2-dithiarsole as a 

yellow solid. Yield: 0.31 g, 1.22 mmol, 85%. Crystals suitable for single crystal X-ray 

diffraction were grown from a saturated solution of THF.  

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.62 (dd, 3JHH = 6.0 Hz, 4JHH = 3.3 Hz, 2H, Ar–H), 7.24 

(dd, 3JHH = 6.0 Hz, 4JHH = 3.3 Hz, 2H, Ar–H). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 139.4 

(2C, Ar), 127.0 (2C, Ar), 126.3 (2C, Ar). IR νmax (cm-1): 1680 (w), 1481 (w), 1447 (m), 1422 (m), 

739 (s), 660 (m) and 339 (m). HRMS (EI+) m/z calculated for [M]+ [C6H4AsClS2]+: 249.86534, 

found: 249.8655. Melting point 62–64 °C. 
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6.2.2 Synthesis of benzo-fused diazaphopholes and diazarsoles 

N,N’-diisopropylbenzene-1,2-diamine (5) 

A round-bottomed flask equipped with a magnetic stirrer bar was charged 

with o-phenylenediamine (2.00 g, 18.49 mmol, 1.0 equiv), potassium 

carbonate (5.10 g, 36.90 mmol, 2.0 equiv) and excess 2-iodopropane (20.40 g, 

120.0 mmol, 6.5 equiv). The solution was heated to reflux for 2 hours, after 

which time the solution was cooled to ambient temperature. Hexane (30 mL) was 

subsequently added and the mixture was washed with water (50 mL). The product was 

extracted from the aqueous phase using hexane (3 × 20 mL), the organic phases being 

combined after each extraction. The solution was dried using anhydrous magnesium sulfate, 

and the solvent was removed under reduced pressure to afford a viscous dark brown oil. 

Subsequently, the oil was passed through a silica plug (0.2 cm, toluene) and the solvent was 

again removed under reduced pressure to give a red-brown oil. The resulting oil was purified 

further using a Kugelröhr short-path distillation (180 °C, 5 mbar) to yield a colourless oil. 

Yield: 2.9 g, 15.1 mmol, 80%. 

 1H NMR (500 MHz,) δ/ppm: 6.87–6.85 (m, 2H, Ar-H), 6.80–6.76 (m, 2H, Ar-H), 3.65 (sept, 

3JHH = 6.3 Hz, 2H, CH(CH3)2), 3.23 (br s, 2H, NH), 1.32 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2). 13C{1H} 

NMR (126 MHz, CDCl3, 295 K) δ/ppm: 136.8 (2C, Ar), 118.9 (2C, Ar), 113.2 (2C, Ar), 44.4 (2C, 

CH(CH3)2, 23.3 (4C, CH(CH3)2). IR νmax (cm–1): 2962 (m), 1599 (m), 1506 (m), 1253 (m), 1177 

(m), 741 (m) and 399 (s, sh). HRMS (EI+) m/z calculated for [M]+ [C12H20N2]+: 192.1626, found: 

192.1624. 

General Procedure 2. To a solution of N,N’-diisopropylbenzene-1,2-diamine (1.0 equiv) 

dissolved in toluene (40 mL) and cooled to 0 °C, phosphorus(III) chloride (1.2 equiv) or 

phosphorus(III) bromide (1.2 equiv) and triethylamine (2.4 equiv) were added dropwise. The 

reaction turned yellow and was allowed to stir at ambient temperature for 24 hours. The 

solution was filtered via filter canula to a new Schlenk tube to remove the ammonium salt 

generated, after which the solvent was removed in vacuo to give a powder. The powder was 

washed with pentane (3 × 2 mL) and again dried in vacuo to give the pure product as a solid 

powder. 
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2-chloro-1,3-diisopropyl-benzodiazaphosphole (6a) 

Compound 6a was synthesised according to general procedure 2 using 

phosphorus(III) chloride (0.35 mL, 4.00 mmol, 1.2 equiv),  

N,N’-diisopropylbenzene-1,2-diamine (640 mg, 3.33 mmol, 1.0 equiv), 

and triethylamine (1.11 mL, 8.0 mmol, 2.4 equiv). The product is a yellow 

powder. Yield: 692 mg, 2.70 mmol, 81%. Crystals suitable for single crystal X-ray diffraction 

were grown from a saturated solution of CH2Cl2 with a few drops of pentane added. 

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.08 (s, 4H, Ar–H), 4.32 (sept, 3JHH = 6.6 Hz, 2H, 

CH(CH3)2), 1.69 (dd, 3JHH = 6.6 Hz, 4JPH = 1.0 Hz, 12H, CH(CH3)2). 13C{1H} NMR (101 MHz, CDCl3, 

295 K) δ/ppm: 136.9 (d, 2JPC = 10.5 Hz, 2C, Ar), 121.3 (2C, Ar), 111.6 (d, 3JPC = 1.6 Hz, 2C, Ar), 

48.1 (d, 2JPC = 12.7 Hz, 2C, CH(CH3)2), 22.3 (4C, CH(CH3)2). 31P{1H} NMR (162 MHz, CDCl3, 295 

K) δ/ppm: 147.1 (s, 1P). IR νmax (cm–1): 2978 (w), 1487 (m), 1371 (w), 1260 (m), 1159 (m), 930 

(m), 741 (s), 492 (m). HRMS (EI+) m/z calculated for [M]+ [C12H18PN2Cl]+: 256.0896, found 

256.0901. Melting point 95–98 °C. 

2-bromo-1,3-diisopropyl-benzodiazaphosphole (6b) 

Compound 6b was synthesised according to general procedure 2 using 

phosphorus(III) bromide (0.11 mL, 1.19 mmol, 1.2 equiv), N,N’-

diisopropylbenzene-1,2-diamine (191 mg, 0.99 mmol, 1.0 equiv), and 

triethylamine (0.3 mL, 2.38 mmol, 2.4 equiv). The product was an orange 

powder. Yield: 227 mg, 0.75 mmol, 76%. 

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.18–7.17 (m, 4H, Ar–H), 4.44 (sept, 3JHH = 6.6 Hz, 

2H, CH(CH3)2), 1.76 (dd, 3JHH = 6.6 Hz, 4JPH = 1.0 Hz, 12H, CH(CH3)2). 13C{1H} NMR (101 MHz, 

CDCl3, 295 K) δ/ppm: 137.2 (d, 2JPC = 10.2 Hz, 2C, Ar), 122.3 (2C, Ar), 112.4 (d, 3JPC = 1.6 Hz, 

2C, Ar), 49.0 (d, 2JPC = 11.8 Hz, 2C, CH(CH3)2), 21.8 (d, 3JPC = 1.6 Hz, 4C, CH(CH3)2). 31P{1H} NMR 

(162 MHz, CDCl3, 295 K) δ/ppm: 169.2 (s, 1P). IR νmax (cm-1): 1477 (m), 1369 (m), 1288 (w), 

1159 (m), 1007 (m), 932 (m) and 752 (m). HRMS (EI+) m/z calculated for [M]+ [C12H18BrN2P]+: 

300.0391, found: 300.0384. Melting point 100–106 °C. 

2-chloro-1,3-diisopropyl-benzodiazarsole (7) 

N,N’-diisopropylbenzene-1,2-diamine (5) (450 mg, 2.33 mmol, 1.0 equiv) 

was added to toluene (10 mL). Arsenic(III) chloride (510 mg, 2.80 mmol, 

1.2 equiv) was then added dropwise and the resulting solution was cooled 

to 0 oC using an ice bath. To this triethylamine (0.78 mL, 5.59 mmol, 
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2.4 equiv) was added dropwise; the reaction was slowly warmed to ambient temperature 

and left to stir overnight. With the use of a filter cannula, the solution was transferred to a 

new Schlenk tube and the solvent was removed in vacuo to give the product as a yellow 

solid. Yield: 0.55 g, 1.82 mmol, 78%. Crystals suitable for single crystal X-ray diffraction were 

grown from a saturated solution of CH2Cl2 with a few drops of pentane added. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.04 (s, 4H, Ar–H), 4.46 (sept, 3JHH = 6.5 Hz, 2H, 

CH(CH3)2), 1.70 (d, 3JHH = 6.5 Hz, 12H, CH(CH3)2). 13C{1H} NMR (126 MHz, CDCl3, 295 K) 

δ/ppm: 139.1 (2C, Ar), 120.7 (2C, Ar), 111.8 (2C, Ar), 49.1 (2C, CH(CH3)2), 23.5 (4C, CH(CH3)2). 

IR νmax (cm–1): 2974 (w), 1477 (m), 1388 (m), 1292 (s, sh), 1153 (m), 998 (m), 891 (m), 745 

(m), 550 (m) and 473 (m). HRMS (ES+) m/z calculated for [M]+ [C12H18AsN2Cl]+: 300.0374, 

found: 300.0376. Melting point 96–99 °C. 

General Procedure 3. A solution of catechol (1.0 equiv) in toluene (40 mL) was cooled to 0 

°C, phosphorus(III) chloride (1.2 equiv) or phosphorus(III) bromide (1.2 equiv) and 

triethylamine (2.4 equiv) were added dropwise. The reaction immediately turned yellow and 

was left to stir at ambient temperature for 24 hours. The solution was filtered via filter 

canula to a new Schlenk tube to remove the ammonium salt generated, after which the 

solvent was removed in vacuo to give a yellow oil. 31P NMR spectroscopy revealed that this 

oil contained a mixture of both product and an unidentified side product. Therefore, the oil 

was subjected to an air sensitive distillation, in which the pure product distils with heating 

and under vacuum (5 mbar) to give the product as a colourless oil. 

6.2.3 Synthesis of benzo-fused dioxaphopholes  

2-chlorobenzo-1,3,2-dioxaphosphole (8a) 

Compound 8a was synthesised according to general procedure 3 using 

phosphorus(III) chloride (3.0 mL, 34.90 mmol, 1.2 equiv), catechol (3.20 g, 

29.06 mmol, 1.0 equiv) and triethylamine (9.7 mL, 69.80 mmol, 2.4 equiv). Distils at 44–52 °C 

under vacuum (5 mbar). Yield: 1.84 g, 10.5 mmol, 36%. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.19–7.17 (m, 2H, Ar–H), 7.07–7.05 (m, 2H, Ar–H). 

13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 144.4 (d, 2JPC = 7.5 Hz, 2C, Ar), 124.5 (2C, Ar), 

114.2 (d, 3JPC = 0.9 Hz, 2C, Ar). 31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 173.6 (s, 1P). IR 

νmax (cm-1): 1470 (s), 1327 (w), 1217 (s), 1092 (w), 1009 (w), 893 (s), 739 (s), 716 (sh) and 617 

(m). HRMS (EI+) m/z calculated for [M]+ [C6H4ClO2P]+: 173.9637, found: 173.9640.  
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2-bromobenzo-1,3,2-dioxaphosphole (8b) 

Compound 8b was synthesised according to general procedure 3 using 

phosphorus(III) bromide (1.30 mL, 13.90 mmol, 1.2 equiv), catechol 

(1.27 g, 11.53 mmol, 1.0 equiv) and triethylamine (3.9 mL, 27.80 mmol, 2.4 equiv). Distils at 

60–62 °C under vacuum (5 mbar). Yield: 1.04 g, 4.76 mmol, 41%.  

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.31 (ddd, 3JHH = 5.9 Hz, 4JHH = 3.4 Hz, 4JPH = 0.8 Hz, 

2H, Ar–H), 7.19 (dd, 3JHH = 5.9 Hz, 4JHH = 3.4 Hz, 2H, Ar–H). 13C{1H} NMR (126 MHz, CDCl3, 

295 K) δ/ppm: 144.8 (d, 2JPC = 7.5 Hz, 2C, Ar), 124.7 (2C, Ar), 114.4 (d, 3JPC = 1.0 Hz, 2C, Ar). 

31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 195.3 (s, 1P). IR νmax (cm-1): 1497 (s), 1422 (sh), 

1169 (m, br), 1098 (m), 984 (m), 937 (m), 826 (m) and 748 (m). HRMS (EI+) m/z calculated 

for [M]+ [C6H4BrO2P]+: 217.9132, found: 217.9135.  
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Chapter 6.3 Experimental for Reactivity of Dithiaphospholes, Dithiarsoles, 

Diazaphospholes and Diazarsoles 

6.3.1 Synthesis of paddlewheel complexes 

General Procedure 4. The starting dithiaphosphole or dithiarsole 1a or 3 (1.0 equiv) dissolved 

in toluene (5 mL) was added dropwise to lithium bis(trimethylsilyl)amide (1.0 equiv) 

dissolved in toluene (5 mL) at 0 °C, using an ice bath. The reaction was allowed to slowly 

warm to ambient temperature and left to stir for 18 hours. LiCl salt was removed via filter 

cannula of the yellow solution, and the solvent was removed in vacuo to give the product as 

a yellow oil. 

5-methyl-N,N-bis(trimethylsilyl)benzo-1,3,2-dithiaphosphol-2-amine (9) 

Compound 9 was synthesised according to general procedure 4 

using dithiaphosphole 1a (241 mg, 1.09 mmol, 1.0 equiv) and 

lithium bis(trimethylsilyl)amide (183 mg, 1.09 mmol, 1.0 equiv). Yield: 354 mg, 1.02 mmol, 

94%.  

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.38 (d, 3JHH = 8.0 Hz, 1H, Ar–H), 7.33 (s, 1H, Ar–H), 

6.96 (d, 3JHH = 8.0 Hz, 1H, Ar–H), 2.36 (s, 3H, CH3), 0.27 (d, 4JPH = 1.9 Hz, 18H, SiMe3). 13C{1H} 

NMR (126 MHz, CDCl3, 295 K) δ/ppm: 141.1 (1C, Ar), 137.7 (1C, Ar), 134.9 (1C, Ar), 126.2 

(1C, Ar), 124.7 (d, 2JPC = 8.3 Hz, 1C, Ar), 123.9 (d, 2JPC = 8.3 Hz, 1C, Ar), 20.9 (1C, Ar–CH3), 4.26 

(d, 1JSiC = 9.7 Hz, 6C, SiMe3). 31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 93.9 (s, 1P). IR νmax 

(cm-1): 1740 (s), 1458 (w), 1437 (w), 1366 (m), 1254 (w), 1229 (m), 1217 (m), 802 (m), 685 

(w) and 536 (m). HRMS (ES+) m/z calculated for [M+H]+ [C13H25NSi2PS2]+: 346.0705, found: 

346.0714. 

5-methyl-N,N-bis(trimethylsilyl)benzo-1,3,2-dithiarsol-2-amine (11) 

Compound 11 was synthesised according to general procedure 

4 using dithiarsole 3 (0.519g, 1.96 mmol, 1.0 equiv) and lithium 

bis(trimethylsilyl)amide (0.328 g, 1.96 mmol, 1.0 equiv). Yield: 0.252 g, 0.65 mmol, 33%. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.25 (s, 1H, Ar–H), 7.20 (s, 1H, Ar–H), 6.84 (d, 3JHH 

= 7.4 Hz, 1H, Ar–H), 2.28 (s, 3H, CH3), 0.16 (s, 18H, SiMe3). 13C{1H} NMR (126 MHz, CDCl3, 

295 K) δ/ppm: 141.6(1C, Ar), 138.1 (1C, Ar), 134.8 (1C, Ar), 126.4 (1C, Ar), 126.0 (1C, Ar), 

125.7 (1C, Ar), 20.8 (1C, Ar–CH3), 4.7(6C, SiMe3). IR νmax (cm-1): 1458 (s), 1252 (w), 907 (s), 



167 
 

827 (w), 681 (w) and 496 (s). HRMS (EI+) m/z calculated for [M]+ [C13H24NAsS2Si2]+: 

389.00992, found: 389.0101. 

General Procedure 5. The intermediates 9 or 11 (1.0 equiv) in MeCN (10 mL) was added 

dropwise to a solution of dithiaphosphole 1a or dithiarsole 3 (2.0 equiv) in MeCN (10 mL) at 

0 °C. The mixture was allowed to slowly warm to ambient temperature before being heated 

to reflux for 16 hours. The resulting solution was cooled in an ice bath at 0 °C for three hours 

to give a white precipitate. The MeCN was removed via filter cannula and the white solid 

was washed with pentane (3 × 10 mL). After which the solid was dried in vacuo to give the 

product as a white solid. 

tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine (10) 

Compound 10 was synthesised according to general 

procedure 5 using intermediate 9 (300 mg, 0.91 mmol, 

1.0 equiv) and dithiaphosphole 1a (401 mg, 1.82 mmol, 

2.0 equiv). Yield: 451 mg, 0.79 mmol, 87%. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.42 (d, 3JHH = 8.1 Hz, 

1H, Ar–H), 7.36 (s, 1H, Ar–H), 6.99 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 

2.34 (s, 3H, CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) 

δ/ppm: 139.7 (1C, Ar), 136.3 (1C, Ar), 136.1 (1C, Ar), 127.3 (1C, Ar), 125.1 (1C, Ar), 124.3 (1C, 

Ar), 21.1 (1C, Ar–CH3). 31P{1H} NMR (202 MHz, CDCl3, 295 K) δ/ppm: 86.6 (s, 1P).  

IR νmax (cm-1): 1456 (m), 1375 (w), 1258 (w), 1115 (w), 775 (br, s) and 685 (w). HRMS (AP+) 

m/z calculated for [M+H]+ [C21H19NP3S6]+: 569.9055, found: 569.9059. Melting point 

150-152 °C. 

5-methyl-N,N-bis(trimethylsilyl)benzo-1,3,2-dithiarsol-2-amine (11) 

Compound 12 was synthesised according to general 

procedure 5 using intermediate 11 (287 mg, 0.737 mmol, 

1.0 equiv) and dithiaphosphole 1a (389 mg, 1.47 mmol, 

2.0 equiv). Yield: 0.208 g, 0.30 mmol, 40%. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.35(d, 3JHH= 8.1 Hz, 

3H, Ar–H), 7.28 (s, 3H, Ar–H), 6.92 (d, 3JHH = 8.1 Hz, 3H, Ar–H), 

2.32 (s, 9H, CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) 

δ/ppm: 140.6 (3C, Ar), 137.1 (3C, Ar), 135.9 (3C, Ar), 126.9 (3C, Ar), 126.7 (3C, Ar), 126.0 (3C, 

Ar), 20.9 (3C, CH3). IR νmax (cm-1): 1456 (w), 1256 (w), 1032 (w), 860 (w), 796 (s), 692 (s) and 
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442 (s). HRMS (ES+) m/z calculated for [M+H]+ [C21H19S6As3N]+: 701.7490, found 701.7516. 

Melting point 78–82 °C. 

6.3.2 Synthesis of cationic complexes 

General procedure 6. Dithiaphosphole 1a or dithiarsole 3 (1.0 equiv) in CH2Cl2 (3 mL) was 

added to the halide abstracting reagent (1.0 equiv) in CH2Cl2 (2 mL) and left to stir at ambient 

temperature for six hours. After this the solvent was removed in vacuo and washed with 

pentane (3 × 2 mL) and dried again in vacuo, giving the products 13a, 13b, 14a or 14b as 

red/ orange solids. Single crystals suitable for X-ray diffraction were grown from a 

concentrated solution of CH2Cl2 with a few drops of pentane and cooled to −40 °C or from 

slow evaporation of CH2Cl2. 

5-methylbenzo-1,3,2-dithiaphosphenium tetrachloroaluminate (13a) 

Compound 13a was synthesised according to general procedure 6 

as a highly air sensitive orange powder using dithiaphosphole 1a 

(103 mg, 0.47 mmol, 1.0 equiv) and aluminium trichloride (62 mg, 0.47 mmol, 1.0 equiv). 

Multinuclear NMR spectroscopy showed hydrolysis product and thus not included. Yield: 

139 mg, 0.39 mmol, 83%. 

HRMS (EI+) m/z calculated for [M]+ [C7H6PS2]+: 184.9649, found: 184.9649. IR νmax (cm-1): 

1582 (w), 1458 (m), 1381 (w), 1261 (w), 1168 (br, m), 964 (br, m), and 802 (w). Melting point 

126–130 °C. 

5-methylbenzo-1,3,2-dithiaphosphenium tetrachlorogalate (13b) 

Compound 13b was synthesised according to general procedure 6 

as a highly air sensitive orange powder using dithiaphosphole 1a 

(347 mg, 1.57 mmol, 1.0 equiv) and gallium trichloride (277 mg, 1.57 mmol, 1.0 equiv). 

Multinuclear NMR spectroscopy showed hydrolysis product and thus not included. Yield: 

492 mg, 1.24 mmol, 79%. 

HRMS (EI+) m/z calculated for [M]+ [C7H6PS2]+: 184.9649, found: 184.9650. IR νmax (cm-1): 

1582 (w), 1462 (m), 1383 (w), 1312 (w), 1099 (br, s), 966 (br, m), 872 (w) and 810 (s). Melting 

point 104–106 °C. 

5-methylbenzo-1,3,2-dithiarsenium tetrachloroaluminate (14a) 

Compound 14a was synthesised according to general procedure 6 

as a red-yellow solid using dithiarsole 3 (66 mg, 0.25 mmol, 
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1.0 equiv) and aluminium trichloride (33 mg, 0.25 mmol, 1.0 equiv). Yield: 89 mg, 0.22 mmol, 

89%. 

1H NMR (500 MHz, C6D6, 295 K) δ/ppm: 7.03 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 6.88 (s, 1H, Ar–H), 

6.47 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 1.82 (s, 3H, CH3). 13C{1H} NMR (126 MHz, C6D6, 295 K) δ/ppm: 

141.1 (1C, Ar), 137.6 (1C, Ar), 136.5 (1C, Ar), 127.5 (1C, Ar), 127.4 (1C, Ar), 126.6 (1C, Ar), 

20.4 (1C, CH3). 27Al NMR (130 MHz, C6D6, 295 K) δ/ppm: 104.6 (s, AlCl4
-). IR νmax (cm-1): 1638 

(w), 1456 (w), 1115 (w), 808 (s) and 484 (s). HRMS (EI+) m/z calculated for [M]+ [C7H6S2As]+: 

228.9121, found: 228.9131. Melting point 108–110 °C. 

5-methylbenzo-1,3,2-dithiarsenium tetrachlorogalate (14b) 

Compound 14b was synthesised according to general procedure 

6 as a red-yellow solid using dithiarsole 3 (61 mg, 0.23 mmol, 1.0 

equiv) and aluminium trichloride (40 mg, 0.23 mmol, 1.0 equiv). Yield: 83 mg, 0.19 mmol, 

82%. 

1H NMR (500 MHz, C6D5Br, 295 K) δ/ppm: 7.03 (d, 3JHH = 8.5 Hz,1H, Ar–H), 6.81 (s, 1H, Ar–H), 

6.52 (dd, 3JHH = 8.5 Hz, 4JHH = 1.0 Hz, 1H, Ar–H), 1.61 (s, 1H, Ar–H). 13C{1H} NMR (126 MHz, 

C6D5Br, 295 K) δ/ppm: 151.8 (1C, Ar), 148.7 (1C, Ar), 140.3 (1C, Ar), 130.3 (1C, Ar), 127.6 (1C, 

Ar), 127.3 (1C, Ar), 20.7 (1C, CH3). IR νmax (cm-1): 1585 (s), 1528 (s), 1444 (s), 1371 (s), 1256 

(s), 1101 (s), 808 (s), 750 (s), 689 (s), 538 (w) and 432 (s). HRMS (EI+) m/z calculated for [M]+ 

[C7H6S2As]+: 228.9121, found 228.9132. Melting point 116–120 °C. 

General Procedure 7. Compound 6a (1.0 equiv) or 7 (1.0 equiv) was dissolved in CH2Cl2 (2 mL) 

and added to a stirred solution of the halide abstracting reagent (1.0 equiv) in CH2Cl2 (2 mL). 

The red/ orange solution was stirred for 2 hours at ambient temperature, after which the 

solvent was removed in vacuo to afford a red-yellow solid. The solid was washed with 

pentane (3 × 2 mL) and further dried in vacuo to afford the products 15a–c and 16a–c. Single 

crystals suitable for X-ray diffraction were grown from a concentrated solution of CH2Cl2 

with a few drops of pentane and cooled to −40 °C. 

1,3-diisopropyl-benzodiphosphenium tetrachloroaluminate (15a) 

Compound 15a was synthesised according to general procedure 7 

using diazaphosphole 6a (100 mg, 0.39 mmol, 1.0 equiv) and 

aluminium trichloride (52 mg, 0.39 mmol, 1.0 equiv). Yield: 121 mg, 

0.31 mmol, 80%. 
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1H NMR (500 MHz, C6D5Br, 295 K) δ/ppm: 7.30 (br m, 2H, Ar–H), 7.22 (br m, 2H, Ar–H), 4.45 

(sept, 3JHH = 6.2 Hz, 2H, CH(CH3)2), 1.50 (d, 3JHH = 6.2 Hz, 12H, CH(CH3)2). 13C{1H} NMR (126 

MHz, C6D5Br, 295 K) δ/ppm: 129.8 (2C, Ar), 118.8 (2C, Ar), 105.4 (2C, Ar), 43.7 (2C, CH(CH3)2, 

15.0 (4C, CH(CH3)2). 31P{1H} NMR (202 MHz, C6D5Br, 295 K) δ/ppm: 207.7 (s, 1P). 27Al NMR 

(130 MHz, C6D5Br, 295 K) δ/ppm: 103.8 (s, 1 Al, AlCl4-). IR νmax (cm–1): 2982 (m), 1585 (w), 

1466 (m), 1393 (m), 1153 (m), 1008 (w), 930 (w), 748 (s, sh) and 496 (m). HRMS (EI+) m/z 

calculated for [M]+ [C12H18N2P]+: 221.1208, found: 221.1209. Melting point 101–104 °C. 

1,3-diisopropyl-benzodiphosphenium tetrachlorogallate (15b) 

Compound 15b was synthesised according to general procedure 7 

using diazaphosphole 6a (100 mg, 0.39 mmol, 1.0 equiv) and gallium 

trichloride (69 mg, 0.39 mmol, 1.0 equiv). Yield: 143 mg, 0.33 mmol, 

85%. 

1H NMR (500 MHz, C6D5Br, 295 K) δ/ppm: 7.34 (br m, 2H, Ar–H), 7.24 (br m, 2H, Ar–H), 4.49 

(sept, 3JHH = 6.3 Hz, 2H, CH(CH3)2), 1.51 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2). 13C{1H} NMR 

(126 MHz, C6D5Br, 295 K) δ/ppm: 129.9 (2C, Ar), 119.3 (2C, Ar), 105.6 (2C, Ar), 44.0 (2C, 

CH(CH3)2, 15.2 (4C, CH(CH3)2). 31P{1H} NMR (202 MHz, C6D5Br, 295 K) δ/ppm: 212.9 (s, 1P). 

IR νmax (cm–1): 2985 (w), 1566 (w), 1472(w), 1395 (w), 1346 (w), 1153 (m), 1115 (m), 989 (m) 

and 746 (s, sh). HRMS (EI+) m/z calculated for [M]+ [C12H18N2P]+: 221.1208, found: 221.1205. 

Melting point 96–99 °C. 

1,3-diisopropyl-benzodiphosphenium triflate (15c) 

Compound 15c was synthesised according to general procedure 7 using 

diazaphosphole 6a (70 mg, 0.27 mmol, 1.0 equiv) and trimethylsilyl 

trifluoromethanesulfonate (73 mg, 0.33 mmol, 1.2 equiv). Yield: 88 mg, 

0.24 mmol, 87%.  

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.71–7.69 (m, 2H, Ar–H), 7.63–7.60 (m, 2H, Ar–H), 

4.98 (sept, 3JHH = 6.6 Hz, 2H, CH(CH3)2), 1.87 (dd, 3JHH = 6.6 Hz, 4JPH = 1.3 Hz, 12H, CH(CH3)2). 

13C{1H} NMR (101 MHz, CDCl3, 295 K) δ/ppm: 138.6 (d, 2JPC = 6.0 Hz, 2C, Ar), 127.2 (2C, Ar), 

114.3 (2C, Ar), 52.6 (d, 2JPC = 10.8 Hz, 2C, CH(CH3)2), 23.9 (4C, CH(CH3)2). 31P{1H} NMR (162 

MHz, CDCl3, 295 K) δ/ppm: 216.0 (s, 1P). 19F{1H} NMR (376 MHz, CDCl3, 295 K) δ/ppm: -78.4 

(s, 3F, O3SCF3
-). IR νmax (cm–1): 2992 (w), 1474 (w), 1395 (w), 1377 (w), 1246 (s), 1151 (s), 

1022 (s), 754 (s), 627 (s), 571 (s), 513 (s), 496 (s) and 417 (m). HRMS (EI+) m/z calculated for 

[M]+ [C12H18N2P]+: 221.1208, found: 221.1207. Melting point 108–112 °C. 
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1,3-diisopropyl-benzodiarsenium tetrachloroaluminate (16a) 

Compound 16a was synthesised according to general procedure 7 

using diazarsole 7 (100 mg, 0.33 mmol, 1.0 equiv) and aluminium 

trichloride (44 mg, 0.33 mmol, 1.0 equiv). Yield: 124 mg, 0.29 mmol, 

87%. 

1H NMR (500 MHz, C6D5Br, 295 K) δ/ppm: 7.19 (br m, 2H, Ar-H), 7.04 (br m, 2H, Ar-H), 4.43 

(br m, 2H, CH(CH3)2), 1.49 (d, 3JHH = 6.2 Hz, 12H, CH(CH3)2). 13C{1H} NMR (126 MHz, C6D5Br, 

295 K) δ/ppm: 132.4 (2C, Ar), 117.1 (2C, Ar), 105.0 (2C, Ar), 43.8 (2C, CH(CH3)2, 15.9 (4C, 

CH(CH3)2). 27Al NMR (130 MHz, C6D5Br, 295 K) δ/ppm: 104.5 (s, 1 Al, AlCl4-). IR νmax (cm–1): 

2992 (w), 1568 (w), 1393 (w), 1172 (w), 1153 (w), 989 (w), 746 (m) and 467 (s, br). HRMS 

(ES+) m/z calculated for [M]+ [C12H18AsN2]+: 265.0686, found: 265.0692. Melting point 105–

109 °C. 

1,3-diisopropyl-benzodiarsenium tetrachlorogallate (16b)  

Compound 16b was synthesised according to general procedure 7 

using diazarsole 7 (100 mg, 0.33 mmol, 1.0 equiv) and gallium 

trichloride (8 mg, 0.33 mmol, 1.0 equiv). Yield: 132 mg, 0.28 mmol, 

84%. 

1H NMR (500 MHz, C6D5Br, 295 K) δ/ppm: 7.26 (m, 2H, Ar-H), 7.11 (m, 2H, Ar-H), 4.54 (sept, 

3JHH = 6.3 Hz, 2H, CH(CH3)2), 1.51 (d, 3JHH = 6.3 Hz, 12H, CH(CH3)2). 13C{1H} NMR (126 MHz, 

C6D5Br, 295 K) δ/ppm: 133.1 (2C, Ar), 118.7 (2C, Ar), 105.7 (2C, Ar), 45.0 (2C, CH(CH3)2, 16.4 

(4C, CH(CH3)2). IR νmax (cm–1): 2980 (m), 1566 (w), 1462 (w), 1393 (w), 1375 (w), 1269 (w), 

1153 (m), 949 (w, br) and 746 (m). HRMS (ES+) m/z calculated for [M]+ [C12H18AsN2]+: 

265.0686, found: 265.0692; m/z calculated for [M]− [GaCl4]−: 208.8010, found: 208.8014. 

Melting point 80–82 °C. 

1,3-diisopropyl-benzodiphosphenium triflate (16c)  

Compound 16c was synthesised according to general procedure 7 using 

diazarsole 7 (100 mg, 0.33 mmol, 1.0 equiv) and trimethylsilyl 

trifluoromethanesulfonate (88 mg, 0.40 mmol, 1.2 equiv). Yield: 

112 mg, 0.27 mmol, 82%. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.59 (br m, 2H, Ar-H), 7.53 (br m, 2H, Ar-H), 5.06 

(sept, 3JHH = 6.2 Hz, 2H, CH(CH3)2), 1.90 (d, 3JHH = 6.2 Hz, 12 H, CH(CH3)2). 13C{1H} NMR 

(126 MHz, CDCl3, 295 K) δ/ppm: 141.4 (2C, Ar), 126.4 (2C, Ar), 114.3 (2C, Ar), 53.4 (2C, 
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CH(CH3)2, 24.8 (4C, CH(CH3)2). 19F NMR (471 MHz, CDCl3, 295 K) δ/ppm: −78.1 (s, 3F, 

O3SCF3
– ). IR νmax (cm–1): 2988 (w), 1466 (w), 1393 (w), 1248 (s), 1144 (s), 1024 (s), 766 (m), 

633 (s), 571 (m) and 515 (m). HRMS (ES+) m/z calculated for [M]+ [C12H18AsN2]+: 265.0686, 

found: 265.0689; m/z calculated for [M]− [CF3O3S]−: 148.9520, found: 148.9524. Melting 

point 108–112 °C. 

6.3.3 Synthesis of dimeric species 

1,3-diisopropyl-benzodiazaphosphoryl dimer (17) 

The diazaphosphole 6a (300 mg, 1.17 mmol, 1.0 equiv) was 

dissolved in THF (5 mL) and magnesium turnings (43 mg, 

1.76 mmol, 1.5 equiv) were added. A crystal of iodine was 

added to initiate the reaction, which was then vigorously 

stirred for 24 hours. The resulting orange solution was removed in vacuo and CH2Cl2 (5 mL) 

was added, after which the solution was filtered twice through Celite to remove any traces 

of magnesium chloride. The solvent was again removed in vacuo and the resulting powder 

was washed with pentane (3 × 2 mL) and dried in vacuo to give the pure product as a solid 

yellow/orange powder. Yield: 404 mg, 0.91 mmol, 78%. Single crystals suitable for X-ray 

diffraction were grown from a saturated solution of CH2Cl2 with a few drops of pentane and 

cooled to −40 °C. 

1H NMR (400 MHz, C6D6, 295 K) δ/ppm: 6.98−6.96 (m, 4H, Ar-H), 6.74−6.72 (m, 4H, Ar-H), 

3.63 (sept, 3JHH = 6.5 Hz, 4H, CH(CH3)2), 1.44 (d, 3JHH = 6.5 Hz, 12H, CH(CH3)2) and 1.05 (d, 3JHH 

= 6.5 Hz, 12H, CH(CH3)2). 13C{1H} NMR (101 MHz, C6D6, 295 K) δ/ppm: 144.7 (4C, Ar), 120.3 

(4C, Ar), 113.3 (4C, Ar), 50.2 (4C, CH(CH3)2), 23.8 (4C, CH(CH3)2), 21.4 (4C, CH(CH3)2). 31P{1H} 

NMR (162 MHz, C6D6, 295 K) δ/ppm: 87.2 (s, 2P). IR νmax (cm–1): 2978 (m), 1471 (m), 1377 

(m), 1248 (m), 1157 (m, br), 1028 (w), 878 (m), 731 (m), 634 (m) and 544 (m). HRMS (EI+) 

m/z calculated for [M]+ [C12H18N2P]+: 221.1208, found: 221.1211. Melting point 142–146 °C. 

 

2-chloro-1,3-diisopropyl-benzodiazarsole (18) 

 

The diazarsole 7 (41 mg, 0.14 mmol, 1.0 equiv) was dissolved in THF (2 mL) 

and magnesium turnings (5 mg, 0.21 mmol, 1.5 equiv) were added. A 

crystal of iodine was added to initiate the reaction, which was then 

vigorously stirred for 24 hours. The resulting solution was removed in 

vacuo and CH2Cl2 (5 mL) was added, after which the solution was filtered twice through 

Celite to remove any traces of magnesium chloride. The solvent was again removed in vacuo 
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and the resulting powder was washed with pentane (3 × 2 mL) and dried in vacuo to give 

the pure product as a solid dark red/black powder. Yield: 33 mg, 0.08 mmol, 60%. Single 

crystals suitable for X-ray diffraction were grown from a saturated solution of CH2Cl2 with a 

few drops of pentane and cooled to −40 °C. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.12 (s, 4H, Ar-H), 4.58 (sept, 3JHH = 5.9 Hz, 2H, 

CH(CH3)2), 1.74 (d, 3JHH = 5.9 Hz, 12H, CH(CH3)2). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 

139.6 (2C, Ar), 121.6 (2C, Ar), 112.5 (2C, Ar), 50.0 (2C, CH(CH3)2) and 22.2 (4C, CH(CH3)2).  

IR νmax (cm–1): 2970 (w), 1473 (m), 1389 (m), 1294 (m), 1260 (m), 1153 (m), 1018 (w), 995 

(w), 889(w), 739 (m) and 552 (w). HRMS (ES+) m/z calculated for [M]+ [C12H18AsN2]+: 

265.0686, found: 265.0675. Melting point 114–116 °C. 

6.3.4 Photophysical studies 

UV−vis studies were performed on a Shimadzu UV-1800 spectrophotometer with deaerated 

chloroform or acetonitrile solutions (1 × 10−5 M) as stated. Photophysical data were obtained 

on a JobinYvon-Horiba Fluorolog spectrometer fitted with a JY TBX picosecond 

photodetection module with chloroform or acetonitrile solutions as stated. Emission spectra 

were uncorrected, and excitation spectra were instrument corrected. The pulsed source was 

a Nano-LED configured for 295 nm output operating at 1 MHz. Luminescence lifetime 

profiles were obtained using the JobinYvon-Horiba FluoroHub single photon counting 

module, and the data fits yielded the lifetime values using the provided DAS6 deconvolution 

software. Quantum yield measurements were obtained on aerated solutions of the 

compounds using anthracene in deaerated ethanol as a standard (Φ = 0.27).1 

6.3.5 Electron paramagnetic resonance (EPR) studies 

The continuous wave (CW) X-band EPR measurements were performed on a Bruker EMX 

spectrometer utilising an ER4119HS resonator, using 100 kHz field modulation, 1.0 mW 

microwave power, and <1 G modulation amplitude, at 298 K or 350 K. Simulations of the 

EPR spectra were performed using the Easyspin software package running within the 

MathWorks MatLab environment.2 

6.3.6 Computational studies 

For theoretical EPR studies, geometry optimization of the C6H4N2(iPr)2P• radical was 

performed using the Perdew−Burke−Ernzerhof UPBE0 hybrid functional3,4 and Pople split 

valence basis set 6-31+G(2d,p)5 on the graphical interface WebMO computational platform, 

which employed the Gaussian 09 package.6 EPR simulations and spin charge density DFT 

calculations were performed in the ORCA package v4.07 and used the PBE0 functional with 
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def2-TZVP basis set on all atoms.8 Spin−orbit coupling effects were accounted for using a 

mean field (SOMF(1X)) approach.9 

6.3.7 Gutmann-Beckett Lewis Acidity Measurements 

General Procedure 8. The phosphenium/arsenium cation (1.0 equiv) was dissolved in CDCl3 

(0.5 mL) and was added to triethylphosphine oxide (0.6 equiv). A capillary containing PPh3 

in CDCl3 was added as a standard and the NMR tube was inverted several times. The 31P 

NMR chemical shift of the triphenylphosphine in CDCl3 was calibrated to δ = –5.21 ppm 

according to O. M. Demchuk et al.10 and the acceptor number was calculated according to 

M. A. Beckett et al.11 

Table 6.1: Gutmann-Beckett method Lewis acidity values. 

 

5-methylbenzo-1,3,2-dithiarsenium tetrachlorogalate (14b) 
According to general procedure 8, using 5-methylbenzo-1,3,2-dithiarsenium 

tetrachlorogalate 14b (44 mg, 0.1 mmol, 1.0 equiv) and triethylphosphine oxide (8 mg, 

0.06 mmol, 1.0 equiv). 31P NMR (162 MHz, CDCl3, 295 K) δ/ppm: 80.8 (m, 1P).  

 
1,3-diisopropyl-benzodiphosphenium triflate (15c) 
According to general procedure 8, using 1,3-diisopropyl-benzodiphosphenium triflate 15c 

(38 mg, 0.1 mmol, 1.0 equiv) and triethylphosphine oxide (8 mg, 0.06 mmol, 1.0 equiv).  

31P NMR (162 MHz, CDCl3, 295 K) δ/ppm: 56.9 (m, 1P).  

 

1,3-diisopropyl-benzodiarsenium triflate (16c) 
According to general procedure 8, using 1,3-diisopropyl-benzodiarsenium triflate 16c 

(43 mg, 0.1 mmol, 1.0 equiv) and triethylphosphine oxide (8 mg, 0.06 mmol, 1.0 equiv).  

31P NMR (162 MHz, CDCl3, 295 K) δ/ppm: 54.3 (m, 1P).  

 

 

 

 

Compound 
31P NMR chemical 

shift/ ppm 
Acceptor number 

Relative Lewis 
acidity/ % 

14b 80.8 88.2 100 

15c 56.9 35.1 40 

16c 54.3 29.4 33 

B(C6F5)3 76.0 78.1 89 
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Tris(pentafluorophenyl)borane 
According to general procedure 8, using tris(pentafluorophenyl)borane (20 mg, 0.04 mmol, 

1.0 equiv) and triethylphosphine oxide (3.1 mg, 0.02 mmol, 1.0 equiv). 31P NMR (162 MHz, 

CDCl3, 295 K) δ/ppm: 76.0 (s, 1P).  

6.3.8 HOHMED aromaticity calculations 

For the HOHMED calculations, the bond length values were either taken from the Heeney 

paper12 or from the paper ‘Typical Interatomic Distances: organic compounds’, by F. H. Allen 

and colleagues.13 In the cases of the P–S, P–N and As=N bonds, these values were not 

available and instead were taken by averaging a range of bond lengths from the Cambridge 

Structural Database (CSD).14  
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Table 6.2: P–S bond lengths from the CSD. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

CSD Code P–S/ Å 

DOYVUI 2.136 

ECIDOK 2.117 

EGEBAT 2.09 

JANDEK 2.108 

JUFREH 2.123 

SUQLEV 2.117 

VAFHIV 2.137 

QEMQOR 2.156 

TEKDUL 2.161 

QIHBER 2.179 

  

Average 2.132 
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Table 6.3: P–N bond lengths from the CSD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4: As=N bond lengths from the CSD. 

 

 

 

 

 

 

 

 

 

 

CSD Code P–N/ Å 

HEJFOU 1.736 

VAYSAS 1.771 

AGIVAO 1.662 

AJOMET 1.768 

AJUGUI 1.745 

ALIFAE 1.744 

ALIFEI 1.672 

AWEROJ 1.704 

AZUMAK 1.71 

BIQLIW 1.669 

  

Average 1.718 

CSD Code As=N/ Å 

KISXAM 1.785 

LASQUR 1.823 

TUNYOQ 1.707 

FALZAT01 1.733 

  

Average 1.762 
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Chapter 6.4 Experimental for Aldehyde Reduction Catalysis Using Dithia- and Diaza-

Derived Arsole Complexes 

6.4.1 Synthesis of arsenic pre-catalyst complexes  

2-(benzyloxy)-5-methylbenzo-1,3,2-dithiarsole (19) 

Compound 3 (200 mg, 0.76 mmol, 1.0 equiv) was dissolved in 

CH2Cl2 (5 mL) and with stirring, benzyl alcohol (82 mg, 0.76 mmol, 

1.0 equiv) followed by triethylamine (76 mg, 0.76 mmol, 1.0 equiv) were added dropwise. 

The reaction was left to stir at ambient temperature for 3 days. The solvent was then 

removed in vacuo and toluene (5 mL) was added. The solvent was passed through a plug of 

Celite to remove traces of ammonium salt, after which the solvent was again removed in 

vacuo to give the final product as a white solid. Yield: 140 mg, 0.43 mmol, 57%. Single 

crystals suitable for X-ray diffraction were grown from a saturated solution of CH2Cl2 cooled 

to −40 oC.  

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.45 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 7.39 (s, 1H, Ar–H), 

7.32–7.27 (m, 3H, Ar–H), 7.23 (d, 3JHH = 8.2 Hz, 2H, Ar–H), 6.97 (d, 3JHH = 8.2 Hz, 1H, Ar–H), 

4.34 (s, 2H, O–CH2), 2.36 (s, 3H, Ar–CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 140.1 

(Ar), 139.1 (Ar), 136.6 (Ar), 135.6 (Ar), 128.5 (Ar), 128.1 (Ar), 127.8 (Ar), 126.7 (Ar), 126.4 

(Ar), 125.6 (Ar), 67.7 (1C, Ar–CH2), 20.8 (1C, Ar–CH3). IR νmax (cm-1): 1456 (w), 1363 (w), 1007 

(m), 991 (m), 810 (m) and 731 (m). HRMS (EI+) m/z calculated for [M]+ [C14H13AsOS2]+: 

335.9624, found: 335.9629. Melting point: 79–82 °C.  

2-(benzyloxy)-1,3-diisopropyl-1,3,2-diazarsole (20) 

Compound 7 (140 mg, 0.47 mmol, 1.0 equiv) was dissolved in CH2Cl2 

(5 mL) and with stirring, benzyl alcohol (51 mg, 0.47 mmol, 1.0 equiv) 

followed by triethylamine (48 mg, 0.47 mmol, 1.0 equiv) were both 

added dropwise and the reaction was left to stir at ambient 

temperature for 3 days. The solvent was then removed in vacuo and toluene (2 mL) was 

added. The solvent was passed through a plug of Celite to remove traces of ammonium salt, 

after which the solvent was again removed in vacuo to give the final product as a red/orange 

viscous oil. Yield: 81 mg, 0.22 mmol, 43%. Single crystals suitable for X-ray diffraction were 

grown from a saturated solution of CH2Cl2 cooled to −40 oC. 

1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.27 (m, 2H, Ar–H), 7.21 (t, 3JHH = 7.3 Hz, 1H, Ar–H), 

7.16 (d, 3JHH = 7.2 Hz, 2H, Ar–H), 6.85–6.82 (m, 2H, Ar–H), 6.75–6.73 (m, 2H, Ar–H), 4.16 

(sept, 3JHH = 6.6 Hz, 2H, CH(CH3)2), 4.15 (s, 2H, O–CH2), 1.54 (d, 3JHH = 6.6 Hz, 6H, CH(CH3)2), 
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1.52 (d, 3JHH = 6.6 Hz, 6H, CH(CH3)2). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 141.0 (Ar), 

140.4 (Ar), 128.3 (Ar), 127.5 (Ar), 127.1 (Ar), 118.0 (Ar), 108.1 (Ar), 64.7 (1C, Ar–CH2), 47.4 

(2C, CH(CH3)2), 24.1 (2C, CH(CH3)2), 23.6 (2C, CH(CH3)2). IR νmax (cm-1): 2980 (m), 2884 (w), 

1483 (m), 1383 (m), 1277 (m), 1256 (m), 1157 (m), 1153 (m), 995 (m) and 727 (s). HRMS (EI+) 

m/z calculated for [M]+ [C19H25AsN2O]+: 372.1183, found: 372.1187.  

6.4.2 General experimental for hydroboration catalysis 

In a glove box under a dinitrogen atmosphere, three separate vials were charged with the 

arsenic catalyst (10, 5, 2 or 1 mol%), aldehyde (0.1 mmol, 1.0 equiv) and HBpin (12.8 mg, 

0.1 mmol, 1.0 equiv). By syringe, solvent (0.6 mL) was added to the vial containing HBpin, 

and the contents of all three vials were mixed at least twice. The solution was transferred 

to an NMR tube and multinuclear NMR spectra were acquired at 30 mins, 2 hr, 6 hr, 12 hr 

and 24 hrs. Product conversion was calculated from the 1H NMR spectrum by integrating the 

aldehyde signal and new resonance resulting from the hydride from HBpin.  

 6.4.3 Characterisation of hydroboration products 

4,4,5,5-tetramethyl-2-((4-(trifluoromethyl)benzyl)oxy)-1,3,2-dioxaborolane (21a) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

29.5 mg, 0.098 mmol, 98%. With pre-catalyst 15c: in situ NMR 

conversion: >95%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 

7.59 (d, 3JHH = 8.1 Hz, 2H, Ar–H), 7.46 (d, 3JHH = 8.1 Hz, 2H,  

Ar–H), 4.98 (s, 2H, Ar–(C)H2OBPin), 1.27 (s, 12H, CH3). 13C{1H} 

NMR (126 MHz, CDCl3, 295 K) δ/ppm: 143.4 (1C, Ar), 129.7 (q, 2JCF = 32.3 Hz, 1C, Ar), 126.7 

(2C, Ar), 125.4 (q, 3JCF = 3.8 Hz, 2C, Ar), 83.4 (2C, C(CH3)2), 66.0 (1C, Ar–(C)H2OBPin), 24.7 (4C, 

CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). 19F NMR (470 MHz, CDCl3, 

295 K) δ/ppm: −62.5 (s, 1F, Ar–CF3). Values in agreement with literature.15 

2-((4-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21b) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 24.5 mg, 

0.097 mmol, 97%. With pre-catalyst 15c: in situ NMR conversion: 

>95%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.33–7.30 (m, 2H, 

Ar–H), 7.01 (t, 3JHH = 8.8 Hz, 2H, Ar–H), 4.87 (s, 2H, Ar–(C)H2OBPin), 

1.26 (s, 12H, CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 162.3 (d, 1JCF = 245 Hz, 1C, 

Ar–F), 135.1 (d, 4JCF = 3.1 Hz, 1C, Ar), 128.8 (d, 3JCF = 8.1 Hz, 2C, Ar), 115.2 (d, 2JCF = 21.4 Hz, 

2C, Ar), 83.2 (1C, C(CH3)2), 66.2 (1C, Ar–(C)H2OBPin), 24.7 (4C, CH3). 11B NMR (160 MHz, 

CDCl3, 295 K) δ/ppm: 22.3 (s, 1B, BPin). 19F NMR (470 MHz, CDCl3, 295 K) δ/ppm: 19F NMR 
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(470 MHz, CDCl3, 295 K) δ/ppm: −115.3 – −115.4 (m, 1F, Ar–F). Values in agreement with 

literature.15 

2-((3-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21c) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 22.7 mg, 

0.090 mmol, 90%. With pre-catalyst 15c: in situ NMR conversion: 

>95%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.31–7.27 (m, 1H, 

Ar–H), 7.11–7.06 (m, 2H, Ar–H), 6.97–6.92 (m, 1H, Ar–H), 4.92 (s, 

2H, Ar–(C)H2OBPin), 1.27 (s, 12H, CH3). 13C{1H} NMR (126 MHz, 

CDCl3, 295 K) δ/ppm: 163.1 (d, 1JCF = 246 Hz, 1C, Ar–F), 142.0 (d, 3JCF = 7.3 Hz, 1C, Ar), 129.9 

(d, 3JCF = 8.2 Hz, 1C, Ar), 122.1 (d, 4JCF = 2.9 Hz, 1C, Ar), 114.3 (d, 2JCF = 21.1 Hz, 1C, Ar), 113.7 

(d, 2JCF = 22.0 Hz, 1C, Ar), 83.3 (2C, C(CH3)2), 66.1 (d, 4JCF = 1.9 Hz, 1C, Ar–(C)H2OBPin), 24.8 

(4C, CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). 19F NMR (470 MHz, 

CDCl3, 295 K) δ/ppm: -113.4 (s, 1F, Ar–F). Values in agreement with literature.16 

2-((2-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21d) 

 With pre-catalyst 20: in situ NMR conversion: >95%, yield: 23.9 mg, 

0.095 mmol, 95%. With pre-catalyst 15c: in situ NMR conversion: 

>95%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.38 (t, 3JHH = 7.5 Hz, 

1H, Ar–H), 7.20–7.16 (m, 1H, Ar–H), 7.05 (t, 3JHH = 7.5 Hz, 1H, Ar–H), 

6.96–6.92 (m, 1H, Ar–H), 4.94 (s, 2H, Ar–(C)H2OBPin), 1.20 (s, 12H, 

CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 160.3 (d, 1JCF = 247 Hz, 1C, Ar–F), 129.1 

(d, 3JCF = 8.0 Hz, 1C, Ar), 128.9 (d, 3JCF = 4.4 Hz, 1C, Ar), 128.4 (1C, Ar), 126.7 (d, 2JCF = 34.9 Hz, 

1C, Ar) 115.1 (d, 2JCF = 21.0 Hz, 1C, Ar), 83.2 (2C, C(CH3)2), 61.0 (d, 3JCF = 4.9 Hz, 1C,  

Ar–(C)H2OBPin), 24.7 (4C, CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). 

19F NMR (470 MHz, CDCl3, 295 K) δ/ppm: −119.2 (dt, 3JFH = 10.2 Hz, 4JFH = 6.9 Hz, 1F, Ar–F). 

Values in agreement with literature.16 

2-((2,6-difluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21e) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 25.0 mg, 

0.093 mmol, 93%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.31–7.27 

(m, 1H, Ar–H), 6.92–6.89 (m, 2H, Ar–H), 5.05 (s, 2H, Ar–(C)H2OBPin), 

1.31 (s, 12H, CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 160.3 

(dd, 1JCF = 251 Hz, 3JCF = 8.0 Hz, 2C, Ar–F), 130.2 (t, 3JCF = 10.4 Hz, 1C, Ar), 114.9 2 (t, 2JCF = 19.1 

Hz, 1C, Ar), 111.3 (dd, 2JCF = 20.1 Hz, 4JCF = 5.8 Hz, 2C, Ar), 83.2 (2C, C(CH3)2), 54.9 (t, 3JCF = 4.3 
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Hz, 1C, Ar–(C)H2OBPin), 24.7 (4C, CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 22.8 (s, 1B, 

BPin). 19F NMR (470 MHz, CDCl3, 295 K) δ/ppm: −115.3 (t, 3JFH = 6.7 Hz, 2F, Ar–F). HRMS (EI+) 

m/z calculated for [M]+ [C13H17BF2O3]+: 270.1239, found: 270.1242.  

4,4,5,5-tetramethyl-2-((perfluorophenyl)methoxy)-1,3,2-dioxaborolane (21f) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

31.9 mg, 0.098 mmol, 98%. 1H NMR (500 MHz, CDCl3, 295 K) 

δ/ppm: 5.00 (s, 2H, Ar–(C)H2OBPin), 1.27 (s, 12H, CH3). 13C{1H} 

NMR (126 MHz, CDCl3, 295 K) δ/ppm: 146.8–136.7 (m, Ar), 

128.5-127.0 (m, Ar), 112.4 (td, 2JCF = 17.8 Hz, 3JCF = 3.9 Hz), 83.7 (2C, 

C(CH3)2), 54.5 (1C, Ar–(C)H2OBPin), 24.8 (4C, CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 

22.4 (s, 1B, BPin). 19F NMR (470 MHz, CDCl3, 295 K) δ/ppm: −143.1 (dd, 3JFF = 22.2 Hz, 

4JFF = 8.7 Hz, 2F, o–F), −154.1 (t, 3JFF = 22.2 Hz, 1F, p–F), -162.3 (m, 2F, m–F). Values in 

agreement with literature.15 

 2-((4-bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21g) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

29.8 mg, 0.095 mmol, 95%. With pre-catalyst 15c: in situ NMR 

conversion: >95%.  1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.45 

(d, 3JHH = 8.6 Hz, 2H, Ar–H), 7.22 (d, 3JHH = 8.6 Hz, 2H, Ar–H), 4.87 

(s, 2H, Ar–(C)H2OBPin), 1.26 (s, 12H, CH3). 13C{1H} NMR 

(126 MHz, CDCl3, 295 K) δ/ppm: 138.5 (1C, Ar), 131.6 (2C, Ar), 128.6 (2C, Ar), 121.5 (1C, Ar), 

83.4 (2C, C(CH3)2), 66.2 (1C, Ar–(C)H2OBPin), 24.9 (4C, CH3). 11B NMR (160 MHz, CDCl3, 295 K) 

δ/ppm: 22.3 (s, 1B, BPin). Values in agreement with literature.15 

2-((2-bromobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21h) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 27.2 mg, 

0.087 mmol, 87%. 1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.53–7.50 

(m, 2H, Ar–H), 7.32 (td, 3JHH = 7.7 Hz, 4JHH = 1.2 Hz, 1H, Ar–H), 7.15–7.11 

(m, 2H, Ar–H), 4.98 (s, 2H, Ar–(C)H2OBPin), 1.28 (s, 12H, CH3). 13C{1H} 

NMR (101 MHz, CDCl3, 295 K) δ/ppm: 138.5 (1C, Ar), 132.4 (1C, Ar), 128.7 (1C, Ar), 127.9 

(1C, Ar), 127.5 (1C, Ar), 121.7 (1C, Ar), 83.3 (2C, C(CH3)2), 66.4 (1C, Ar–(C)H2OBPin), 24.8 (4C, 

CH3). 11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). Values in agreement with 

literature.15 
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2-((4-bromo-2-fluorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21i) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

31.9 mg, 0.097 mmol, 97%. 1H NMR (400 MHz, CDCl3, 295 K) 

δ/ppm: 7.30–7.27 (m, 1H, Ar–H), 7.23–7.20 (m, 1H, Ar–H), 7.16–

7.13 (m, 1H, Ar–H), 4.88 (s, 2H, Ar–(C)H2OBPin), 1.28 (s, 12H, CH3). 

13C{1H} NMR (101 MHz, CDCl3, 295 K) δ/ppm: 159.8 (d, 1JCF = 251 Hz, 1C, Ar–F), 129.9 (d, 

3JCF = 5.0 Hz, 1C, Ar), 127.3 (d, 4JCF = 3.7 Hz, 1C, Ar), 125.7 (d, 2JCF = 14.6 Hz, 1C, Ar), 121.3 (d, 

3JCF = 9.4 Hz, 1C, Ar), 118.7 (d, 2JCF = 24.3 Hz, 1C, Ar–F), 83.2 (2C, C(CH3)2), 60.4 (d, 3JCF = 4.8 

Hz, 1C, Ar–(C)H2OBPin), 24.6 (4C, CH3). 11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, 

BPin). 19F{1H} NMR (376 MHz, CDCl3, 295 K) δ/ppm: −116.3 (s, 1F, Ar–F). HRMS (EI+) m/z 

calculated for [M]+ [C13H17BBrFO3]+: 330.0438, found: 330.0446.  

2-((2-chlorobenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21j) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 22.8 mg, 

0.085 mmol, 85%. 1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.53–7.51 

(m, 1H, Ar–H), 7.35–7.31 (m, 1H, Ar–H), 7.27–7.25 (m, 1H, Ar–H), 

7.27–7.25 (m, 1H, Ar–H), 7.23–7.18 (m, 1H, Ar–H), 5.03 (s, 2H,  

Ar–(C)H2OBPin), 1.28 (s, 12H, CH3). 13C{1H} NMR (101 MHz, CDCl3, 295 K) δ/ppm: 136.9 (1C, 

Ar), 132.0 (1C, Ar), 129.1 (1C, Ar), 128.5 (1C, Ar), 127.8 (1C, Ar), 126.9 (1C, Ar), 83.3 (2C, 

C(CH3)2), 64.2 (1C, Ar–(C)H2OBPin), 24.7 (4C, CH3). 11B NMR (128 MHz, CDCl3, 295 K) 

δ/ppm: 22.4 (s, 1B, BPin). Values in agreement with literature.16 

2-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile (21k) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 22.8 mg, 

0.088 mmol, 88%. 1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.64–7.58 

(m, 3H, Ar–H), 7.38–7.34 (m, 1H, Ar–H), 5.14 (s, 2H, Ar–(C)H2OBPin), 

1.28 (s, 12H, CH3). 13C{1H} NMR (101 MHz, CDCl3, 295 K) δ/ppm: 142.9 

(1C, Ar), 133.1 (1C, Ar), 132.7 (1C, Ar), 127.9 (1C, Ar), 127.5 (1C, Ar), 117.2 (1C, CN), 110.4 

(1C, Ar), 83.5 (2C, C(CH3)2), 64.6 (1C, Ar–(C)H2OBPin), 24.8 (4C, CH3). 11B NMR (128 MHz, 

CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). Values in agreement with literature.15 
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2-(benzyloxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21l) 

 With pre-catalyst 20: in situ NMR conversion: >95%, yield: 20.3 mg, 

0.087 mmol, 87%. With pre-catalyst 15c: in situ NMR conversion: 

>95%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.36–7.32 (m, 4H,  

Ar–H), 7.28–7.25 (m, 1H, Ar–H), 4.93 (s, 2H, Ar–(C)H2OBPin), 1.27 (s, 

12H, CH3). 13C{1H} NMR (126 MHz, CDCl3, 295 K) δ/ppm: 139.4 (1C, Ar), 

128.4 (2C, Ar), 127.5 (1C, Ar), 126.9 (2C, Ar), 83.1 (2C, C(CH3)2), 66.8 (1C, Ar–(C)H2OBPin), 

24.8 (4C, CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 22.3 (s, 1B, BPin). Values in 

agreement with literature.15 

4,4,5,5-tetramethyl-2-((4-methylbenzyl)oxy)-1,3,2-dioxaborolane (21m) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 20.8 mg, 

0.084 mmol, 84%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 7.24 (d, 

3JHH = 7.9 Hz, 2H, Ar–H), 7.14 (d, 3JHH = 7.9 Hz, 2H, Ar–H), 4.89 (s, 2H, 

Ar–(C)H2OBPin), 2.34 (s, 3H, Ar–CH3), 1.27 (s, 12H, CH3). 13C{1H} 

NMR (126 MHz, CDCl3, 295 K) δ/ppm: 137.1 (1C, Ar), 136.4 (1C, Ar), 

129.1 (2C, Ar), 127.0 (2C, Ar), 83.0 (2C, C(CH3)2), 66.7 (1C, Ar–(C)H2OBPin), 24.7 (4C, CH3), 

21.3 (1C, Ar–CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 22.3 (s, 1B, BPin). Values in 

agreement with literature.15 

4,4,5,5-tetramethyl-2-((2-methylbenzyl)oxy)-1,3,2-dioxaborolane (21n) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 22.1 mg, 

0.089 mmol, 89%. 1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.41–7.39 

(m, 1H, Ar–H), 7.20–7.13 (m, 3H, Ar–H), 4.93 (s, 2H, Ar–(C)H2OBPin), 

2.31 (s, 3H, Ar–CH3), 1.27 (s, 12H, CH3). 13C{1H} NMR (101 MHz, CDCl3, 

295 K) δ/ppm: 137.3 (1C, Ar), 135.7 (1C, Ar), 130.1 (1C, Ar), 127.6 (1C, Ar), 127.3 (1C, Ar), 

126.0 (1C, Ar), 83.1 (2C, C(CH3)2), 65.1 (1C, Ar–(C)H2OBPin), 24.8 (4C, CH3), 18.8 (1C, Ar–CH3). 

11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 22.3 (s, 1B, BPin). Values in agreement with 

literature.17 

4,4,5,5-tetramethyl-2-((2,4,6-trimethylbenzyl)oxy)-1,3,2-dioxaborolane (21o) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 24.9 mg, 

0.090 mmol, 90%. 1H NMR (500 MHz, CDCl3, 295 K) δ/ppm: 6.84 (s, 

2H, Ar–H), 4.96 (s, 2H, Ar–(C)H2OBPin), 2.39 (s, 6H, Ar–CH3), 2.26 

(s, 3H, Ar–CH3), 1.27 (s, 12H, CH3). 13C{1H} NMR (126 MHz, CDCl3, 
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295 K) δ/ppm: 137.9 (2C, Ar), 137.7 (1C, Ar), 132.3 (1C, Ar), 129.0 (2C, Ar), 82.9 (2C, C(CH3)2), 

61.3 (1C, Ar–(C)H2OBPin), 24.8 (4C, CH3), 21.1 (1C, Ar–CH3), 19.5 (2C, Ar–CH3). 11B NMR (160 

MHz, CDCl3, 295 K) δ/ppm: 22.2 (s, 1B, BPin). Values in agreement with literature.15 

4,4,5,5-tetramethyl-2-(naphthalen-1-ylmethoxy)-1,3,2-dioxaborolane (21p) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 23.6 mg, 0.083 

mmol, 83%. 1H NMR (400 MHz, CDCl3, 295 K) δ/ppm:8.06–8.04 (m, 1H, Ar–

H), 7.88–7.86 (m, 1H, Ar–H), 7.80 (d, 3JHH = 8.2 Hz, 1H, Ar–H), 7.59 (dd, 

3JHH = 7.0 Hz, 4JHH = 1.0 Hz, 1H, Ar–H), 7.54–7.49 (m, 2H, Ar–H), 7.47–7.43 (m, 

1H, Ar–H), 5.42 (s, 2H, Ar–(C)H2OBPin), 1.29 (s, 12H, CH3). 13C{1H} NMR (101 

MHz, CDCl3, 295 K) δ/ppm: 134.8 (1C, Ar), 133.7 (1C, Ar), 131.1 (1C, Ar), 128.7 (1C, Ar), 128.3 

(1C, Ar), 126.2 (1C, Ar), 125.8 (1C, Ar), 125.5 (1C, Ar), 125.0 (1C, Ar), 123.6 (1C, Ar), 83.2 (2C, 

C(CH3)2), 65.1 (1C, Ar–(C)H2OBPin), 24.8 (4C, CH3). 11B NMR (128 MHz, CDCl3, 295 K) 

δ/ppm: 22.4 (s, 1B, BPin). Values in agreement with literature.18 

4,4,5,5-tetramethyl-2-(naphthalen-2-ylmethoxy)-1,3,2-dioxaborolane (21q) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

25.6 mg, 0.090 mmol, 90%. With pre-catalyst 15c: in situ NMR 

conversion: >95%. 1H NMR (400 MHz, CDCl3, 295 K) 

δ/ppm: 7.84–7.81 (m, 4H, Ar–H), 7.48–7.44 (m, 3H, Ar–H), 5.10 

(s, 2H, Ar–(C)H2OBPin), 1.29 (s, 12H, CH3). 13C{1H} NMR (101 

MHz, CDCl3, 295 K) δ/ppm: 136.8 (1C, Ar), 133.5 (1C, Ar), 132.9 (1C, Ar), 128.1 (1C, Ar), 128.1 

(1C, Ar), 127.8 (1C, Ar), 126.2 (1C, Ar), 125.8 (1C, Ar), 125.3 (1C, Ar), 125.0 (1C, Ar), 83.2 (2C, 

C(CH3)2), 66.9 (1C, Ar–(C)H2OBPin), 24.8 (4C, CH3). 11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 

22.4 (s, 1B, BPin). Values in agreement with literature.15 

2-((4-methoxybenzyl)oxy)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21r) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

24.3 mg, 0.092 mmol, 92%. 1H NMR (400 MHz, CDCl3, 295 K) 

δ/ppm: 7.28 (d, 3JHH = 8.6 Hz, 2H, Ar–H), 6.86 (d, 3JHH = 8.6 Hz, 

2H, Ar–H), 4.85 (s, 2H, Ar–(C)H2OBPin), 3.80 (s, 3H, O–CH3), 1.26 

(s, 12H, CH3). 13C{1H} NMR (101 MHz, CDCl3, 295 K) δ/ppm: 159.1 (1C, Ar), 131.6 (1C, Ar), 

128.6 (2C, Ar), 113.8 (2C, Ar), 83.0 (2C, C(CH3)2), 66.6 (1C, Ar–(C)H2OBPin), 55.4 (3C, O–CH3), 

24.8 (4C, CH3). 11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 22.3 (s, 1B, BPin). Values in 

agreement with literature.15 
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1,4-bis((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)benzene (21s) 

With pre-catalyst 20: in situ NMR conversion: >95%, yield: 31.9 mg, 

0.089 mmol, 89%. With pre-catalyst 15c: in situ NMR conversion: 

>95%. 1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.31 (s, 4H, Ar–H), 

4.91 (s, 4H, Ar–(C)H2OBPin), 1.26 (s, 24H, CH3). 13C{1H} NMR 

(101 MHz, CDCl3, 295 K) δ/ppm: 138.5 (2C, Ar), 126.8 (2C, Ar), 

83.1(4C, C(CH3)2), 66.6 (2C, Ar–(C)H2OBPin), 24.8 (8C, CH3). 11B NMR 

(128 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). Values in 

agreement with literature.19  

2-(4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)phenyl)pyridine (21t) 

 With pre-catalyst 20: in situ NMR conversion: >95%, yield: 

31.1 mg, 0.092 mmol, 92%. 1H NMR (400 MHz, CDCl3, 295 K) 

δ/ppm: 8.70–8.68 (m, 1H, Ar–H), 7.97 (d, 3JHH = 8.4 Hz, 2H,  

Ar–H), 7.74–7.72 (m, 2H, Ar–H), 7.46 (d, 3JHH = 8.6 Hz, 2H,  

Ar–H), 7.23–7.20 (m, 1H, Ar–H), 4.99 (s, 2H, Ar–(C)H2OBPin), 

1.27 (s, 12H, CH3). 13C{1H} NMR (101 MHz, CDCl3, 295 K) 

δ/ppm: 157.3 (1C, Ar), 149.8 (1C, Ar), 140.2 (1C, Ar), 138.6 (1C, Ar), 136.9 (1C, Ar), 127.1 (2C, 

Ar), 127.0 (2C, Ar), 122.2 (1C, Ar), 120.6 (1C, Ar), 83.2 (2C, C(CH3)2), 66.5 (1C, Ar–(C)H2OBPin), 

24.8 (4C, CH3). 11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 22.4 (s, 1B, BPin). HRMS (EI+) m/z 

calculated for [M]+ [C18H22BNO3]+: 311.1693, found: 311.1699. 
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Chapter 6.5 Experimental for Aldehyde Reduction Catalysis Using Dithia-, Diaza- and 

Dioxa-Derived Phosphole Complexes 

6.5.1 Synthesis of phosphorus pre-catalyst complexes 

General Procedure 9. To a solution of 2-chloro-5-methylbenzo-1,3,2-dithiaphosphole (1a) 

(1.0 equiv) in CH2Cl2 (5 mL), benzyl alcohol (1.0 equiv) or neopentyl alcohol (1.0 equiv) and 

triethylamine (1.0 equiv) were added dropwise. The reaction was allowed to stir at ambient 

temperature for 24 hours, after which the solvent was removed in vacuo. Toluene (2 mL) 

was subsequently added and the resulting solution was filtered through a plug of Celite to 

remove traces of ammonium salt, after which the solvent was again removed in vacuo to 

give the final product as a colourless oil.  

2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole (24a) 

Compound 24a was synthesised to general procedure 9 using 1a 

(199 mg, 0.91 mmol, 1.0 equiv), benzyl alcohol (97 mg, 

0.91 mmol, 1.0 equiv) and triethylamine (1.27 mL, 0.91 mmol, 1.0 equiv). Yield: 167 mg, 

0.57 mmol, 63%.  

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.50 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 7.44 (s, 1H, Ar–H), 

7.28–7.25 (m, 3H, Ar–H), 7.16–7.14 (m, 2H, Ar–H), 7.02 (ddd, 3JHH = 8.1 Hz, 4JHH = 1.7 Hz,  

5JPH = 0.7 Hz, 1H, Ar–H), 4.22 (d, 3JPH = 6.5 Hz, 2H, OCH2), 2.36 (s, 3H, Ar–CH3). 13C{1H} NMR 

(101 MHz, CDCl3, 295 K) δ/ppm: 139.7 (d, 3JPC = 3.0 Hz, 1C, Ar), 136.8 (3JPC = 2.5 Hz, 1C, Ar), 

136.2 (3JPC = 3.2 Hz, 1C, Ar), 136.1 (1C, Ar), 129.2 (1C, Ar), 128.5 (1C, Ar), 128.2 (1C, Ar),  

128.0 (1C, Ar), 127.1 (1C, Ar), 125.4 (1C, Ar), 124.9 (d, 2JPC = 6.4 Hz, 1C, Ar), 124.1 (d,  

2JPC = 6.3 Hz, 1C, Ar), 67.9 (d, 2JPC = 9.1 Hz, 1C, Ar–CH2) 21.0 (1C, Ar–CH3). 31P NMR (162 MHz, 

CDCl3, 295 K) δ/ppm: 124.5 (t, 3JPH = 6.5 Hz, 1P). IR νmax (cm-1): 1456 (m), 1364 (sh), 1217 (w), 

1115 (w), 955 (s), 910 (sh), 725 (m), 689 (m) and 586 (w). HRMS (EI+) m/z calculated for [M]+ 

[C15H13OPS2]+: 292.0145, found: 292.0148. 

5-methyl-2-(neopentyloxy)benzo-1,3,2-dithiaphosphole (24b) 

Compound 24b was synthesised according to general procedure 

9 using 1a (223 mg, 1.01 mmol, 1.0 equiv), neopentyl alcohol (89 

mg, 1.01 mmol, 1.0 equiv) and triethylamine (1.40 mL, 

1.01 mmol, 1.0 equiv). Yield: 179 mg, 0.66 mmol, 65%. 

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.46 (d, 3JHH = 8.1 Hz, 1H, Ar–H), 7.40 (s, 1H, Ar–H), 

6.99 (ddd, 3JHH = 8.1 Hz, 4JHH = 1.2 Hz, 5JPH = 0.5 Hz, 1H, Ar–H), 2.85 (d, 3JPH = 6.1 Hz, 2H, OCH2), 
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2.36 (s, 3H, Ar–CH3), 0.77 (s, 9H, CH2(CH3)3). 13C{1H} NMR (101 MHz, CDCl3, 295 K) δ/ppm: 

139.9 (d, 3JPC = 2.9 Hz, 1C, Ar), 136.4 (d, 3JPC = 3.2 Hz, 1C, Ar), 135.8 (1C, Ar), 126.9 (1C, Ar), 

124.8 (d, 2JPC = 6.5 Hz, 1C, Ar), 123.9 (d, 2JPC = 6.4 Hz, 1C, Ar), 75.4 (d, 2JPC = 9.9 Hz, 1C,  

C(CH3)–CH2), 31.6 (d, 3JPC = 2.3 Hz, 1C, C(CH3)3–CH2), 26.5 (3C, C(CH3)3–CH2), 21.0 (1C,  

Ar–CH3). 31P NMR (162 MHz, CDCl3, 295 K) δ/ppm: 123.6 (t, 3JPH = 6.1 Hz, 1P). IR νmax (cm-1): 

1456 (m), 1364 (sh), 1258 (w), 1217 (w), 1117 (w), 972 (s), 789 (m), 727 (m) and 687 (sh). 

HRMS (EI+) m/z calculated for [M]+ [C12H17OPS2]+: 272.0458, found: 272.0452. 

General Procedure 10. To a solution of 2-chlorobenzo-1,3,2-dioxaphosphole (8a) (1.0 equiv) 

in CH2Cl2 (5 mL), benzyl alcohol (1.0 equiv) or neopentyl alcohol (1.0 equiv) and triethylamine 

(1.0 equiv) were added dropwise. The reaction was allowed to stir at ambient temperature 

for 24 hours, after which the solvent was removed in vacuo. Toluene (2 mL) was 

subsequently added and the resulting solution was filtered through a plug of Celite to 

remove traces of ammonium salt, after which the solvent was again removed in vacuo to 

give the product as an oil.  

2-(benzyloxy)benzo-1,3,2-dioxaphosphole (25a) 

Compound 25a was synthesised according to general procedure 10 

using 2-chlorobenzo-1,3,2-dioxaphosphole (8a) (206 mg, 

1.18 mmol, 1.0 equiv), benzyl alcohol (128 mg, 1.18 mmol, 1.0 equiv), and triethylamine 

(119 mg, 1.18 mmol, 1.0 equiv). Product is a dark yellow/orange oil. Yield: 198 mg, 

0.80 mmol, 68%. 

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.32–7.30 (m, 3H, Ar–H), 7.21–7.19 (m, 2H, Ar–H), 

7.12–7.10 (m, 2H, Ar–H), 7.02–7.00 (m, 2H, Ar–H), 4.60 (d, 3JPH = 6.9 Hz, 2H, OCH2). 13C{1H} 

NMR (101 MHz, CDCl3, 295 K) δ/ppm: 146.0 (d, 2JPC = 7.6 Hz, 2C, Ar), 136.7 (d, 3JPC = 2.9 Hz, 

2C, Ar), 128.7 (Ar), 128.4 (Ar), 127.7 (Ar), 123.0 (Ar), 112.2 (Ar), 65.9 (d, 2JPC = 2.0 Hz, 1C, 

C(CH3)3–CH2). 31P{1H} NMR (162 MHz, CDCl3, 295 K) δ/ppm: 126.9 (s, 1P). IR νmax (cm-1): 1474 

(s), 1373 (w), 1229 (s), 980 (m), 916 (w), 824 (s), 729 (s), 692 (s) and 625 (m). HRMS (EI+) m/z 

calculated for [M]+ [C13H11O3P]+: 246.0446, found: 246.0441. 

2-(neopentyloxy)benzo-1,3,2-dioxaphosphole (25b) 

Compound 25b was synthesised according to general procedure 10 

using 2-chlorobenzo-1,3,2-dioxaphosphole (8a) (203 mg, 

1.16 mmol, 1.0 equiv), neopentyl alcohol (103 mg, 1.16 mmol, 
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1.0 equiv) and triethylamine (117 mg, 1.16 mmol, 1.0 equiv). Product is a faint 

orange/yellow coloured oil. Yield: 168 mg, 0.74 mmol, 64%. 

1H NMR (400 MHz, CDCl3, 295 K) δ/ppm: 7.08–7.05 (m, 2H, Ar–H), 6.99–6.96 (m, 2H, Ar–H), 

3.21 (d, 3JPH = 6.5 Hz, 2H, OCH2), 0.83 (s, 9H, CH2CH3). 13C{1H} NMR (101 MHz, CDCl3, 295 K) 

δ/ppm: 146.0 (d, 2JPC = 7.7 Hz, 2C, Ar), 122.7 (2C, Ar), 111.9 (2C, Ar), 73.6 (d, 2JPC = 2.0 Hz, 1C, 

C(CH3)3–CH2), 31.9 (d, 3JPC = 2.7 Hz, 1C, C(CH3)3–CH2), 26.2 (3C, C(CH3)3–CH2). 31P{1H} NMR 

(162 MHz, CDCl3, 295 K) δ/ppm: 127.4 (s, 1P). IR νmax (cm-1): 1476 (s), 1366 (w), 1333 (w), 

1231 (s), 1003 (s), 824 (s), 739 (m), 698 (m), 623 (m) and 536 (w). HRMS (EI+) m/z calculated 

for [M]+ [C11H15O3P]+: 226.0759, found: 226.0756. 

6.5.2 General experimental for hydroboration catalysis 

In a glovebox under a dinitrogen atmosphere, three separate vials were charged with the 

phosphorus catalyst (10, 5, 2 or 1 mol%), aldehyde (0.1 mmol, 1 equiv) and HBpin (12.8 mg, 

0.1 mmol, 1 equiv). By syringe, solvent (0.6 mL) was added to the vial containing HBpin and 

then mixed between the three vials at least twice. The solution was transferred to a J. Young 

NMR tube and multinuclear NMR spectra were acquired at 2 hr, 6 hr, 12 hr and 24 hrs. 

Product conversion was calculated from the in-situ 1H NMR spectrum by integrating the 

aldehyde signal and new resonance resulting from the hydride from HBpin.  

6.5.3 Characterisation of hydroboration products 

4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)benzonitrile (21u) 

With pre-catalyst 15c: in situ NMR conversion: >95%. 1H NMR 

(400 MHz, CDCl3, 295 K): δ/ppm 7.64–7.60 (m, 2H, Ar–H),  

7.45–7.43 (m, 2H, Ar–H), 4.97 (s, 2H, CH2), 1.26 (s, 12H, CH3).  

11B NMR (128 MHz, CDCl3, 295 K): δ/ppm 22.4 (s, 1B, Bpin). 

Values in agreement with literature.20 

4,4,5,5-tetramethyl-2-((4-nitrobenzyl)oxy)-1,3,2-dioxaborolane (21v) 

With pre-catalyst 15c: in situ NMR conversion: 26%. 1H NMR 

(500 MHz, CDCl3, 295 K) δ/ppm: 8.18 (d, 3JHH = 8.9 Hz, 2H,  

Ar–H), 7.49 (d, 3JHH = 8.9 Hz, 2H, Ar–H), 5.01 (s, 2H, CH2), 1.26 

(s, 12H, CH3). 11B NMR (160 MHz, CDCl3, 295 K) δ/ppm: 21.1 (s, 

1B, Bpin). Values in agreement with literature.16  
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N,N-dimethyl-4-(((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)methyl)aniline (21w) 

With pre-catalyst 15c: in situ NMR conversion: >95%. 1H NMR 

(400 MHz, CDCl3, 295 K) δ/ppm: 7.25 (d, 3JHH = 8.8 Hz, 2H, Ar–H), 

6.75 (d, 3JHH = 8.8 Hz, 2H, Ar–H), 4.82 (s, 2H, CH2), 2.95 (s, 6H, 

N(CH3)2), 1.26 (s, 12H, CH3). 11B NMR (128 MHz, CDCl3, 295 K) 

δ/ppm: 22.3 (s, 1B, Bpin). Values in agreement with literature.16 

4,4,5,5-tetramethyl-2-(neopentyloxy)-1,3,2-dioxaborolane (21x) 

With pre-catalyst 15c: in situ NMR conversion: 46%. 1H NMR (400 MHz, 

CDCl3, 295 K) δ/ppm: 3.50 (s, 2H, CH2), 1.07 (s, 12H, CH3), 0.88 (s, 9H, 

CH3). 11B NMR (128 MHz, CDCl3, 295 K) δ/ppm: 22.1 (s, 1B, BPin). Values 

in agreement with literature.21 
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Chapter 6.6 X-ray Crystallography 

6.6.1 General X-ray experimental 

Crystallographic studies on 1a–1c, 2a–2c, 6a, 7, 13b, 15a–15c, 16a–16c, 19, 20 and 24a were 

undertaken on single crystal mounted in paratone and studied on an Agilent SuperNova Dual 

Atlas three-circle diffractometer using Mo- or Cu-Kα radiation and a CCD detector. 

Measurements were taken at 150(2) K with temperatures maintained using an Oxford 

Cryostream. Data were collected and integrated and data corrected for absorption using a 

numerical absorption correction based on Gaussian integration over a multifaceted crystal 

model within CrysAlisPro.22 The structures were solved by direct methods and refined 

against F2 within SHELXL-2013.23 

Single crystals of 3, 4, 12, 14a and 14b were grown under a dinitrogen inert atmosphere. 

Crystallographic studies were undertaken on single crystal mounted in paratone and studied 

on a Nonius Kappa CCD (3β, 4 and 14a) or a Bruker APEX diffractometer (10, 12 and 14b) 

using CCD detectors. Data for 3β, 4 and 14a were measured using COLLECT24 and processed 

using Denzo and Scalepack25 whereas for 10, 12 and 14b data were collected and processed 

with SAINT.26 Absorption corrections for all structures were applied using the multi-scan 

approach of Blessing27 (3β, 4 and 14a) or through Sadabs.28 All structures were solved by 

direct methods to reveal all non-H atoms which were refined anisotropically except 

wherestated within SHELXL-2014/729 (SHELXL 2017/1 for 10)30. H atoms were added at 

calculated positions and refined with a riding model. 

Crystals of 13b were plagued with persistent twinning, despite multiple recrystallisation 

attempts. To remedy this twinning, during the refinement the law −1 0 0 0 −1 0 0 0 1 as given 

in TwinRotMat (within Platon31) was used in the refinement of 13b alongside the BASF 

command, which helped remedy the twinning and in turn bring the R1 and wR2 values to 

satisfactory levels (R1 = 7% and wR2 = 21%). 

For the structure of 10, the data reported were the best from multiple crystals examined 

which were persistently twinned. Structure initially solved in P-1 with one molecule in the 

asymmetric unit but large residuals. ADDSYM within Platon31 identified the higher symmetry 

P-3 space group and refinement improved but stalled at R1 = 13%. TWINROTMAT identified 

an inversion twin and led to a further reduction in R1 by 4%. Although the residuals are still 

high the connectivity is clear and the refinement was stable and estimated standard 

deviations (esds) on geometric parameters were small with molecular connectivity 

consistent with other analytical data. 
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In the case of 24a, crystals suitable for single crystal X-ray diffraction were difficult to grow, 

with previous attempts showing very weak diffraction patterns. The dataset for 24a initially 

showed significant disorder in the toluene backbone, with the ring being non-planar and 

non-hexagonal. Therefore, the geometrical constraint AFIX 66 was used. The thermal 

ellipsoids on the methyl group of the toluene ring showed significant elongation, but no 

second obvious site from either the .lst file or in the difference Fourier map was seen. 

Consequently, the disorder on this ellipsoid was not modelled. The end result of the 

structure refinement gave a relatively high R1 = 11% and wR2 = 26%, but nevertheless 

showed the connectivity of the benzyloxy-dithiaphosphole. 

With the exception of 13b and 24a, all the structures listed have been deposited with the 

Cambridge Structural Database (CCDC deposition numbers 1951113-1951115, 1951125-

1951127, 1951132, 824860, 1563566-1563575, 1852464-1852465 and 1546788-1546793). 

These can be obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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6.6.2 X-ray refinement data 

Table 6.5: X-ray refinement data for compounds 1a–1c. 

Compound 1a 1b 1c 

Empirical formula C7H6ClPS2 C7H6BrPS2 C7H6IPS2 
Formula Weight 220.66 265.12 312.11 
Temperature/ K 150(2) 150(2) 150(2) 
Wavelength/ Å 1.54178 0.71073 0.71073 
Crystal System Monoclinic  Monoclinic Monoclinic  
Space Group P21/c P21/c P21/c 
a/ Å 7.9254(2) 8.1065(5) 9.6874(7) 
b/ Å 14.9999(5) 8.4575(5) 12.2726(9) 
c/ Å 7.5269(2) 13.4463(8)  8.3795(7) 

/ o 90 90 90 

/ o 91.739(3) 93.273(6) 102.702(8) 

/ o 90 90 90 

Volume/ Å3 894.38(4) 920.39(9) 971.85(13) 
Z 4 4 4 
Density (calc)/ g cm-3 1.639 1.913 2.133 
Absorption 
coefficient/ mm-1 

9.255 5.023 3.823 

F(000) 448 520 592 
Crystal size/ mm3 0.260 x 0.150 x 

0.133 
0.313 x 0.133 x 
0.055 

0.186 x 0.127 x 
0.054 

 range/ o 5.584 to 74.035 3.484 to 29.529 3.320 to 29.684 

Index ranges -9 ≤ h ≤ 9  
-18 ≤ k ≤ 17  
-9 ≤ l ≤ 9 

-11 ≤ h ≤ 7 
-8 ≤ k ≤ 11  
-18 ≤ l ≤ 16 

-13 ≤ h ≤ 12  
-16 ≤ k ≤ 11  
-11 ≤ l ≤ 8 

Reflections collected 8622 4305 5189 
Independent 
reflections 

1792 2191 2301 

R(int) 0.0342 0.0276 0.0303 
Absorption Correction Gaussian Gaussian Gaussian 
Data / restraints / 
parameters 

1792/0/101 2191 / 0 / 101 2301 / 0 / 101 

Goodness of fit, S 1.027 1.030 1.050 
Final R indices [I> 

2(I)] 

R1 = 0.0329 
wR2

 = 0.0856 

R1 = 0.0360  
wR2 = 0.0822 

R1 = 0.0342  
wR2 = 0.0653 

R indices (all data) R1 = 0.0360 
wR2

 = 0.0889 
R1 = 0.0486  
wR2 = 0.0899 

R1 = 0.0446  
wR2 = 0.0715 

Max/min residual 
electron density/ e-Å-3 

+0.533 
-0.337 

+0.660 
-0.636 

+1.536 
-1.097 
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Table 6.6: X-ray refinement data for compounds 2a–2c. 

Compound 2a 2b 2c 

Empirical formula C6H4ClPS2 C6H4BrPS2 C6H4IPS2 
Formula Weight 206.63 251.09 298.08 
Temperature/ K 150(2) 150(2) 150(2) 
Wavelength/ Å 0.71073 0.71073 0.71073 
Crystal System Monoclinic  Triclinic Triclinic 
Space Group P21/n P-1 P-1 
a/ Å 5.9973(4) 8.9636(5) 9.0077(6) 
b/ Å 17.0236(15) 9.1854(7) 9.3261(7) 
c/ Å 7.9817(5) 11.3840(10) 11.6087(7) 

/ o 90 69.213(7) 69.446(6) 

/ o 97.205(7) 73.956(6) 77.324(5) 

/ o 90 78.555(5) 79.406(6) 

Volume/ Å3 808.47(11) 836.88(12) 884.76(11) 
Z 4 4 4 
Density (calc)/ g cm-3 1.698 1.993 2.238 
Absorption 
coefficient/ mm-1 

1.100 5.518 4.193 

F(000) 416 488 560 
Crystal size/ mm3 0.638 x 0.199 x 

0.103 
0.700 x 0.225 x 
0.216 

0.341 x 0.207 x 
0.194 

 range/ o 3.514 to 29.530 3.409 to 29.722 3.468 to 29.889 

Index ranges -6 ≤ h ≤ 8  
-17 ≤ k ≤ 23  
-10 ≤ l ≤ 9 

-12 ≤ h ≤ 11  
-12 ≤ k ≤ 12 
-12 ≤ l ≤ 14 

-12 ≤ h ≤ 12  
-12 ≤ k ≤ 13 
-15 ≤ l ≤ 11 

Reflections collected 4133 6707 7548 
Independent 
reflections 

1952 3932 4222 

R(int) 0.0253 0.0262 0.0275 
Absorption Correction Gaussian Gaussian Gaussian 
Data / restraints / 
parameters 

1952 / 0 / 91 3932 / 0 / 181 4222 / 0 / 181 

Goodness of fit, S 1.017 0.973 1.013 
Final R indices [I> 

2(I)] 

R1 = 0.0342 
wR2 = 0.0653 

R1 = 0.0324  
wR2 = 0.0527 

R1 = 0.0340 
wR2 = 0.0652 

R indices (all data) R1 = 0.0517 
wR2 = 0.0701 

R1 = 0.0468 
wR2 = 0.0595 

R1 = 0.0499 
wR2 = 0.0742 

Max/min residual 
electron density/ e-Å-3 

+0.385  
-0.304 

+0.461  
-0.479 

+0.660 
-1.199 
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Table 6.7: X-ray refinement data for compounds 3β and 4. 

Compound 3β 4 

Empirical formula C7H6AsClS2 C6H4AsClS2 
Formula Weight 264.61 250.58 
Temperature/ K 150(2) 180(2) 
Wavelength/ Å 0.71073 0.7107 
Crystal System Triclinic Triclinic 
Space Group P-1 P-1 
a/ Å 9.2240(2) 12.4186(2) 
b/ Å 9.6289(3) 22.4845(4) 
c/ Å 10.8161(3) 26.7287(4) 

/ o 81.120(2) 76.8040(10) 

/ o 76.281(2) 80.2820(10) 

/ o 84.486(2) 76.7200(10) 

Volume/ Å3 920.29(4) 7018.4(2) 
Z 4 34 
Density (calc)/ g cm-3 1.910 2.016 
Absorption 
coefficient/ mm-1 

4.367 2.016 

F(000) 520 4148 
Crystal size/ mm3 0.230 x 0.070 x 

0.020 
0.140 x 0.050 x 
0.020 

 range/ o 3.655 to 27.058 3.519 to 27.500 

Index ranges -11 ≤ h ≤ 11  
-11 ≤ k ≤ 12  
-12 ≤ l ≤ 13 

-16 ≤ h ≤ 16  
-29 ≤ k ≤ 29 
-34 ≤ l ≤ 34 

Reflections collected 8175 104496 
Independent 
reflections 

3932 32107 

R(int) 0.0388 0.1240 
Absorption Correction Gaussian Gaussian 
Data / restraints / 
parameters 

3932 / 0 / 201 32107 / 3638 / 923 

Goodness of fit, S 1.031 1.010 
Final R indices [I> 

2(I)] 

R1 = 0.0311 
wR2 = 0.0765 

R1 = 0.0788 
wR2 = 0.1261 

R indices (all data) R1 = 0.0412 
wR2 = 0.0804 

R1 = 0.2720 
wR2 = 0.1884 

Max/min residual 
electron density/ e-Å-3 

+0.428 
-0.683 

+0.645  
-0.683 
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Table 6.8: X-ray refinement data for compounds 6a and 7. 

Compound 6a 7 

Empirical formula C12H18ClN2P C12H18AsClN2 
Formula Weight 256.70 300.65 
Temperature/ K 150(2) 150(2) 
Wavelength/ Å 0.71073 0.71073 
Crystal System Triclinic Monoclinic 
Space Group P-1 Cc 
a/ Å 9.8879(4) 8.8410(6) 
b/ Å 10.3627(4) 16.4442(8) 
c/ Å 13.4327(5) 10.2872(7) 

/ o 85.789(3) 90 

/ o 85.789(3) 115.180(8) 

/ o 85.789(3) 90 

Volume/ Å3 1342.34(10) 1353.47(17) 
Z 4 4 
Density (calc)/ g cm-3 1.270 1.475 
Absorption 
coefficient/ mm-1 

0.380 2.685 

F(000) 544 616 
Crystal size/ mm3 0.430 x 0.287 x 

0.135 
0.546 x 0.209 x 
0.127 

 range/ o 2.895 to 27.485 2.840 to 27.483 

Index ranges -12 ≤ h ≤ 12  
-13 ≤ k ≤ 12  
-17 ≤ l ≤ 16 

-7 ≤ h ≤ 11  
-21 ≤ k ≤ 19 
-13 ≤ l ≤ 10 

Reflections collected 11520 3070 
Independent 
reflections 

5941 2031 

R(int) 0.0252 0.0238 
Absorption Correction Gaussian Gaussian 
Data / restraints / 
parameters 

5941 / 0 / 289 2031 / 2 / 145 

Goodness of fit, S 1.013 1.052 
Final R indices [I> 

2(I)] 

R1 = 0.0393 
wR2 = 0.0875 

R1 = 0.0232 
wR2 = 0.0567 

R indices (all data) R1 = 0.0580 
wR2 = 0.1006 

R1 = 0.0242 
wR2 = 0.0577 

Max/min residual 
electron density/ e-Å-3 

+0.289  
-0.249 

+0.710  
-0.449 
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Table 6.9: X-ray refinement data for compounds 10 and 12. 

Compound 10 12 

Empirical formula C21H18NP3S6 C21H18As3NS6 
Formula Weight 569.63 701.48 
Temperature/ K 150(2) 150(2) 
Wavelength/ Å 0.71073 0.71073 
Crystal System Trigonal Triclinic 
Space Group P-3 P-3 
a/ Å 12.134(2) 11.277(7) 
b/ Å 12.134(2) 11.671(7) 
c/ Å 11.246(2) 12.023(7) 

/ o 90 76.122(9) 

/ o 90 67.953(7) 

/ o 120 87.177(8) 

Volume/ Å3 1434.0(5) 1422.4(15) 
Z 2 2 
Density (calc)/ g cm-3 1.319 1.638 
Absorption 
coefficient/ mm-1 

0.655 3.954 

F(000) 584 692 
Crystal size/ mm3 0.14 x 0.13 x 0.04 0.13 x 0.05 x 0.02 

 range/ o 1.81 to 27.53 1.95 to 27.49 

Index ranges -15 ≤ h ≤ 15  
-15 ≤ k ≤ 15  
0 ≤ l ≤ 14 

-13 ≤ h ≤ 14  
-14 ≤ k ≤ 15 
0 ≤ l ≤ 15 

Reflections collected 6447 6382 
Independent 
reflections 

2214 6382 

R(int) 0.0353 0.0000 
Absorption Correction Sadabs Gaussian 
Data / restraints / 
parameters 

2214/0/96 6382 / 0 / 273 

Goodness of fit, S 1.093 1.136 
Final R indices [I> 

2(I)] 

R1 = 0.0984 
wR2 = 0.2682 

R1 = 0.0836 
wR2 = 0.1573 

R indices (all data) R1 = 0.1047 
wR2 = 0.2838 

R1 = 0.1184 
wR2 = 0.1676 

Max/min residual 
electron density/ e-Å-3 

+1.38 
-0.48 

+1.066  
-1.808 
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Table 6.10: X-ray refinement data for compounds 13b, 14a and 14b. 

Compound 13b 14a 14b 

Empirical formula C7H6Cl4GaPS2 C7H6AlAsCl4S2 C7H6AsCl4GaS2 
Formula Weight 396.73 397.94 440.68 
Temperature/ K 150(2) 180(2) 150(2) 
Wavelength/ Å 0.71073 0.71073 0.71073 
Crystal System Monoclinic  Monoclinic Monoclinic  
Space Group P21/c P21/m P21/m 
a/ Å 7.9548(7) 11.4720(7) 11.409(4) 
b/ Å 18.2765(15) 7.0562(5) 7.015(2) 
c/ Å 9.3014(7) 17.819(2) 17.742(6) 

/ o 90 90 90 

/ o 90.812(7) 102.135(3) 102.483(3) 

/ o 90 90 90 

Volume/ Å3 1359.55(19) 1410.2(2) 1386.4(8) 
Z 4 4 4 
Density (calc)/ g cm-3 1.938 1.874 2.111 
Absorption 
coefficient/ mm-1 

3.198 3.492 5.390 

F(000) 776 776 848 
Crystal size/ mm3 0.496 x 0.148 x 

0.115 
0.14 x 0.02 x 0.01 0.30 x 0.03 x 0.02 

 range/ o 3.347 to 27.866 3.58 to 22.39 1.95 to 27.54 

Index ranges -6 ≤ h ≤ 10  
-24 ≤ k ≤ 21  
-12 ≤ l ≤ 10 

-12 ≤ h ≤ 11 
-7 ≤ k ≤ 7  
-18 ≤ l ≤ 17 

-14 ≤ h ≤ 14  
-9 ≤ k ≤ 9  
-22 ≤ l ≤ 22 

Reflections collected 6994 7859 15899 
Independent 
reflections 

3079 1959 3426 

R(int) 0.0492 0.1501 0.0385 
Absorption Correction Gaussian Gaussian Gaussian 
Data / restraints / 
parameters 

3079/0/138 1959 / 16 / 132 3426 / 0 / 177 

Goodness of fit, S 1.109 1.203 1.019 
Final R indices [I> 

2(I)] 

R1 = 0.0748 
wR2 = 0.1977 

R1 = 0.0879  
wR2 = 0.2281 

R1 = 0.0221  
wR2 = 0.0605 

R indices (all data) R1 = 0.0967 
wR2 = 0.2145 

R1 = 0.1095  
wR2 = 0.2366 

R1 = 0.0252  
wR2 = 0.0625 

Max/min residual 
electron density/ e-Å-3 

+2.418 
-1.032 

+2.393 
-0.641 

+0.537 
-0.423 
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Table 6.11: X-ray refinement data for compounds 15a–15c. 

Compound 15a 15b 15c 

Empirical formula C12H18AlCl4N2P C12H18Cl4GaN2P C13H18F3N2O3PS 
Formula Weight 390.03 432.77 370.32 
Temperature/ K 150(2) 150(2) 150(2) 
Wavelength/ Å 1.54178  1.54178 0.71073 
Crystal System Orthorhombic Orthorhombic Monoclinic  
Space Group Pbca Pbca P21/n 
a/ Å 12.4817(2) 12.4840(3) 7.4354(4) 
b/ Å 12.4240(3) 12.4355(4) 13.7492(7) 
c/ Å 23.9322(6) 23.9697(7) 16.2737(13) 

/ o 90 90 90 

/ o 90 90 95.923(6) 

/ o 90 90 90 

Volume/ Å3 3711.23(15) 3721.17(18) 1654.81(18) 
Z 8 8 4 
Density (calc)/ g cm-3 1.396 1.545 1.486 
Absorption 
coefficient/ mm-1 

7.005 8.055 0.337 

F(000) 1600 1744 768 
Crystal size/ mm3 0.0471 x 0.296 x 

0.207 
0.433 x 0.088 x 
0.054 

0.563 x 0.247 x 
0.185 

 range/ o 3.694 to 66.560 3.6888 to 73.741 2.908 to 27.874 

Index ranges -14 ≤ h ≤ 14  
-13 ≤ k ≤ 8  
-21 ≤ l ≤ 8 

-15 ≤ h ≤ 14 
-15 ≤ k ≤ 15  
-20 ≤ l ≤ 29 

-9 ≤ h ≤ 9  
-17 ≤ k ≤ 18  
-13 ≤ l ≤ 20 

Reflections collected 7307 9043 9480 
Independent 
reflections 

2913 3660 3793 

R(int) 0.0254 0.0292 0.0254 
Absorption Correction Gaussian Gaussian Gaussian 
Data / restraints / 
parameters 

2913 / 0 / 185 3660 / 0 / 185 3793 / 0 / 208 

Goodness of fit, S 1.022 1.023 1.009 
Final R indices [I> 

2(I)] 

R1 = 0.0320 
wR2

 = 0.0837 

R1 = 0.0289  
wR2 = 0.0712 

R1 = 0.0376  
wR2 = 0.0869 

R indices (all data) R1 = 0.0353 
wR2

 = 0.0871 
R1 = 0.0363 
wR2 = 0.0772 

R1 = 0.0548  
wR2 = 0.0965 

Max/min residual 
electron density/ e-Å-3 

+0.405 
-0.401 

+0.420 
-0.476 

+0.329 
-0.360 
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Table 6.12: X-ray refinement data for compounds 16a–16c. 

Compound 16a 16b 16c 

Empirical formula C12H18AlAsCl4N2 C12H18AsCl4GaN2 C13H18AsF3N2O3S 
Formula Weight 433.98 476.72 414.27 
Temperature/ K 150(2) 150(2) 150(2) 
Wavelength/ Å 1.54178 1.54178 0.71073 
Crystal System Monoclinic  Monoclinic Monoclinic  
Space Group P21/n P21/n P21/n 
a/ Å 7.2319(2) 7.2223(3) 9.3152(6) 
b/ Å 14.6027(5) 14.6495(5) 17.3419(9) 
c/ Å 17.8624(5) 17.8443(7) 11.1659(7) 

/ o 90 90 90 

/ o 94.910(3) 94.823(4) 111.586(7) 

/ o 90 90 90 

Volume/ Å3 1879.44(10) 1881.31(12) 1677.27(19) 
Z 4 4 4 
Density (calc)/ g cm-3 1.534 1.683 1.641 
Absorption 
coefficient/ mm-1 

8.068 9.116 2.195 

F(000) 872 944 840 
Crystal size/ mm3 0.259 x 0.108 x 

0.079 
0.310 x 0.051 x 
0.043 

0.257 x 0.201 x 
0.143 

 range/ o 3.916 to 70.067 3.910 to 70.068 3.061 to 27.094 

Index ranges -8 ≤ h ≤ 8  
-17 ≤ k ≤ 16  
-15 ≤ l ≤ 21 

-8 ≤ h ≤ 7 
-17 ≤ k ≤ 10  
-21 ≤ l ≤ 21 

-11 ≤ h ≤ 9  
-18 ≤ k ≤ 22  
-14 ≤ l ≤ 13 

Reflections collected 7146 7135 8059 
Independent 
reflections 

3547 3544 3636 

R(int) 0.0238 0.0290 0.0327 
Absorption Correction Gaussian Gaussian Gaussian 
Data / restraints / 
parameters 

3547/ 0 /181 3544 / 0 / 181 3636 / 0 / 208 

Goodness of fit, S 1.017 1.036 1.074 
Final R indices [I> 

2(I)] 

R1 = 0.0277 
wR2

 = 0.0685 

R1 = 0.0307  
wR2 = 0.0754 

R1 = 0.0398  
wR2 = 0.0982 

R indices (all data) R1 = 0.0344 
wR2

 = 0.0729 
R1 = 0.0383  
wR2 = 0.0808 

R1 = 0.0498  
wR2 = 0.1078 

Max/min residual 
electron density/ e-Å-3 

+0.544 
-0.433 

+0.512 
-0.572 

+0.624 
-0.582 
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Table 6.13: X-ray refinement data for compounds 17 and 18. 

Compound 17 18 

Empirical formula C24H36N4P2 C12H18AsIN2 
Formula Weight 442.51 393.10 
Temperature/ K 150(2) 150(2) 
Wavelength/ Å 1.54178 0.71073 
Crystal System Monoclinic  Monoclinic 
Space Group P21/c Cc 
a/ Å 9.1349(3) 9.2985(8) 
b/ Å 10.1970(3) 16.1525(9) 
c/ Å 14.2183(5) 10.3835(9) 

/ o 90 90 

/ o 107.085(4) 112.546(10) 

/ o 90 90 

Volume/ Å3 1265.97(8) 1440.3(2) 
Z 2 4 
Density (calc)/ g cm-3 1.161 1.808 
Absorption 
coefficient/ mm-1 

1.680 4.482 

F(000) 476 760 
Crystal size/ mm3 0.161 x 0.128 x 

0.119 
0.179 x 0.115 x 
0.095 

 range/ o 5.065 to 70.069 3.298 to 26.372 

Index ranges -9 ≤ h ≤ 11  
-11 ≤ k ≤ 12 
-15 ≤ l ≤ 17 

-11 ≤ h ≤ 9  
-20 ≤ k ≤ 16 
-10 ≤ l ≤ 12 

Reflections collected 5003 3351 
Independent 
reflections 

2398 2199 

R(int) 0.0258 0.0244 
Absorption Correction Gaussian Gaussian 
Data / restraints / 
parameters 

2398 / 0 / 136 2199 / 2 / 147 

Goodness of fit, S 1.013 1.063 
Final R indices [I> 

2(I)] 

R1 = 0.0389 
wR2 = 0.1045 

R1 = 0.0377 
wR2 = 0.0932 

R indices (all data) R1 = 0.0458 
wR2 = 0.1122 

R1 = 0.0357 
wR2 = 0.0972 

Max/min residual 
electron density/ e-Å-3 

+0.347  
-0.262 

+1.410  
-0.748 
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Table 6.14: X-ray refinement data for compounds 19, 20 and 24a. 

Compound 19 20 24a 

Empirical formula C14H13AsOS2 C19H25AsN2O C14H13OPS2 
Formula Weight 336.28 372.33 292.33 
Temperature/ K 150(2) 150(2) 150(2) 
Wavelength/ Å 0.71073 1.54178  0.71073 
Crystal System Monoclinic  Monoclinic  Monoclinic 
Space Group P21/c P21/c P21/c 
a/ Å 12.4575(8) 13.6908(3) 10.5734(6) 
b/ Å 6.1460(3) 9.18083(17) 6.1687(4) 
c/ Å 18.2764(12) 28.6493(6) 21.7415(17) 

/ o 90 90 90 

/ o 101.859(6) 94.418(2) 97.717(7) 

/ o 90 90 90 

Volume/ Å3 1369.45(15) 3590.30(13) 1405.24(16) 
Z 4 8 4 
Density (calc)/ g cm-3 1.631 1.378 1.382 
Absorption 
coefficient/ mm-1 

2.771 2.599 0.477 

F(000) 680 1552 608 
Crystal size/ mm3 0.233 x 0.167 x 

0.139 
0.191 x 0.155 x 
0.073 

0.399 x 0.228 x 
0.083 

 range/ o 3.089 to 29.682 3.094 to 74.303 3.435 to 29.676 

Index ranges -16 ≤ h ≤ 14  
-6 ≤ k ≤ 8  
-25 ≤ l ≤ 18 

-16 ≤ h ≤ 11  
-11 ≤ k ≤ 6  
-35 ≤ l ≤ 35 

-10 ≤ h ≤ 14  
-6 ≤ k ≤ 8  
-27 ≤ l ≤ 28 

Reflections collected 6339 13586 6336 
Independent 
reflections 

3230 7076 3294 

R(int) 0.0255 0.0200 0.0213 
Absorption Correction Gaussian Gaussian Gaussian 
Data / restraints / 
parameters 

3230 / 0 / 163 7076 / 0 / 415 3294 / 0 / 152 

Goodness of fit, S 1.062 1.028 1.099 
Final R indices [I> 

2(I)] 

R1 = 0.0394 
wR2

 = 0.0794 

R1 = 0.0301 
wR2

 = 0.0774 
R1 = 0.1086 
wR2 = 0.2481 

R indices (all data) R1 = 0.0539 
wR2

 = 0.0878 
R1 = 0.0355 
wR2

 = 0.0812 
R1 = 0.1317  
wR2 = 0.2625 

Max/min residual 
electron density/ e-Å-3 

+0.688 
-0.718 

+0.513 
-0.554 

+1.512 
-0.727 
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Chapter 6.7 General Computational Experimental 
Density functional theory (DFT) calculations were performed using the graphical interface 

WebMO computational platform, which employed the Gaussian 09 package.6 Compounds 

1a–1c, 2a–2c, 6a, 6b, 8a, 8b, 13+, 15+, 24’ and 25’ were initially geometry optimised using 

the meta-hybrid M06-2X functional32 and the Pople split valence basis set 6-311+G(2d,p)5 

on all atoms, except iodine. In the case of iodine, M06-2X was again used, but the effective 

core potential (ECP) Def2TZVP was used as the basis set.8 For the arsenic containing 

compounds 3, 4, 7, 14+, 16+, 19’ and 20’, the meta-hybrid M06-2X functional and the Pople 

split valence basis set 6-311+G(2d,p) were still used, but for the arsenic heteroatom the ECP 

Los Alamos National Laboratory 2-double-ζ (LANL2DZ)33–35 was used as the basis set along 

with the M06-2X functional. After geometry optimisation a vibrational frequency calculation 

was undertaken to ensure each structure was a minimum on the potential energy landscape. 

Natural bond orbital (NBO) and molecular orbital analyses were then performed on the 

optimised geometries using the same functional and basis set described above.36 

Fluoride Ion Affinity (FIA) calculations were performed by calculating the enthalpy of the 

cation, fluoride and combined cation–fluoride complex from geometry optimised 

structures, using the M06-2X functional and 6-311+G(2d,p) basis set (LANL2DZ for As 

heteroatom). The change in enthalpy for the reaction was calculated. After this, a 

counterpoise correction was applied to the cation–fluoride complex, which generated a 

basis set superposition error (BSSE) value. The final FIA value was produced by the reaction 

enthalpy plus the BSSE value. 

 

 

 

 

 

 

 

 



203 
 

Chapter 6.8 References 
1 W. H. Melhuish, J. Phys. Chem., 1961, 65, 229−235.  

2 S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42–55. 

3 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158−6170. 

4 J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982−9985. 

5 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724−728.  

6 Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. 
Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, 
A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. 
Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, 
J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, 
N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, 
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. 
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. 
Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. 
Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. 
Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. 
Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016 . 

7 F. Neese, Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2, 
73−78. 

8 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297−3305. 

9 F. Neese, J. Chem. Phys., 2005, 122, 034107. 

10 O. M. Demchuk, W. Świerczyńska, K. Dziuba, S. Frynas, A. Flis and K. M. Pietrusiewicz, 
Phosphorus, Sulfur and Silicon, 2017, 192, 64−68. 

11 M. A. Beckett, G. C. Strickland, J. R. Holland and K. S. Varma, Polym. Commun., 1996, 
37, 4629–4631. 

12 J. P. Green, S. J. Cryer, J. Marafie, A. J. P. White and M. Heeney, Organometallics, 
2017, 36, 2632−2636. 

13 F. H. Allen, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, Typical interatomic 
distances: organic compounds, International Tables for Crystallography, 2006, 
chapter 9.5, vol. C, pp. 790–811. 

14 The Cambridge Structural Database. C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. 
Ward, Acta Cryst., B72, 2016, 171-179. 

15 J. R. Lawson, L. C. Wilkins and R. L. Melen, Chem. Eur. J., 2017, 23, 10997–11000. 

16 W. Wang, X. Shen, F. Zhao, H. Jiang, W. Yao, S. A. Pullarkat, L. Xu and M. Ma, J. Org. 
Chem., 2018, 83, 69–74. 

17 Z. Zhu, P. Dai, Z. Wu, M. Xue, Y. Yao, Q. Shen and X. Bao, Catal. Commun., 2018, 112, 
26–30. 

18 K. Manna, Pengfei Ji, F. X. Greene and W. Lin, J. Am. Chem. Soc., 2016, 138, 7488–
7491. 

 



204 
 

19 U. K. Das, C. S. Higman, B. Gabidullin, J. E. Hein and R. T. Baker, ACS Catal., 2018, 8, 
1076–1081. 

20 D. M. C. Ould and R. L. Melen, Chem. Eur. J., 2018, 24, 15201–15204. 

21 M. K. Barman, K. Das and B. Maji, J. Org. Chem., 2019, 84, 1570–1579. 

22 CrysAlisPro, Agilent Technoligies, Version 1.171.37.33 (release 27-03-2014 
CrysAlis171 .NET). 

23 SHELXL-2013, G. M. Sheldrick, University of Göttingen, Germany (2013). 

24 Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. 

25 Z. Otwinowski and W. Minor, Methods in Enzymology, Macromolecular 
Crystallography, Part A, (Eds. C. W. Carter Jr. and R. M. Sweet), 1997, 276, 307–326. 
New York: Academic Press. 

26 Bruker (2012). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. 

27 MULTISCAN -Blessing, R. H. (1995) Acta Cryst. A51, 33–38. 

28 Sadabs, Bruker AXS, Madison, WI, USA. 

29 SHELXL-2013, G.M. Sheldrick, University of Göttingen, Germany (2013); SHELXL 2014: 
G.M. Sheldrick, Acta Cryst., 2015, C71, 3–8. 

30 G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3–8. 

31 A. L. Spek, Acta Cryst. D, 2009, 65, 148–155 . 

32 Y. Zhao and D. G. Truhlar, Theor. Chem. Account, 2008, 120, 215–241. 

33 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270−283. 

34 W. R. Wadt, and P. J. Hay, J. Chem. Phys., 1985, 82, 284−298. 

35 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299−310. 

36 NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold. 

 

 


	I. Acknowledgements
	II. List of Publications
	III. Abbreviations
	IV. Aims
	V. Nomenclature
	VI. Compounds Synthesised in This Thesis
	VII. Table of Contents
	VIII. Abstract
	1: Introduction
	Chapter 1.1 Examples of Group 15 Heterocycles and Cations
	1.1.1 The rise of main group chemistry
	1.1.2 Introduction to phospholes and arsoles
	1.1.3 Optical properties of phospholes and arsoles
	1.1.4 Introduction to diazaphospholenes and diazarsolenes
	1.1.5 Use of diazaphospholenes to make dimers.
	Chapter 1.2 Recent Interest in Phosphorus and Arsenic Lewis Acids
	1.2.1 Introduction to phosphenium and arsenium compounds
	1.2.2 Lewis acidity of phosphenium and arsenium cations
	1.2.3 Introduction to phosphonium and arsonium compounds
	1.2.4 Phosphorus and arsenic super Lewis acids
	Chapter 1.3 Heterocyclic Phosphorus(III) Lewis Acid Catalysis
	1.3.1 Catalysis performed by Kinjo group
	1.3.2 Catalysis performed by Speed group
	1.3.3 Catalysis performed by Cramer group
	Chapter 1.4 Conclusion
	Chapter 1.5 References
	Chapter 2: Synthesis of Dithia-, Diaza-, and Dioxa-based Benzophospholes and Benzoarsoles
	Chapter 2.1 Synthesis of Benzo-Fused Dithiaphospholes and Dithiarsoles
	2.1.1 General synthesis and NMR spectroscopy analysis of benzo-fused dithiaphopholes
	2.1.2 Single crystal X-ray diffraction analysis of benzo-fused dithiaphospholes
	2.1.3 Computational analysis of benzo-fused dithiaphospholes
	2.1.4 General synthesis and NMR spectroscopy analysis of benzo-fused dithia-chloro-arsoles
	2.1.5 Single crystal X-ray diffraction analysis of benzo-fused dithiarsoles
	2.1.6 Computational analysis of benzo-fused dithiarsoles
	Chapter 2.2 Synthesis of Benzo-Fused Diazaphospholes and Diazarsoles
	2.2.1 General synthesis and NMR spectroscopy analysis of benzo-fused diazaphopholes
	2.2.2 Single crystal X-ray diffraction analysis of 2-chloro-1,3-diisopropyl-benzodiazaphosphole
	2.2.3 Computational analysis of benzo-fused diazaphospholes
	2.2.4 General synthesis and NMR spectroscopy analysis of benzo-fused diazaphopholes
	2.2.5 Single crystal X-ray diffraction analysis of 2-chloro-1,3-diisopropyl-benzodiazarsole
	2.2.6 Computational analysis of 2-chloro-1,3-diisopropyl-benzodiazarsole
	Chapter 2.3 Synthesis of Benzo-Fused Dioxaphospholes
	2.3.1 General synthesis and NMR spectroscopy analysis of benzo-fused dioxaphopholes
	2.3.2 Computational analysis of benzo-fused dioxaphospholes
	Chapter 2.4 Conclusion
	Chapter 2.5 References
	Chapter 3: Reactivity of Dithiaphospholes, Dithiarsoles, Diazaphospholes and Diazarsoles
	Chapter 3.1 Paddlewheel Synthesis from Dithiaphosphole and Dithiarsole
	3.1.1 Synthesis of tris(5-methylbenzo-1,3,2-dithiaphosphol-2-yl)amine: (MeC6H3S2P)3N
	3.1.2 Solid-state structure of (MeC6H3S2P)3N
	3.1.3 Synthesis of tris(5-methylbenzo-1,3,2-dithiarsol-2-yl)amine: (MeC6H3S2As)3N
	3.1.4 Solid-state structure of (MeC6H3S2As)3N
	Chapter 3.2 Cation Formation
	3.2.1 Synthesis of dithiaphospheniums and dithiarseniums
	3.2.1.1 Synthesis and NMR analysis of dithiaphosphenium cations from dithiaphosphole
	3.2.1.2 Solid-state structures of dithiaphospheniums
	3.2.1.3 Computational analysis of dithiaphosphenium cation
	3.2.1.4 Synthesis and NMR analysis of dithiarsenium cations from dithiarsole
	3.2.1.5 Solid-state structures of dithiarseniums
	3.2.1.6 Computational analysis of dithiarsenium cation
	3.2.2 Synthesis of diazaphosphenium cations
	3.2.2.1 Synthesis and NMR analysis of diazaphosphenium cations from diazaphosphole
	3.2.2.2 Solid-state structures of diazaphospheniums
	3.2.2.3 Computational analysis of diazaphosphenium cation
	3.2.2.4 Synthesis and NMR analysis of diazarsenium cations from diazarsole
	3.2.2.5 Solid-state structures of diazarseniums
	3.2.2.6 Computational analysis of diazarsenium cation
	3.2.3 Attempted Synthesis of dioxphosphenium cations from dioxaphosphole
	3.2.4 Lewis acidity and aromaticity of phospheniums and arseniums
	Chapter 3.3 Photophysical Properties of Diazaphosphenium and Diazarsenium Cations
	3.3.1 Absorption Properties
	3.3.2 Emissive Properties
	Chapter 3.4 Reduction of Diazaphosphole and Diazarsole
	3.4.1 Synthesis and multinuclear NMR analysis of benzodiazaphosphoryl dimer
	3.4.2 Solid-state structures of benzodiazaphosphoryl dimer
	3.4.3 EPR measurements on benzodiazaphosphoryl dimer
	3.4.5 Attempted synthesis and characterisation of benzodiazarsole dimer
	3.4.6 Solid-state structure of 2-chloro-1,3-diisopropyl-benzodiazarsole
	Chapter 3.5 Conclusion
	Chapter 3.6 References
	Chapter 4: Aldehyde Reduction Catalysis Using Dithia- and Diaza-Derived Phosphole and Arsole Complexes
	Chapter 4.1 Hydroboration of Aldehydes Using Benzo-Fused Dithiarsoles and Diazarsoles
	4.1.1 Pre-catalyst synthesis and NMR spectroscopy characterisation
	4.1.2 Solid-state structural analysis of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiarsole and 2-(benzyloxy)-1,3-diisopropyl-1,3,2-diazarsole
	4.1.3 Computational analysis of alkoxy derived dithiarsole and diazarsole
	4.1.4 Homogeneous hydroboration reduction using arsenic pre-catalysts
	Chapter 4.2 Hydroboration of Aldehydes Using Benzo-Fused Dithiaphospholes and Diazaphospholes
	4.2.1 Pre-catalyst synthesis and NMR spectroscopy characterisation
	4.2.2 Solid-state structural analysis of 2-(benzyloxy)-5-methylbenzo-1,3,2-dithiaphosphole
	4.2.3 Computational analysis of alkoxy derived dithiaphosphole and dioxaphosphole
	4.2.4 Homogeneous hydroboration reduction using phosphorus pre-catalysts
	Chapter 4.3 Comparing the Phosphorus and Arsenic Pre-Catalysts
	Chapter 4.4 Conclusion
	Chapter 4.5 References
	Chapter 5: Conclusions and Future Work
	Chapter 6: Experimental
	Chapter 6.1 General Experimental
	Chapter 6.2 Experimental for Synthesis of Dithia-, Diaza-, and Dioxa-based Benzphospholes and Benzarsoles
	6.2.1 Synthesis of benzo-fused dithiaphopholes and dithiarsoles
	6.2.2 Synthesis of benzo-fused diazaphopholes and diazarsoles
	6.2.3 Synthesis of benzo-fused dioxaphopholes
	Chapter 6.3 Experimental for Reactivity of Dithiaphospholes, Dithiarsoles, Diazaphospholes and Diazarsoles
	6.3.1 Synthesis of paddlewheel complexes
	6.3.2 Synthesis of cationic complexes
	6.3.3 Synthesis of dimeric species
	6.3.4 Photophysical studies
	6.3.5 Electron paramagnetic resonance (EPR) studies
	6.3.6 Computational studies
	6.3.7 Gutmann-Beckett Lewis Acidity Measurements
	6.3.8 HOHMED aromaticity calculations
	Chapter 6.4 Experimental for Aldehyde Reduction Catalysis Using Dithia- and Diaza-Derived Arsole Complexes
	6.4.1 Synthesis of arsenic pre-catalyst complexes
	6.4.2 General experimental for hydroboration catalysis
	6.4.3 Characterisation of hydroboration products
	Chapter 6.5 Experimental for Aldehyde Reduction Catalysis Using Dithia-, Diaza- and Dioxa-Derived Phosphole Complexes
	6.5.1 Synthesis of phosphorus pre-catalyst complexes
	6.5.2 General experimental for hydroboration catalysis
	6.5.3 Characterisation of hydroboration products
	Chapter 6.6 X-ray Crystallography
	6.6.1 General X-ray experimental
	6.6.2 X-ray refinement data
	Chapter 6.7 General Computational Experimental
	Chapter 6.8 References

