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Thesis Summary 

Background 

Many individual organisms have latent phenotypic potentials which are never realised within their 

lifespans. This potential can include a huge diversity of dormant adaptations across the tree of life, 

such as the ability to tolerate radical changes in temperature, survive restricted nutrient availability, 

and resist toxins and parasites. Prior to unrealised phenotypic potentials are necessarily information 

potentials residing in a dormant state also. This thesis investigates the systematic interactions of 

facultative morphologies and atavistic adaptivity with the evolutionary systems which propagate 

them. Earthworms as models are for these purposes an almost archetypal form of a high-latent-

potential organism. Examples abound of their thriving as peregrine species with near-global ranges.  

Methods 

Investigation of mechanistic context of evolutionary flexibility was pursued via three channels of 

inquiry. The first was to utilise modern genomics to query a pair of genomes with a demonstrably 

high complexity, given their remarkable allelic divergence. The second was to use large scale 

sequencing experiments to analyse a model system which, via our knowledge of its life history, has 

an apparent need for facultative morphology changes. The third was to develop novel tools for the 

more precise description of the information structure behind environmental adaptivity and 

phenotypic plasticity. 

Results 

Unprecedented base sequence divergence was discovered in the Earthworm Lumbricus rubellus, 

which led to the furthering of evolutionary perspectives, particularly in relation to recombination, on 

the role of allelic divergence in information latency. A novel sequence signature tool and the 

foundational mathematics supporting it were developed, this was used to discover the intriguing 

qualities of information structure in various test sets. The Earthworm Amynthas gracilis living in 

volcanic soils was used as model to study intrinsic information sources and the mechanisms of 

activation in a multi-stressor environment. 
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0. Glossary of terms 

• Plasticity  

o (environmental/ w.r.t. the environment) ability to adapt physiologically to meet 

variables demands made by the ecosystem or natural environment 

• Scaffolds  

o (genomic) large pieces of physically linked genetic material assembled into putative 

fragments, often with gaps, by a computation method. 

• Proteome  

o A collection of the entire known set of proteins produced by an organism’s genome, 

described in terms of its peptide sequences 

• Methylated/methylation 

o (Genomic) 5-Cytosine Methylation: the property of a single methyl group being 

attached to the fifth carbon in its aromatic ring 

• Enrichment 

o (statistical)  

• miRNAs 

o Micro-RNA – refers to small non-coding RNAs which, in their mature form (to which 

this term usually refers), are approximately 22bp in length 

• l-mer 

o a member of the set of possible substrings of a fixed size k-mer 

• k-mer 

o a fixed length substring, or ‘word’ of a large sequence collection 

• UTRs 

o Untranslated regions preceding (5’) or trailing (3’) a gene’s protein coding regions 

• CDSs 

o Coding Sequences – long stretches of DNA in which one of the possible six protein 

coding reading frames has no stop codon. 

• WSD 

o Weighted standard deviation. A measurement of the deviation where the 

contributions of each data point are weighted by their scale. 

• Read depth 

o (short reads) The property of depth refers to number of short reads from a 

sequencing library simultaneously aligned to the same region of DNA 

• N-mask 

o A binary layer of sequence location flexibilities which can be applied to set of k-mers 

to collapse them into single objects whereby their only points of variation lie within 

the N-masked characters 

• Bp/Kbp/Mbp/Gbp 

o (sequence size metric) base pairs, kilo (1,000) base pairs, mega (1,000,000) base 

pairs, or giga (1,000,000,000) base pairs respectively  

• Morphotype 

o One of a group of possible different physiological modes of existence in a 

population. A phenotype may comprise multiple potential morphotypes, which may 

either be fixed for the lifetime of the individual, or variable in response to stimuli 

such as reproductive options or stress 

• Parent/child 
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o (computing terminology) Hierarchical relationship between nodes in a tree or 

hierarchical graph of some form. Of any two connected nodes, the parent is defined 

as the one closest (by degree) to the root, whilst the child is closes to the leaves) 

• Mosaic  

o (Genomic) Refers to the case whereby, as the result of a hybridisation, the genome 

of an individual organism is a stochastic arrangement of alleles from different 

populations – particularly when those alleles are substantially divergent  

• Pathways 

o (Functional Analysis) Refers to the metabolic ‘pathway’ by which a chain of reactions 

take place to facilitate a single biological effect, or mode of effects. Grouping genes 

by their pathway associations has the potential to strengthen statistical associations 

with a tested factor or variable. 

• Pileup 

o (short read sequence mapping) refers to the ‘piles’ of reads present in alignment 

maps, where many overlapping reads of DNA align to the same region of a reference 

object 

• Vector 

o (C++/programming) a one-dimensional array of data points stored in an iterable 

container 

• GPCR 

o G-protein coupled receptor – a cell surface/transmembrane signalling receptor 

• Introgression 

o Transfer of a smaller region of genetic material between species by hybridization 

following by multiple backcrosses with original populations 

• Kernel 

o (matrix) the frequency matrix of an engineered set of features by their occurrence in 

each sample 

• DFS 

o (algorithm) A depth-first search is a manner of navigating an information space, 

commencing at a root, and exploring all branches to their maximum depth before 

retracing to explore the next available branch  

• Capacitance 

o (information) Used to refer to the property of information retention within a 

biological system – particularly when it is underutilised for long periods of time 

without being lost 

• Cryptic 

o (lineages) refers to the property of genetic diversity with an apparently physically 

uniform population being hard or impossible to detect without targeted sequencing 

efforts 

• MeDIP-Seq 

o Methylated DNA immunoprecipitation combined with next generation sequencing 

of the precipitated DNA. A 5-methylcytosine sensitive antibody is used to precipitate 

DNA fragments in suspended in solution which are methylated. The mapping of the 

sequences generated can be used to profile the distribution of epigenetic 

modifications throughout the genome of an organism. 

• miRNA-Seq 
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o A form of RNA sequencing whereby the input material is enriched for small RNA 

fragments, with the intention of capturing the mature forms of regulatory micro-

RNAs. 

• Knowledge-free  

o (modes of analysis) A distinction with respect to the treatment of sequence data 

whereby a prior association with databases of known genetic material is possible but 

not necessarily desirable.  

• SNPs 

o Single nucleotide polymorphism, indicating a point of sequence variation between 

instances of otherwise fixed sequences of DNA. 

• allopolyploid 5 

• k-/r- selection 

o reproductive strategy distinction. R-selected organisms produce many offspring at 

low cost, often with greater environmental instability or range. K-selection occurs 

where the offspring are few and energetically very expensive for the organism to 

produce, typically found in smaller ranges or more stable environments. 

• Broadcast spawner 

o A reproductive strategy employed by r-selected organisms which distribute 

thousands of gametes or embryos into a natural system such as the wind or ocean 

currents which can achieve a very wide range distribution  

• RAD-Seq 

o Restriction site-associated DNA sequencing. DNA is fragmented by a restriction 

enzyme which binds consistently at short sequence motif locations, this is followed 

by library preparation, amplification and sequencing. 

• TSS 

o Transcription start site – position within a gene where RNA polymerase initially 

begins to transcribe the gene’s DNA sequence into RNA 

• WGDs 

o Whole genome duplications – ancestral events during which the entire complement 

of genetic material in an organism is doubled 

• PSMC 

o Pairwise Sequentially Markovian Coalescent – population size estimation algorithm 

which uses the distribution of distances between genomic variants to infer variable 

mutation rates throughout time, originating from estimated effective population 

sizes. 

• Facultative parthenogenesis 

o The capacity within an organism for both sexual reproduction, and some form of 

either self-fertilisation or the production of offspring from unfertilized embryos.  
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1. Chapter 1: Introduction 

1.0. Genomic Evolution 

The genome of an organism has been widely recognised for a long time as the primary source of 

information which facilitates its existence. Although dependent upon a vertically available molecular 

context (no isolated genome in a test tube will spontaneously sprout into a human being), the 

genome yet contains the information required to propagate and recreate that context (Eisenberg & 

Levanon 2013). 

Increasingly, in the modern era, to study evolution means to study genomic evolution. As early as 

the 70s, although the language may refer to ‘sequence changes to homologous macro-molecules’ 

(Sarich & Wilson 1973) rather than single nucleotide polymorphisms (SNPs), or a litany of more 

specific terms, the notion of information evolving from a ‘readable’ source formed a stable 

conceptual basis for the model of genomic evolution we use today.  

Small changes that accrue over time to the ‘macro-molecule’ are widely observed to propagate 

meaningfully to the context which it describes and propagates. This can mean single SNPs causing 

genetic diseases – such as a nonsense mutation to a single gene resulting in cystic fibrosis 

(Cordovado et al. 2012), or several hundred sets of variants with complex (and as yet not fully 

understood) interactions culminating in probabilistic disease risk, such as the case with Crohn’s 

Disease (Lee et al. 2017). However, these changes it can also confer positive phenotypic attributes 

too. The ‘short-sleep’ phenotype: a change in a transcriptional repressor can confer increased 

vigilance with less sleep in mammals (He et al. 2009). The ‘supertasting’ phenotype, caused at least 

in part by mutations to the TAS2R38 gene possessed by approximately a quarter of the population 

confers heightened sensitivity to sense bitterness in food (Hayes et al. 2008). 

Genomic DNA can be damaged and mutated through the process of repair. However, evolution also 

has a base-rate of generative variation which arises naturally from the error present in the molecular 

machinery which copies DNA during the creation of gametes, and during their early cell divisions in 

the blastocyst (Johnson et al. 2000). The sum of these effects can be described as a background 

mutation rate, which for humans is approximately 3 x 10-8 mutations per nucleotide per generation 

(Xue et al. 2009). 

Although the focus in humans tends toward near term large phenotypic alterations from small 

variants (small relative to the 3Gb genome size), there are a huge variety of alternative genomic 

evolutionary stories which demonstrate how massive retained changes to the whole molecule 

manifest in diverse ways. For example, the bdelloid rotifer, Adineta vaga has been shown to have an 
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ancestrally tetraploid genome, with local rearrangements incompatible with ordinary meiotic 

evolution. Copies of allelic fragments of DNA may be in high sequence identity, but with low 

collinearity of gene order – or the inverse, lower sequence identity, but with collinearity preserved 

(Flot et al. 2013). The genome continues to evolve by, it seems, becoming desiccated during the 

organism’s life, and repairing itself – often with rearrangements and duplications (Gladyshev & 

Arkhipova 2010).  

An opposite case comes from Cephalopods, particularly Octopi and Squid – whose genomic 

evolution has been slowed substantially by the positive selection for RNA-editing genes. The ability 

to edit post-transcriptional copies of the genes, in order to introduce flexibility and plasticity to the 

proteome, comes at the cost of limiting the ability of the edited genes to be successfully mutated in 

viable organisms (else the editing machinery should fail to function) (Liscovitch-Brauer et al. 2017). 

In the lab, rather than in the wild, many-generation genomic evolution experiments have been 

conducted on the rapidly evolving Escherichia coli bacteria. In a 50,000-generation experiment – it 

was found that evolutionary effects which occurred on a whole genome level were more prominent 

than any single point mutation. The genome size drifted downward by 0.5-1% of the total size – 

hypermutability was initially present in some populations but decreased as the consequences of 

genetic load outweighed any adaptive benefits, and the populations tested split evenly by the 

original hypermutability property. Six populations accrued 60-100 mutations over 50K generations, 

whilst the other six accrued 1,000-2,000 (Tenaillon et al. 2016).  

From the above examples we can see that whilst the story of individual phenotypes is often 

described in terms of small sets variants, the long term evolutionary trajectory of an organism can 

be thought of as a process which originates from the effects applied to the information contained in 

the genome as a whole.  

1.1. Phenotype determinants 

The conceptual models of genotype to phenotype, and the causal relationships therein, have been 

long studied (Cavalli-Sforza & Feldman 1976). Through the medium of eQTL studies (expression 

quantitative trait loci) in humans and other model organisms, the genetic basis for many phenotypic 

traits have been clearly established (Gilad et al. 2008) (West et al. 2007), of particular interest are 

those studies of human disease (Westra et al. 2013). However, genetic phenotypic association 

studies have also revealed a substantial limitation in the form of missing heritability (Manolio et al. 

2009). Missing heritability is simply the unaccountability of apparently genetically describable 

diseases with inheritance. Put differently, many human traits, despite conventional SNP-based 

genetic correlations are also found to have non-mendelian inheritance patterns. If the only 
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information available is the genomic sequence of the individuals, and the phenotypes produced, it 

may seem that there are occasions where traits inexplicably manifest at dramatically higher or lower 

rates than simple meiotic recombination ought to prescribe. 

As work with DNA methylation and large scale epigenomics is now revealing (Barros & Offenbacher 

2009), the exact DNA sequence is only one determinant of phenotype. The dramatic differences in 

phenotypic outcomes can be seen in the differences in lion x tiger hybrids, where the weight and 

coloration of offspring varies radically depending on the species of the mother (Mckinnell & Wessel 

2012). Brassica oleracea (commonly known as both broccoli and/or cauliflower), has such a 

remarkable plasticity in phenotype that members of the public would intuitively regard the 

morphotypes to be different species. Its genome has been found to be highly polymorphic, and 

highly cytosine methylated (Salmon et al. 2008). DNA methylation is now studied extensively in 

related to cancer (Jones & Laird 1999) (Dawson & Kouzarides 2012), and other conditions such as 

diabetes and obesity (Slomko et al. 2012). This expansion of the domain of study is an example of 

how additional extra-genomic intrinsic information sources are being discovered and integrated into 

our understanding of the determinants of phenotype. 

DNA sequence, epigenetic marks such as DNA methylation, or histone modifications, pre-existing 

metabolic and signalling pathway activities in the maternal cell line are all information inputs to the 

allometric synthesis. However, as invertebrates, bacteria and plants all show, there is a distinction to 

be made between phenotype and morphotype (Padilla & Savedo 2013), whereby morphotypes are 

typically presented as the distinct modes of physical organisation availed by the phenotypic 

outcome. For example, colonial invertebrates such as the coral Pseudopterogorgia bipinnata live in 

highly structurally modular arrangements, great morphotype variety is possible between colonies in 

different environments despite an absence of genomic differences (Sánchez et al. 2007). Freshwater 

snails Physa acuta have different shell morphotypes (spire length and aperture size) which appear to 

be plastic responses to extrinsic environmental factors, however a single generation’s offspring 

reared in laboratory conditions will result in uniform shell types regardless of the parental shell type 

(Gustafson et al. 2014). 

The considerations posited in assessment of the evolutionary role participation of phenotype and 

morphotype are ones of environmental response chronicity. Put directly, the selective advantages of 

morphotype changes are associated with individual acute single generation plasticity, whereas 

phenotypic advantages concern chronic multi-generational population level adaptivity. Adaptivity 

itself is also a nebulous term as this can refer to the 60 million years nature took to arrive at fungal 

wood decomposition (Floudas et al. 2012), or it can refer to a selective sweep over several dozen 
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generations which confers toxin immunity to an entire population, as has been the case with 

insecticide resistance (Oakeshott et al. 2003). We can provisionally separate these two adaptations 

into two categories: 1) info-genic; and 2) info-latent. Info-genic adaptation (the hard way) is the 

eventual creation of new biological mechanisms which interface with the environment in entirely 

novel ways. Info-latent adaptivity is the availability evolutionary of short-cuts available to restore 

previously lost function, or to experience the stochastic gain of new function from previously 

neutrally selected copies of functional genes. 

Given that much of adaptivity can be thought of as the gradual deployment of prior genetic reserves 

which hold sudden new adaptive advantages, we might consider that this is not particularly different 

conceptually to the genetic or epigenetic information which encodes morphotype variation. This has 

been the basis for a theory of adaptive phenotype evolution as a consequence of mutations which 

limit organism plasticity to a single morphotype (Hughes 2012). Plasticity-relaxation-mutations may 

remove competitive purifying selection on alternative morphotype genes by eliminating initiation of 

the developmental pathways which lead to them. This could allow us to think of plasticity in 

morphotype as a potential precursor to adaptivity in phenotype. On the flip-side this may suggest 

that single-morphotype organisms may yet contain the evolutionary pathway to genetic reserves 

required to re-activate ancestral plasticity. 

The information inputs to biogenesis are therefore not just the source of the eventual form, but the 

information which may be redundant in the typical individual lifestyle case can be thought of as the 

latent potential for that organism’s flexibility towards an environmental range that consequently 

may permit its survival in times of change, both near and long term. The selective advantages gained 

from this are discussed in the next section. 

1.2. Diversity, Range and Plasticity 

Studies of invasive species often reveal that the capacity for an organism to produce targeted 

responses to different environmental conditions is a predictor of the population’s range (Lee & 

Gelembiuk 2008). The manner in which the eventual successful phenotype produces these 

responses  is varied, it may occur via rapid adaptive evolution (Prentis et al. 2008), particularly in 

polyploid species (Te Beest et al. 2012), through the increased fitness conferred by heterosis (hybrid 

vigour) (Facon et al. 2005), through pre-existing plasticity in the phenotype (Weber & D’Antonio 

2000), and through admixture with lineages carrying the genetic basis of adaptive traits (Keller & 

Taylor 2010). 

Consequently, more general theories abound regarding the relationship between invasiveness and 

phenotype plasticity, evolutionary history or incidental hybridisation events. In plants, review studies 
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posit that hybridisation events are a potential trigger for invasiveness (Ellstrand & Schierenbeck 

2000)(Ellstrand 2009). This does not exclude other theories which suggest the plasticity of an 

invasive phenotype may be equipped as some combination of both a ‘jack-of-all-trades’ hardiness, 

and the master of a select number of condition response types (Richards et al. 2006). 

The origins of the invasiveness potential are multi-faceted, and there appears to be no singular one-

size-fits all description for the emergence of this trait, even plasticity-relaxation-mutations as 

discussion above are pointed to as cues for explosive radiations (Hughes 2012). The genesis, 

acquisition of, or ancestral re-emergence of adaptive traits in range expansion are all descriptions of 

the pathways by which useful systems of information come to be active in a context whereby that 

activity has a self-propagating effect. The corollaries of large reserves of genetic material under 

neutral selection in invasive species, are its selective advantageousness and thus favourable cost-

benefit ratio. We might think of such information capacitance itself therefore as an adaptive trait. 

But what is capacity? In basic circuitry, a capacitor is a passive element which stores potential 

energy. In the modern age, thoughts of a ‘capacity’ for information might go towards the idea of a 

pre-defined neutral substrate onto which content may be written. In biology this could only be said 

to be true to a limited extent in epigenetics, whilst in most other sequence-based capacities 

information is the substrate. Entirely new information needs arise via the physical addition of new 

substrate, or by the replacement of previous substrate. However, it is not so much the mechanical 

availability of this occurrence (which seems common in molecular biology) as it is the evolutionary 

tolerance of it which governs the permissibility of information entering and/or leaving the system. 

We could think of capacitance as the ability to receive, retain, and even alter sequence substrate of 

potentially unknown immediate selective value. Some part of a genome which is under no selective 

pressure to adhere to specific sequence, yet which is perpetually kept in existence by an 

evolutionary history containing regular incidents of ‘unpredictable’ advantageous environmental 

interaction with the latent potential contained within. 

This is description is quite abstract, however there are many studies which describe the same thing 

in different terms. Plants, for example, have been often cited for their frequent incidence of 

polyploidy, and the benefits gained from it. A review of angiosperm genomics concludes that full 

duplications and allopolyploid hybrids (combining copies of two full genomes from difference 

species) were a major driver of the plasticity and adaptivity which these plants used to generate 

their substantial global biodiversity we see today (Leitch & Leitch 2008). Although a duplication 

event is not a perpetually ‘free’ form of information capacitance, for the organisms which survive it 

an incredibly large sequence space initially unconstrained by purifying selection is created. In the 
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water flea Daphnia pulex, a mutation accumulation (MA) study found that the large-scale duplication 

rate in the genome was substantially elevated relative to other MA studies, despite a comparable 

single base mutation rate (Keith et al. 2016). Although many duplicated regions had also been 

selected against, the copy number variation between populations was high. The researchers posit 

that this mechanism acts as a generator for the rapid evolution, which it has been shown to be 

capable of in other contexts (Colbourne et al. 2011)(Geerts et al. 2015). One such gene duplication 

occurring as a result of these copy number variations (CNVs) has been demonstrated to be of 

ecological importance in Daphnia’s tolerance of protease inhibitors (Schwarzenberger et al. 2017). 

These two examples involve the duplication of DNA in some way. The example of Daphnia’s CNV 

generation shows a potential case where the constant creation of new substrate over its 

evolutionary history is an example of its capacitance for information (Keith et al. 2016). Whilst the 

polyploidy-biodiversity of angiosperms shows how the benefits of the this free-information domain 

manifest (Leitch & Leitch 2008), even if the events which create them are much larger and further 

between. However, these information types are both quite similar, and their advantages arrive via 

the creation of alterable copies of pre-existing structures, which research has indicated to be of 

adaptive merit. The way in which we might identify organisms as creating/selecting for information 

capacitance as an evolutionary feature, therefore, hinges on how we might dissect and classify the 

advantageous traits of the information itself. 

1.3. Axes of Genomic Evolutionary Flexibility 

To return to the angiosperms, as described earlier, much of their biodiversity in modern times is in 

part attributable to polyploidy, however the ratio of successful whole genome duplications (WGD) 

originating from the mid-Cretaceous into the Cenozoic, compared to the abundance of detectable 

events from earlier eras suggests that if WGDs events were occurring at this time, most of those 

polyploid lineages have become extinct (Van de Peer et al. 2009). In contrast land-based vertebrates 

have an incredibly scant comparable history of WGDs at all. One example, Xenopus laevis, is an 

exceptionally rare example of a recent WGD in a terrestrial vertebrate. It may not be a co-incidence 

that it is also extremely invasive, currently present and expanding its range on four major continents, 

and is regarded by some as biosecurity risk given its further global invasive potential (Measey et al. 

2012). It might simply be the case that the molecular biological landscape in which a genome resides 

has become more forgiving of WGDs than in earlier evolutionary eras. That in all genomes there is a 

collection of genes which are not duplicated, and that their non-duplication persists across much of 

the metazoan tree of life (Simão et al. 2015), suggests that the potential for phenotypic instability 

given an entire genome duplication is incredibly high. It is also the case that whilst the absolute 

genome size range in metazoans is incredibly large, most organisms of high tertiary phenotypic 
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complexity possess similarly sized and relatively small genomes 0.5-4Gb (Gregory et al. 2007). Study 

of bioenergetics which proposes the massive jump in genome size between prokaryotes and 

eukaryotes to be a function of mitochondrial energy availability (Lane & Martin 2010) also has the 

corollary of increased demand for endosymbiotic energy generation with genome size. Simply put, it 

is unlikely that a WGD event de-facto expands the mitochondrial energy generation of otherwise 

equivalent cells to meet the newly elevated demands of genome copying in mitosis and requisite 

protein synthesis rates. For these reasons we can consider genome duplication one of the least 

viable ongoing strategies for dynamic information capacitance. 

Gene family expansion, as a result of local duplications within a single chromosome (like the Daphnia 

example) (Keith et al. 2016), is another instance by which the diversity and complexity of genomes 

expand. Given than the genome size increases with this kind of mutation are far smaller than WGDs, 

this strategy is already liberated from almost all energetic consequences. It also does not require 

single-copy gene duplication, and as a result is far less likely to result in a non-viable phenotype. This 

is consequently a far more common mechanism, can be seen in many life forms, and is the subject of 

large-scale study in humans where the genomic maps of ‘Copy Number Variation’ (Sudmant et al. 

2010) can be tied to genetic disease and other phenotypic traits. One of many examples might be 

the variable copy number in the human AMY1 gene, whereby the higher copy number appears to 

have been subject to positive selection for the diversity benefits of multiple amylases in digesting 

starch (Perry et al. 2007). More general clues as to the adaptive value of expanded gene families can 

be found in their functional associations, for example the genome of the pacific oyster Crassostrea 

gigas shows that under stress conditions, differentially expressed genes are far more likely to have 

paralogs (χ2 test, p < 1 x 10-10) than unaffected genes (Gerdol et al. 2015). Inbred domesticated 

maize, the results of 10,000 years of selective breeding for desirable traits, have genomes which, 

when contrasted between strains, vary by upwards of 2,000 copy number variation events. At least 

an order of magnitude higher than can be found between human genomes (Springer et al. 2009). 

This suggests that the intense selective manipulation these strains have been subject to, has 

selected for individuals with ideal gene copy number variations, suggesting these have a far stronger 

generation-on-generation impact on the organism’s phenotype than smaller mutations. CNVs, 

insofar as they involve functional material, seem to be a highly pervasive and sufficiently effective 

mechanism of information capacitance. 

So far, the timescales involved in the previous two mechanisms have been very different, but still 

long term. Genome duplications appear to be events whose effects can play out over millions of 

years (Dehal & Boore 2005), whilst CNVs can guide evolutionary history on similar time scales (Perry 

et al. 2008)(Springer et al. 2009), it appears these duplications can also facilitate rapid evolution over 
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hundreds down to even merely dozens of generations (Geerts et al. 2015)(Schwarzenberger et al. 

2017). However, organisms often have adaptive needs more pressing than can be resolved by fifty 

grandfathers. A far more readily accessible store of functional genetics may be also available in the 

form of allelic variation within the population. The degree to which information is exchanged 

between metazoan organism populations is often linguistically binned into specific research 

categories. For example, evidence of information exchange between populations of closely related 

species, detectable over longer periods of evolutionary history is introgression. The same process 

after one or two generations is a hybridisation, unless the sometimes very nebulous ‘species 

boundary’ between the populations has not been described, in which case it is admixture. Over a 

few dozen generations of a hybrid population, the genome is described as a mosaic. If the lineage 

separation history of the organisms performing the sexual information exchange is far shorter, it is 

merely intra-population gene flow. Here we will attempt to describe these events more simply in 

terms of the substrate structure which supports their existence: the allele. 

To return to basic concepts, the notion of the allele is simply that two or more copies of the same 

chromosome exist in a genome and are subject to meiotic recombination. The capacity therein for 

plasticity lies with the notion of divergence between an individual’s copies, and evolutionary 

adaptivity with the divergences between copies held within the total set of organisms capable of 

exchanging those copies between themselves. This divergence is principally in DNA sequence, but 

may also exist in the form of epigenetic signature (McDaniell et al. 2010). The point at which the 

allele concept breaks down occurs as the alleles cease to recombine. However, whilst the ‘genotype 

of recombining alleles driving phenotype’ paradigm holds under recombinant meiosis, the 

phenotypic difference also arguably expands with less recombination, with the extreme end of this 

scale being sexual dimorphism resultant from chromosomes with only a very small pseudo-

autosomal region (Kauppi et al. 2011). This exists as a scale too. In conventional genetics a lesser 

example may be the localised historical minimisation of recombination in a chromosomal region, 

which would be described as a linkage disequilibrium block (Kawakami et al. 2014). For example, a 

study of cultivated maize finds the explanatory power for phenotypic variation derived from SNPs 

can be increased from ~5% up to 23-34% when they are considered as haplotype blocks described 

via LD (Lu et al. 2010). Between these two ends of the recombination-phenotype-impact scale we 

find another terminologically distinct set of studies: those which involve ‘divergence hitchhiking’ (Via 

2012) and ‘genomic islands of speciation/divergence’ (Feder & Nosil 2010). These theories propose 

regionally reduced recombination between two alleles in a population due to environmental 

isolation and/or positive selection causes the phenotypes they generate to become so distinct that 

speciation may occur. Such effects have notably been observed in Heliconius butterflies (Pardo-Diaz 
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et al. 2012), in Atlantic Cod (Karlsen et al. 2013), and many more in an expanding field of speciation 

study (Wolf & Ellegren 2017). 

The adaptive merit of multiple haplotype availability arises from the diversity of molecular responses 

available to varied environmental challenges. It cannot really be said that any evolutionary system 

‘knows’ that the diversity of its alleles will be relevant to future challenges, yet that they may be 

tolerant of high levels of diversity may function as a selective or performative trait which in the long 

term ensures survival. Whether the diversity of these alleles originates from hybridisation, sheer 

mutagenesis rates in massive population sizes, or long-term linkage disequilibrium effects, there 

appears to be some consistent set of benefits to be found in the divergence. However, allelic 

diversity does not come without its own costs. Heterosis is not inevitable, and outbreeding 

depression as a result of allelic incompatibility (Frankham et al. 2011) is also a common result of 

hybridisation. In some cases, such as the Ambrosia Beetles, outbreeding depression is far more likely 

than inbreeding depression (Peer & Taborsky 2005), suggesting some species are extremely 

intolerant of allelic diversity. Principally we may regard the organism’s mitigation of these costs as its 

tolerance, and therefore as a measure of its information capacitance with respect to allelic 

divergence. 

1.4. The Aims of this Thesis 

This thesis is divided into three data chapters each of which address two major aims. This structure 

was chosen, as opposed to six separated chapters, for reasons of continuity are delineated in the 

following outline. 

1.4.1. Chapter 2 

Allelic diversity is identified as one of the most dynamic mechanisms of information latency in 

genomics. The boundary between autosomal alleles and partially non-recombining haplodiploid 

chromosomes might not always be absolute. Investigating the mechanical and systematic limits of 

allelic information latency was best performed by looking at cases where the divergence between 

alleles has been pushed to the extreme. 

1.4.2. Aim 1  

To assess the allelic diversity metrics of two highly divergent invasive global 

species 

This involves discovering the tolerances of absolute base sequence divergence between alleles 

within the same genomes. Due to the fraught nature of genome assemblies with divergent alleles, 

making these assessments requires some development of bioinformatic methods. Two genomes are 
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investigated: A terrestrial earthworm Lumbricus rubellus, and a marine brachiopod Lingula anatina. 

This aim is addressed by assembling two genomes, aligning their divergent alleles, and measuring 

the distribution of the allelic sequence diversity between them. 

1.4.3. Aim 2  

To describe the potentially acclimative or adaptive information present in hyper-

divergent alleles 

This aim requires the functional characterisation of the sequences subject to extreme allelic 

divergence. Protein families with clear potential for dynamic environmental interactions will be 

described, and the bi-allelic regulatory mechanisms of these proteins further investigated.  

1.4.4. Chapter 4 

Much of the generation of new genes is duplicative, and the historical rate of duplication is likely to 

be variable. Different gene families expand at different rates, and to different upper limits. Overall, 

the total relationship between duplicative information redundancy and specialised complexity in 

biological sequence is something which might be described in a generalised formal manner. 

1.4.5. Aim 3 

To develop a general theory of redundant information structures 

This aim is to create a mathematical model of information structure as contained within sequence 

information. This model aims to expand the dimensionality of current k-mer based methods, whilst 

avoiding the obfuscation which occurs in solution space reductions used by other entropic signature 

methods. 

1.4.6. Aim 4 

To implement and apply the developed theory to different sequence types 

The information structure model measurement tool is implemented in C++. The software is applied 

to different singular sequence domains of known characteristics, and the results are assessed for 

their reflection of those characteristics. 

1.4.7. Chapter 3 

An organism which is relatively new to NGS research and, given its life history, in a position to be 

maximally in need of varied genetic flexibility sources was analysed. The objective being to observe a 

situation in which information redundancy, or latent adaptive potential, ought to be found, and to 

describe what occurs. 
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1.4.8. Aim 5 

To assemble the genome of a species with high theoretical need of both adaptive 

and acclimative mechanisms to cope with its environment 

Specific methods required to obtain a high contiguity assembly with low allelic inflation is needed to 

accurately obtain a picture of the information structures present in the genome. This aim involves 

solving this methodological challenge and characterising the allelic diversity content of the genome. 

It is also necessary to perform gene prediction and produce a high-quality reference gene annotation 

file for usage with Aim 2. 

1.4.9. Aim 6 

To discover the simultaneous roles of acclimative plasticity and atavistic 

adaptivity mechanisms in an organism under high environmental stress 

This aim involves obtaining a systems-level description of molecular mechanisms by functional 

flexibility is achieved by an invasive earthworm. The endpoints investigated are microRNA and gene 

expression patterns, and differential methylation between conditions. Many organisms have been 

shown to exhibit DNA methylation in different manners, therefore it is also crucial to the 

understanding of methylation as a system process to create gene-models of methylation 

distribution, to contextually inform the differential analysis. 
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2. Chapter 2: Genomes of Two Invertebrates Suggest 

Unprecedented Degrees of Divergence May Exist as an Ongoing 

Intraspecific Adaptive Strategy 

2.0. Introduction 

Despite being a focus of evolutionary research for centuries, the genetic basis for speciation is still 

poorly understood (Arnegard et al. 2014). Understanding how reproductive barriers evolve between 

populations remains one of the most fundamental challenges in evolutionary biology (Coyne & Allen 

Orr 1998)(Gavrilets 2004). 

The ultimate test of hybridization potential is whether the alleles of the two organisms are compatible, 

because if this is not the case, they will not produce viable offspring. The consensus is that as 

populations become genetically differentiated, homologous alleles are no longer able to recombine, 

and hybrids between these populations start to become inviable (Pogson 2016). This assumption has 

led to the prediction of “islands of divergence”, which are regions of the genome that have gradually 

spread out from alleles under selection, via genomic hitchhiking (Cruickshank & Hahn 2014). Taxa in 

which these ‘islands’ have now been identified include Atlantic Cod (Sodeland et al. 2016), Mosquitos 

of genus Anopheles (Turner et al. 2005),  Sunflowers (Renaut et al. 2013), and Butterflies (Martin et 

al. 2013). One hypothesis is that these islands may develop sympatrically, due to either non-

recombinant regions of DNA, such as in the case of large-scale inversions, or via more sophisticated 

mating relationships, for example due to wing pattern differences in Heliconius butterfly populations. 

This hypothesis is usually presented in contrast to one of allopatry, whereby differences between 

populations accumulate under divergent selection in isolation (Rieseberg et al. 1999). 

For some species, it appears that divergent selection acts additively on unlinked loci, inferring 

adaptation of different populations to different environments. These populations become specialised 

to different niches, and hybrids between them have a lower fitness than would be expected from an 

intermediate phenotype (Arnegard et al. 2014). However, recent studies of hybridisation have 

demonstrated a different effect: In the case of two populations of Ciona intestinalis, 3 million years 

was still not enough to prevent the viability of their offspring(Roux et al. 2013). Typically, it seems, of 

the broadcast spawning marine invertebrate, the pacific oysters Crassostrea gigas and Crassostrea 

angulate(Huvet et al. 2002) are known to frequently hybridize, and further hybridisations are possible 

within the genus (Y. Zhang et al. 2012)(Allen & Gaffney 1993), as are the blue mussels Mytilus edulis 

and Mytilus trossulus (Shields et al. 2010). As such, it has been observed that the species barrier in 
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broadcast spawning invertebrates is particularly porous. This has been assumed to be a peculiarity of 

the clade (Shields et al. 2010), however, as sequencing technologies and bioinformatics genomic 

analyses improve, and more invertebrate genomes are sequenced, it remains to be seen if these cases 

are indeed the exceptions or the rule.  Broadly speaking, hybridization does appear to be able to act 

as a mechanism for gaining evolutionary adaptive potential through a selective advantage of 

introgressed genes; whether that be from Neanderthal to Human(Ding et al. 2014),  within Conifer 

taxa(Ru et al. 2016), or between species of mice (Song et al. 2011). 

A recent study has attempted to combine the islands of divergence and hybridization/introgression 

fields of research, theorizing that in some situations gene-flow may be possible between speciating 

populations within islands of divergence, implying that these islands have the potential to contribute 

to adaptive introgression (Martin et al. 2013). Evidence is presented here for far more extreme 

introgression behaviour: Full genomes which are comprised of a dense mosaic of divergent alleles. 

Rather than the typical mosaic of a recent hybrid, these genomes suggest evidence of long-term allele 

frequency homogenization between genomes of previously isolated cryptic 'species' on a scale of 10-

30% absolute divergence. It can be argued that this genome characteristic is a feature of the common 

aspects of their respective life histories (short-lived, highly fecund) (Romiguier et al. 2014). 

This phenomenon has been observed in two organisms with highly contrasting evolutionary and 

ecological backgrounds: Lingula anatina is a marine broadcast spawning brachiopod, referred to by 

Darwin as a ‘living fossil’ due to it superficially appearing to have remained morphologically un-

changed since the Silurian (Way et al. 1994). More recent whole-genome analysis concluded that 

Lingula anatina have in fact been rapidly evolving, including the rapid duplication of many genes(Luo 

et al. 2015). The published genome is re-analysed, and the assembly of a new genome is presented: 

the European earthworm Lumbricus rubellus. The results identify that due to this previously 

undescribed mechanism, these two organisms appear to be able to sustain extraordinary levels of 

diversity within their genomes, likely due to hybridization between cryptic lineages or species. This 

chapter then begins to investigate the mechanical genetic capacity for such tolerance and seek to 

define a broader set of lifestyle conditions for such species boundary porosity. 

2.1. Materials and Methods 

2.1.1. Earthworm (Lumbricus rubellus) sample collection and sequencing 

A draft L. rubellus genome was assembled from a single individual (referred to hereafter as S18). 

Samples were collected by Prof A.J. Morgan, DNA was isolated by Dr L. Cunha and provided to 

Leiden Genome Technology for long read PacBio sequencing and Wellcome Trust Centre for Human 
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Genetics for Illumina short read sequencing. Briefly, L. rubellus genome was assembled from a single 

individual (referred to hereafter as S18) sampled from Cwmystwyth (52°21'23.1"N 3°45'37.9"W: 

52.356407, -3.760527), a former lead mining site in South-West Wales. The earthworm was 

collected and maintained at room temperature from soil harvested from the collection site for 

transportation to the Cardiff laboratories.  The sample was depurated by placing the live earthworm 

on moist filter paper 14oC for 48 hours to remove all soil or organic material from the gut.  The 

earthworm was then snap frozen in liquid nitrogen and stored at -70oC for long term archival.  DNA 

was extracted using the material ~5 segments posterior of the clitellum to the tail of the organism. 

The segment was ground under liquid nitrogen and DNA was then prepared using phenol method for 

isolation very-high-molecular-weight DNA (Wood 1983). DNA was quality controlled using 

absorption spectroscopy with integrity and size being determined using agarose gel electrophoresis 

(0.4%) using Lambda HindIII and undigested lambda (New England Biolabs) as size markers. DNA (6 

µg) was prepared for long read sequencing using the PacBio C2 chemistry with the XL enzyme 

(Pacific Biosciences, Inc.) and 8.6 Gbp of sequence generated using over 12 SMRT cells. A secondary 

aliquot of DNA (2 µg) was used to generate TruSeq PCR-Free pair end library with insert size of ~450 

bp (Illumina Inc.). This library was sequenced on a HiSeq 2500 platform (Illumina Inc.) using a rapid 

run mode and HiSeq V2 chemistry yielding 71 Gbp 150 bp pair end data.  

2.1.2. Lumbricus rubellus Genome assembly  

Short read adapter removal and read trimming was performed with the software ‘Trimmomatic’ 

(Bolger et al. 2014). K-mer spectrum error correction was then performed on the short read library 

with ‘Musket’ program (Liu et al. 2013). The initial draft genome assembly was then performed with 

the ‘Platanus’ assembler(Kajitani et al. 2014). This yielded an assembly with an N50 of 5.8 Kb, and 

531 k scaffolds. The assembly was then re-scaffolded by employing the PacBio 1 Kb+ read library 

with the program ‘SSPACE-Longread’ (Boetzer & Pirovano 2014), finally gap closing was performed 

using the ‘GapCloser’ program from SOAPdenovo2 assembler package (Luo et al. 2012). This 

improved the N50 to 6.3k, and reduced the scaffold count to 231 k, with a total length of 831 Mb. 

Although preferable assemblies could be obtained with alternative pipelines, the ‘bubble collapse’ 

graph method employed in the Platanus pipeline results in an assembly in which inflation by allelic 

variation only occurs in the case of more extreme divergence. Broadly speaking, only the highly 

variable alleles will split into separate graphs. Repeatmodeller (Smit & Hubley n.d.) was used to 

model genomic repeats in both Lumbricus rubellus and Lingula anatina. Repeatmasker (Smit et al. 

1996) was then further employed to predict the abundance of those repeats in both, and to produce 

masked versions of the genomes. Finally the software Freebayes (Garrison & Marth 2012) was used 

to call variants in the assembled genome sequence. 



25 
 

   
 

2.1.3. The limitations of string graphs 

Conventional assessment methods employed to measure allelic divergence rely on a ‘haplotype’ 

genome assembly. This is a genome sequence which represents a consensus of all the alleles 

present, onto which the smaller variations can be mapped. However, as the alleles become more 

and more divergent, achieving consensus between them becomes a process of increasingly 

insufficient compromise. With 1 in 10, 1 in 5, or even 1 in 3 bases altered between alleles, including 

major structural changes, the haplotype genome is no longer a realistic proposition. 

There are various tools available to reconcile divergent alleles. One is HaploMerger2 (Huang et al. 

2017), which is described as suitable for diploid assemblies with “high heterozygosity (3%)”. It 

requires a pre-improved assembly with an N50 above 100 Kb, which no attempt at the L. rubellus 

assembly came close to meeting (N50 ~6 Kb). Another is dipSPAdes (Safonova et al. 2014), which has 

been demonstrated to improve assemblies of highly polymorphic genomes varying from “0.4 – 

10%”. An L. rubellus assembly with dipSPAdes was running on a 96 CPU-core 2 TB RAM compute 

node, the process was terminated after it did not complete within two months.  

The ‘Platanus’ assembler was also designed to assemble highly heterozygous genomes(Kajitani et al. 

2014), and was used as the baseline assembler for L. rubellus in this case. Figure 5 suggests that 

regions with 1-2% allelic divergence were successfully collapsed into a consensus haplotype. The 

methodology suggested in Vinson et al (2005)(Vinson et al. 2005) was also attempted, but again, the 

L. anatina and L. rubellus genomes were too polymorphic. 

The problems with genome assembly evidenced here are brought about due to the extreme 

difficulty of solving the de Bruijn-graph for highly polymorphic regions, whereby both alleles exist 

undifferentiated within the same sequencing library. Although the compromises of haplotype 

consensus are usually enough for most higher vertebrates, for invertebrates tolerant of such 

extremes of divergence it may be necessary for future projects to aim towards the separate 

assembly of allelic sequences. 

Although there are presently haplotype ‘phasing’ software available (such as haptree (Berger et al. 

2014), and hapcompass (Aguiar & Istrail 2012)) – these rely on extrapolation from a collapsed 

consensus sequence, and are not likely to be effective in this case. The alternative – to assemble 

separate haplotypes – could be achieved with molecular methods such as “linked read” library 

preparation. Zheng et al, describe successfully using a linked-read library preparation method to 

capture haplotype specific information from human cancer cell genomes (Zheng et al. 2016). 
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2.1.4. Preliminary genome characterisation of Lumbricus rubellus 

k-mer frequency histograms and read coverage frequency histograms for Lumbricus rubellus were 

generated (Figure 5). These histograms clearly show a collapsed and a non-collapsed portion of the 

genome. A distribution of the polymorphism rate for the collapsed component of the genome was 

generated using the variant information from Freebayes (Garrison & Marth 2012), across 5 kb and 

40 kb window sizes using a custom Perl script (Figure 6). The proposed hypothesis is that these non-

collapsed and collapsed regions are due to extreme variations in polymorphism rate between large 

portions of each chromosomal pair, that are leading to an inflated genome assembly, and as such 

will be referred to as ‘divergent’ and 'non-divergent' regions respectively. 

Preparatory scripts mentioned here are available on GitHub: 

(https://github.com/OliverCardiff/Useful_R_and_Perl_Scripts/tree/master/Variants) 

2.1.5. Analysis of Lingula anatina genome assembly  

To investigate if this extreme allelic variation in Lumbricus rubellus is indicative of a wider 

phenomenon, a preliminary assessment of allelic diversity on published Lophotrochozoan genomes 

was carried out. Seventeen genomes, and their respective read libraries were downloaded from the 

NCBI short-read archive (SRA). Reads were re-mapped with bowtie2 (Langmead et al. 2013), 

subsequently FreeBayes (Garrison & Marth 2012) was used to call variants. Rolling means of 50 bp 

and 10 kb of allelic diversity were plotted alongside read depth to give a summary of allelic diversity. 

Lingula anatina was chosen to be analysed further in the present study, due to the extremely 

bimodal read depth, and the correspondence of this read depth to the polymorphism rate. 

Data used in this paper for Lingula anatina was made public by Luo, et al, along with their 

publication titled: ‘The Lingula genome provides insights into brachiopod evolution and the origin 

of phosphate biomineralization’ (Luo et al. 2015). The PacBio sequence library was downloaded 

from the SRA (short-read archive) at NCBI (https://www.ncbi.nlm.nih.gov/sra) the accession code is 

SRX1119733. It consisted of 1.1 M sequences, 8.5G bases. The short-paired sequence library was 

also downloaded from the NCBI SRA. The accession code was SRX1118889. It consisted of 54.1 M 

read pairs, 23.1 G bases. A set of transcripts representing the draft transcriptome of Lingula anatina 

was retrieved from the NCBI ‘Nucleotide’ database (https://www.ncbi.nlm.nih.gov/nuccore). It 

consisted of 43,670 annotated mRNA sequences. 

Multi-mapping divergent genome regions for both Lumbricus rubellus and Lingula anatina was 

attempted, using Bowtie2 (Langmead et al. 2013) parameterised for increased flexibility (Figure 7). 

K-mer frequency histograms and read coverage frequency histograms were also generated for 

Lingula anatina, as described above, to compare to Lumbricus rubellus. The draft anatina genome 

https://github.com/OliverCardiff/Useful_R_and_Perl_Scripts/tree/master/Variants
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/nuccore
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was fragmented into regions of consistent read coverage as described in Figure 1. Qualitative 

assessment of the integrity of the draft assembly was performed as described in 2.3.2.  

2.1.6. Identification and Characterisation of the ‘divergent alleles’ 

The proposed hypothesis was that the bi-modal distributions found in Figure 5 are due to highly 

allelically diverged, regions across the genome in both organisms. If this were the case, it ought to be 

possible to find a single allelic match for the fragments of each genome that are at half-coverage. 

The matched sequence being a separate half-depth coverage scaffold elsewhere in the assembly. A 

set of 5739 candidate pairs were identified for Lumbricus rubellus, and 5836 pairs for Lingula 

anatina. The pair-matching method was based on: 1. Unique shared PacBio read alignments with 

blasr (Chaisson & Tesler 2012), 2. End-to-end alignment identity scores, with Clustal Omega (Sievers 

& Higgins 2014), and 3. Set filtering based on divergence distributions (can be seen visually in Figures 

2, 3 and 4). To validate this approach and demonstrate the mis-assembly of the original Lingula 

anatina genome, open reading frames and protein sequence alignments between allelic pairs were 

visualised alongside read-depth (see Figure 8). PacBio reads were used solely for sequenced 

matching, and not for divergence rate estimation, due to their inherent error rate. The full pipeline 

for the selection and description of these allelic pairs is as follows: 

Read depth fragmentation. 

The L. anatina genome was fragmented based on read-depth coverage, using a custom algorithm 

implemented in C# (https://github.com/OliverCardiff/HollowScaffolds). This program determined 

whether a region was half- or full-coverage based on a combination of 2 rolling-means of large and 

small window size (5 kb, and 500 bp). The 10-bp bin read-coverage data (from Figure 5 (right half)) 

was flagged as half-depth if either of the rolling means fell below a cut-off point that was halfway 

between the half and full coverage levels. Stretches of continuously flagged bins were defined as 

half-depth regions, with fragmentation points (one scaffold split into two) created at their edges. L. 

rubellus draft genome did not need to be fragmented because the scaffolds were already of 

sufficiently small size to have a mono-modal read-depth coverage (I.e. there were a negligible 

number of changes in read-depth coverage within scaffolds). 

PacBio library alignment with 'blasr' 

PacBio reads were mapped to the draft L. rubellus and the fragmented L. anatina assemblies using 

the long read alignment algorithm ‘blasr’ (Chaisson & Tesler 2012). Blasr was parameterised to 

retain the three best 'hits' per read. 

 

https://github.com/OliverCardiff/HollowScaffolds
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Read depth filtering 

Scaffolds from L. anatina and from L. rubellus that had a read-depth between 75 – 125% the median 

value of the low-coverage read-depth peak (from Figure 5 (right half)) were selected. 

Candidate allele pair selection  

All PacBio reads that had anything other than exactly two 'hits' were removed. Additionally, partially 

mapped reads (alignments that were 80% of read length or lower) were also filtered from the 

dataset. The pairs of scaffolds that were repeatedly aligned to by the same PacBio read(s) were 

selected as candidate pairs. For a candidate pair to be selected they had to both be mapped to by at 

least three PacBio reads. This produced a set of 9708 candidate pairs for L. rubellus and 8018 pairs 

for L. anatina. 

Candidate pairs aligned with Clustal Omega  

Each candidate pair was end-to-end aligned with Clustal Omega (Sievers & Higgins 2014). The 

reverse complement of one sequence was also aligned to its counterpart, the highest scoring 

alignment was kept. Distribution of pair sequence divergence was calculated using a custom Perl 

script (‘vienna_toperc.pl’, see GitHub link at end of section) and summarised in R (see Figure 3). 

Set Filtering 

Candidate pairs above 25% divergence in L. anatina, and above 50% divergence in L. rubellus were 

filtered from the dataset. These cut-offs were reflective of a conservative separation between false 

positive and signal peaks in the divergence distribution. Cut-off is shown as a vertical black line 

against the distributions in Figure 3. This left a final set of 5739 candidate pairs for L. rubellus and 

5836 pairs for L. anatina. 

Successful L. anatina pairs used to demonstrate mis-assembly 

Allele pair selection (above) was repeated on the non-fragmented L. anatina genome. The same 

read filtering as in 4. was also applied. This was done to visualise the mis-assembly of L. anatina draft 

genome (Luo et al. 2015). This visualisation of the mapping can be seen in Figure 9. 

Predicted CDSs within 'successful pairs' extracted with Transdecoder  

Predicted CDSs above 300 bp (as recommended by the Transdecoder manual) in both sequences of 

the candidate allele pairs were extracted with Transdecoder. If here were overlaps between reading 
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frames, then the longest was selected, and the other removed. Transdecoder (Brian J Haas et al. 

2013) also generated the amino acid conversions of these CDSs. 

Protein sequences within allele pairs aligned with Clustal Omega 

The amino acid conversions from each allele (from 9, above), were aligned with the program ‘Clustal 

Omega’ (Sievers & Higgins 2014) to every other amino acid conversion from its corresponding pair 

using a custom Perl script (aln_proteins.pl, see GitHub link at end of section). The best match was 

saved for each amino acid sequence and a summary of this data was visualised in R. Some examples 

of these amino acid sequence pairings relative to the fragment pairs are shown in Figures 15 and 16. 

 

Figure 1. Candidate allele fragment pair identification and analysis flowchart. 
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Figure 2. Candidate Pair selection pre-filter results, tracking number of matched base pairs per fragment against fragment 

length, no filtering. 
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Figure 3. Fragment pair divergence kernel density functions, pre-filtration. 
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Figure 4. Candidate allele fragment pairs post-filtering, base pair matches per fragment against fragment alignment length. 
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2.1.7. Nucleotide divergence 

To describe the composition of the sequence divergence seen in Figure 11, 12,13 and 14, mutations 

were categorised as either substitutions, insertions/deletions or transposon-like features. The 

alignments used in Figures 2-4, were re-analysed by a custom Perl script which sequentially 

processed the alignment files, categorising sequence changes as substitution or indel, and recorded 

indel length. Indels longer than 10 bp were categorised as 'transposon-like' features. The gaussian 

kernel density function of substitutions and indel occurrence rates were calculated over a set of 

window sizes, from 100 bp to 5 kb, in 200 bp increments. 

2.1.8. Protein divergence 

As described in Figure 1, converted protein sequences from candidate allele pairs for both organisms 

were aligned with their counterparts with Clustal Omega (Sievers & Higgins 2014). The set of protein 

alignments was then filtered for alignments longer than 200AA, with identities of at least 60%, with 

no indels sequences longer than 100AA within that alignment. Although these are lenient 

parameters, there were also many cases for both genomes whereby an ORF’s opposing sequence 

had decayed and was no longer capable of encoding protein, or where an ORF appeared to be a 

divergent duplicate of another, with no equivalent duplication having occurred on the opposing 

allele. In these cases, the next best possible protein alignment was achieved for the unmatched 

sequence – which often was of a very low identity (~20-40% the same). This filtering method 

removed most of these cases. To investigate the distributions of larger scale changes, incidents such 

as duplications, deletions, inversions, and large indels were also tracked in the protein alignments 

using a separate Perl script (aln_proteins.pl, see GitHub link at end of section), see Figure 19. The 

alignments were sorted for relative substitution rate before visualising. Alignments pairs were also 

annotated by protein family (Figure 20) and six protein families were selected as interesting 

examples (Figure 21). All visualisation scripts were written in R (R Development Core Team 2016). 

2.1.9. Validation of Allelic Nature of Lumbricus rubellus divergent regions  

The expectation that paired fragments behave like alleles is derived from both shared sequence 

homology, and the half-depth read coverage observed when a short-read library is re-mapped. 

Evidence for the hypothetical mendelian behaviour of these fragments as alleles would therefore be 

seen in the read-depths of a short-read library derived from a second individual from the same 

population, when a high stringency alignment is performed. If fragment A from a fragment pair 

receives full read depth coverage from a second individual, the allele hypothesis would expect 

fragment B to receive a depth within an error tolerance zone around zero. Similarly, if one allele is 

discovered to be half-depth again, so should its opposite. 
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To test this theory, a low-coverage genome sequence library was generated (8.6 Gb, 100 bp paired 

end, approx. 14-fold coverage) from a second Lumbricus rubellus individual (S20) from the same 

population as the full genome. Reads were mapped from individual S20 individual to the original 

repeat masked genome using bowtie2 (Langmead et al. 2013). Read depths for the set of 5739 

fragment pairs previously identified were extracted and examined for congruity with the allele 

hypothesis using the following binning rules: Bin A) The read depths of one fragment are more than 

twice the level of the other, and the lower coverage fragment’s depth is also lower than a quarter of 

the full coverage level. Bin B) Both fragment’s read depths are greater than a quarter of the full 

coverage level. The same analysis was also performed on the fraction of the L. rubellus genome where 

high levels of polymorphism were not observed. This fraction is referred to as the “non-divergent 

genome”. This results of these validation are shown in Figure 25. 

2.1.10. Population Genetics of Lumbricus rubellus ‘divergent regions’ 

Forty L. rubellus worms were sampled from Cwmystwyth mines in south Wales (the same location as 

individuals S18 and S20) and underwent RAD-tag sequencing. This RAD-tag sequencing included the 

two highly divergent mitochondrial lineages of L. rubellus. RAD-Seq restriction enzymes rely on a 

specific 8bp sequence to bind with the sample DNA. If any base in that sequence is altered, it is 

highly unlikely that the restriction site will remain. Since the estimated divergence between rubellus 

alleles is around 33% (Figure 3), it follows that in many of the cases a restriction site on one allele 

will not be matched by restriction site at the corresponding location on another. As a result, the 

RAD-Seq process for this organism will not produce an effective means for ‘calling’ variants between 

alleles, due to missing data. However, the missing data itself may yet be informative. 

L. rubellus is known to have two major mitochondrial lineages, A and B (Spurgeon et al. 

2016)(Anderson et al. 2017)(Giska et al. 2015a). The RAD-Seq individuals were categorised by the 

unity of two methods: 

1. A presence/absence matrix of RAD-tag sequence alignment against all assembled contigs in the 

genome was generated (Andre et al. 2010). This was then used to produce PCA estimation of 

population separation (Figure 22 (top)), and a merged matrix of pattern similarities (Figure 24).  

2. RAD-Seq data was aligned to two other L. rubellus genome assemblies, with known mitochondrial 

lineages. The per-library genomic alignment rates were treated as two separating dimensions (Figure 

22 (bottom)). 

The presence/absence dataset used the PCA analysis, was then filtered for sparse entries (n < 9), and 

short sequences (< 5 Kbp). It was then sorted by a lineage-difference metric defined as the sum of 
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positive lineage A columns minus the sum of positive lineage B columns, the result was plotted in R. 

(Figure 23) 

2.1.11. Motifs Conserved in Divergent Alleles 

With absolute sequence divergence evidently high and given the proposed hypothesis that these 

divergent regions are still able to act as Mendelian alleles, there is the question as to how these pairs 

of alleles can maintain compatibility. This question was addressed by identifying and describing 

conserved sequence motifs within divergent regions. This was done by:  

1. Using a k-mer analysis (via the Jellyfish (Marcais & Kingsford 2012) software package) that 

identified and aligned the most frequent 32-mers (excluding microsatellites; Figure 26),  

2. Describing the allelic mutation rate within each of these identified motifs (at each divergent allele 

locus, in a pairwise manner; Figure 27), 

3. Aligning these motifs to transcriptomes of both organisms to determine where they occur (Figure 

28). 

Motifs are DNA patterns which re-occur regularly, they may be internally variable, yet follow some 

consistent structure. K-mer analysis is involved with assessing sub-string frequencies within a larger 

string, or set of strings, as in DNA sequence. This makes k-mer analysis a suitable starting point for 

searching, de novo for conserved motifs. 

The sets of filtered candidate allele pairs described in Figure 3 were collapsed into consensus 

sequence. Gaps and SNPs in the alignment resulted in an ‘N’ in the consensus sequence. The 

consensus sequences were then fragmented into their ‘N’-free sub-sequences (strings split by ‘N’). 

All sequences longer than 32-bp were retained, the rest eliminated from the set. This produced a set 

of fragments representing the points of perfect conservation between alleles. This process was 

conducted separately for both organisms. 

The reduced sub-sequence sets then had their absolute 32-mer frequencies counted by Jellyfish 

(Marcais & Kingsford 2012). The 100 most frequent 32-mers were then extracted from these sets for 

both genomes.  

The k-mers and their reverse complements were then aligned using Clustal Omega (Sievers & Higgins 

2014), overlapping k-mers were then collapsed into singular representative motifs. These motifs 

were then re-aligned to all the candidate pairs using BLAST. All matching sequences and their 

reverse complements were then aligned in Clustal Omega to create a large multiple sequence 

alignment file of several hundred sequences for each motif. This file was trimmed at the edges to 
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include only loci where 80% of the sequences had base-pairs present. These motif alignments were 

then used to create motif diagrams with WebLogo (Crooks et al. 2004). 

After looking for the consistency of the motif overall, the allelic mutation rate within each motif (at 

each divergent allele locus, in a pairwise manner) was analysed. The two sets of motifs found using 

the procedure in were re-aligned with candidate allele fragment pairs, using BLAST+(Camacho et al. 

2009). Using the local BLAST+ coordinates of where motifs aligned to a single allele pair, a custom 

Perl script (pairs_filt_and_blast.pl) was used to extract the corresponding region from the alignment 

of the two allelic fragments. The result in each case being a short two-sequence alignment file 

containing two allelic copies of that incidence of the given motif. Each of these short alignment files 

was then assessed for per-loci mutation rates. The total mutation rate for each locus, for each motif 

was then summarised in R. 

The results show that each motif has a central region of substantially lower allelic mutation rates 

that corresponds to the higher consistency regions seen in the motif letter visualisation. Overall the 

mutation rates along each motif are always consistently below the mean allelic divergence for the 

corresponding organism. 

To investigate is the conserved motifs had any relationship with transcribed regions, a mapping was 

performed between the motifs and assembled transcriptomes of L. rubellus and L. anatina. The 

Lingula anatina transcriptome was retrieved as described in ‘Data Sources’. The Lumbricus rubellus 

transcriptome was provided by Prof. P. Kille from other work in preparation. Bowtie2 (Langmead et 

al. 2013) indices were built for each transcriptome. The motifs were then aligned to the 

transcriptomes with the ‘-all’ flag, to keep all possible alignments. A custom C# program was then 

used to intersect motif mappings with transcriptome annotation files (GFF3 format). There was no 

notable presence of motif alignments in coding sequences, or 5’ UTRs. As Figure 28 shows, the 

motifs piled up very consistently on the terminal 60bp of mRNA transcripts, in the 3’ UTR. Except for 

just one of L. anatina’s motifs, all motif aligned in this manner, suggesting strongly that conserved 

motifs of this length perform similar roles across diverse taxa, and may be crucial components of 

maintaining regulatory compatibility between divergent alleles 

Perl scripts mentioned in this Methods section can be found at the following Github link: 

(https://github.com/OliverCardiff/Useful_R_and_Perl_Scripts/blob/master/allele_matches/) 

https://github.com/OliverCardiff/Useful_R_and_Perl_Scripts/blob/master/allele_matches/
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2.2. Results 

2.2.1. Preliminary Genome Characterisations  

In both organisms there is a bimodal distribution, both for the 17-mer frequency histograms (Figure 

5 (top)) and for the read-coverage frequency histograms (Figure 5 (bottom)). For both organisms, 

the mono-allelic (or lower frequency) peak is higher than the bi-allelic peak for the 17-mer frequency 

histograms, demonstrating a high proportion of single-allele sequences. In the case of Lumbricus 

rubellus there are approximately 50% more mono-allelic sequences. Clear peaks indicate that the 

libraries were of adequate quality. Both organisms’ assemblies also show highly bi-modal read-

coverage, a pattern usually seen when allelic copies have not been collapsed into a single haplotype 

during the assembly process. These analyses indicate that most of both genomes are subject to 

extremely high levels of variance. By analysing only regions of full-coverage, it was possible to 

determine an average polymorphism rate of ~1% for the Lumbricus rubellus individual S18 and ~2% 

the Lingula anatina individual (see Figure 6), in the fractions of the genome that are referred to as 

the “non-divergent” regions. 
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Figure 5. (Left) 17-mer frequency histograms derived from short read sequence libraries, (right) read depth distributions of 

libraries mapped to assembly. 
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Figure 6. Multiple rolling window allelic variant distributions in full-read-depth fractions of both genomes. (top) Lingula 

anatina, (bottom) Lumbricus rubellus 
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2.2.2. Analysis of Draft Lingula anatina Assembly 

There was no change in read depth distributions throughout the assembly when short-read mapping 

was attempted with k=2 allowed mapping per read (‘single map’ Figure 7 (top), versus ‘double map’ 

Figure 7 (bottom)). In a ‘medium allelic divergence’ diploid assembly (~1-3%) that is subject to size 

inflation due to non-collapse of string graphs, a flexible re-alignment at k=2 would be capable of 

matching polymorphic short reads to both their primary and opposing alleles, correcting scaffold 

read-depth disparity. There was no meaningful change in the read pileup pattern when the ‘double 

map’ procedure was used (Figure 8 (top)) compared to the ‘single map’ procedure (Figure 8 

(bottom)), as would be expected given the distributions in Figure 7. As this does not happen, it 

seems to be the most likely explanation that the extent of the allelic divergence within this draft 

Lingula anatina genome is beyond the tolerance of conventional short read aligners (even when 

using the very sensitive and alignment parameters). When coverage and polymorphism rate is 

visualised along assembly scaffolds (Figure 8; examples shown here for Lingula anatina), the 

polymorphism rate can clearly be seen to track the coverage, with regions of low, or zero 

polymorphism corresponding to the half-coverage regions. This characteristic bimodal pattern was 

seen in the read pileups of almost all scaffolds analysed in this way (approx. 12 of the largest 

scaffolds; see Appendix 1.1 'LA Scaffold Visualisation').  

Polymorphism and Read Depth 

Figure 8 was generated using a simple variant rate rolling mean of two sizes (50 bp and 10 kb) of 

allelic diversity and plotted alongside read depth (using R) to give a summary of the relationship of 

allelic diversity to read depth. B1 was generated using ‘single-map’ read coverage levels, B2 was 

generated using ‘double-map’ coverage levels. 

There was a characteristic bimodal pattern seen in the read pileups of almost all scaffolds analysed 

in this way (approximately 50 of the largest scaffolds). Read pileup depth (green) corresponded to 

polymorphism rate (across both a 50 bp [black bars] and 10 kb [orange line] mean), with an 

approximately half-level of read pileup corresponding to zero, or very low polymorphism rate, and 

full read pileup corresponding to a greatly increased polymorphism rate. There was no meaningful 

change in the read pileup pattern when the double map procedure was used (top) compared to the 

single map procedure (bottom). 

The correspondence of read pileup with polymorphism suggests that the full depth level is the result 

of two alleles' reads mapped to the same scaffold whilst the single depth sections likely represent 

just a single allele. The short read alignment incompatibility between alleles would also suggest that 

the same sequences would have been assembled separately by the Newbler assembler in the 
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original paper (Luo et al. 2015), as these differences would also have made the formation of a 

collapsed string graph impossible. 

Structural Mapping of Mis-assembly 

The running hypothesis was that the half depth pileup scores represent regions of the genome that 

have been mis-assembled due to extreme allelic divergence. If this hypothesis is true, it would be 

expected that most half depth regions in the genome to have a single collinear match with another 

half depth region from a separate scaffold elsewhere in the assembly. 

Half depth fragment pairs were identified using the method described in ‘Fragment Pair Selection’. 

Pairs were further filtered using a custom C# program (‘Reconstruct’, see Github at end of Section) 

that employed the non-redundant anchor method for pairing divergent alleles as employed in the 

divergent Ciona intestinalis assembly(Vinson et al. 2005). This anchor method was modified slightly 

so that if multiple anchor points lay in a colinear series, they would be merged into a single 'anchor 

span'. Pacbio read alignments made on the read depth fragmented assembly were lifted over onto 

the original assembly (filtering out Pacbio reads with coverage of <2 to reduce noise) and visualised 

in R. 

Structures visualised in Figure 9 are characteristic of 14 scaffolds analysed in the same way (see 

Appendix 1.2.'Misassembly Structures). Purple bars and black lines show scaffolds and annotated 

genes (respectively) from Luo et al. Green bars show read depth pileup. Brown connecting lines 

show local alignments between two regions with no local overlap, which map uniquely to each other 

(non-redundant anchor method described above). Blue connecting lines show Pacbio long reads 

aligned with blasr (Chaisson & Tesler 2012), which align exactly twice within the whole assembly. 
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Figure 7. Lingula anatina genome, read depth distributions after single-mapping and double-mapping sequencing library 

(one alignment per read (top) vs two alignments per read (bottom)). 
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Figure 8. Read pileup against spatial polymorphism rates in Lingula anatina assembly scaffolds. (top) mapping performed 

with a single match retained per read, (bottom) mapping performed with two matches retained per read. 
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Figure 9. Allelic inflation in Lingula anatina genome visualised. Two long scaffolds (200kb+) with mapped read depths and 

non-redundant connection to allelic fragment pairs. 

Statistical Evidence for Mis-assembly 

To add a level of empirical support to the assertion that the draft anatina genome is mis-assembled, 

a further non-redundant fragment pair selection was undertaken. The central hypothesis was that 

low read-depth regions had real identifiable allelic pairs discoverable within the draft assembly, and 

high read-depth regions did not. If this were the case, fragments with low read-depth ought to pair 

together at a substantially higher rate than fragments of high or mixed read depth. 
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The anatina assembly was fragmented, however in this case each fragment was tagged with a binary 

classification that indicated the read depth peak (see Figure 5 (top)) it fell under. The classifier simply 

selected the read depth peak which the fragment depth had the smallest difference to. Fragments 

were thus classified as 'high' or 'low'. 

The Fragment Pairing procedure described above was then iterated over the integer range 1:7, for a 

minimum shared read parameter. In each case, pairs were segregated into three sets corresponding 

to the three possible pair combinations of fragment classification. For each set of pairs, high-high 

(HH), low-high (LH), and low-low (LL), the expected set size given a null distribution of pairings were 

calculated. An enrichment factor for each pair type was then derived by dividing the actual set size 

by the expected set size. The variation in these factors was then mapped over the range of the 

minimum shared read parameter. The result can be seen in Figure 10.  

In the unfiltered sets, the LL group factor is 1.64, whilst the other groups factors are LH=0.37 and 

HH=0.704. As the filtering becomes more stringent, groups LH and HH experience a continuous 

reduction in factor level, whilst the LL group's factor increases over this range. This indicates that as 

noise is reduced, the signal of the low-low fragment pair set strengthens. The over-representation of 

the LL group is made even more significant by the fact that it is also the largest group by far in the 

highest stringency set, making up 82% of all fragment pairings. From this it can be concluded that 

fragment read-depths are a strong predictor of non-redundant homology matches between 

fragments; the result which would be expected if the genome mis-assembly hypothesis was true. 
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Figure 10. Allele pair discovery frequency tests between low and high coverage fragments. 

2.2.3. Identification and Characterisation of ‘divergent alleles’ 

 For both draft assemblies, half read-depth fragments in the genome frequently have a single 

collinear match with another half read-depth fragment from a separate scaffold elsewhere in the 

assembly. Figure 9 shows 2 characteristic Lingula anatina scaffolds analysed with the half depth 

allelic fragment matches re-attached (see Appendix 1.2. 'Mis-assembly Structures' for more 

examples).  The previously published draft L. anatina genome therefore appears to have been 

assembled into fragments of two read-coverage sizes, and then scaffolded into blocks of both half 

and full coverage DNA. This would mean that this genome was subject to substantial mis-assembly 

and allelic over-inflation in size. The mis-assembly hypothesis was further evidenced by an empirical 

approach which found that half-depth fragments formed unique pairings at far higher rates than full 

depth or mixed pairs (see Figure 9). The knock-on effect being that over-estimation of gene family 

sizes and misrepresentation of gene family diversity metrics will have occurred in a widespread 

manner in the original publication in Nature Communications (Luo et al. 2015). 

This is also very strong supporting evidence for the hypothesis that large (30-40%+) portions of the 

genome of these two organisms show extreme levels of allelic diversity. To further back-up this 

conclusion and gain a qualitative view of the synteny between these divergent alleles, ORF 

alignments, modelled repeats, and alignment identities were visualised between some example 
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pairs of allelically diverged regions for both Lumbricus rubellus and Lingula anatina (Figure 16 and 

17). The images show the extent of re-arrangement and sequence divergence between allele pairs. 

Divergent regions contain long non-overlapping open reading frames. Open reading frames may or 

may not be in perfect synteny across the two alleles. Protein alignment identities between the two 

alleles is also highly variable, with some of the values at the lowest extreme probably reflecting the 

loss of one of the protein allele copies. 

 

2.2.4. Nucleotide divergence 

Base substitutions and small indels appear to occur at an equal rate in the Lingula anatina genome 

whereas in Lumbricus rubellus base substitutions appear to occur more frequently (see Figure 11). In 

both cases transposon-like features (loosely classified as indels longer than 10bp) seem to account 

for around 5% of the total allelic sequence divergence. 

The breakdown of both organisms’ allelic divergence rates for both indels and substitutions across a 

range of test window sizes are displayed in Figure 12, 13 and 14. Lumbricus rubellus exhibits the 

greater divergence rates, but also the more well-defined divergence rate peaks, likely a reflection of 

two-lineage origin of diversity. Lingula anatina appears to have a far more skewed distribution of 

allelic divergence, possibly a reflection of the marine broadcast-spawner’s capacity to interconnect 

various diverse and ancient sub-species across a broad geographic range in the near-term 

reproductive life history of an individual’s genetic lineage. 

Small far right peaks on the Lumbricus rubellus substitution rate graph appear to indicate larger scale 

movements of DNA, which during the evolutionary process have resulted in incomparable sequence 

at the same loci in the alleles of the two lineages. These are absent in the Lingula anatina graphs.  
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Figure 11. Components of allelic divergence between fragment pairs. (top) Lingula anatina, (bottom) Lumbricus rubellus. 
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Figure 12. Base substitution rate distributions for both sets of fragment pairs. (top) Lingula anatina, (bottom) Lumbricus 

rubellus. 



50 
 

   
 

 

Figure 13. Indel rate distributions for both sets of fragment pairs. (top) Lingula anatina, (bottom) Lumbricus rubellus. 
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Figure 14. Full divergence profiles for both sets of fragment pairs. (top) Lingula anatina, (bottom) Lumbricus rubellus. 
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RepeatModeller identified that over 20.11% of the L. anatina and over 37.66% of the L. rubellus 

genomes were made up of repeats (see Tables 1 and 2). Most of these repeats were unclassified, 

particularly for L. anatina. In both cases, transposon-like features (indels longer than 10 bp) seem to 

account for around 5% of the allelic sequence divergence (data not shown). Graphs showing pairwise 

divergence for base substitutions (Figure 12), indels (Figure 13) and combined indel and substitution 

rate (Figure 14) for both L. anatina and L. rubellus are shown above. The 5 kb mean base substitution 

rate distribution mode was 3% and 14%, and indel rate distribution mode was 2% and 14% for L. 

anatina and L. rubellus respectively. Combined (indels and substitutions) 5 kb mean divergence rates 

were 6% and 27% for L. anatina and L. rubellus respectively.  

2.2.5. Qualitative Overview of Allele Pairs 

The panels in Figure 15 and 16 show the extent of re-arrangement and sequence divergence 

between allele pairs. Divergent regions contain long non-overlapping open reading frames. These 

open reading frames may or may not be in perfect synteny across the two alleles. The results of 

converted protein sequence alignments between alleles are also displayed within each image. 

There are several obvious examples within these visualisations of ORFs or repeat regions being 

matched with a gap in the alignment with the opposing allele. This is suggestive of how re-

arrangements may be occurring. For a larger collection of these images see Appendix 1.3. 'Fragment 

Pairs'. 

There is also a clear variation in the extent of sequence divergence across the examples. For 

example, in Figure 15 (bottom) the base substitution rate appears to spike the most around two 

short ORFS. In Figure 15 (top) the substitution rate is exceptionally high around the first annotated 

repeat. This suggests that there may be functional drivers of both positive purifying selection which 

have modulated the rate of divergence within these sequences. 
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Table 1. Lumbricus rubellus genome, repeat modeller output table. 
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Table 2. Lingula anatina genome, repeat modeller results. 
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Figure 15. Examples of L. rubellus and L. anatina candidate allele fragment visualisations (A) 
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Figure 16. Examples of L. rubellus and L.anatina candidate allele fragment visualisations (B) 
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2.2.6. Protein Sequence Divergence 

The purpose of the protein alignments is to measure the scale of function alterations which have 

arisen from the allelic divergence. Although absolute base sequence variation between alleles is 

extreme, this does not immediately lead to the conclusion that the functional content is 

substantially altered. Differences in encoded protein sequences however, are a clearer indication 

that this may be the case. 

The difference in the protein sequence variation distributions between the two organisms, displayed 

in Figure 17, is reflective of the differences seen in Figure 14. That the peak score for both organisms 

is substantially lower than both the mean and median statistics for their respective sets, suggests 

that a range of other genetic mechanisms may have acted upon these protein sequences to cause 

their divergence, other than the predominantly purified alterations made by the molecular clock. 

This may include partial duplication of sequence, rearrangements, or inversions. 

Protein Alignment Validation 

Some Amino Acid residues have shared properties with various others. Hydro- and lipophilic side 

chains, side chain sizes, and capacity for ionic bonding all account for a residue’s functional role in 

the peptide. Histidine, Methionine, and Isoleucine are recorded as being more changeable residues, 

and cysteine, tryptophan and tyrosine and notably more stable (Tourasse & Li 2000). Most 

importantly, it would be expected that substitution rate differences between residues should be 

relatively consistent for both organisms. Since the scale of protein polymorphism is exceptionally 

high, particularly in the case of L. rubellus, to see the chemical/biological function of residues 

reflected in their substitution rates would increase confidence in the legitimacy of this analysis. 

With the set of alignments used in the two panels of Figure 17, each alignment was further 

processed to produce the rate of per-residue sequence mismatch for each residue type. This 

procedure was performed for both sets of alignments. Figure 18 shows a consistent trend in the 

residue substitution rate differences between both organisms. In line with Tourasse and Li’s results, 

Histidine, Methionine and Isoleucine were the top three most changeable residues in both cases. 

Tryptophan was the most stable, with cysteine being the 5th most stable, and tyrosine being the 

10th. 

The AA substitution rates observed appear to fall in line with prior investigations of core biology, 

thus building confidence to the biological legitimacy of the set of alignments made here. 

Indels and Substitutions 
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Although the pure protein substitution rates can account for many gradual changes in peptide 

sequence, there also appears to be a broader distribution of larger scale changes, as seen in Figure 

17, for which other genetic alterations may be responsible. Incidents such as duplications, deletions, 

inversions, or similar movement of genetic material could likely be represented as large ‘indels’ in 

the protein alignments. Each candidate allelic protein alignment was assessed for both substitution 

rates and indel features. The set of all alignments was then sorted for relative substitution rate, and 

visualised in R. 

Figure 19 appears to show a light correlation between the indel features and the mismatch rate. 

Low-substitution alignments also tend to have little-to-no indel features. Across the rest of the set, 

almost independent of mismatch-rate, large scale indels appear to occur, reaching up to 40% of the 

size of the total alignment. These graphs show that although residue substitution remains the 

primary source of variation, there are also substantial indel features in the allelic matches of both 

protein sequences. This indicates that during a period of isolated divergence in these lineages, 

duplications, deletions and inversions have played a large role the in their base sequence evolution. 

Interestingly the large indel feature is more visible here than in the analysis of absolute DNA 

sequence change. 
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Figure 17. Candidate allele fragment pair protein sequence translation alignment distributions for both genomes. 
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Figure 18. Amino acid sequence polymorphism rates per residue type, both protein alignment sets. 
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Figure 19. Base substitutions and indels as proportions of protein alignment lengths, full sets of alignments. (Top) Lingula 

anatina, (bottom) Lumbricus rubellus. 
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2.2.7. Environmental Adaptation and Protein Divergence 

The protein divergence distributions for allelically matched ORFs plotted in Figures 17-19 show a 

polymorphism rate that is substantially lower than the absolute base sequence divergence 

(distribution peak at 0.81% for L. anatina and 4.75% for L. rubellus). However, these average values 

are only indicative of polymorphisms between protein sequences that are directly comparable and so 

are probably an underestimate (Figures 15 and 16 both show several ORFs without direct allelic 

counterparts). In both cases there is a long right-hand tail to the distribution, and the difference 

between peak and median scores (see Figure 17) indicates that the peak average accounts for less 

than half of even the filtered set of alignments. 

Alignments pairs were also annotated with protein family definitions (Figure 20). There are two clear 

distributional peaks in protein alignment identity for ‘best matches’ (including unpaired ORFs) in both 

organisms. The lower peak (around 10% identity in both cases) likely represents cases whereby an 

ORF on one allele had no direct counterpart on the opposite allele – resulting in a best match being 

found with a highly divergent nearby ORF (i.e. a non-reciprocal best hit) and appears as the cluster of 

points towards the origin of the scatter plot. The higher peak corresponds with the ORFs for which a 

syntenic match remains and appears as the linear trend of points on the scatter plot. There is an 

apparent linear relationship between protein family divergence in L. rubellus and L. anatina in Figure 

20 (right), as would be expected given the heterogenous sequence flexibility that occurs between 

different families. Classified family sizes are not consistent between organisms, however this analysis 

has only been carried out on the subset of the genome that makes up the divergent regions, so is not 

necessarily representative of the actual size of the protein families in these organisms. There are very 

few protein families exhibiting higher divergence in L. anatina than in L. rubellus, and there are a wide 

range of protein families exhibiting the inverse. 

Six protein families were chosen as examples of large, well-annotated families of potential adaptive 

relevance. These protein families (see Figure 21) show a range of divergences and sizes and are broadly 

representative of the linear relationship shown in Figure 20, although ZIP metal transporters had a 

higher average allelic diversity in L. rubellus (~65%) than L. anatina (~30%). Of the six protein families 

chosen, epithelial sodium channels, GPCR chemoreceptors and glucuronosyltransferase had a higher 

family size in L. anatina. Mucin-like glycoproteins and ZIP metal transporters had a higher family size 

in L. rubellus than in L. anatina, and laminins had a similar family size between both. The overall rates 

of protein sequence divergence between alleles were exceptionally high in most cases for both 

organisms. 
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Figure 20. All identified protein families shared by both genomes (right), distributions of protein alignment residue matches against length for both full alignment sets (left).
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Figure 21. Protein Families of Interest, Largest shared protein families of highest divergence rates shared by both genomes.
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2.2.8. Population Genetics in Lumbricus rubellus sample Population 

The clear spatial separation of individuals into lineages produced identical groupings in both cases. 

The intersection of the images in Figure 22, can be seen in Table 3. The visualised presence/absence 

matrix for RAD-Seq scaffold stack presence shows that whilst there are marked differences in the 

alignment patterns between the two lineages. However even where the scaffolds in the visualisation 

were selected specifically for their capacity to segregate the population, the A/B lineage separation 

does not define the whole landscape so clearly. Despite maintaining a consistently recognisable 

lineage specific genomic fraction (Figures 23 and 24), the relative proportion of this DNA was very 

low compared to the whole genome. This analysis suggests that there are relatively few 

incompatible alleles between the A and B lineages. 
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Figure 22. Lineage separation metrics. Principal component analyses of RAD-Seq alignments (top), and differential draft 

genome alignment rates (bottom). 
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Table 3. Intersection of individual scores from both lineage separation metrics in figure 22, this table shows the perfect 
concordance of these metrics. 
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Figure 23. RAD-Seq stack presence/absence patterns as a lineage separator visualised. Input data also used in Figure 22 

(top) 
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Figure 24. Merged scaffold collections (Spans) with identical RAD-Seq presence/absence patterns. Lineage classification 

from figure 22/table 3 is show as column headers. 
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2.2.9. Validation of Alleles in Lumbricus rubellus Assembly 

When reads from L. rubellus individual S20 were mapped to the original repeat masked genome, the 

fragment pair read-depths for divided into bins that are consistent with presence/presence (full 

coverage), presence/absence (half coverage) and absence/absence of the mapped alleles (Figure 

25). As would be expected, the reads from the reference genome individual (sample S18) mapped 

back onto itself show a consistently high coverage level. Those from the test individual (S20) show a 

proportion at half, and zero coverage, suggesting that those locations also have high polymorphism 

in the test individual. 
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Figure 25. Validation of Lumbricus rubellus alleles. Divergent allele pairs (left) vs Non-divergent collapsed scaffolds (right), comparison between reference individual S18 (top) and test 

individual S20 (bottom).
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2.2.10. Motifs Conserved in Divergent Alleles 

To investigate the question of how such divergent alleles could maintain compatibility, analysis was 

conducted to identify conserved sequence motifs within divergent regions. The most frequent 32-

mers were identified and aligned: For each organism, 4 archetypal groups of ~60bp long motifs were 

extracted from the top 250 unique sequences. Each of these has a central ~25bp region which is highly 

consistent. These motifs are shown in Figure 26, with the size of the nucleotide letter proportional to 

how conserved that base is across all motifs in that group. The flanking regions on each motif have 

variable ranges of consistency. The allelic mutation rate within each of these identified motifs was 

described as simple per-base frequencies in Figure 27: Each motif has a central region of substantially 

lower allelic mutation rates that corresponds to the high consistency regions seen in Figure 26. Overall 

the mutation rates along each motif are always consistently below the mean allelic divergence for the 

corresponding organism. 

Figure 26. Two sets of top four maximally conserved long motifs in hyper-divergent allelic fragment pairs. Lumbricus rubellus 
(top), and Lingula anatina (bottom). Weblogo format: Letter size equates to proportion of motif set which exhibits that base. 
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Figure 27. Presence of motifs plotted across the genome was indicator of divergence. Motifs which make up the diagrams in 

Figure 26. Lumbricus rubellus (left) and Lingula anatina (right). Y-axis values are base substitution frequencies. 
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Figure 28. Alignment pileup of motifs in figure 26 against 3' UTRs of expressed mRNAs, Lingula anatina (top), Lumbricus 

rubellus (bottom). 
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2.3. Discussion 

2.3.1. Summary of Key Findings 

The results presented demonstrate that both the L. anatina and L. rubellus contain a large proportion 

of their genome that is highly polymorphic (see Figure 5 and 13), with combined (indel and SNP) 

absolute sequence divergence rates of 10.1% and 33.6% respectively. The levels of polymorphism 

detected within single individuals from these organisms is extreme, and in the case of the earthworm 

L. rubellus, unprecedented modern genomics. In the case of both organisms, the identification of 

allelic pairs was also contingent upon some degree of sequence identity between them. Since, in both 

cases, a proportion of the half-depth fragments could not be well mapped to an allelic counterpart, 

there is also the possibility that some alleles are either physically unpaired (lone chromosome arms) 

or have no meaningful homologous counterpart because of large scale inversions, duplications, or 

transposon events. 

Several other studies have identified highly polymorphic genomes, for example:  

• Homologous chromosomes of Pinot Noir differ by 11.2% (Velasco et al. 2007) 

• 3.5% diversity has been detected between two haplotypes of a heterozygous diploid breeding 

line of tuber crop potato, Solanum tuberosum (Xu et al. 2011) 

• The genomes of inbred and outbred Pacific oyster Crassostrea gigas were 0.73% and 1.3% 

respectively(G. Zhang et al. 2012) 

• The sea urchin Strongylocentrotus purpuratus has a SNP polymorphism rate of 4-5% 

(Sodergren et al. 2006) 

• Genome-wide average SNP heterozygosity in the urochordate, Ciona savignyi is 4.5% (Small 

et al. 2007b) 

• The freshwater cnidarian Hydra magnipapillata showed ∼0.7% single nucleotide 

polymorphism between alleles (Chapman et al. 2010) 

• Amphioxus showed 450 Mb with 4% heterozygosity (Huang et al. 2014), and hookworms 

showed 330 Mb with <1% heterozygosity (Schwarz et al. 2015) 

Until now, the most extreme case of between-individual genome diversity is probably Schizophyllum 

commune (Safonova et al. 2014), the model organism, wood-degrading mushroom where genomes of 

two different individuals of the same species have been shown to differ by 7–12% (and up to 25% if 

collected on different continents). However, none of these come close to the within-individual 

diversity that has been identified in L. rubellus. This level of polymorphism would be typical of inter-

Genera/Family/Order divergences in vertebrates/insects/plants. This extreme nucleotide sequence 

divergence exists as a mosaic across the whole genome (see Figures 8 and 9). This divergence is also 
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functional, corresponding to allelic variation at the amino acid level (see Figures 17, 18 and 19). It 

appears that, rather than occurring as isolated islands that are under differential selection and a 

starting point for speciation (Martin et al. 2013), these highly divergent regions can move as discrete 

genetic units, or divergent alleles, between both individuals (see Figure 25) and “lineages” (see Figures 

23 and 24). 

These divergent alleles can have huge functional differences that can be tolerated within individuals 

(see Figure 20 and 21). This genome characteristic would allow for populations to be able to adapt to 

extreme changes in environment by maintaining heterosis and introgression potential between 

populations, lineages, or species complexes. There are conserved sequence motifs that are associated 

with the 3’ ends of genes in these divergent regions (see Figures 26, 27 and 28), which are likely to be 

involved in maintaining the compatibility of these alleles which in many cases would otherwise be 

likely be non-complimentary. These results suggest that a paradigmatic shift may be needed in the 

way that we analyse evolution in some non-model organisms. Rather than focussing on nucleotide 

diversity, a wider perspective may be needed by considering the wide-scale changing of 

active/inactive status of genes and pseudo-genes and finding ways to characterise large-scale 

variations in genomic structure within and between populations. One such approach could be the 

modified RAD-tag methodology that was used to summarise the genome-wide diversity in a 

population containing two L. rubellus lineages at Cwmythswyth mine in North Wales (see Figures 23 

and 24). This analysis shows that while there are lineage-based differences within this population, 

there is also a continuous gradient of sequence divergence between the two.  

It is also probable that many other sequencing projects that encounter organisms with this degree of 

divergence are unlikely to have been successful with shotgun-style NGS techniques, especially with 

most assemblers being geared towards lower divergence genomes. Those that achieve statistically 

‘good’ assembly (high N50, low fragment counts) are also at risk of having been incorrectly assembled 

(good example is L. anatina), leading to highly inflated genomes and inaccurate gene family analysis. 

2.3.2. Divergent Gene Families 

The considerable differences in sizes of homologous gene families between the two genomes 

analysed here point to key differences in the lifestyles of the two organisms. This is true of large, 

well-annotated families that would be of high importance for adaptation to these organisms’ 

environment, such as epithelial sodium channels, GPCR chemoreceptors, glucuronosyltransferase, 

mucin-like glycoproteins and ZIP metal transporters (see Figure 21). Here follows a detailed 

consideration of the adaptive merits of the large protein families identified to by highly divergent. 
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• GPCR Chemoreceptors: Transmembrane proteins that are essential components of the 

olfaction/gustation mechanism (Skoufos et al. 2000). In both L. rubellus and L. anatina, 

chemoreception would be an essential biological tool for sensing the surrounding environment. 

The substantially larger number of domains associated with chemoreception in L. anatina may 

be due to their feeding behaviour. As a scavenger, L. anatina needs to have highly adapted 

gustative senses to detect the biological matter available in their marine environment. As a 

saprophage, L. rubellus still has substantial chemoreceptive needs, however the smaller range of 

developed proteins in this family may represent a reduced nutrient seeking need, relative to L. 

anatina. This protein family is the least divergent of those in the curated set. Functionally, the 

reception of small molecules may be highly sensitive to small changes in active site conformation 

(Simpson et al. 2011), something that may be significantly affected by even one altered residue. 

As a result, even though the allelic protein sequences remain in the 95%+ identity range, this 

could constitute a huge variety of functional variation.  

• ZIP Metal Transporters: First discovered in plants (Guerinot 2000), these are a core part of the 

mechanism by which nutrients may be distributed around the body of an organism. This protein 

family is much bigger in L. rubellus than in L. anatina. This may reflect the fact that the L. rubellus 

draft genome individual was taken from Cymstwyth Mines, an old Welsh Zinc, Silver and Lead 

mine, with high metal content in the surrounding soils. Additionally, it is also the case that the 

metal geochemistry of terrestrial soils in general is substantially elevated compared to the 

surface level sea bed sediments in which L. anatina resides (Savazzi 1991). In the case of the 

saprophagic L. rubellus, the regulatory need in response to variable metal concentrations is likely 

to be very high. This diverse range of transporters may allow earthworms such as L. rubellus to 

regulate consistent levels of metal concentrations in their tissues when met with highly variable 

metal concentrations in the highly degraded biological material that they consume (Frouz et al. 

2006). Although metal uptake may be highly variable in L. anatina, it is unlikely to see the 

extremes encountered by L. rubellus.  

• Laminins: Structural extracellular proteins that make up the basal lamina, the non-collagenous 

structural foundation for most tissues (Durbeej 2010). These genes are present in similar 

quantities, and at a similar level of divergence in both organisms. In the case of an earthworm 

living in volcanic soils, it has been observed that significant restructuring of the epithelium may 

occur as a plastic response to high temperature and pH differences in the volcanic soils (Cunha 

et al. 2011a). Given the order of magnitude differences in soil geochemistry that worms are 

required to tolerate to be able to survive in their environment, compared to the relatively 

homogenous medium of sea water in which marine brachiopods live, it is perhaps surprising that 
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the laminin families are not more different (in terms of both allelic diversity and family size) 

between L. anatina and L. rubellus. This could represent a fundamental limit on the extent to 

which a laminin-like protein is able to evolve, whilst retaining its functional role.  

• Glucuronosyltransferases: These enzymes are recognised as highly relevant to drug metabolism 

in vertebrates (Oda et al. 2015). Their functional pathways are involved with the metabolism of 

xenobiotics. Dealing with unexpected xenobiotic interference encountered during nutrient 

intake is of course an evolutionary challenge for most organisms at some point or another. 

When considered in the context of an organism with global scale range, the accompanying range 

of xenobiotics is likely also vast. 

• Epithelial Sodium Channels: Ion channel family involved in a wide variety of sodium pathways, 

in various tissues across metazoan lifeforms (Kellenberger & Schild 2002). Although the 

functional relevance of the sodium gateways which are employed is broad, in a similar vein to 

ZIP-transporters, the homeostatic maintenance of ion-channel balances is highly relevant to an 

organism which may experience variable ion-content in the substrates it inhabits. 

• Mucin-like glycoproteins: Mucins are a primary constituent of the mucus layer found on luminal 

tissue surfaces (Gendler & Spicer 1995). Mucus forms a selective barrier with the external world, 

which is often protective of the underlaying tissues. Lumbricus rubellus has dedicated mucus 

cells which secrete mucus across the epithelial surface , the cuticle (Lavelle 1997a). This mucus 

layer has been shown to be environmentally interactive with soil pH levels(Schrader 1994), and 

metal toxicity (Sizmur et al. 2011), although more broadly mucosal layers are known to have 

many environmentally interactive functions, from digestion to immune defence. Mucus is also 

incredibly important as a point of environmental interaction for Lingula anatina and most 

reborrowing sediment dwellers. In addition to the above stated generalities, these organisms 

used mucus to give structural support to the burrows they create in soft sediments. The mucosal 

interaction with the sediment will vary based on sediment physical qualities chemical 

composition. The entire lifestyle of Lingula hinges on its successful creation of reusable burrows, 

central to which is the mucosal lining (Savazzi 1991). The mucin-like domains found to be highly 

divergent are also relatively small, which is perhaps not surprising as mucins are, save for the 

larger tandem repeat domains, typically encoded by many smaller exons (Ferez-Vilar & Hill 

1999). 
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2.3.3. Failure to Speciate; Failure to Homogenize 

Research in butterfly genomics has demonstrated that during the divergence and speciation of several 

strains, back-crossing and introgression events continuously occurred (Martin et al. 2013). Even 

between separate ‘species’ hybridisations may still occur, presumably as a means of adaptive 

introgression (Pardo-Diaz et al. 2012). The Lepidopterans also give us a clear example of what has 

become known as ‘genomic islands of speciation’. These genomic regions are thought to be 

responsible for the emergence of reproductively isolated sub-species (Cruickshank & Hahn 2014), 

although their origins are not necessarily defined by their permeability. These regions may in fact be 

the cradle of functional genes which cause speciation with some commonality across species (Nosil & 

Schluter 2011), however other studies have shown that the functional genes for speciation may not 

occur in islands at all, and that the drivers of speciation may also be singular and widespread(Michel 

et al. 2010). The permeability of a species boundary is therefore tied to the definition of the species: 

If the boundary was completely permeable, there could not be said to be any speciation. 

The analysed genomes appear to exhibit a relatively extreme manifestation of this idea of boundary 

permeability, to the point where the case could be made that there is no real species boundary, 

despite the high absolute base divergence. However, this does not discount phenotypic and 

behavioural differences between sub-species. There is evidence that the ‘A/B’ mitochondrial lineages 

of L. rubellus tend towards insular mate choices (Jones et al. 2016). When these observations are 

considered in the context of greater than 40% divergent allelic content in the assembled genome, the 

rubellus sub-species complex genome could be considered functionally ‘lineage agnostic’ (despite 

having ‘lineage specific’ origins).  

Additionally, as L. rubellus often lives in stationary communities, which may inbreed and even self-

fertilise, the question of how its heterozygosity is maintained is not trivial. In genome of the flatworm, 

Schmidtea mediterranea (Grohme et al. 2018), consistent levels of heterozygosity were maintained in 

the face of multiple generations of inbreeding, and inheritance was demonstrated to be non-

mendelian in nature (Guo et al. 2016). It is currently unknown how this can occur, and whether this is 

even the case in other organisms, but that it can occur may help to guide research which explains how 

the extreme levels of heterozygosity observed have been maintained, rather than being gradually 

homogenised in in L. rubellus communities. 

This novel presence/absence RAD-Seq analysis demonstrates that the rubellus genome possesses only 

3-5 Mb of DNA exclusively present in other members of its mitochondrial lineage (B). Similarly, the 

genome also contains 3-5 Mb of DNA possessed solely by the other lineage (A) (see Figure 24). These 



80 
 

   
 

sizes closely mirror studies of sub-species reproductive isolation in Anopheles gambiae (Turner et al. 

2005). In these cases, pericentromeric islands appear to be genetically linked to species despite 

physical non-linkage, however it is not necessarily true that these islands are causal in speciation 

(White et al. 2010). It is therefore uncertain whether the lineage specific DNA seen in Lumbricus 

rubellus is lineage-defining, of cross-lineage incompatibility, or simply a product of low 

pericentromeric recombination rates and chance. 

Given the sequence distance between the lineages, it may well be that gene mutations and/or islands 

of DNA that might cause reproductive isolation in these genomes are strongly selected against. In a 

broadcast spawner such as anatina, the ability to flexibly hybridize across the breadth of the oceanic 

population is likely key to the reproductive success of any given individual. For the earthworm, 

dispersal ability is so short that genotypes leading to phenotypic reproductive isolation could lead to 

debilitating range restriction for that nascent sub-species. As far as the consequences for species 

classification, it could be suggested that a separate species label perhaps ought to be a last resort 

when no pre-existing sub-species complex will accommodate the lineage in question. A case in point 

where Annelids again show a hybridisation capacity that is challenging their classical taxonomic 

species labels is Eisenia fetida vs Eisenia andrei (Plytycz et al. 2018), which readily produce fertile 

offspring. 

This failure to speciate also seems to extend to morphology. Both organisms are already recognised 

as examples of ‘morphological stasis’ in the animal kingdom. L. anatina belongs to the Brachiopoda 

sub-phyla Linguliformea, which has evidence of phenotypic consistency in fossil records dating back 

to the Cambrian era (Williams et al. 1996). L. rubellus and many other Annelida earthworms have also 

been reported to possess huge cryptic diversity within many previously identified single 

‘morphospecies’ (King et al. 2008)(Novo et al. 2012)(Novo et al. 2010). Both these organisms have 

been subject to an environmental canalisation of their phenotypes: There has been little scope for 

nature to improve on the sand-burying shell structure of the Lingulate for half a billion years. Although 

comparatively poor, the fossil record for Lumbricid worms suggest that there has been little scope for 

further optimisation of their soil-burrowing (Savazzi 1991) musculature since the Cretaceous 

(Domínguez et al. 2015). In both cases, species’ morphotypes respond flexibly only around the range 

of demands presented by their chosen substrate (Williams et al. 1994). It seems a straightforward 

suggestion therefore that the ‘undisruptability’ of the base morphotype by small, or even significant 

genotypic alterations would be an extremely valuable evolutionary trait in such an organism, 

particularly when this grants it the capacity to support, allelically, wide divergence in genetic response 

to the varied chemical challenges encountered throughout its global reach. 
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2.3.4. Extension of the ‘Meselsen Effect’ 

The 'Meselsen Effect' theory of post asexual evolution, originating with bdelloid rotifers, posits that 

in the absence of conventional meiotic recombination, selective pressure is released from one copy 

of a pair of alleles/genes/heritable units (Welch 2000). This is in part because both are now 

guaranteed to be co-inherited, and in part because they no longer must re-combine. One might 

describe this as the emergence of two haploid selective spaces in the place of a diploid one. 

It could be suggested here that the ancient sub-species complex achieves a similar effect. It appears 

that two copies of an allele within certain single species populations may end up functionally 

divergent to the extent that recombination between them is no longer functionally viable, or even 

physically possible. It also appears to be the case that both alleles may yet remain compatible in a 

single individual. In this case it could be proposed that lineage-heterologous individuals benefit from 

functional diversity, whilst lineage-homologous individuals may yet, through meiotic recombination, 

allow the otherwise non-recombinant allelic copies to avoid ‘Muller’s Ratchet’ (Haigh 1978). The 

evolutionary process thus allows for two diploid selective spaces in the place of just one. 

The intraspecific existence of separate selective spaces at the same genomic location however, is 

likely reliant on at least two factors: 1) Individual tolerance of extremely divergence allelic base 

sequence, and 2) Populations that are large, wide ranging and adequately structured such that both 

selective spaces are maintained and may co-evolve. These factors occur in the case of the two 

organisms present in this study. 

Previously evidence for genetic exchange between subspecies suggests there to be residual 

‘introgressions’ between lineages on the path to speciation (Martin et al. 2013). The researcher is 

asked to consider that in some species lineages may not be on the path to speciation at all and may 

instead be utilising the vast genetic reserve of a sub-species complex as an intraspecific mechanism 

to remain evolutionarily robust to global environmental changes, and with a myriad of selective 

options.  

2.3.5. Allelic Compatibility 

Organisms that are genotypically outbred often show some form of heterosis (Comings & MacMurray 

2000). Outbreeding also has its limits, and more extreme forms can result in outbreeding depression 

(Frankham et al. 2011). As the organisms in the present study might be considered examples of 

extreme outbreeding from a genotypic perspective, the consequent inquiry perhaps ought to be of 
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how outbreeding depression is mitigated and/or overcome at the molecular level. If tolerance of 

extreme diversity exists, it would not be a huge leap to assume the corollary to be some retention of 

allelic compatibility in the allometric process of phenotype. At the sequence level it is possible to 

investigate this in terms of gene expression regulation. The regulation of gene expression occurs in a 

variety of manners, and whilst some of these are epigenetic the most well-known are in some way 

tied to base sequence. Pre-translatory regulatory protein binding sites are predominantly sequence 

based, as are miRNA and other post-translatory binding sites. With absolute allelic sequence 

divergence as high as it is in L. anatina and L. rubellus, one could expect that even short regulatory 

motifs should stand out in a manner that would not be visible in an organism with a lower absolute 

divergence. Taxa with this tolerance for sequence divergence are therefore important biological 

models for furthering the understanding of genetic regulatory systems.  

The results presented here using the motif discovery method suggest that 3’ UTR regulatory structures 

in both these organisms are of particular importance to their gene regulatory networks, as they have 

been conserved between lineages in both genomes. This suggests that there is a ‘static’ component 

of genetic regulation, which must remain under purifying selection in all sub-species during allopatric 

lineage divergence. This is of course the case with all organisms with respect to house-keeping genes 

and the constituents of our shared molecular biology. These conserved motifs may maintain 

reproductive compatibility between lineages, providing a regulatory feature which maintains allelic 

compatibility. 

Roux et al (2013) posit that researchers should attempt to “identify the level of sequence divergence 

above which introgression is definitely impossible” (Roux et al. 2013). The results suggest that 

absolute sequence divergence is less likely to be the causal preventative factor of 

introgression/hybridization. Instead, it could be argued that taxa will often impose a self-selected pre-

zygotic mechanism to avoid hybridization. The adaptability and evolutionary potential that cross-

lineage hybridization may give to an earthworm or a brachiopod will come at the expense of 

specialisation and could be highly detrimental in other organisms. For example, reproductive isolation 

has been observed in only three generations in Darwin’s finches, following a homoploid hybridisation 

event (Lamichhaney et al. 2018). 

 



83 
 

   
 

2.4. Conclusion 

Divergent regions of L. anatina genome were found to have an average of 10.1% absolute divergence. 

In L. rubellus the number was higher, at 33.6%, demonstrating substantial regular outbreeding. This 

divergence in sequence is shown also to affect functional components of these genomes and probably 

provides substantial environmental plasticity, with important environmentally adaptive protein 

families being highly functionally diverged in the alleles of both organisms. However, the activity of 

transposable repeats only appeared to play a small role in the sequence divergence, accounting for 

only ~5% of allelic sequence mismatch in both cases. These genomes contain core regulatory 

sequences that must consistently survive population divergence events and may be key to the 

organisms' management of extreme functional changes within highly divergent alleles. 

One of the biggest advantages of hybridization in the face of extreme sequence divergence would be 

range expansion. In plants particularly, range has been shown to expand following hybridisation 

(Ellstrand & Schierenbeck 2000)(Culley & Hardiman 2009). The plasticity and adaptability granted by 

outbreeding has often been associated with invasiveness. Indeed, several of the morphotypically 

stable organisms (e.g. Crassostrea gigas and L. rubellus) are known to be invasive (Moehler et al. 

2011). In the longer term, maintaining a supply of highly functionally divergent genes for any one 

genomic loci would act as a great insurance policy against large scale environmental changes. 

However, to maintain the allelic diversity, it would also be imperative that extensive interbreeding 

does not limit diversity by over-purifying the functional content of the alleles. The results from 

Lumbricus rubellus population data demonstrated that a high degree of ongoing genetic exchange 

between two interbreeding mitochondrial lineages has not resulted in the homogenisation of the 

corresponding nuclear lineages. Each lineage appears to maintain some degree of distinctiveness, 

which allows genetic exchange whilst also allowing their “reserves” of genetic potential to co-evolve. 

How this extreme polymorphism is not rapidly eroded by genetic drift is still uncertain. The hypothesis 

proposed is that these genome-wide mosaics of extreme sequence divergence represent a strategy 

that allows species with limited post-zygotic dispersal (such as brachiopods and earthworms) to avoid 

evolutionary dead-ends. It would therefore be possible to predict that this structure will increasingly 

be observed in other non-model taxa with these life-history traits, as sequencing technologies and 

analysis pipelines are further improved. 

 

  



84 
 

   
 

3. Chapter 3: Genomic Diversity, Epigenetics and Gene Expression: 

Signatures of Plasticity and Stress in an Invasive Earthworm 

3.0. Introduction 

3.0.1. Earthworm Diversity and Range 

Globally, earthworms are a crucial component of soil’s functional harbour for countless forms of life. 

Their impact on soil health has deep relevance to agriculture and most terrestrial plants. Their 

population levels also impact many small predators for which they can be an essential or secondary, 

nutrient reserve. Amynthas gracilis is a coloniser. Originating in East Asia, it has spread from there to 

the Mediterranean, and North and South America (Blakemore 2012). It is a highly successful invasive 

species and with a current pan-tropical distribution. In modern history this earthworm has been 

introduced into the Azorean Island of Sao Miguel through anthropogenic activities most likely 

associated with multiple agricultural transplantations. 

In plants, hybridisation events have been found to be associated with the development of 

invasiveness on multiple occasions (Pfennig et al. 2016)(Seehausen 2004)(Aïnouche et al. 2009). It is 

also a commonly observed issue whereby invading species hybridise with native populations (Hurka 

et al. 2003)(Shields et al. 2010). In these cases, it is posited that the genetic diversity gained in 

hybridisation is a significant factor in their ability to adapt to new environments, and previously 

untested selective pressures. Meta-analysis  have also suggested a combination of environmental 

plasticity and the speed of responsiveness to selection as primary factors in a species effectiveness 

as an invader (Ellstrand & Schierenbeck 2000)(Ellstrand 2009)(Schierenbeck & Ellstrand 2008). 

It has also been observed that earthworm, across a wide variety of taxa, appear to exhibit a wide 

variety of cryptic species. This has been observed as a wide range in mitochondrial lineages (King et 

al. 2008). For example, specimens of invasive Amynthas worms in north American forests seem to 

have very flexible digestive capabilities, allowing it to thrive in new environments, possibly as a 

result (Zhang et al. 2010).  The high, and highly variable rate of polymorphism in the sequenced A. 

gracilis genome seems to suggest that the exceptionally high variation maintained in its natural 

population has been sustained by regular hybridisation between these cryptic lineages.  

3.0.2. Stress Responses in the Soil 

Earthworm adaptive and stress responses to soil contaminants are of interest for various reasons. 

The health of the soil as an agricultural medium, as the bedrock of an ecosystem, or as a marker of 

the impact of human activity are directly related to the biophysical tolerances of the earthworm. 

Stressors experienced by soil-dwelling organisms can be highly multivariate, comprising changes by 
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many orders of magnitude in soil pH, salt concentrations, heavy mental abundance, concentrations 

of microplastics and pesticides. Further complexity is added by the intersection of soil types, i.e. clay, 

loam, peat, sandy or silty, and other variables such as temperature and moisture availability. As a 

result, many of these stressors have been studied either singularly, in pairs, or all-together under the 

umbrella of ‘multi-stressor’ environments. No unified model of their stress response interactivity 

between species is available, however there are many clues from both past and recent studies as to 

how earthworms might be expected to respond to a given alteration in environment. 

For example, it has been shown that the signatures of coelomocyte metabolic processes and DNA 

damage metrics in Amynthas gracilis provide sub-lethal indicators of a stress response to agricultural 

pollutants (Parelho et al. 2017).  A review of pesticide toxicity to earthworms found fungicides and 

insecticides to have the most pernicious effects, although most were lifestyle stressors (Pelosi et al. 

2014). A study has shown that the worm possesses functional responses which limit photooxidation 

by exposure to UV radiation (Chuang & Chen 2013). A multi-species population abundance study of 

terrestrial earthworms demonstrated that motor oil as a soil pollutant was highly toxic to most 

species, resulting in lower populations in roadside areas (Ramadass et al. 2015). 

As far as abiotic factors in earthworm survival are concerned, by far the largest area of study appears 

to have been responses to elevated metal content in the soils. Heavy metals are often studied for 

their stress response effects. In a study of the terrestrial earthworm Lumbricus rubellus it was shown 

that gene expression changes may be the most sensitive measurable response types in metal-

toxicity stress related cascades (Spurgeon et al. 2005), when compared to higher order changes such 

as fecundity and community diversity. Lumbricus terrestris has also been studied for sub-lethal metal 

toxicity responses, these studies find that glutathione reductase and metallothionein concentration 

increases were detected as stress responses to the oxidative stress created by mercury 

contamination (Colacevich et al. 2011). More generally, one study was able to show that Eisenia 

fetida increased the bioavailability and environmental motility of heavy metals in certain soils (Wen 

et al. 2004). However, the interactions that Eisenia fetdia has with metals in the soil have been 

shown in multiple studies to be substantially modulated by other factors, in particular soil pH 

(Spurgeon & Hopkin 1996) (Heggelund et al. 2014). These relationships suggest that the intersection 

of multiple stressors should probably not be considered as limited to summative action.  

It should also be noted that broader surveys of earthworm vs soil type distributions indicate quite 

strongly that certain species are far more likely to naturally inhabit soils which another might 

experience as a stressor, such as those which range from 3-9 pH (Jänsch et al. 2013). As a result, we 
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ought to consider whether an environment might be stressful to an earthworm in context of the 

range within its typical habitats. 

3.0.3. Epigenetics and Plasticity 

Epigenetics is a broad term which describes the range of modifications possible to the genome of an 

organism. The ongoing research into epigenetics can be divided between considerations of their 

germ-line heritability and their acute somatic functionality. The scope of this work pertains solely to 

somatic cells. Of the various epigenetic features identified in the genome DNA methylation is 

probably the most well-studied at this point. DNA methylation in this context concerns the covalent 

bonding of methyl group to the base cytosine’s 5th carbon atom in its aromatic ring, to create 5-

methyl-cytosine (Schübeler 2015). These groups are added to the cytosine base by 

methyltransferases, with the most significant players in eukaryotes recognised as being DNMT1 and 

DNMT3 (Goll & Bestor 2005). 

Although initially associated with gene expression silencing in humans (Cedar & Bergman 2012), and 

of great functional relevance to various human pathologies including cancer research (Jones & Laird 

1999), work is only recently beginning to be carried out on its roles in non-model organism DNA 

methylation. The interest which epigenetics might hold for studies of environmental response is 

largely in the phenomenon of ‘plasticity’ – this is the ability of an organism’s genetics to dynamically 

alter its phenotype in response to certain environmental triggers (Pigliucci et al. 2006). This moves 

beyond the description merely of stress responses, to evolutionarily assembled developmental 

bifurcations which can be selected for their adaptive qualities in suitable environments. These 

alterations can occur simply within an organism’s early development, altering the form of the adult 

in a predictive adaptive response (Gluckman et al. 2005), or can occur as labile plasticity throughout 

the organisms life. This study is concerned with the labile plasticity of Amynthas gracilis as it 

responds to different soils, and the difference between the deployment of existing adaptive 

developmental equipment, and the acute features of a stress response. 

The transitive nature of epigenetic change makes it a suitable candidate for the short-term 

modification of environmentally plastic genetics. Meta-analysis of literature regarding invasiveness 

suggests strongly that successful species commonly exhibit substantial environmental plasticity 

(Davidson et al. 2011), although it does not always lead to the same niche competitive advantage 

achieved by less-plastic native species. Amynthas gracilis exhibits substantial phenotypic plasticity 

and could reasonably be described as widely invasive as a result, it follows that investigation of DNA 

methylation as supporting mechanism may yield functional clues about the success of this organism. 



87 
 

   
 

3.0.4. Amynthas in São Miguel’s Volcanic Soils 

São Miguel is an island in the Portuguese archipelago of the Azores. Its rich soils have been a great 

boon for local agriculture, with Portuguese colonists having arrived approximately 1500-1600AD. 

The Island has two quiescent central volcanoes, names Fogo and Furnas. Environmental stressors for 

include soil pH changes, CO2 soil degassing (Viveiros et al. 2008), elevated temperatures and raised 

heavy metal content (Novo et al. 2015). 

Earlier work on this population of Amynthas gracilis on São Miguel has suggested multiple 

introductions of the species were likely, due to the evolutionary distance between the mitochondrial 

lineages discovered. Another interesting highlight of this work was to discover that Amynthas cortisis 

population abundances negative correlated with the abundances of gracilis, suggesting their direct 

competition, with cortisis better adapted to soils less affected by the volcano (Novo et al. 2015). The 

corollary to this relationship might be that the selective advantage is had by gracilis in the higher-

stress environments via a physiology more equipped for environmental plasticity. These results 

strengthened the position of an earlier study of the epidermis of gracilis worms sampled from active 

versus inactive volcanic soils. This had demonstrated, with detailed tissue analysis, that the worm is 

capable of substantial morphogenic restructuring in response to these stressors (Cunha et al. 

2011b). A clear example of an organism-level plasticity response. 

3.0.5. Primary Aims 

The biochemical mechanisms by which plastic responses to environmental stressors are deployed 

have been a subject of extensive research. Whilst cell-signalling in response to variables such as 

oxidative stress (Martindale & Holbrook 2002) or osmotic stress (Schachtman & Goodger 2008) 

demonstrates the acute communicative ability of an organism to deploy physiological responses, the 

study of epigenetics and non-coding RNAs suggest a chronic coding schema which allows an 

organism to display non-mendelian adaptive trait inheritance (Geeleher et al. 2012) (Liebers et al. 

2014). By encoding the cohort of adaptive responses to environmental stressors in flexible yet 

persistent regulatory systems, it is postulated that the stability of the phenotypic response might be 

maintained and persisted in sub-Darwinian timeframes. To this end, two extra-genomic regulatory 

mechanisms were investigated in addition to RNA-Seq: micro-RNA abundance, and DNA (5-cytosine) 

methylation.  

The main aims of this study were to use high throughput sequencing experiments to infer the 

intersection of regulatory mechanisms in the per-trait adaptation of A. gracilis to multi-

stressor volcanic soils. We aimed for the identification of a physiological and biochemical trait 

change cohort, and to establish the contributions to each from different regulatory mechanisms. To 
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achieve this a reciprocal-design, mesocosm-based, in situ transplant experiment was deployed with 

the intention of measuring three conceptually defined categories of environmental response. 1) 

Acute general environmental change/stress response, 2) Chronic adaptive trait changes, 3) Specific 

acclimative changes 

By identifying the trait-contribution matrix across the above three test categories against the above 

three sequencing experiments, this study sought to produce a systematic view of the molecular 

biology involved in different modes of adaptive plasticity. 

3.1. Materials and Methods 

3.1.1. Transplant Experimental conditions 

The following section was provided by Dr Luis Cunha and Dr Marta Novo. The Azores archipelago 

comprises nine islands and is in the North Atlantic Ocean, between 36º45’–39º43’N and 24º45’–

31º17’W, at the triple junction of Eurasian, African and North American plates, characterized by a 

complex tectonic settlement, where seismic and volcanic phenomena are common (Cole et al. 1999). 

São Miguel island belongs to the most eastern group together with Santa Maria, and the latter is the 

oldest of all nine. São Miguel is the largest island (757 km2), which presents several active volcanic 

spots including fumarolic fields, cold and thermal springs and soil diffuse degassing (Viveiros et al. 

2008). Two field sites on São Miguel, differing in their contemporary volcanic activity (thermal and 

degassing outputs), were selected for microcosm exposures: (a) Furnas, which displays the most 

conspicuous degassing and geothermal activity in the entire Azores archipelago, and (b) Macela, 

which does not presently display any thermal and degassing phenomena (Table 1).  See Figure 102 

for an explanatory map of the area. 

A group of adult (clitellated) Amynthas gracilis from Furnas, 37º 46’ 24.6’’ N 25º 18’ 10.3’’ W (S. 

Miguel, volcanically inactive site) and another group of from Macela, 36° 46' 04.0" N 25° 31' 46.7" 

W  (S. Miguel, volcanically inactive site) were collected by digging and hand-sorting during Spring of 

2012, and were assigned to factorial-design treatments (with earthworm sources and exposure sites 

as factors) within 24 h of collection (Figure 102). Ten individual worms were placed in perforated, 

cube-shaped, mesh bags (volume 15 L). Twelve bags were used per site, with six bags per 

‘treatment’ (Furnas- or Macela-derived worms, respectively, n=240). Soil from the given exposure 

site was used as substrate. They were exposed for 31 days.  

Figure 102 provides a schematic representation of the experimental design. After sampling, the 

earthworms were immediately transferred to the laboratory, where they were processed as 

described in the following section 



89 
 

   
 

3.1.2. Sampling and Sequencing 

3.1.2.1. Environmental characterisation 
The following was performed by Dr Mark Hodson, who then made the data available. The soils were 

air-dried and sieved to < 2 mm. Subsamples of the soils were oven dried at 105 °C and their moisture 

content determined to allow all concentrations to be expressed on an oven dried basis. Organic 

matter content was measured by loss on ignition, soil being oven dried overnight at 105 C and then 

ignited overnight at 500 C in a muffle furnace (Rowell 1994). pH was measured on suspensions of 10 

g air-dried soil in 25 mL deionised water following shaking for 15 minutes. Texture was calculated 

from the percentage of soil particles in the size ranges < 2 mm, 2 – 63 mm and > 63 mm as 

determined using a Malvern MasterSizer 200 with a Hydro2000MU wet dispersion unit. One to two 

grams of air-dried, < 2 mm soil were analysed with an obscuration of between 5 and 25 %. 

Instrument performance was checked using a Malvern 15- 150 mm quality audit standard and 

“general purpose sand, 40 – 100 mesh” purchased from Fisher. Rather than measuring soil moisture 

content in the field during sampling, water holding capacity of the soil samples was determined 

following the method in ISO guideline 11274 (ISO 1992). 

3.1.2.2. Histological processing and morphometry 
The following was performed by Dr Luis Cunha, who then provided the dataset for analysis. Two 

earthworms from each bag were depurated for 36h and fixed in neutral-buffered 

formaldehyde for 24h, dehydrated in graded ethanol series, and embedded in paraffin 

wax. Histological sections (4 μm thickness) were cut on a Leitz 1512 microtome (Leica 

Microsystems, Wetzlar, Germany), mounted on albumin-coated slides (Menzel-Glaser, Braunscheig, 

Germany), dried at 40°C for 24 h, and stored at room temperature until staining.  

Sections were stained with hematoxylin-eosin (Martoja & Martoja-Pierson 1970). Epidermis 

thickness was measured in 3 sections (4 fields per section), 40 μm apart, in each individual worm. 

Images were captured using a CoolSNAP-cf camera (Photometrics GmbH, Munich) coupled to a light 

microscope, and analysed with Image Pro-Plus 5.0 software (Media Cybernetics, Silver Springs). For 

statistical analysis the average value from 12 measurements per individual earthworm 

was considered as the true replicate (n= 12 per treatment). Epidermal thickness measurements were 

analysed (with or without loge transformation, as appropriate) by two-way ANOVA and Tukey post 

hoc pairwise comparisons, with p≤ 0.05 considered the level of significance.  

3.1.2.3. RNA-seq preparation and sequencing 
The following was performed by Dr Luis Cunha. Three earthworms from each bag (n=72) were flash 

frozen in the field with liquid nitrogen and posteriorly powdered in the laboratory using mortar and 

pestle. RNA was extracted from ca. 50 mg of powder by combining Trizol extraction with column 
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purification according to manufacture instructions (RNeasy mini kit QIAGEN). Briefly, the powder 

was homogenized in 1.5 ml of Trizol, and then centrifuged at 12,000g for 5 min. The supernatant (1.2 

ml) was transferred to a new Eppendorf tube and incubated for 5 min (RT), then 240 µl of 

chloroform was added and the mixture incubated for 3 min (RT). The sample was then centrifuged at 

15,000 rpm for 15 min (4oC). Upper phase was mixed with 250 µl of absolute ethanol and transferred 

to the column. After centrifugation at 10,000 rpm for 10s, RNeasy mini kit protocol was followed, 

finishing after two elution steps with 30 µl of H2O. RNA quality, integrity and quantity were checked 

in Bioanalyzer (RNA Nano Chip) and checked for contamination using a Nanodrop. Fourteen samples 

were poly-A selected and prepared for cDNA library construction, each of them being a pool of three 

individuals from the same bag or origin (n=12).  Truseq RNA paired-end libraries 

were prepared at GenePool (Edinburgh), multiplexed and sequenced in two lanes 

of an Illumina Hiseq 2000 (100 cycles).  

3.1.2.4. miRNA-Seq and MEDIP-Seq preparation 
Samples for epigenetic analysis were prepared by Dr M. Novo and provided to NERC Biomolecular 

Analysis Facility Edinburgh for miRNA and Zymo Research Ltd for methylation analysis. Briefly 

samples of A. gracilis were collected from the transplantation mesocosms (see sections above) and 

immediately placed in RNAlaterTM-ICE (ThermoFisher Scientific, AM7030) to preserved DNA 

integrity. Samples were transported in the preservative at room temperature prior to be placed at -

70oC for long term archival.  Archived specimens stored in RNAlaterTM-ICE were slowly thawed.  

DNA was then prepared from 10 segments ~5 segments posterior of the clitellum using DNeasy 

(Qiagen Ltd). DNA was quality controlled using adsorption spectroscopy with integrity and size being 

determined using agarose gel electrophoresis (0.4%) using Lambda HindIII and undigested lambda 

(New England Biolabs) as size markers. Equal amounts of DNA from 5 individuals, for which parallel 

RNA-Seq had been derived (see section above), were pooled and MeDIP analysis performed (Zymo 

Research Ltd). Libraries for MeDIP-Seq were prepared following immunoprecipitation using the DNA 

Methylation IP Kit (Cat #D5101, Zymo Research). Immunoprecipitated DNA was subjected to 

amplification with a primer that contained part of the adapter sequence in addition to four random 

nucleotides, followed by two additional steps of amplification to add on the remaining adapter 

sequence and to barcode the fragments, respectively. All PCR products were purified using the DNA 

Clean & Concentrator-5TM (Cat#: D4003, Zymo Research). The input DNA library was prepared from 

pooled sample DNA that was fragmented and denatured. Libraries were quantified using the Agilent 

2200 TapeStation and by qPCR. Samples concentrations were normalized to 4 nM, then sequenced 

on the Illumina HiSeq 2500. 
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Parallel tissues from 3 of the samples used for RNAseq were processed with miRNeasy (Qiagen Ltd) 

and quality assess using TapeStation.  Samples were supplied to NERC Biomolecular Analysis Facility 

Edinburgh where libraries were prepared using TruSeq Small RNA library kit (Illumina Inc) and 50 bp 

single end sequencing performed on an Illumina 2500 HiSeq platform using HiSeq V3 chemistry 

(Illumina Inc).  

3.1.3. Genome Assembly 

3.1.3.1. Library Preparation and Processing 
DNA was isolated by Dr L. Cunha and provided to NERC Biomolecular Analysis Facility Edinburgh for 

sequencing.  Briefly samples of A. gracilis were collected proximal to the Furnas caldera 

(37°46'23.0"N 25°18'15.7"W) and immediately placed in RNAlaterTM-ICE (ThermoFisher Scinetific, 

AM7030) to preserved DNA integrity. Sample were transported in the preservative at room 

temperature prior to be placed at -70oC for long term archival.  Archived specimens stored in 

RNAlaterTM-ICE were slowly thawed and muscle tissue removed by dissection.  DNA was then 

prepared using phenol method for isolation very-high-molecular-weight DNA (Wood 1983). DNA was 

quality controlled using absorption spectroscopy with integrity and size being determined using 

agarose gel electrophoresis (0.4%) using Lambda HindIII and undigested lambda (New England 

Biolabs) as size markers. 

Table 4. Genome sequencing library statistics 

 

Short read libraries were processed with Trimmomatic (Bolger et al. 2014). This removed residual 

Illumina adapters from the reads. The LEADING and TRAILING parameters were set to 3, removing 

low quality terminal bases from the reads. The SLIDINGWINDOW parameter was set to 5:15, making 

the moving average read measurement five bases wide, with a clipping threshold of 15 (‘Phred’ 

scale). Table 8, “Post trimming and QC” shows read count reduction because of this process. The 1-

2% size reduction indicated that the libraries were generally of high quality. 

Error correction was then performed using the software ‘Musket’ (Liu et al. 2013). This is a k-mer 

base error correction and filter for genomic sequencing libraries. It searches for kmers in reads 

which are represented only once or twice in the library (rather that 50-100x) and attempts to find a 
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next-nearest suitable depth kmer to correct them (assuming the low depth kmer is a result of 

sequencing error). If there is no suitable correction to be performed on the reads with low-depth 

kmers, they are removed from the library. This reduced the short-paired library sizes by a further 

10%, however it also reduced the mate-pair libraries by nearly 40%, suggesting that the differences 

in library preparation method may have caused the introduction of substantial error. All libraries 

were processed in a single execution of Musket. Despite the loss of read-count, this step was of 

benefit in cleaning up the assembly graphs for an already allelically diverse organism. 

3.1.3.2. Assembly QC 
SGA (string-graph assembler) is a genome assembly software package, it contains a module ‘preqc’ 

which allows the exploration of pre-assembly genome characteristics (Simpson 2014).  The error-

corrected short-paired libraries were used as input for this program. Outputs can be seen in Figure 

71. Both (A) and (B) sections of Figure 71 suggest that Amynthas gracilis is highly allelically divergent, 

although not to the extent of Lumbricus rubellus. This conclusion is drawn from (A) the variant 

branch rate being comparable with the Crassostrea gigas libraries, which has a known absolute 

divergence rate approximately at 4% (Gerdol et al. 2015), and the bi-modal coverage separation in 

the GC-coverage graph. The lower coverage group representing the divergent alleles is slightly less 

dense than the higher ‘both allele’ group. This suggested the divergence will be close to, but 

probably slightly lower than 4%. It is also observable that Lumbricus rubellus registers a far denser 

single-allele group that either Amynthas or Crassostrea. 
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Figure 29.SGA ‘preqc’ output graphs. (A) Genome size estimation for Amynthas gracilis, and comparison of de Bruijn graph 

branch rates. (B) GC/Coverage kmer plots, A. gracilis compared to two other earthworms, and an oyster. 

3.1.3.3. String graph assembly pipeline 
Because of the anticipated high divergence in the genome sequence, the assembler ‘Platanus’ was 

selected to perform string graph assembly. It was designed with a fairly aggressive ‘bubble-
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collapsing’ protocol, which seeks to merge the variant branches in string graphs created by allelic 

divergence (Kajitani et al. 2014). For reference however, another baseline assembly was also 

performed using the popular package, SOAPdenovo (Luo et al. 2012).  Table 9 shows the results of 

several assemblies that were performed. 

Table 5. Assembly Statistics During Finalisation 

 

As the primary assembly shown in Figure 72 still retained substantial allelic inflation, a custom 

assembly correction procedure was created. The objective was principally to identify terminal 

regions of scaffolds which were allelic copies of other terminal regions, and to collapse them 

together, creating a much larger scaffold. Another issue seen in Figure 72 is that of contamination. 

Earthworms have vertically transmitted symbionts of the genus Verminephrobacter (Pinel et al. 

2008). These also feature in the genome assembly; however, they are readily identifiable by their 

increased GC content. To eliminate the parasites, and other uncollapsed fragments from the main 

assembly, a spatial selection optimiser was deployed. A summary of the total assembly pipeline is 

shown in Figure 73. The ‘custom collapser’ and ‘custom optimiser’ entries in Figure 73 will be 

detailed in subsequent sections. 

Other software used in the pipeline included SSPACE scaffolder (Boetzer et al. 2011), ‘bowtie2’ 

short-read mapper (Langmead et al. 2013) and BLAST+ (Camacho et al. 2009). At each assembly 

stage the genome was searched for the core metazoan single-copy gene set, and core arthropoda 

gene-set as described by BUSCO (Simão et al. 2015). The core gene duplication rate was used as a 

measure of how well the allelic inflation in the assembly has been managed, alongside ‘bubble’ style 

plots such as Figures 72 and 74 Tracking of the BUSCO completeness and duplication rates can been 

seen in Table 3. 
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Table 6. BUSCO genome completeness at various assembly stages, including other invertebrates 
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Figure 30. Amynthas gracilis assembly visualisation. Circle sizes indicate scaffold size, green triangles indicate single copy 

BUSCO genes, red triangles indicate duplicated versions of these genes, connections drawn between single copy gene 

duplications. Middle-left shows the main set of genomic contigs in the assembly. Upper-right shows the occurrence of the 

earthworm’s vertical symbiont Verminephrobacter. To the lower right is another unidentified, likely intracellular parasite. 

Figures 74 and 75 serve as an adjunct to Figure 73, visualising the changes in the genome assembly 

as the custom pipeline methods were applied. In the final images the non-collapsed allelic fragments 

have been removed, the remaining genome is no longer subject to contamination by non-host DNA, 

and all fragments are of a consistent read-coverage in relation to the original libraries. 

In the final assembly MAKER (Holt & Yandell 2011) identified 26,951 Gene models. MAKER is a 

software package which merges down gene model predictions from multiple sources. To gain an 

optimally informed set of gene models, various other gene prediction programs were run, such that 
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their output could be fed into MAKER. These programs were Augustus (Keller et al. 2011), which 

predicts genes based on protein family knowledge, GeneMark ES (Lomsadze et al. 2005), which uses 

statistical modelling to predict genes ab initio in anonymous genome sequence, and SNAP (Korf 

2004) another ab initio self-training algorithm. 

Two other annelid proteomes (and one arthropod: Apis mellifera) were aligned to the genome with 

‘blastp’ (Camacho et al. 2009) to further support exon identification. The annelid proteomes were 

extracted from two genomes produced by the same study (Simakov et al. 2012), whilst the mellifera 

proteome was presented by The Honeybee Genome Sequencing Consortium (Consortium 2006).  

 

Figure 31. Amynthas gracilis, Genome Assembly Pipeline 

The last input to MAKER was generated by TopHat and Cufflinks pipeline (Trapnell et al. 2012)  in the 

form of cDNA-based genome predictions. This involved re-mapping RNA-Seq reads from the twelve 

samples to the genome and using paired-read information to establish co-transcription. 
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Figure 32. Visualised genome assembly progress, full assembly data with core gene duplication network. Shows BUSCO 

gene complete single copies (green triangle), BUSCO gene duplications (red triangle), connects scaffolds with the 

duplications of the same single-copy gene (black lines), shows scaffolds by size (blue circles). (a) SOAPdenovo assembly, (b) 

Initial Platanus assembly, (c) Post ‘custom collapser’ application, (d) post spatial selection application. 
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Figure 33. Visualised metazoan core-gene duplication networks with genome improvement, (a) SOAPdenovo assembly, (b) 

Initial Platanus assembly, (c) Post ‘custom collapser’ application, (d) post spatial selection application. 
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3.1.3.4. Custom Allele Collapser 
The custom algorithm described in Figure 76 functions to piece together scaffolds which the 

assemblers have failed to connect due to spikes in allelic divergence. To this end it is a restricted 

version of an overlap-layout-consensus method (OLC) (Li et al. 2012). OLC assemblers and de Buijn 

graph-based assemblers constitute the two major algorithm categories in currently available 

software packages. As this genome was assembled using a de Bruijn graph algorithm, it may follow 

that the contiguity trade-offs extant in these assemblers might be partially annealed via an 

alternative method. 

The custom collapser takes as input a read pile-up of the genome sequencing libraries re-mapped to 

the genome, and ‘self vs self’ BLAST-search within the genome, with all first hits removed. The 

application of non-redundant BLAST hits as ‘anchor points’ for consensus layout is a development of 

the methods created for the assembly of the Cionia savignyi genome (Small et al. 2007a). Additional 

features include the restriction of anchor-points to within the terminal 90/10% sequence regions of 

scaffolds, and the read-depth filtering of those regions, such that only uncollapsed tails may be 

joined together. 

3.1.3.5. Custom Spatial Selection Optimiser 
A naïve optimisation algorithm was used to determine an ovoid region in GC Ratio vs Read coverage 

space to select contigs as members of the final genome assembly. This involved stepwise alterations 

to the location of the ovoid’s centre, and x/y dimensional scaling, and measuring incrementally the 

trade-offs achieved between reduction in genome size and retention of core genes (as defined by 

BUSCO’s metazoan gene set) for a given set of parameters. Figure 77 describes the parameters of 

the ovoid and the ranges across which they were modified. Figure 78 shows the best possible trade-

offs per duplication achieved by the execution of the ovoid alteration procedure described in Figure 

7. The ‘duplicate gene score scaling factor’ is described as OptA/OptB (unique vs total duplicate 

minimisation) in Figure 77, or otherwise, the optimisation terms. By altering the threshold of the 

term, it was possible to explore the changes in best trade-off achievable. Given the sharp falloff in 

complete core-genes present after 2.0 in Figure 78, it was determined that this threshold level was 

the most useful for selecting ovoid permutations
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Figure 34. Custom allele collapser algorithm. (1) Double rolling average window method used to identify consistent read depth regions, (2) Identification of non-redundant BLAST 
hits which exist only within half-depth regions, (3) Anchor-spans created as connections between co-linear series of non-redundant BLAST hits in half depth regions, (4) Removing 
small allelic duplicate fragments, (5) Anchor spans connecting scaffolds via terminal 20% regions identified for potention collapsing, (6) Algorithm navigates over-lap network, (7) 
Agent paths are converted into meta-scaffolds with regions reverse-complemented where required. 
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Figure 35. Custom optimiser parameters, ranges and terms. 
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Figure 36. Optimisation of Genome size against BUSCO completeness results. 

3.1.4. Mapping and Quantification 

Short read libraries for all three sequencing experiments were end-clipped and filtered 

with Trimmomatic (Bolger et al. 2014). RNASeq and Me-DIP libraries were aligned to the genome 

using BBmap (Bushnell & Brian 2014) with the pre-set ‘slow’. RNASeq libraries aligned consistently at 

a mean rate of 86.05%. MeDIP libraries aligned at 90.5%. See Table 11 for library sizes and alignment 

rates. Samtools (Li et al. 2009) was used to convert output SAM files to sorted and indexed BAM files 

‘htseq-count’ function of the HTSeq python package (Anders et al. 2015) was used to generate read 

counts for RNA-Seq data. Samtools (Li et al. 2009) ‘bedcov’ was used to quantify MeDIP read-count 

levels within genes, and within promoter regions. Promoter/TS-factor motif binding levels were 



104 
 

   
 

divided into two regions: 100bp 5’ of TSS, and 1Kb 5’ of TSS. These read counts were not used for 

absolute methylation analysis and did not require normalisation. 

Table 7 Sample sequencing libraries with trimming and alignment rates 

 

3.1.5. Methylation Model Building 

3.1.5.1. Static Modelling 
Custom software was developed to facilitate the building of methylation gene-models. This software 

reads SAM formatted alignment files and finds coverages of genomic annotation elements across 

normalised intervals. This involves finding the coverage rate of relative intervals along a set of 

elements. For example, the 0-10%, 20-20% … 90-100% intervals along the 5’->3’ length of an exon. 
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The read pileup means of the set of each interval across the set of all elements of the same type 

allows for the profiling of ‘typical’ patterns of a given read-alignment map.  Coupling-vector 

 The software also supports rank-grouping these intervals by an additional variable, in this case gene 

expression levels were used. This process involves ranking the set of elements by their parent gene’s 

all-sample geometric mean expression level and calculating the Me-DIP read coverage intra-group 

arithmetic means per interval. 

Methylation is often described in organisms as being tissue specific in humans (Lokk et al. 2014), and 

mice (Maegawa et al. 2010). As these samples were mixed-tissue, the results the yield are only 

summaries of the regions in a gene which might be methylated at some point, and the abundances 

are subject to the bias of tissue content in the sample. To facilitate a broader perspective on the 

methylation probabilities of gene models, a second execution of the interval-based measurement 

was performed, with all read coverage rates flattened into binary conditions. This was intended to 

demonstrate the distributional differences between the incidence of methylation across all cells, and 

the potential for even rare methylation to occur under the right conditions. 

The final output metric types for the two test types differed, as they were measuring different 

things. For the model which included depth information, the ‘relative read-depth’ was used. This 

was calculated as the ratio between any given coverage interval, and the mean of all-element all-

interval means. This scaling produces a neutral rate of 1. For the binary coverage model, simple 

frequency rates were used as the final metric, with a value of 0.2, for instance, indicating that 20% of 

that entire set has a non-zero Me-DIP read-depth. 

Coverage intervals over a set of intra-genic annotations were then presented as miniature ‘gene-

models of methylation’, comprising a primary promoter 34bp in length, a 5’ UTR, three exonic coding 

sequences with two interspersed introns, a 3’ UTR and a 3’ flanking region of 300bp. Although not all 

gene models contained all these elements, a coercion process was used to allocate gene 

components to the model.  

3.1.5.2. Differential Modelling 
Once models of intra-genic methylation were developed, they were then used as a normalisation 

function for a secondary differential expression model. The differential model was developed in a 

similar manner to the static model with the source of the input values the primary exception. The 

inputs were absolute RPM differentials, and the same dataset again flattened into binary zero/non-

zero coverages. 
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The metric used for the uncorrected depth-based differential output was mean RPM change per 

interval, scaled by the mean-of-means as above. This was then divided by the static model output to 

produce a set of ratios of the rate of change against the neutral expectation of coverage.  

For the binary coverage output each interval was calculated as an odds ratio between the probability 

of coverage change and the probably of coverage. 

3.1.5.3. Sequence Structural Signatures 
To investigate if the regulatory sequence structures associated with methylation, the High 

Dimensional Signature software developed in Chapter 4, was applied to various sequence subsets. 

Four categories of sequence subset were created: 

▪ Intronic splice junctions (100bp limit) 

▪ 3’UTRs (full length) 

▪ 5’UTRs (full length) 

▪ 34 bp promoter regions. 

Each of these subsets consisted of the full set of those elements available in the genome. Each of the 

subsets was then split evenly into 3 rank-groups based on their Me-DIP read depths. These were 

labelled: No Methylation, Low Methylation, and High Methylation. The DNA processing version of 

the signature software was run on all 12 groups with the parameter N=2. 

Controlling the initial frequencies of the root nodes in the signature developed allowed for direct 

comparative measures to be made in the 2D signature outputs. This involves calculating the total 

structure score fold-change between the three groups, per-K, per-N. For each set of three groups, 

three 2D signature structure fold changes were calculated: 

▪ High/Low 

▪ High/None 

▪ Low/None 

The results of these differentials are intended to demonstrate how the total sequence subsets 

become more, or less structured as their methylation rate is considered as a condition. 

3.1.6. Prediction and mapping of miRNA 

Novel miRNA prediction was performed using the MiRDeep2 (Friedländer et al. 2012) package. 

Processed reads were aligned to the genome and collapsed into a non-redundant set with the 

mapper.pl script. The alignments were converted to novel mature miRNA predictions with 

mideep2.pl script. In total 168 novel mature miRNAs were predicted using this method. A bowtie 
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(Langmead et al. 2009) database was built using a combination of the predicted miRNAs and the 

latest version of the MiRbase database (Kozomara & Griffiths-Jones 2014). Bowtie was then used to 

map the collapsed reads onto the database, and a custom script was used to extract the raw read 

counts per miRNA from the output (which involved parsing read name suffixes). This method differs 

from the series of MirDeep2 processing steps and was performed to access non-normalised counts 

per miRNA, for the sake of keeping consistent input forms into deseq2 (maintaining the 

homogeneity of the statistical pipeline), for downstream comparability. 

Studies in human and drosophila molecular biology have discovered canonical cohorts of 1917 and 

2058 of active miRNAs respectively according to miRbase (Kozomara & Griffiths-Jones 2014). The 

outputs from this processing pipeline included upwards of 20,000 hits per sample. However, the 

read-counts per hit had a pareto-like distribution, with 10,313 miRNA targets achieving an average 

read count of less than 20. To select the hits most likely to represent active miRNAs, and with 

reference to typical miRNA cohort sizes, the output set was limited to the top 2000 hits by mean 

expression. 

3.1.7. Differential Expression and Methylation 

3.1.7.1. Exploratory analysis and Metric Choice 
The analytic pipeline downstream of the differential analysis component of this study required p-

values to be comparable. For this reason, all three differential analyses were performed using the 

same pipeline in deseq2 (Love et al. 2014), this included using the ‘normal’ fold change effect size 

shrinkage estimator in all cases. The ‘normal’ mode was chosen for its greater stringency in 

mitigating the low expression level effects in noisy data, which was particularly useful for the MeDIP-

Seq analysis in which each sample was highly heterogenous (see Figure 111). 

The experimental design of the differential tests performed is described in Figure 102 (bottom left). 

As described in the introduction, three modalities of conceptual adaptivity were mapped onto three 

test types in the design. These were 

1. Non-specific environmental change detection/response 

2. Persistent specific adaptive changes 

3. Acute specific acclimative changes 

These map onto the three tests in the design, via the differentials found between: 

1. Transplanted worms vs Stationary worms (Static vs Change) 

2. Worms of common origin despite transplant (Origin vs Origin) 

3. Worms of common transplant destination (Destination vs Destination) 
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In each of these three tests, RNA-Seq and miRNA-Seq counts were compared in 6 vs 6 groupings, 

whilst MeDIP-Seq counts were compared in 2 vs 2 groupings. 

The outputs produced by deseq2, along with reference heatmaps of the normalised expression 

matrices, are displayed for mRNA, miRNA, and methylation in Figures 103, 104 and 105 respectively. 

3.1.7.2. Methylation Change 
The intersection between changes in methylation and transplant gene expression for the genomic 

gene models were explored via the exploration of Me-DIP log FC vs RNA-Seq log FC distributions for 

the four tests. Early exploratory analysis revealed that no simple linear relationship existed between 

the two distributions. However, the limits of each distribution did appear to disproportionately 

dense. To investigate the underlying relationship between gene expression and methylation change, 

a quantile-grid bucketing method was applied. 

This method entailed creating a 10x10 grid of bins for data points FC vs FC space. The x and y values 

of the grid lines were derived via the probabilistic quantile intervals of each distribution, with 

increments of 0.1. This method ensures approximately equal membership of each bin under null 

conditions. To investigate the extent to which the test set’s bin-density fluctuations were significant, 

a bootstrap model was applied. Bootstrap bin densities distributions were created by independent 

random re-sampling of both FC columns. The distribution means, and upper and lower 5% 

confidence intervals of the resultant distribution, were used to measure test set fluctuation 

significance. 

Once this procedure had been developed, it was also applied to the two promoter-fold-change 

category differentials against gene expression. A final procedurally identical deployment of this 

model was conducted with all-sample means instead of differentials. 

3.1.8. Functional Annotation and Enrichment 

Analysis of the functional content of differentially expressed genes was performed using the DAVID 

webserver (Dennis et al. 2003). The genes described in Amynthas gracilis are not part of a 

standardised gene naming ontology, as this earthworm is novel with respect to ‘omic level analysis 

systems. A proteome was translated from a genome-derived transcriptome with Transdecoder 

(Brian J. Haas et al. 2013). This proteome was used to search the Uniprot/Swissprot (EMBL et al. 

2013) database (accessed 09/18) with ‘blastp’ (Camacho et al. 2009). All hits achieving an e-value 

below 5e-05 were retained and used as a symbol translation table for DAVID. The full list of gene 

annotations was also provided to the webserver as a ‘background’ against which to measure 

enrichment. 
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A 3x3 matrix of functional clustering analyses was performed on nine gene lists. Gene lists are 

defined as lists of symbol-translated genes achieving shrinkage-corrected Wald test p-values of < 

0.05 in differential tests. In the case of miRNAs, the gene list was derived from the miRNA binding 

network as immediate neighbours of all miRNAs differentially expressed at a significant p-values. The 

3x3 matrix of analyses consisted of three test types, each ran on three data types. 

Test Types: Static vs Change, Origin vs Origin, Destination vs Destination 

Data Types: RNA-Seq, miRNA-Seq, MeDIP-Seq 

Including multiple annotation terms in clustering often resulted with inconsistent term source ratios 

in the output clusters. To standardise the tests and allow them to be inter-comparable, the Gene 

Ontology (Ashburner et al. 2000) ‘Biological Process’ category at Level 4 was used to generate initial 

clusters. The gene list memberships of each cluster were then annotated with Gene Ontology 

‘Cellular compartment’ terms using simple enrichment. For the visualisation outputs Figures 106, 

107 and 108 which describes each gene belonging to a principal cellular compartment (despite the 

matching of multiple terms), some simple rules were used to delimit the overlaps. This was to 

choose the more detailed term unless doing so caused further overlap with similarly detailed terms, 

in which case collapse to the next lower level term with the best p-value. This process was intended 

to retain the maximum descriptive power of the cellular compartment terms, without displaying the 

excessive redundancy in the ontology (for example, it is a given than an ion channel is a trans-

membrane protein and does not need to be labelled twice). 

The trait matrix shown in Figure 109 is a collapsed set of the most enriched clusters in each of the 

three tests combined. The gene lists for each cluster were gathered via an inclusive union of all 

gene-lists in all clusters containing the ‘merged-by’ term. The merged-by term in each case was the 

most significant p-value term in the set of similar clusters. For example, the Epithelial Development 

merged trait is a union of all gene lists found within clusters containing the GO Term GO:0060429, 

across the three test types, and across the three data sources. 
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3.2. Results 

3.2.1. Soil Content Differences 

Table 8. Gas and temperature content differences between soils 

 

Table 9. Geochemistry differences between soil samples 

 

The geochemistry of the source and transplant sites were analysed separately, the following raw 

data was been provided by Luis Cunha. Table 12 shows a summary of the gas and temperature 

differences between soils. The mean temperature at a depth of 30cm at the Furnas transplant site 

was 48ºC, compared to a relatively low 17ºC at Macela, and 18ºC at the Furnas sampling site. The 

transplant CO2 mean volume was 48.6%, compared to 6.9% at the Furnas sampling site, and 0.7-0.8 
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at the Macela sites. The O2 volume % mean was consistent between sampling and transplant sites 

but varied between Macela and Furnas by ~10% to ~18% respectively. 

Soil physical properties demonstrated in Table 13 show a consistent set of compositional differences 

between the two sites, but not between sampling and transplant. Specifically, Furnas soils had 

reduced water holding capacity, less than half the clay content, and were sandier. The organic 

content measured by loss on ignition also varied substantially, with Furnas soils possessing less than 

half the organic matter by weight when compared to Macela soils (~11g vs ~25-35g per 100g), 

although the Macela soils were also more variable in content (std. dev.: 0.86g vs 5.9g). 

The metal content results in PPM (parts per million) of the microcosm soils is displayed in Table 14. 

The primary results of this analysis are that substantially different metal content profiles exist for 

both soils. Furnas was remarkable for elevated lead and copper content (means: 108ppm, 100ppm); 

at 6.1-fold and 5.02-fold respective increases compared to Macela soils. Macela was most 

differentiated by its Nickel content (27.4ppm), at a 3.5-fold increase compared to Furnas. 
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Table 10. Soil Metal Content Differences (parts per million), columns manually sorted by content differences 
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3.2.2. Morphometric Changes 

Representative histological and histochemical analysis, performed by and made available by Luis 

Cunha, of the epidermis of earthworms from the two source populations after 31 days exposure to 

active (Furnas) and inactive (Macela) volcanic soils are given in Figure 79 (c). Epidermal thickness 

was directly representative of the destination soil after 31 days, in almost all cases regardless of 

origin. Mean thickness in Furnas soils was 24.02 mm (std. dev. 3.86 mm). The mean thickness in 

Macela soils was 42.8mm (std. dev. 8.01 mm). Furnas-origin worms transplanted to the Macela 

microcosm demonstrated a mean 78.3% increase in their epidermal thickness. The reciprocally 

transplanted worms (Macela->Furnas) demonstrated a 44.1% reduction in thickness. 

Increases in epidermal thickness were reflected by a similar individual weight-change per bag. 

Individuals remaining in their destination soils also showed a decrease in weight, likely due to the 

microcosm condition differentials between sampling and transplant sites (Tables 12 and 13) (F: -

10.7%, M: -3.3%). Worms transplanted from Furnas to Macela still showed a mean 5.4% increase in 

body weight, whilst the reciprocal transplant yielded a 13.6% mean body weight loss. Figure 79 (a) 

shows before and after weight distributions. 

 

 



114 
 

   
 

Table 11. Earthworm body matter metal content fractionated between metal rich granules, soluble material, and soft matter (issues fragments, membranes etc). 
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Figure 37. Morphometric changes in worms provided by Luis Cunha from paper in preparation (REF), (a) weight changes 

between samples before and after exposure, (b) mean epidermis thicknesses of post-exposure individuals, (c) micrograph of 

pre and post-exposure epi 

3.2.3. Genome Assembly 

Analysis of the genome began with investigation of the allelic diversity distributions, as described in 

3.2.2., they were expected to peak a little below 4%. A sliding window plot of scaffold segments 

between demonstrated that whilst a divergence peak just over 3% did exist, the distribution of allelic 

divergence in the genome was also highly bimodal (Figure 80). 
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Figure 38. Allelic divergence in Amynthas gracilis genome, 5-40Kbp windows. 

To investigate how this bi-modality manifested at a scaffold level, additional visualisations were 

developed to map moving average divergence rates along scaffolds. Figures 81 and 82 show 

examples of the divergences mapped along scaffolds. 

 

Figure 39. ~1.7 Mega-base region, (scaffold10) spatial polymorphism rate 
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Figure 40. ~2 Mega-base region, (scaffold15) spatial polymorphism rate 

These images demonstrate that a certain ‘blocky’ feature exists in the genome, whereby the allelic 

divergence changes rapidly across relatively small intervals. They also demonstrate how read-pileup 

remain the same modal depth along the length, although opposite allele alignment rates tend to dip 

slightly in the higher divergence regions. 
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Figure 41.  Consistent Polymorphism Rate blocks in Amynthas gracilis genome. 

To demonstrate the pervasiveness of this bi-modality and short interval divergence rate change, a 

simple procedure measuring areas ‘consistent’ polymorphism rates was deployed. In this case 

‘consistent region’ is defined as a stretch of DNA for which 25Kbp rolling mean rate did not cross a 

given threshold in either direction. Figure 83 shows the distribution of these ‘consistent’ regions 

throughout the genome. 

Finally, a PSMC population history analysis was performed on the genome, to investigate how this 

unequal distribution of variants might reflect its recent evolutionary history. As the base mutation 

rate for this species has not been tested, the discovered mutagenesis rates in C. elegans were used 

as estimates (Kutscher 2014). 
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Figure 42. PSMC Population history estimation derived from the Amynthas gracilis genome, mutation rate (2.8 x 10-9). 

The PSMC analysis (Figure 84) suggests the genesis of the current allelic divergence to reflect a 

historically large effective population size, with a sharp bottleneck having occurred approximately 

400 years ago, followed by a population explosion. This seems to reflect the timing of the arrival of 

Portuguese colonists to the Azores. 

3.2.4. Methylome Models 

3.2.4.1. Static Models 
Despite the huge differences in the per-gene methylation rates in the four samples, Figure 85 shows 

a remarkable convergence in gene-body methylation structure. This suggests that the large-scale 

changes between the samples are genuine reflections of their biological roles (as opposed to noise). 

The largest differences between the two model types are the differences between exonic and 

intronic methylation rates. The binary model shows that there are more introns which can receive 

small numbers of Me-DIP read alignments, whilst the depth-based model shows that smaller 

number of methylation-susceptible exons are methylated with far higher frequency across tissues. 

Overall these models suggest that the subset of methylation-capable exons is comparatively small, 

relative to introns, but of that set the methylation occurs more frequently than a given methylated 

intron. Intronic methylation appears comparatively rarer across tissues, but more diverse in sources. 
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Another relationship confirmed by all samples was the increasing likelihood of methylation towards 

middle of the gene. The read-depth and binary coverage models both showed a directly proportional 

relationship between exon and intron positions and the coverage rates. 

There are also methylation probability spikes towards the 3’ ends of both introns, which aren’t 

repeated in the depth-model. Suggesting that these splice junctions are the gene element most 

broadly interacted with by DNA methylation, even if the consistency with which any one of them is 

methylated is comparatively low. This might suggest a more transient set of niche epigenetic 

controls. 

 

Figure 43. Initial Gene-body models (A) Binary Coverage Probabilities, (B) Relative Read depths. 
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 All-sample mean expression rank group methylation models were effective at demonstrating how 

the typical expression level of a given gene affects the differential between epigenetic activity within 

its elements. The separation in methylation rates occurs the most strongly between the lowest five 

ranks groups, indicating that the lower 50% of gene by expression have a positive linear relationship 

between their epigenetic interactions and their expression level, however of the upper 50% of the 

group there seems to be little correlation. These conclusions are supported by both models shown in 

Figure 86. 

 

Figure 44. Expression Rank-group gene-body models, (a) Absolute read depths, (b) binary coverage probabilities. 

Closer examination of the terminal regions of intronic elements showed a noticeable feature 

probability increase towards the 3’ terminal 50bp of the element (means across the set of all 
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introns). The 5’ 50bp of intron also demonstrated a slight alteration in read coverage distribution, 

but the probability change was relatively negligible compared to the 3’ end, see Figure 87. 

 

Figure 45. Intron Terminal Region MeDIP read-mapping probability, (a) terminal 200 bases from 5’ end, (b) terminal 200 

bases from 3’ end. 
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3.2.4.2. Differential Models 
Normalised differential models were generated, Figures 88 and 89 both show (a) the profile models 

normalised per interval, and (b) the differential model divided by abundance model. This applies to 

both the absolute and binary models. Whilst changes in abundance are the most marked in Figure 88 

(a), they almost completely disappear when divided by the general abundance, except for promoter 

methylation, which continues to show the greatest rate of flux despite its lower incidence rate. 

Figure 89 (b) shows that the binary odds ratio is consistently above 1 for most of the gene model. 

This is reflective of the high degree of difference that can be seen in the epithelial development gene 

methylation abundance heatmap in Figure 111. This also suggests that while intronic methylation 

may be more stable, most exonic methylation rates are highly changeable and may 

be partially stochastic. It also aligns in with the absolute model in suggesting that promoter 

methylation is the most unstable and prone to flux. The way in which gene-body elements separate 

far more clearly in the binary model than in the absolute model post-profile normalisation seems to 

indicate that the noise in the absolute levels actually limits accessibility to biologically informative 

results in the data, this might be the result of the mixed tissue sample preparation method, and 

could be circumvented by a single tissue sampling procedure with higher numbers of replicates. 
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Figure 46. Read depth-based gene body differential models, (a) Interval-normalised RPM changes, (b) Model in (a) divided 

by abundance model in Figure 85 (b) – change normalised by abundance 
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Figure 47. Binary Coverage gene body differential models, (a) Interval-based read depth change binary probability. (b) 

Model in (a) divided by incidence probability rate in Figure 85 (a) – Odds ratio of change probability over incidence 

probability. 
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3.2.4.3. Sequence Structure Signatures 
Between Figures 90 and 91, it appears than 3’ and 5’ UTRs, and primary promoters has sequence 

structure dispersal rate differences between sets based on their methylation levels, with dispersal 

rates being unchanged in the intronic set. The three sub-graphs within these two Figures should be 

taken in context of the 2D signature fold-change differentials displayed in Figures 92-95. For 

example, both UTRs display substantial narrowing of the set of banding patterns in the graph, 

indicating that the set of dispersal rates of the motif types present becomes most homogenous, and 

less consistent. Referring to the Chapter 4 interpretive schema, this is suggestive of a larger numbers 

of similar motifs with inconsistent points of variation in the more methylated UTRs, indicating that 

there is a long-motif sequence set response to the variable of DNA methylation (as opposed to a 

simple short motif response as might be anticipated given an increased abundance of cytosines). 

However, whilst the banding pattern narrowing occurs in both UTRs signature plots, the fold-change 

graphs indicate that these changes have divergent interpretations. 

Figure 93 shows that between the Low methylation and No methylation groups there is no change in 

structuredness along k-mer sizes 1-15, and a progressive loss of structure in the low methylated 

group from 15-30. This suggests that occasional/infrequent methylation in 3’ UTRs behaves in a 

complex way which isn’t tied to particular sequence structures. However, the two-fold change tests 

which include the ‘high methylation’ group show a very different story. There is an 8 kmer range, 

positioned differentially depending on the N value, which loses a consistent ~30% of its sequence 

structure in highly DNA methylation regions relative to both other groups. One option here is that 

these are miRNA seed alignments which are less present in the highly methylated regions, as this are 

typically in that range (Lewis et al. 2005). This is significant because the high methylation group then 

demonstrates 2-3-fold increase in long motif structure above k=15. To summarise, the correlative 

effects methylation therefore appears have with UTR structure appear only in the top 30% of UTRs 

by methylation, and comprise consistently reduced dispersal rates, loss of short k-mer 

structuredness and a dramatic increase in long motif abundance. We would expect therefore to find 

a large set of longer similar sequence structures in the methylated UTRs, each set internally 

diverging based on inconsistent points of sequence polymorphism. 

Comparing 5’ UTRs in Figure 94 with Figure 93 shows a remarkably similar short motif depletion 

effect, however in this case is occurs between the two methylated sequence sets and the non-

methylated set. The difference being that occasional methylation in 5’ UTRs now correlates the same 

way with sequence structure change as frequent methylation does with the unmethylated set. The 

same short motif seed alignment loss theory may be accurate; however, this also suggests a 

substantially low miRNA binding rate with the 5’ UTR than the 3’ end. Another difference is that the 
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longer k-mer motifs are not enriched in the same way as the 3’ UTR. A short region of motif length 

hyper abundance occurs around the sizes 13-18bp reaching up to a 3-fold differential structure 

increase, but substantially longer motif signatures lose structural abundance, suggesting that a 

different class of motifs by size is associated with methylation in 5’ UTRs than in 3’ UTRs. 

The group fold change graph for splice junctions shows some small methylation effects, however the 

X-scale of these changes is on the order of 1/10th that of all other signature structure variants, 

making them inconclusive, other than to suggest that differential splice junction methylation rate 

across the set is generally unrelated to their sequence content. 

Promoter sequence groups by structure exhibit no variation up to k=13 in Figure 94. This suggests 

that the structures which emerge later causing the 2-3-fold differential are the result of many similar 

small sequence groups. The effect of restricting the input set to a group of sequences close in length 

to the depth of tree also has the effect of making the k sizes in the dispersal graphs in Figure 91 

more reflective of the variation at specific genomic loci relative to the TSS, rather than of motif 

structure in the kernel space. For this reason, the promoter dispersal signatures are far more jagged, 

reflecting commonalities in base conservation amongst the set of all promoters. This effect is also 

manifesting in the higher values of the fold-change graph. That the fold-changes similar in form but 

greater in magnitude in the N=1, and N=2 graphs suggests that many of the highly similar sets of 

methylated TSS adjacent promoter sequence vary only by a couple of bases. 
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Figure 48. 5’ UTR (left) and 3’ UTR (right) methylation rank group sequence signatures. 
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Figure 49. Splice Junction (left) and 34bp Promoter (right): methylation rank group sequence signatures. 
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Figure 50. 3’ UTR Differential K-mer structure scores fold change between methylation groups. 
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Figure 51. 5’ UTR Differential K-mer structure scores fold change between methylation groups. 
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Figure 52. 34bp Promoter, differential K-mer structure scores fold change between methylation groups. 
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Figure 53. Splice Junction (100bp) differential K-mer structure scores fold change between methylation groups. 
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3.2.4.4. RNA-Seq Intersect Models 
Quantile-Quantile grids show a few clear messages about the distribution of methylation amongst 

genes by their expression levels. Firstly, Figure 96 buttresses the interval model suggestion from 

Figure 96 that the lower half of the gene set by expression is the most positively correlative with 

mean methylation levels. In the lowest 20% of genes by methylation in 26 (a) there is a notably 40-

70% over-representation of genes in the lowest category of expression by 10% quantile, and under-

representation of highly expressed genes, although the top 10% of genes by expression exhibit no 

methylation correlative effect. The models produced to investigate the same effect in 1kb promoter 

regions show very little significance at all. Figure 97 (a) and (b) show gene body models developed 

for gene expression and methylation differentials with two different test types. The relationship 

does not vary by test type, and it appears that the top 20% of genes by exhibited variability in 

methylation have up to 2-fold enrichment in the top 20% of genes by FC differential. Quite simply it 

suggests that the differential x differential relationship is: ‘change begets change’ in one way or the 

other. The repetition of the differential model for 1kb promoter regions in Figure 98 showed a 

similar enrichment pattern in the top/bottom 10% categories, but with highly diminished scale and 

significance, suggesting this might just be an adjacency effect given the primary methylation target 

of the gene body. 
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Figure 54. Quantile-Quantile map for mean gene expression. X= Log TPM Gene Expression 10% incremental Quantile 

densities given the current Y group. From top to bottom: Genes grouped by ‘least to most’ methylated (Log RPM), in 10% 

incremental Quantiles. This chart shows the null quantile density 5/95% confidence interval width for bootstrapped random 

pairings of expression and methylation read count (Blue), and the actual quantile densities given the real data pairings 

(Red), such that where the red line departs from the confidence interval it might be considered significant. This test 

repeated for associated methylation rates originating from (A) Gene Bodies, (B) 1kb Promoter. 
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Figure 55. Quantile-Quantile map for differential gene expression vs differential methylation. X = Log FC differential gene 

expression 10% incremental Quantile densities given the current Y group. From top to bottom: Genes ordered by log FC 

gene body methylation differential, in 10% incremental Quantiles. This chart shows the null quantile density 5/95% 

confidence interval width for bootstrapped random pairings of expression and methylation read count (Blue), and the 

actual quantile densities given the real data pairings (Red), such that where the red line departs from the confidence 

interval it might be considered significant. This test repeated for associated methylation rates originating from (A) Test (4): 

(M -> V) vs (M -> M), (B) Test (5): (V -> M) vs (V -> V). 
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Figure 56. Quantile-Quantile map for differential gene expression vs differential 1kb promoter methylation. X = Log FC 

differential gene expression 10% incremental Quantile densities given the current Y group. From top to bottom: Genes 

ordered by log FC 1kb Promoter methylation differential, in 10% incremental Quantiles. This chart shows the null quantile 

density 5/95% confidence interval width for bootstrapped random pairings of expression and methylation read count (Blue), 

and the actual quantile densities given the real data pairings (Red), such that where the red line departs from the 

confidence interval it might be considered significant. This test repeated for associated methylation rates originating from 

(A) Test (4): (M -> V) vs (M -> M), (B) Test (5): (V -> M) vs (V -> V). 
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3.2.5. miRNA Summary 

Mature miRNA predictions were made using MiRDeeP2 (Friedländer et al. 2012)  – there were 237 

novel miRNA which were assembled de novo from the sequencing data. 42 of the entries only 

occurred in two or less of the samples and were filtered out. Of those remaining 89 had no match 

compared to the entries in MiRbase (Kozomara & Griffiths-Jones 2014), and 106 were identical to 

pre-existing entries. All the retained miRNA assembled post filtering were within the top 500 miRNA 

mapped to by abundance – which gives confidence that they are from genuine sources. Although the 

Lophotrochozoan taxa has very sparse representation in the miRNA sequence database, many of the 

top reference hits were from the nearest taxonomic neighbours – 19 from Capitella teleta, 43 from 

Ciona intestinalis, 27 from Strongyloides ratti, 8 from Lottia gigantea, and 21 from Schmidtea 

mediterranea. This suggests that despite the relatively poor performance of prior knowledge in 

annotation in most cases – the taxonomic proximity confirms some degree of expected miRNA 

conservation within the clade. 

3.2.6. miRNA Networks 

An initial miRNA network was generated based on the set of miRNA -> Gene bindings discovered. 

This network visualisation and edge-distribution summary is shown in Figure 99 (a) and (b) 

respectively.  Of the 26,951 genes, 9,363 (34%) were found to have at least one miRNA binding site 

on the conservative rule of two base-changes or less compared to the mature sequences. In the 

network 8026 (85.7%) of genes were bound to by one miRNA. Of the 2,000 putative miRNAs 

included in the alignment query, 1,554 (77%) were found to bind to one or more genes, suggesting 

some degree of over-inclusive error given the arbitrary selection cut-off. Since miRNA functional 

impact was assessed relative to the bound genes, all unbound miRNAs were not included in the 

functional annotation enrichment (later sections). Of the miRNA in the network 623 (37.4%) only 

bound to a single gene, with the rest binding to multiple. 

Abundances of p-significant genes related to miRNA changes in this and later sections are gathered 

based on the p-significance of the miRNAs which bind to them. Functionally describing the miRNA 

networks involved in expression change between sample was also performed based on gene 

annotation, rather than miRNA annotation. 

Differential miRNA expression sub-networks are shown in Figures 100 and 101, for the Origin vs 

Origin, and Destination vs Destination tests respectively. The Static vs Change test did not yield 

enough p-significant results to generate a useful network view. In both test types, functional 

enrichment clustering of genes annotated by Gene Ontology BP4, in DAVID, yielded similar sets of 

results to the main clustering experiments in later sections. Both included a highly enriched 
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proportion of membrane bound proteins. Neural system development was featured in multiple 

highly abundant clusters in the Origin test (Counts: 130, 46, 45, 11), and in two less abundant but 

highly significant clusters in the Destination test (Counts: 31, 19). The Destination test network also 

showed a cluster of 27 ion channel related proteins 
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Figure 57. (a) Visualisation of the full miRNA regulatory network between genes (Pink) and miRNAS (blue). (b) Bar graph of 

the per-node edge count. 
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Figure 58. Origin vs Origin differential miRNA expression network and functional enrichment clusters.Shows miRNAs (large dots) and 
genes (small dots) and whether or not they are upregulated (blue) or down-regulated (pink). All miRNA shown had a p<0.05 
significance to its differential expression after fold-change effect size shrinking in deseq2. 
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Figure 59. Destination vs Destination differential miRNA expression network and functional enrichment clusters. Shows 

miRNAs (large dots) and genes (small dots) and whether they are upregulated (blue) or down-regulated (pink). All miRNA 

shown had a p<0.05 significance to its differential expression after fold-change effect size shrinking in deseq2. 
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3.2.7. Expression Patterns 

The most substantial expression pattern difference between sample groups could be found in the 

Destination vs Destination test (see Figure 102). Both miRNA-Seq and RNA-Seq showed a similar 

relative set of significant p-value counts between tests. The primary difference between test 

significance could be found in the Origin vs Origin (2) test, where miRNAs showed a much stronger 

signature relative to the Destination (3) test. This is also displayed in deseq2 outputs (see Figures 

103-105). 

Methylation sample differences were consistently very large (Figures 105 and 111), and a roughly 

equal number of p-significant changes were found in each of the three 2v2 tests. However, the set of 

genes changed between in test (1) Static vs Change, were found to generate functional cluster fold 

enrichment scores higher than any other gene list found for that test, or any other methylation test 

gene list. This difference is displayed in Figure 102 (DAVID Functional Clustering). The samples suffer 

from low replication and high inter-sample difference which suggests a large amount of noise of 

either a biological or methodological origin. Despite this, the cohort of consistent changes in gene-

body methylation between the distantly and locally transplanted worms occurred with a functional 

specificity which should not be ignored. 
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Figure 60. Experimental design and sequencing differential results from left to right (1) Sao Miguel Sampling locations, and differential test design, (2) p-value counts from differential tests 

described in (1), and (3) Functional enrichment clustering via GO Biological processes: fold enrichment for first three tests.
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Figure 61. Differential Expression Test Results, Effect-size shrunk Log2 FC against Normalised Sample Means. Expands the 

RNA-Seq results in Figure 102. 
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Figure 62. Differential Expression Test Results, Effect-size shrunk Log2 FC against Normalised Sample Means. Expands the 

miRNA-Seq results in Figure 102. 
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Figure 63. Differential Expression Test Results, Effect-size shrunk Log2 FC against Normalised Sample Means. Expands the 

MeDIP-Seq results in Figure 102. 
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3.2.8. Functional Profiles of Plasticity 

Enrichment cluster intersection maps in the right halves of Figures 106-108 show the most 

significant terms per data source. The network view allows direct comparison of source data 

enrichment effects on identical terms. All the top terms by significance in each graph are members 

of a cluster which intersects with at least one other data source’s enrichment cluster. Some terms 

and their respective clusters originate from only a single data source; however, these instances are 

all amongst the least enriched/significant. These clusters intersections are labelled with respect to 

the lowest p-value terms in the clusters. Comparing between Figures 106-108, the same 

intersections organically re-emerge, however the data sources, enrichments and significances all 

vary substantially. The top re-emergent cluster intersections are shown in Figure 109 as a trait 

matrix. The merged clusters summarise the five main functional change categories between the test 

individuals: 

1. Circulatory system Development (GO: 0072359) 

2. Epithelial Development (GO: 0060429) 

3. Ion Transport (GO:0006811) 

4. Neuron Development (GO: 0048666) 

5. Signal Transduction (GO: 0007165) 

The net up/down regulation of genes annotated with this terms, or associated miRNA up/down 

regulation, are shown in the trait matrix also. Notably, there is a consistent pattern whereby more 

genes with significantly up-regulated miRNAs were found in the first four categories for the 

Destination test. The same categories in the Origin test showed a net down-regulated miRNA-gene 

component. Reflecting the functional enrichment differences in the MeDIP-Seq tests, significant 

differential methylation was found to be the most abundant in the Static vs Change test for 

categories 3-5; in these cases, affecting substantially more genes than any other data source. 

Methylation significant change rates for categories 1-2 were consistent, suggesting that these level 

may be more reflective of a certain degree of systemic stochasticity. 

Categories 2-5 in the origin test were notable for the miRNA effect size being larger than the RNA-

Seq effect size, while category 1 was showed an atypically larger RNA-Seq effect for the Origin test. 
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Figure 64. Origin vs Origin, Functional enrichment cluster intersection between data sources (left) and network-view expansion of merged clusters for a single intersection (right). This 
image shows the miRNA regulatory network for the genes annotation with the term ‘GO:0072359~circulatory system development’, the network is spatially organised around the GO 
cellular component terms annotating the cluster, and colours nodes my fold-change in the relevant test. 
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Figure 65. Destination vs Destination, Functional enrichment cluster intersection between data sources (left) and network-view expansion of merged clusters for a single intersection (right). 

This image shows the miRNA regulatory network for the genes annotated with the term ‘GO:0060429~epithelium development’, the network is spatially organised around the GO cellular 

component terms annotating the cluster, and colours nodes my fold-change in the relevant test.
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Figure 66. Stationary vs Change, Functional enrichment cluster intersection between data sources (left) and network-view expansion of merged clusters for a single intersection (right). 
This image shows the miRNA regulatory network for the genes annotated with the term ‘GO:0060429~epithelium development’, the network is spatially organised around the GO 
cellular component terms annotating the cluster, and colours nodes my fold-change in the relevant test. 



152 
 

   
 

 

Figure 67. Trait Matrix. (left) Columns describe the largest cluster intersections from Figures 106, 107 and 108. (middle) Bar charts show number of genes affected by p-significant changes per 

cluster, and the net up/down regulation of that cluster per data source. (right) Re-annotation of cluster sub-terms, top nine terms in cluster by p-significance of enrichment.
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Figure 68. Epithelial Development Heat Map for Transplant Gene Expression. 
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Figure 69. Epithelial Development associated gene heat map for absolute gene body methylation rates. 

3.3. Discussion 

3.3.1. Genomic Diversity 

The genome was found to contain a pervasive and unusual bimodal pattern of allelic divergence. 

This pattern was not localised to any locus, but was found throughout almost all scaffolds, 

suggesting that situations such as regional introgression across species barriers are not the cause. 

There was also no association with gene-density or gene function detected. 

The mosaic nature of the genome may be the result of several factors. It appears the multiple 

introductions of gracilis to the Azores could have introduced individuals from distant lineages, which 

then hybridised. It could also be the case that naturally high diversity was present in the continental 
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species, given the large effective population size this would not be unprecedented (Small et al. 

2007b) and that the local colony dwelling nature of the endogeic worm (Lavelle 1988) regularly 

introduces low-diversity allelic regions into individual genomes via in-colony in-breeding, however 

the consistent and evenly distributed presence of variants within even the lower diversity regions of 

the genome suggests this is not the main cause in this individual. It is also possible that, as the PSMC 

suggests, the high effective population size of the continental species allowed for the gradual 

accumulation of a high allelic diversity, which the population bottleneck after introduction to Sao 

Miguel limited, resulting in a mosaic of allelic regions which reflect the current effective population 

size (at ~0.5% absolute variation), and the pre-introduction population size (3-4% variation). This 

final case also requires supposition that insufficient meiotic recombination had occurred since the 

first introductions of this germ line to homogenize the variant density. 

3.3.2. Methylation Spatial Features 

Invertebrate methylation studies have indicated, that unlike mammalian biology, DNA methylation 

regions tend to co-localise with transcribed regions (Suzuki et al. 2007). This is confirmed by these 

results, which show the majority (95-98%) of genes are associated with methylation to some degree. 

Although the divergence between invertebrates and vertebrate has been described as a function of 

the absence of promoter methylation (Keller et al. 2016), the differential models built here suggest 

that promoter methylation, whilst highly prone to flux, is also amongst the largest relative set-

changes in differential tests. Another recent study has suggested that the Pacific Oyster Crassostrea 

gigas may also have a functional role to methylation in promoters given the 5’ bias to its intra-genic 

methylation (Rivière 2014). Despite the opposite (a 3’ bias) in these models, evidence for promoter 

methylation activity is still observed in differential tests. 

It has also been observed that methylation is associated with splicing via molecular mechanisms 

which promote exon recognition during transcription (Maunakea et al. 2013), and similar 

associations have been found in invertebrates (Flores et al. 2012)(Lyko et al. 2010). The 

overwhelming association of methylation rate abundances with splice junctions in the interval-based 

gene models strongly suggest that a similar association may exist in the earthworm genome. 

Finally, application of the functional sequence signature method developed in Chapter 4 was able to 

determine than in the case of 3’ and 5’ UTRs, and primary promoters the sites which were 

methylated also had distinct structural differences with unmethylated sequence. In the case of the 

UTRs, short motif depletion similar in length to the crucial seed binding region lengths found in the 

case of miRNA bindings suggest there may be some epigenetic interaction with miRNA regulation. 
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When comparing the methylation spatial probabilities as in Figure 86, we find that any given 1/20th 

length division of a 5’ UTR is only having a ~0.15 likelihood of being methylated, whilst for 3’ UTRs it 

is closer to ~0.26, despite the summed region probabilities being much higher. However, in Figures 

93 and 94, k-mer structure fold-changes a between sequence sets groups by methylation, it is 

actually the lower-rate-group of 5’ UTRs by methylation which are almost indistinguishable in 

sequence structure from the higher-rate group. Whilst the most abundantly methylated 3’ UTR only 

seems to exhibit a sequence correlation amongst the 33% most abundantly methylated subset, with 

low methylation comparable to no methylation in terms of sequence structural features. This 

suggest distinct and different regulatory roles played by methylation in these different regions. 

3.3.3. Systematic Contributions to Function 

The contribution of three large scale regulatory responses will be discussed with respect to each test 

type in this experiment. Gene expression overall was shown to exhibit the largest response to the 

Destination soil test versus the origin soil test. This suggests that the response the earthworm 

produces to these multi-stressor environments is highly specific, and not just a general stress 

response, this is because worms of the same origin site to the destination must exhibit similar 

expression patterns to the transplanted worms for the sample-group differences to be discovered as 

significant. 

Methylation was found to be highly variable between samples. The stochasticity in the data 

suggested that methylation was highly variable in this species. Our results align remarkably with a 

study titled ‘Stochastic epigenetic variation as a driving force of development, evolutionary 

adaptation, and disease’ (Feinberg & Irizarry 2010), in which the theory that heritable stochastic 

changes in methylation act as a facilitative mechanism by which members of a population may vary 

around a mean phenotype. Functional enrichment results found via the accumulation of population 

VMRs (variable methylation regions) in mouse liver tissue revealed generation of Generation of 

Neurons to by the most enriched term, and Neurite Morphogenesis and Neuron Development were 

also in the top ten. A similar test performed on human liver tissues found morphogenic and 

developmental terms highly enriched. Both these results align closely with the functional traits 

displayed in Figure 108, such as Neuron Development. Morphogenic terms was also substantially 

enriched in functional clusters. The similarities found here suggest that, no only might variation in 

methylated between these samples act as an evolutionary function which varies the population 

phenotypes around a mean in a heritable way, but that the functional traits upon which it acts may 

be either conserved or convergent across substantial evolutionary distance. That these enrichments 

only show up in a substantial way in the Static vs Change tests suggests that an environmental stress 
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response may have the consequence of triggering the individual methylome stochastic flux 

within/around certain trait-associated loci. 

The test significance rate ratios in miRNA tests are interesting for the relatively large impact of the 

origin soil effect compared to the ratios found in RNA-Seq tests. It is also the case within the miRNA 

network that some singular miRNAs are capable of binding with 50-100 mRNAs each. Similar 

situations are reported in mammalian transcriptomics, where most mRNAs are bound by a miRNA 

(Friedman et al. 2009). This differences suggests that a ‘functional memory’ of the soil of origin may 

persist in the transplanted individuals. In the case of the dominant five trait categories this is 

partially described by a small net loss of miRNA expression in the worms of Furnas soil origin. These 

molecules continue to act as the post-transcriptional sculptors of gene expression this may serve as 

a phenotypic ‘buffer’ which prevents an organism from fully acclimating, and biologically over-

committing to what may only be temporary environmental fluctuations. The large scale effect of 

miRNA regulatory action has been identified to be predominantly repressive (Cai et al. 2009) in many 

studies (Bartel 2018). This appears to be reflected in at least two trait categories, Epithelial 

Development and Circulatory system development, where the differences between Destination and 

Origin tests are an inverse relationship between net miRNA and net mRNA up/down regulation. The 

general pattern of net upregulation of miRNAs in destination tests, and net down regulation in 

Origin tests, may suggest that when miRNAs are acting as acute acclimative response intermediaries 

they are more likely to be actually be acting to suppress more transcriptional targets, whilst their 

loss of abundance in the Furnas soil suggests a functional memory in the form of a retentive non-

repression of adaptive trait-associated gene products. 

3.3.4. Physiological acclimation and adaptation 

In alignment with previously studies (Cunha et al. 2011b) the epidermal thickness of the earthworm 

was found to be consistently and substantially thinner in active volcanic soils. This follows 

observations of the hydrothermal tube worm’s morphotype adaptation to life amongst O2 depleted 

hydrothermal vents. The change in branchial gas-exchange surface area remains constant between 

the species’ morphotypes, but the diffusion distance across the epithelium shrinks when living 

amongst the vents (Andersen et al. 2006). The discovery of 181 significantly differentially expressed 

genes, with a pathway fold-enrichment in the differential set of 5.74, acting upon the epithelium 

development pathway gives strong evidence that this effect is a specific acclimative response, as 

opposed to an emergent result of damage/stress. Further re-enforcing the assertion that the 

thinning is a part of the organism’s acclimative toolbox, rather than a heritable population level trait, 

is the count difference in pathway associated p-significant gene expression between the three test 

types. That the transcript response is incredibly low in the origin test shows that this effect is 
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deployed is response environmental change, to a far greater degree than it persists in environmental 

origin. That the transcript and miRNA response significance is incredibly low in the general change 

test, shows that the pathway-associated genes which either thicken or thin the epidermis (Figure 79) 

are specific to the environmental change which has occurred, with very little overlap. Differential 

methylation significance occurs at similar rates between the merged epithelial clusters in Figure 109, 

however the gene set targeted by methylation in the static test enriches for specific terms far more 

readily in the network view (Figures 106-108). Despite the stochastic differential methylation effects 

spread between heterogenous terms within the same merged clusters, the more specific functional 

profile of the ‘static vs change’ test methylation changes indicate that it may have a role in the more 

general change-response mechanism by which both epithelial restructuring pathways are regulated. 

In crayfish it has been observed that similar gene-body methylation is associated with expression 

stabilisation of genes limited by chromatin availability (Gatzmann et al. 2018), which may be as a 

trigger, or as a consequence of chromatin remodelling which takes place (Jeltsch & Jurkowska 2014). 

Earthworms have a closed haemoglobin based circulatory system for gas exchange (Monahan-Earley 

et al. 2013), and an open circulatory hydrostatic skeleton for locomotion called the coelom (Rieger & 

Purschke 2005) (Reiber & McGaw 2009). Given the annotation of the gene-set was produced via the 

reference uniport database, it may be that some interference exists given the similar evolutionary 

origins of these two systems. However, the gas diffusion acclimation performed by the epithelium 

suggests that the annotation associated a differential morphogenesis of vasculature in the worms 

was also a compensatory mechanism substantially altered environmental O2/CO2 diffusion gradients. 

The merged cluster annotation shown Figure 109, and Figure 106 suggests both angiogenesis and 

morphogenic restructuring takes place. This trait is also unique in its test change profile for the 

abundances of p-significant RNA-Seq differential results between the origin and destination tests. 

This suggests that the circulatory system restructuring occur as an acclimative response, but the 

expression profile changes either occur on a substantially longer time frame than 31 days or are a 

result of a population level adaptive variation. Again, methylation acts as a stochastic variation on 

these genes consistently, but and the functional enrichment is slightly more significant in the static 

vs change test. 

Neuron development in the earthworm is the third morphogenic trait category which is highly 

enriched in all three test types, although in different ways. This will be discussed in conjunction with 

signal transduction annotation cluster, which overlaps considerably via its constituent genes. Signal 

transduction is a very broad category, and is difficult to pick apart, with the exception that 

neurogenesis associated terms always appear to make a substantial constituent of the signal 

transduction subset. It is has also been shown than invertebrates such as D. melanogaster possess 
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dedicated O2 and CO2 olfactory signalling pathways (Luo et al. 2009), suggesting that similar neural or 

olfactory chemical signalling may be acting as a triggering mechanism for the morphometric changes 

discussed above. Hypoxia, an expected stressor given a means of ~15 and 10% O2 gas composition at 

depths of 25 and 50cm (Table 12), has also been shown to have substantial effects on neural stem 

cell differentiation in many organisms. Research has shown neuronal migration defects and axon 

pathfinding changes in C. elegans (Chang & Bargmann 2008), reduction of ion concentrations and 

consequent hyper-polarization in D. melanogaster (Gu & Haddad 1999), and cation co-transporter 

activity reduction and resultant hyper-polarization in Lymnaea stagnalis (Silverman-Gavrila et al. 

2009). Most of the literature concerning neural responses to hypoxia in invertebrates specifically 

concerns the membrane-based changes, with little consideration of differentiation and growth 

alterations (Mannello et al. 2011). This is reflected in Figure 106 where the abundance of 

membrane-bound proteins in the miRNA-regulation network is displayed. However, there are also 

substantial numbers neurogenic genes identified here which may be acting as a more general 

plasticity response. Signal transduction pathways in general are overwhelmingly differentially 

methylated in the static vs change test compared to any other test, and the neural development 

specific pathways are also nearly double the rate of differential methylation in this test compared to 

the others. This suggests that the ‘general’ environmental change response exhibited by these 

earthworms may constitute the epigenetic modification of many of the same signalling pathways 

regardless of the specific changes encountered. Uniquely, the signal transduction merged cluster 

also showed more RNA-Seq differential significance in the static vs change test, further indicating 

that this more general change response, at the epigenetic level has a corresponding gene expression 

profile too. 

Ionic transporters also possess some functional overlap with signalling pathways and are constituted 

by upwards of 200 genes significantly modified by their expression, miRNA binding or MeDIP read 

mapping levels. Of the genes in the merged annotation cluster 36.4% were associated with metal ion 

transport, a primary component of the identified environmental profile differentials (Table 14). 

Metallothioneins describe a protein family which earthworms are known to utilise to handle heavy 

metal stress (Höckner et al. 2015). Originating in the Golgi apparatus, these proteins are expected to 

be found in the soluble fraction of the earthworm’s physical mass. By referring to Table 15, the 

soluble fraction metal abundances show that cadmium, zinc, copper, potassium and magnesium are 

all likely regulated as soluble protein bound ions in some form. However, many others, including one 

of the primary environmental differentials, lead, is stored in the cells of the organisms as granules 

with an extremely positive destination effect. Although the destination effect is found to be more 

prevalent in the fractionation table, in reflection of the relatively consistent set of miRNA 



160 
 

   
 

interactions between the destination and origin tests, there are also origin effects to be found in the 

fractionation table, for example titanium and strontium accumulations are more dependent on the 

origin soil, which could be a consequence of their relative non-reactivity with biological systems 

(Saini 2015) (Pors Nielsen 2004). The higher toxicity chromium (Sivakumar & Subbhuraam 2005) 

content also exhibits an origin effect, although the abundances were relatively low. Fractionation 

also indicates that the only metal which the earthworm failed to adequately regulate either by 

metallothionein solvency or by storage as granules was arsenic, a known toxin, which also had a 

slight origin effect. Methylation differentials for ion transporters were far higher in the ‘static vs 

change’ test also, suggesting a general large scale epigenetic regulatory response type amongst ionic 

transporter genes in the event of environmental fluctuation. 

3.4. Conclusion 

A reciprocal transplantation experiment was performed, exchanging groups of earthworms between 

inactive and active volcanic soils with elevated temperatures, CO2 degasification, O2 depletion, and 

altered chemical and metal abundance profiles. RNA-Seq, miRNA-Seq, and MeDIP-Seq profiles of 

sample functional changes were created. Three main differential tests were used to assess the 

acclimative, adaptive and general environmental responses in this earthworm, see Figure 102. 

Amynthas gracilis was found to have highly methylated gene-bodies, with variable gene-component 

rates, and a clear relationship with between mean expression levels and methylation, see Figures 86, 

89 and 99. Independent functional enrichments of significant gene-based differentials generated by 

the three data sources were intersected to show the pathway contributions to plastic traits via 

different regulatory mechanisms, see Figures 106-108. Epithelial remodelling was described 

physically and independently re-discovered as a functional signature in multiple enrichment tests, 

see Figure 37, its contributory systemic profile suggests this is highly plastic acclimative response. 

Circulatory system morphogenesis and angiogenesis were repeatedly independently discovered in 

functional clusters (see Figure 106) and profiles were found to be both acclimative and subject to a 

soil-origin persistence effect. Neuron development was performed acclimative but was 

epigenetically modified to a far greater extent in worms experiencing environmental change 

regardless of the type of change. Signal transduction overall exhibited an even stronger methylation 

response in the general change test and was also subject to more gene expression profile changes in 

this case. Metal accumulation in body fractionated body matter was shown to exhibit both a large 

destination effect and a small origin effect, metal ion transporters were also an independently 

functionally enriched category by all three data sources, and in all three test types, although the 

acclimative response was the strongest. Methylation change in the earthworm genome was found to 

be incredibly noisy, with only the general change test showing large numbers of clear functional 
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enrichments, suggesting a degree stochasticity to the epigenetic mechanism’s relationship with 

functional plasticity. miRNA networks showed a much higher relative soil origin effect profile, 

relative to the soil destination effect, than gene expression, suggesting expression sculpting via 

repression networks may act as a persistent functional memory within individuals exposed to 

environmental flux. 
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4. Chapter 4: Towards a high-utility general signature for sequence 

structure 

4.0. Motivation 

Detecting the presence of systematic differences in genomic evolution is a difficult problem, 

particularly for novel organisms. In order to build an understanding of the sequence contained 

within a genome, a transcriptome, or a proteome – it is necessary to annotate and compare 

elements contained therein, typically through the lens of prior knowledge. However, an accurate 

annotation for a novel (to genomics) organism’s genes/proteins is almost impossible to achieve, with 

the available annotation solutions ranging from 26-80% to provide some level of annotation for 

genes of interest (Bolger et al. 2018). Various factors are measurable, such as the ratio between 

synonymous and nonsynonymous mutations – absolute divergence of alleles – but only if the 

organism is sufficiently low in allelic diversity that copies of its alleles can be collapsed into a stable 

reference. If the rate of the divergence between the alleles is highly variable, as was the case in 

Chapter 2, then the problem of building accurate references becomes harder: at some point there 

needs to be a separation between haploid and diploid reference sequence, and a unity of 

measurement between them. Additionally, most variant-calling pipelines require that reads be 

mappable by short-read aligners from one allele to the other (Poplin et al. 2017). As was the case 

with L. anatina’s genome, this does not always work particularly well for divergent alleles, leaving 

the variant annotations sparse and unreliable. In order to be able to take the sequence content as a 

whole and produce singular measurements of the information structures present therein, it was 

necessary to derive a knowledge-free approach to the problem. Most knowledge free analysis of 

large-scale sequence data in bioinformatics focuses on the use of k-mers, or measurements of 

information complexity (Zielezinski et al. 2017). Measurements are made of k-mer abundance, 

unique counts, and frequency distributions over one or more sizes. Measurements can also be made 

of Kolgomorov complexity or Shannon entropy, and used to compare sequence data. Taking this 

form of initiative as the starting point, a mathematical and algorithmic approach to describing 

sequence structure in a knowledge-free manner was developed. 

4.1. Introduction 

‘K-mer’ is a term typically used to describe the set of fixed length substrings found within a larger 

string. In recent years k-mer based analysis, is used widely to perform QA/QC on NGS data (Andrews 

2014), to estimate pre-assembly statistics for genomes (Simpson et al. 2009), to build predictors for 

sequence associated biological features (Liu et al. 2015), and even to taxonomically classify the 

content of metagenomes (Ounit et al. 2015). K-mers may also sometimes be referred to as n-grams, 
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or in the case whereby the length may not be fixed: l-mers. For the sake of clarity, in this chapter the 

following terminological code will be followed: k-mer will be used to describe the fixed length 

substrings which constitute the maximum length inputs to a substring-based method, while l-mer 

will be used to describe instances of substring usage over the range of [1, k] within those methods. 

A primary problematic issue with k or l-mer based methods for classification is the high 

dimensionality of longer DNA sequence. For a k-mer of n length, the number of available sequence 

types is 4n, when predictive sequences reach 15-20 base pairs, it typically becomes necessary for the 

sake of computing power to develop heuristics which limit the sequence space explored by the 

classifier. Various programs have also been developed to optimise the containment of high 

dimensionality in working memory for the sake of k-mer counting (Marcais & Kingsford 2012) (a 

routine operation in various other pipelines, such as the Trinity Transcriptome assembler (Brian J 

Haas et al. 2013)).  

Another issue with k or I-mer based approaches to DNA sequence computing, particularly with 

respect to machine learning, is the fragility of longer k-mers. Most modern machine learning 

methods rely on inputs of fixed dimensionality and size, which results in DNA classifiers using kernel 

matrices of l-mer frequencies derived from a training set of sequences. Although amongst the most 

highly predictive sequences, longer k-mers are also incredibly sparse entries in kernel matrices, 

which make models derived from them difficult to train. In response to this shortcoming, work has 

recently been done to attempt to bandage this issue using a gapped k-mer approach to kernel matrix 

construction for support vector machine (SVM) classifiers (Ghandi et al. 2014).  

Ghandi et al’s algorithmic method involves the construction an efficient tree-like data-structure with 

additional branching between nodes which differ by N bases, this may allow the aggregation of 

many similar long k-mers into a single entry in a kernel matrix, which can produce a more reliable 

input to an SVM (Ghandi et al. 2014).  

The idea of a gapped k-mer tree will be central to the foundations of the method described here. 

However, there are several other categories of biological sequence processing which inform the 

development of this method. The first, as mentioned above, are the counting and statistics tools 

used in the data processing pipelines for many NGS experiments. Work, although limited in scope, 

has been done to apply these tools to derive an informative bird’s eye view of an organism’s biology. 

Most straightforwardly, this has been done by calculating whole-genome k-mer frequency 

histograms as a comparison tool between species (Chor et al. 2009). Another way in which these 

tools may directly inform us biologically include allelic diversity estimation (Simpson 2014), although 

a k-mer based estimation of heterozygosity will lose sensitivity when the density of genomic SNPs is 
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regularly greater than 1/k, or when the overall rate is exceptionally small. A third way might be for 

the preliminary detection of intracellular parasites or other sources of non-host DNA present in the 

sequencing experiment without direct classification (Kumar et al. 2013). While useful, these tools 

also have a relatively low-dimensional output relative to their inputs, often taking the form of a two 

or three-dimensional distribution of frequencies. The notion that a large-scale sequence set might 

be described biologically in a knowledge-free manner seems appealing but achieving much depth to 

the analysis is challenging. 

Research not directly related to the use of k-mers in the same manner, which yet still attempts to 

gain a bird’s eye view of the DNA’s information content comes often from an ‘information entropy’ 

perspective. Information Theory developed by Claude Shannon (Shannon 1948) has been the basis 

for much entropic theory of information and is referred to as Shannon Entropy (Lin 1991). The 

methods developed around which are principally concerned with the nature of DNA insofar as it 

diverges from a random noise comprised of the same alphabet (Mantegna et al. 1994). Attempts 

have been made to describe an information entropic ‘signature’ of DNA (Schmitt & Herzel 1997). 

Others have also found novel approaches to the idea of entropy, such as via ‘Chaos Game 

Representation’ (CGR) (Oliver et al. 1993). Purely entropic or signature-based descriptions of DNA do 

not appear to be in frequent use in the age of NGS. There has been some perennial interest in CGR 

signatures however, efforts have been made to deploy these for the comparison of genomes 

between species (Karamichalis et al. 2016). Euclidian distances of CGR matrices have also been 

proposed as a quantified measure of species-distance (Karamichalis et al. 2015). Although the 

perspective of defining sequences, and even life, by the scale and shape of their entropic 

properties might capture the signatures of far deeper complexity, the outputs produced by these 

methods are difficult to translate into stand-alone biological insight in the same way that a 

whole-genome k-mer analysis might be. The objective of this research effort is to determine 

whether it might be possible to achieve the best of both worlds: deeper complexity signatures 

containing direct biological insights. 

4.2. Methodology Development 

4.2.1. Rationale 

It is hard to spend much time as a bioinformatician in the modern day without being required to 

‘choose a value of k’ for a program. Although some assemblers such as MEGAHIT (D. Li et al. 2015) 

may by default opt to run multiple k values in serial, whether error correction, genome assembly, or 

read library pre-analysis, typically a single value of k is required. This highlights the difficulty of 

integrating k-mer based algorithms across multiple k values simultaneously. Consider that, in an 
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alphabet of size four, ATGC, there may exist one to eight different 9-mers set for every 8-mer. If a 

given 8-mer’s frequency could be explained by the frequency of a single 9-mer, it would be natural 

to point to the 9-mer as the sequence of interest if it was constitutive of multiple roughly equally 

frequent different 10-mers. This is quite a simple way of looking at the set of k-mers in an entropic 

manner: If the frequencies of shorter substrings disperse evenly amongst the longer substrings 

which contain them, it is probably the shorter substrings which carry the biological interest. If the 

presence of these shorter substrings at an unusually high frequency rate is explained by equivalently 

high frequency longer substrings which contain them, then perhaps it is the longer that are the more 

relevant to whatever biological question is being asked. The next step might then be to consider if, 

for a general methodology which is inclusive of a range of k (or l), rather than selecting l-mers by 

their interestingness or (in the terminology which will be used from here on) distinctness, all l-mers 

over [1, k] might be included in the set, but their merit be subject to a ‘distinctness weighting’. 

To assemble a large set of substring information in such a manner as would allow us to ask this 

question of an arbitrary l-mer, the most basic computational requirement is access to the frequency-

containing variable associated with an l-mer, and a set of associations between it and the frequency 

variables of the length l+1 substrings which may contain it. Fortunately, this condition is satisfied by 

the widely used efficient k-mer tree structure. This is essentially a search-tree with n possible 

children per node, where n is the size of the alphabet (In this case, four). From now on the rationale 

will assume the employment of a k-mer tree as its primary data structure. Technically speaking the 

k-mer tree would be defined as a ‘trie’, rather than a tree, as the actual sequence content of the k-

mer is not stored in any variable and instead may be inferred from the tree position of a given node. 

Despite this, since the tree, or trie, is not actually being used for search operations, we will continue 

to refer to it simply as a ‘k-mer tree’. 

4.2.2. Initial Formalisation 

Given the parent/child relationship between characters within a set of k-mers, and the usage of 

frequency dispersion to measure distinctness, we can begin to define the formulae employed. Given 

that child node frequencies are contained by an ascending-value-ordered n-tuple F = (f1, f2, ... fn). 

Formula 1:   𝑑𝑚𝑖𝑛 = 𝑓𝑝  

Formula 2:    𝑑𝑚𝑎𝑥 = ⌊
𝑑𝑚𝑖𝑛

𝑛
⌋ 𝑛2 + (𝑑𝑚𝑖𝑛 𝑚𝑜𝑑 𝑛)2 

Formula 3:   𝑑𝑐ℎ𝑖𝑙𝑑 = ∑ (𝑭𝑖 − 𝑭𝑖+1
𝑛−1
𝑖=1 )𝑖2 + 𝑭𝑛

2 

Formula 4:    𝐷 = 
𝑑𝑐ℎ𝑖𝑙𝑑−𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥− 𝑑𝑚𝑖𝑛
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Giving: 

Formula 5:   𝐷 ∈ ℝ (0 ≤ 𝐷 ≤ 1) 

Formulae 1-4 describes the l-mer distinctness found for the node described as the parent in this 

context. Here fp and fc refer to the parent and child node frequencies respectively, n describes the 

length of the alphabet, and d the various frequency distribution scores. The vector of child node 

frequencies is also pre-sorted from low to high. The distinctness D thus measures in a linear fashion 

the distance in frequency distributions between the least distributed state (one child node equals 

parent node frequency), and the maximally distributed case (child nodes divide the parent node 

frequency in the most even manner possible given the potential remainder). This linear 

measurement of distribution equality within a set of values functions as a type of Gini coefficient 

(Gini 1912), for indivisible integers. 

We must first note however an important aspect to the ‘distinctness’ weight calculation here when 

using trees over a contiguous range of l. Distinct l-mers will have evenly distributed child-node 

frequencies, yet so will even totally indistinct l-mers in a tree at a depth shallow enough to be 

saturated by the input set. This is to say that a null case random ‘DNA-noise’ input would cause this 

method to identify many distinct l-mers in the tree where l < log4(Fr), with Fr being the root node 

frequency (the number of input k-mers). To remedy this, we might return to the entropic way of 

thinking. Simply put, it is not just that structure breaks down at a certain point below an l-mer 

branch, but that it also did not do so beforehand. Phrased differently, we could say that a given high 

frequency branch of the tree ought to have shown some resistance to the expected noise-case 

dispersion above the depth being considered if its own dispersion of frequency is to be indicative of 

actual structure. In fact, if the same formulae were applied to both cases, a solution could be to 

multiply the distinctness of a node at l by the inverse distinctness of its immediate parent at l-1. To 

avoid confusion, we might separate distinctness into Db: ‘base’ and Da ‘actual’. Such that: 

Formula 6:   𝐷𝑎 = 𝐷𝑏(1 − 𝐷𝑏𝑝𝑎𝑟𝑒𝑛𝑡
) 

To find a sum of all l-mers which escape the entropy of noise, it ought to be enough to perform the 

above on every node over the range [1, k-1].  We might also optionally multiply Da by the length of 

the l-mer, l, to scale the measurement by the sizes of the retained structures, and/or we might 

multiply by the node frequency. A combination of these terms from now will be referred to as a 

resistant structure score. Generalising slightly from the range of all nodes, we can observe that is 

would be possible to find the resistant structure score, S, of any sub-tree recursively with respect to 

its root r, using a depth-first-search (DFS). See Formula 6. In the case of finding a singular 
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quantification of the scale of the entropic-resistance in the genome, the root r would be the actual 

head-node in the tree.  

Formula 7:    

𝑆𝑟 = ∑ 𝐷𝑎𝑣 ∗ 𝑓𝑣 ∗ 𝑙𝑣
𝑣∈𝐶ℎ(𝑟)

 

Here v represents a node (or vertex), and Ch the recursive application of the summation function to 

its children. 

One aspect of the dispersive tree measurements process which has not yet been addressed is the 

directionality of the tree. As discussed in the Rationale set down in Section 2.1, there are eight, not 

four, DNA (l+1)-mers which may contain any given l-mer, however the tree structure accounts for 

the terminal extension bases. Since the tree expands by powers of four (in the case of DNA), the 

depth at which the tree becomes less saturated, and more informative will only be increased by an 

average of 0.25 by doubling the frequency. This means there is perhaps enough wiggle room to 

merely read all inputs twice: once forwards, once backwards. 

However, this issue also intersects with the strandedness of DNA, which contains one forward and 

one reverse complementry sequence. A simple solution could be to capture the other four base 

extensions in the form of reverse complemented k-mer inputs, this would also have the effect of 

unifying motifs that have been sequenced on multiple occasions from different strands, thus 

separating their frequencies, despite their biological identity. For protein sequences however, a 

simple reversal would suffice. 

There is another slightly counter intuitive aspect to this calculation which also requires attention. 

The statistical means taken of any categorical vector of structure scores will always resolve at their 

current depth, with respect to the non-dispersed structures of higher values of l. This is to say that a 

high frequency 20-mer which shares a constitutive 8-mer with another low frequency 20-mer will 

cause a relatively low distinctness score for the 8-mer at the point of separation. This effect lowers 

the mean for the scores at the 8-mer depth. When the whole tree is summarised however, so long 

as it is deeper than 20 in this case, the higher distinctness of 20-mers and it’s the multiplication by l, 

will yield an overall higher structure score for the entire tree. If, however the tree does not extend to 

that depth, the unregistered frequencies that have ‘escaped’ will have the effect of incorrectly 

lowering the structure-score. 

This is a boundary problem – the tree cannot be infinitely deep, in fact computational constraints 

limit its size quite significantly, and all frequencies cannot be guaranteed to disperse within it. As a 
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result, spectra which cannot be captured by the tree ought, in the case of aggregation methods 

within k, be negated. This involves simply reducing all leaf node branch frequencies to 1 and 

propagating those subtractions recursively up the tree to maintain equivalent sum frequencies per 

depth. If the tree were to be used for non-aggregative methods (i.e. motif discovery) this would not 

be required, it is also not necessarily the case that this correction be required in the case of 

signature generation. The boundary frequency correction will thus be applied only to the more 

compact aggregate matrices. 

Next, whilst the above may suffice to inform us of a certain property of the strings in the input set, 

we also must return to the biological manifestation of the k-mer, principally, to return to the 

classification issue: the biological fragility of long substrings. Not all bases in a string may be 

constitutive of the active motif. There may also have been duplications of motifs which then 

experienced mutations, none of these aspects of genomic structure would be detectable by a simple 

k-mer tree as we have described so far. For example, an 8-mer might smoothly distribute its 

frequencies amongst 9-mers, yet all subsequent substrings up to length 20 may continue identically, 

yet they will do so in four separate branches of the tree. In this case, the 20-mer with a single 

flexible base will not be discovered at its true frequency. However, if one were to introduce an extra 

character ‘N’ as a child node through which all input strings reaching its parent node are additionally 

to be passed, the subtree originating from the ‘N’ child node would describe accurately the full 

frequency 20-mer sequence.  Figure 29 shows a basic example of how the merging of subtrees 

occurs to create an effective ‘N-mask’ in a k=4 binary tree. 

 

Figure 70. Example of binary tree aggregated for a certain N-mask. 

Generalising from this example, we can see than for a single flexible base, an ‘N’ subtree would then 

have to be generated for every node in the tree with more than one non-zero frequency child. In the 

case of multiple ‘N’-containing motifs, an ‘N’ subtree would also have to generated for nodes in the 

initial ‘N’-child subtrees, and so forth. This does however have advantages. Firstly, since each ‘N’ 
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subtree is independent from the rest of the tree above its parent, the memory usage can be 

contained by only generating (and deleting) subtrees as they need to be measured in a single ‘depth-

first search’ (DFS). Secondly, the expansion of computing power and memory usage with additional 

Ns remains constant when the number of children per node is increased (as we are not at this point 

investigating transitions vs transversions, or other partially selective evolutionary conditions). As a 

result, its polynomial efficiency might yet be a suitable trade-off, particularly in the case of larger 

alphabets, such as with peptide sequences.  

4.2.3. The Aggregation Methods for ‘N-masked’ l-mers 

Aggregation methods in this case refers to a structured and systematic way that variables can be 

aggregated from a complex source. The aggregation methods can also be thought of as independent 

of the variable types gathered. Given that we assess the tree on a per-node basis, an aggregation 

method could be applied to gather various measurements in the same manner, although at first, we 

will explore them from the perspective of the development of signatures derived from structure 

scores. 

Let us return temporarily to re-examine what is meant by a ‘signature’. It could be said that the 

signature of an aggregated set of scores is created as much in the process of selective aggregation as 

it is in the data’s original complexity. As in the case of imaging sequence Shannon Entropy (Tenreiro 

MacHado 2012), or CGR images (Oliver et al. 1993), we can see that the signature is typical displayed 

as a 2 or 3-dimensional array of points. The case of CGR images used for distance metrics also 

highlights the importance of comparability between signatures (Karamichalis et al. 2016). This is to 

say that, a signature ought to retain the same dimensions and size regardless of the input data. 

When aggregating scores from the tree therefore, we ought to construct the dimensions of the 

output matrix from sources which can be measured regardless of the sparsity of the tree. 

The first dimension seems most suitably to be l, over the range of [1, l-1]. The terminal value of l cannot 

have scores data extracted as the calculation involves the node in question to have children with 

populated frequencies (i.e. it cannot be leaf node). All k-mers read into the tree are of length k and 

therefore all depths of the unmasked tree will share an equal sum of frequencies. This means that 

each category of l will always reliably contain measurable structure scores. The most basic output 

summary of the flat tree will thus be a single vector of structure scores of length l – 1. 

Formula 8:   𝑆𝑖𝑔1𝐷 = [
𝑆1

⋮
𝑆𝑙−1

] 
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When choosing the second dimension, we begin to consider the structure of the N-masked tree also. 

In this case there are multiple options, and there might also be multiple correct answers. For example, 

it would be of biological interest perhaps to aggregate all scores which originate from N-masks with 

equivalent numbers of Ns. This could give us an estimate of the interaction between k-mer replication 

and divergence. This is also quite a straight forward output matrix. It is also worth noting that the first 

output is a subset of the second: the vector of N=0 scores comprises the first column.  

Formula 9:   𝑆𝑖𝑔2𝐷 = [

𝑆1,0 ⋯ 𝑆1,𝑁

⋮ ⋱ ⋮
𝑆𝑙,0 ⋯ 𝑆𝑙,𝑁

] 

Whilst the above output matrix is suitably interesting for an expanded k-mer spectral summary, and 

worth including as an informative set of datapoints, it also fails to include much of the inner complexity 

of the space of N-masked frequencies. One issue with categorising N-masks however is that their 

categorical dimensionality for deeper tree is very high (at 2k), and with the sparsity of a DNA tree at 

k=31, the expected sparsity of the individual N-mask categories would disqualify them from direct 

usage as a means of aggregation for the creation of a signature. Therefore, we might try to find a 

middle road for the creation of second and third output matrix dimensions. The first pair of 

dimensional measurements to be investigated here will be the left and right ‘seed length’. Seed length 

refers to the size of the either side of the N-mask (beginning with either the root or leaves of the tree) 

which contains no Ns. In other words, the length of the fixed seeds pre- or post the variable region of 

the l-mer. Let these index terms be s, and d (sinistral and dextral). Since not all values of s will be valid 

for all values of d, the output matrix will instead be a 3D wedge-shape. This indexing system is further 

explained by Figure 30. 

 

Figure 71. 3-Dimensional Indexing system for N-masks (DNA). 

The matrix indices are defined as: 

Formula 10:    { 𝑙 ∈ ℤ | 0 < 𝑙 < 𝑘 } 

{ 𝑠 ∈ ℤ | 0 ≤ 𝑠 ≤ 𝑙 − 𝑑 } 

{ 𝑑 ∈ ℤ | 0 ≤ 𝑑 < 𝑙 − 𝑠 } 
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Such that: 

Formula 11:   𝑆𝑖𝑔3𝐷 = 

[
 
 
 
 
 
 
 
[

𝑆1,0,0 0 0

⋮ ⋱ 0
𝑆1,𝑠,0 ⋯ 𝑆1,𝑠,𝑑

]

⋮

[

𝑆𝑙,0,0 0 0

⋮ ⋱ 0
𝑆𝑙,𝑠,0 ⋯ 𝑆𝑙,𝑠,𝑑

]

]
 
 
 
 
 
 
 

 

 

This matrix has the property of finding some of the inner complexity in motif flexibility shapes. 

However, one of its flaws is that the information space from which S is sampled is variable. For 

example, the lower values of both s and d present a much larger computational space of sequence 

flexibility when N is high, than the higher values of s and d. To create better consistency in the scaling 

of aggregation categories. We could also re-introduce the number of Ns in the mask as fourth 

dimension: 

Formula 12:  𝑆𝑖𝑔4𝐷 = 

[
 
 
 
 
 
 
 
[

𝑆1,0,0,0 0 0

⋮ ⋱ 0
𝑆1,𝑠,0,0 ⋯ 𝑆1,𝑠,𝑑,0

] ⋯ [
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

]

⋮ ⋱ ⋮

[

𝑆𝑙,0,0 0 0

⋮ ⋱ 0
𝑆𝑙,𝑠,0,0 ⋯ 𝑆𝑙,𝑠,𝑑,0

] ⋯ [

𝑆𝑙,0,0,𝑛 0 0

⋮ ⋱ 0
𝑆𝑙,𝑠,0,𝑛 ⋯ 𝑆𝑙,𝑠,𝑑,𝑛

]

]
 
 
 
 
 
 
 

 

However, this version of the aggregation method may not be of much advantage versus the 

compactness of the 3D version, particularly when the analysis is limited to lower values of N (1-3). For 

very large sequence input sets (as in the original intended purpose), it may be computationally difficult 

to increase N substantially, as such the 3D signature aggregation matrix may suffice, however the 4D 

version perhaps ought to be applied should a version be developed with either smaller input sets, or 

substantial efficiency improvements in achieving summaries of higher dimensional N masks. 

4.2.4. Cases for Aggregation Modes 

Although not the principal objective of this research, summarising the total contained structure in 

the tree is something which might also be useful for large scale projects comparing hundreds or 

thousands of input sets in an external informative context (i.e. phylogenetics, lifestyle, 

environmental variables). It might also be useful in the case of segregations made within individual 

genomes, making experiments between annotation types possible. For example, testing regional 

information structure between intra-and inter-genic DNA, or between repeat types, or along 
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physical chromosome maps etc. For this reason, the Structure score summaries will still be included 

as outputs using the simpler 2D signature matrix (Formula 9).  

Formula 7 describes a quantification of l-mer structures found in the genome. However, it does not 

provide us with a metric that is easily comparable between genomes, principally because of the 

confounding factors of size and ploidy. The simple solution would be to always divide the figure by 

the head-node frequency (post boundary correction). However, this solution only normalises the un-

masked tree, simply because the creation of merged subtrees duplicates and re-measures the same 

frequencies in a different way. Additionally, in many cases subtrees will not be generated where 

they are not needed. The solution would be to sum all frequency duplications and add them to the 

head-node frequency, such that all recorded structure is normalised to the summed scale of the 

frequencies used in the entire data structure. 

Formula 13: 

𝑆𝑟 =
(∑ 𝐷𝑎𝑣 ∗ 𝑓𝑣 ∗ 𝑙𝑣𝑣∈𝐶ℎ(𝑟) ) + (∑ ∑ (𝐷𝑎𝑥 ∗  𝑓𝑥 ∗ 𝑙𝑥)𝑥∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑣))𝑣∈𝐶ℎ(𝑟) ) 

𝑓𝑟 + ∑ 𝑓𝑣𝑣∈𝐶ℎ(𝑟)
 

Formula 13 shows the summation of genome-size normalised structure for N=1. 

Formula 14: 

𝑆𝑟 =
(∑ 𝐷𝑎𝑣∗𝑓𝑣∗𝑙𝑣𝑣∈𝐶ℎ(𝑟) )+(∑ ∑ (𝐷𝑎𝑥1∗ 𝑓𝑥1∗ 𝑙𝑥1+∑ 𝐷𝑎𝑥2∗ 𝑓𝑥2∗ 𝑙𝑥2𝑥2∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑥1)) )𝑥1∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑣))𝑣∈𝐶ℎ(𝑟) ) 

𝑓𝑟+ ∑ (𝑓𝑣+ ∑ 𝑓𝑥1𝑥1∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑣)) )𝑣∈𝐶ℎ(𝑟)  
  

 

Formula 14 thus shows the summation function for N=2. 

Formula 15: 

 𝑆𝑟 =
(∑ 𝐷𝑎𝑣∗𝑓𝑣∗𝑙𝑣𝑣∈𝐶ℎ(𝑟) )+(∑ ∑ (𝐷𝑎𝑥1∗ 𝑓𝑥1∗ 𝑙𝑥1+ … + ∑ 𝐷𝑎𝑥𝑛∗ 𝑓𝑥𝑛∗ 𝑙𝑥𝑛𝑥𝑛∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑥𝑛−1)) )𝑥1∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑣))𝑣∈𝐶ℎ(𝑟) ) 

𝑓𝑟+ ∑ (𝑓𝑣+ … + ∑ 𝑓𝑥𝑛−1𝑥𝑛−1∈𝑀𝑒𝑟𝑔𝑒(𝐶ℎ(𝑣)) )𝑣∈𝐶ℎ(𝑟)  
 

Formula 15 shows the generalised extension of the formula for N=n. This will be how we assign 

structure scores to the sequences in the input data. 

Although Formula 15 shows the more complete summary of a structure score for a whole tree, its 

components being frequency, distinctness and size, there are cases in which these components 

might be more usefully extracted as separate measurements. Indeed, since the signature indexing 

system does not recursively allocate to the same variable either, a slightly different definition is 

required. 
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It is here that we draw a distinction between signatures and summaries. The inter-comparable utility 

of signatures is maximized not just by equivalent dimensions, but by comparable term 

regularisation. For example, the mathematics required to compare two sets of variables over [0, 1] 

will inevitably be simpler than in the case of natural range of structure scores, which are essentially 

unlimited in scale. The variance of the sets of structure scores will also vary wildly with the size of 

the input sets. Given the range of eukaryotic genome sizes (The 12 MB of Saccharomyces cerevisiae 

to the 149 GB of Paris japonica) a signature ought to at least attempt to constrain the distributions 

of its values to normalised range, even if variance differences will still be inevitable to some degree. 

For this reason, for the purposes of complex signatures, the aggregation modes described above 

ought to be applied to gather the weighted arithmetic mean of the distinctness of each category. For 

example, in the case of the 3D signature (Formula 11) matrix: 

Formula 16:   𝐷𝐹𝑙,𝑠,𝑛 ∋ ∑𝐷𝑎 ∗ 𝑓   and  𝐹𝑙,𝑠,𝑛 ∋ ∑𝑓, then: 

Formula 17:   �̅�𝑙,𝑠,𝑛 = 𝐷𝐹𝑙,𝑠,𝑛  ÷ 𝐹𝑙,𝑠,𝑛 

4.2.5. Derived Measurement Types 

When considering additional descriptors of the aggregate categories in the signature matrix, it is 

worth observing that each categories could also be thought of as its own vector of values with its 

own distribution. Here we propose two additional possible distribution qualities to be measured, 

formatted as concurrent signature matrices, and the rationale behind them. 

The way in which the distribution is qualified will depend on the expected size of the vectors. There 

are two perspectives considered here. The first is the ‘small vector’ distribution. This is the case 

where the signature’s input set might be small, for example, a single gene-family, repeat type, or a 

set of differentially expressed transcripts. Here we might be more concerned about the variance in 

the distribution, as a single reading may have captured a specific few biologically relevant active 

motifs.  The second perspective is the ‘large vector’ distribution/large inputs (-omic scale data 

types). Here we can begin to make safer assumptions about the shapes of the distributions 

encountered and measure them differently. 

Regarding the ‘small vector’ distributions, as each N-mask category has a given weighted mean l-mer 

of distinctness, this does not tell us the anything about the distribution of that property. Biologically 

it might be informative to know whether a given N-mask category reliably produces low or high 

distinctness, or whether its mean is the result of a broad range of inconsistent measurements. For 

this purpose, we could simply employ a weighted standard deviation (WSD). Like the weighted 
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mean, the frequencies would be used as weights. This would allow us to produce a parallel signature 

matrix of deviations. 

Formula 18: 

𝜎𝑙,𝑠,𝑛  ∋  √
∑ 𝑭𝑖(𝑫𝑖 − �̅�∗)2𝑛

𝑖=1

𝑛 − 1
𝑛

∑ 𝑭𝑖
𝑛
𝑖=1

 

The second distribution of interest, regarding the ‘large vector’ case, relates to the power law. The 

power law has been observed to be broadly acting property of many natural systems (Newman 

2005). Pareto-like distributions of properties have in fact been observed as consistent features of life 

systems at many scales (West et al. 1999). For example, it has been demonstrated to be a 

consistently emergent feature of metabolic networks that they be scale-free (Jeong et al. 2000). 

Additionally long right hand tails on most observed k-mer frequency graphs produces of biological 

sequence also show the Pareto-like distribution of frequency amongst substrings (Chor et al. 2009).  

Although it cannot be guaranteed of any given input set that the F * D scores of l-mers will follow a 

pareto distribution, in the case of the largest scale biological data it is an assumption which allows 

for a more sophisticated measurement. The Pareto distribution formula in its original form is 

parameterised by two variables, a and m. The ‘shape’ parameter, a, acts as the variable which may 

be used to fit the distribution in a real data set, m (or minimum) is a simply a translating parameter 

defined as the minimum value in the data set. We would therefore choose the shape parameter as 

the most informative component of the distribution to estimate. A maximum likelihood estimated of 

a is quite straightforward (de Zea Bermudez & Kotz 2010): 

Formula 19:   

�̂�𝑙,𝑠,𝑑 ∋  
𝑛

∑ log (
𝑺𝑖
�̂�

)𝑛
𝑖=1

 

Where S is given to be a vector of structure scores, and m is the minimum value in that vector. And 

to avoid confusion, n in this case refers to the size of the vector of values. This gives us another 

parallel signature matrix. This calculation could similarly be applied to any of the defined output 

matrix types (Formulae 8-12). Given that structure scores below 1 are possible, it could also be a 

good idea to set a lower bound to the structures included to the calculation (at least > 1). 
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4.2.6. Null Trees: Local and Absolute 

Here we tackle the issues of single base/peptide frequencies, and the limitations imposed by 

saturation of the data structure. 

Saturation in this context refers to the extent to which a random set of strings, present at a high 

enough frequency, will populate fully the k-mer tree data structure up to a certain depth. The 

relationship between the frequency of the head node, and the absolute null expected saturation is 

simply logn(fr), where n is the size of the alphabet, and fr is the root node frequency. This is the case 

which assumes all character frequencies are evenly distributed, as are all multi-character 

combinations. This impacts our measurement of frequency, which is an essential component of most 

of the measurements used. There are two polarities we must contend with whilst we are measuring 

frequency: Situations where the depth of the tree is such that the null expectation of any given node 

having a frequency of one or greater is vanishingly small, and situations where the null expectation 

of frequency may by in the hundreds of thousands. It would be erroneous to attribute low-l high 

frequency nodes the property of possessing an indicator of biological structure particularly when 

their frequency is comparable to one that might be found in the absolute null tree. Similarly, it 

would run afoul of multiple-testing error to weigh deep high frequency nodes by their individual 

improbability. We can also note that frequencies are used in two cases, as in Formulae 1-3 to 

discover Db, and as in Formula 16-17, to weight the contribution of Da to the mean of the given 

category. The proposed correction to f only applies to the weight, rather that the calculation of Db, 

as this is not susceptible to the same scaling issues. 

Formula 20: 

𝑓𝑐 =
𝑓𝑣  

𝒎𝒂𝒙 (
𝑓𝑟
𝑛𝑙 , 1)

   

Formula 20 shows the correction of fv (per vertex/node), by finding the null expectation of frequency 

saturation at the current node by dividing the root frequency (fr) by the size of the sequence space 

of the tree at the current depth (nl). By providing the lower bound of 1 to the denominator, the 

effect of the function will only apply at the ‘null saturated’ depths of the tree. This correction will 

thus be applied to all cases where f is used as a weight. 

Since we are expecting some degree of saturation, one complaint we could find against the 

application of formulae 1-3, is that they range between total conservation and the maximum 

possible dispersal. Given that most organisms tend to have some bias in their genomic base 

frequencies, the actual null (i.e. random) dispersal for most of high frequency l-mers will rarely reach 
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the maximum possible. In fact, a 40% GC ratio (as in the human genome) would see many higher 

structure scores measured in cases where it is absent merely due to the base composition of the 

input. One seemingly intuitive way this problem could be addressed is by weighting the frequencies 

of the child nodes based on the input character ratios. However, this creates other unwanted 

sources of bias due to another aspect of DNA base ratios: they are not evenly distributed. The 

phenomenon of GC and CpG Islands is quite well established (Aïssani & Bernardi 1991). It refers to 

regions of the genome which are usually dense in protein coding genes. If a specific mean base 

frequency were used, it could lead to regions of 50:50 CG:AT having their structure scores weighted 

higher than they should, and the vice versa for other GC depleted regions. 

The solution proposed to ‘correct’ for the base frequency artefacts is to generate a ‘local null’ tree 

prior to the generation of the main tree. The local null is a model of the null distribution of l-mers 

given only the actual uneven distribution of base frequencies as it occurs in the input set. This is 

created simply by building the main tree in all respects identically, except for a random shuffle 

performed on all input substrings. This preserves all base frequencies but eliminates their structures. 

In the case where reverse complements are also input, the random shuffle with occur first. The 

signature matrices (of D * f) generated by the local null tree might then be simply subtracted from 

the output. Integrating this with the weighted mean calculation would give us Formula 21. 

Formula 21:   �̅�𝑙,𝑠,𝑑 = 𝒎𝒂𝒙(𝐷𝐹𝑙,𝑠,𝑑 − 𝑁𝑢𝑙𝑙𝑙,𝑠,𝑑 , 0)  ÷ 𝐹𝑙,𝑠,𝑑 

The subtraction of the local null might also be factored into the calculations of the other derived 

measurements. We will explore its applications next. 

To correct the estimation of a Pareto shape parameter, we could, as mentioned in 2.5. increase the 

lower bound of the scores processed to the local null mean, however since we know that the local-

null effect will apply to all structures, it would only serve to falsely alter the distribution. For the 

purposes of the single shape parameter which describes in total signature, i.e. as an adjunct to 

Formula 15, the solution we propose here is to aggregate the total shape parameter in stages, and 

to weight the contribution of categories based on their null-to-actual structure ratio. To do this, we 

aggregate the components of the shape MLE separately, n, and log(S/m), via the 2D aggregation 

matrix. The categorical actual-to-null ratios then scale each contribution – such that the final shape 

parameter is largely comprised of the contributions from the tree unaffected by the local null. 

Formula 22: 

Where:   𝑥 =  ∑ log (
𝑺𝑖

�̂�
)𝑛

𝑖=1 , per aggregation category, 
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�̂�𝑟 = ∑∑𝑛𝑖,𝑗 (
𝒎𝒂𝒙(𝑆𝑖,𝑗 − 𝑁𝑢𝑙𝑙𝑖,𝑗, 0)

𝑆𝑖.𝑗
) ÷ ∑∑𝑥𝑖,𝑗 (

𝒎𝒂𝒙(𝑆𝑖,𝑗 − 𝑁𝑢𝑙𝑙𝑖,𝑗, 0)

𝑆𝑖.𝑗
)

𝑛

𝑗=0

𝑙

𝑖=1

𝑛

𝑗=0

𝑙

𝑖=1

 

The individual category correction for shape parameters is more challenging, as the set of structures 

generated by both trees will be heterogenous and indirectly comparable in the same way as the 

output matrix. Currently a correction for single categories will not be deployed, particularly as the 

shape parameter becomes less stable/informative in lower values of l where the saturation is most 

likely to occur. 

In the case of small input sets, we will argue that they ought not be ‘local-null’ corrected. In larger 

sets containing multimodal base ratio distributions, and a deeper and uneven saturation, the local-

null can mitigate confounding effects to allow the structural content to be inter-comparable despite 

these factors.  However, with small input trees saturation will be minimal and base ratios more 

typical and descriptive of the specific focus source of sequence, these things could be considered 

characteristics of the set rather than factors to mitigate. For this reason, the proposed usage of the 

pair of weighted structure score means and weighted SD for small sets will not be subject to null 

correction unless the results should provide a compelling reason to do so.  

4.3. Implementation 

The program was written in C++11 and is only compatible with UNIX-based systems. The program 

supports multi-threading, although at some memory cost, and at a non-linear performance benefit. 

The only external library linked is ‘pthread’. The maximum depth of the tree in the implementation is 

currently 32.  

Source code is available in Appendix 2.1 ‘Source code’, and on GitHub: 

https://github.com/OliverCardiff/HighDimensionalSignatures.  

There are two slightly different versions of the program. ‘UGPep’ has a slightly altered indexing 

system optimised for peptide sequence. ‘UGLearner’ is the original program which works with 

both DNA and peptide sequences.  

4.3.1. Procedure parameterisation 

Input Data – a set of ‘fasta’ formatted strings of alphanumeric characters 

K – The depth of the tree 

N – The maximum number of ‘Ns’ to consider in a single ‘N-mask’ 

https://github.com/OliverCardiff/HighDimensionalSignatures
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4.3.2. Core Data Structures 

The primary data structure of the k-mer tree is simply a search tree derived from a fixed character 

set.  Each node in the tree is of a type representing a single alphanumeric character and contains 

available memory references to as many potential child node types as the character set defines. 

Each node also contains one unsigned integer, which describes the frequency with which it has been 

traversed during the loading phase. 

4.3.3. Data Input 

This phase of the algorithm comprises the construction of the tree from a set of strings – likely DNA 

or proteins. k-mers of length D will be read sequentially from each string in the input set. The k-mer 

substrings define, by their characters, a traversal of the tree. The head node passes the input string 

to a child node which matches the leading character in the string. The frequency integer within the 

child node is incremented by one. If no child node has been instantiated yet, then instantiation will 

occur. Only child nodes which have been traversed will be instantiated in this manner. Following 

submission of the k-mer string to the child node, the leading character is trimmed, and the function 

is repeated until a tree depth of D is reached, and the input string has been depleted of characters. 

Once the first D characters of the first string in the input set has been read by the tree, the starting 

k-mer index is incremented by one, and in this manner the following k-mer is read.  

Over the range of [0, n], where n is the input string length, indices for k-mer substrings are found in 

the input string: [(0, k), (n, n-k)]. This process is repeated for every string in the input set. Every k-

mer read into the tree in this manner will also have its reverse, or in the case of DNA reverse 

complement, generated, which will be read into the tree in the same manner. 

4.3.4. Sub-tree Merge 

The implementation of subtree merging, particularly with respect to memory usage, will be covered 

before the larger DFS algorithm which calls it. When merging sub-trees with respect to a single node, 

we are theoretically creating an additional tree structure to hold the merged data. However, in many 

cases the memory allocated to the pre-existing tree structures can be taken advantage of. For this 

reason, all merged subtrees with respect to a single node store their variables in left-most child’s 

subtree. This is to say that the Node class also implements a ‘map’ type, which allows it to store 

additional unsigned integers, paired with an ID which identifies its N-mask ownership. 

Mapped IDs are themselves l-length binary tree navigation pathways. The formula for navigating the 

merged sub-tree variable space is as follows. 

Given parent ID: 
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To access leftmost Child’s frequency in the same subtree: ChildID = ID * 2 

To access other children’s frequencies in same subtree:  ChildID = ID 

To access head-node of new merged sub-tree:   ChildID[1] = (ID * 2) + 1 

Just so long as all functions follow the above ID manipulation rules with respect to any given node, 

whereby the initial IDs of all scores in the unmerged tree are zero, the N-mask will always be 

derivable from the pattern of bits in the integer variable used to identify the score. 

This indexing system allows the algorithm to virtualise the retention of merged tree scores within 

the current tree, without the need to create new Nodes, and the memory overhead that involves. 

The tree merging algorithm is a DFS with paired navigation. This is to say that the virtual subtree 

stored in the leftmost branch of the node of origin is simultaneously traversed alongside an 

unmerged branch, summing their frequencies into the virtual subtree. This occurs n times, once for 

each of the child-subtrees connected to the node of origin.  

4.3.5. Depth-First Search 

The aggregation of data within the k-mer tree is organised around a recursive DFS function. It is 

described by Figure 31. The initial values for the parent distinction, depth, and ID arguments are all 

zero. 

 

Figure 72. DFS tree navigation pseudocode. 
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4.3.6. Multi-threading 

Figure 31 shows that the memory used in the merged trees is created as it is needed. Although not 

described in the pseudocode, this memory allocation is also deallocated as soon as it is measured 

and no-longer required for any deeper merges. However, this means that each thread exploring the 

tree via DFS will have its own substantial memory overhead.  

The positive aspect of multi-threading a tree structure is that every child node can point to an 

independent region of memory. From the root node, n threads can be created (one per child), and 

each thread will not have any memory access conflicts when reading the tree. The aggregator class 

also implements separate memory buffers per thread, which are periodically read into the output 

matrices. This mitigates any bottlenecking at that point. The thread allocator can expand tree access 

for all available threads in this manner, continuing to guarantee independence of memory. The 

caveat to this approach to threading is that the calling thread also continues to work on one branch 

of the tree whilst others work on others. Only once all work generated by a node has been 

completed by the worker threads can the collection of workers be freed up to be reallocated. This 

has the effect of limiting thread efficiency per spawning node to the performance of the most 

expensive subtree. Given that character frequencies in biological sequences are rarely equal, this can 

equate to substantial loss of overall threading efficiency. 

The inefficiencies of this threading system are unlikely to be unmitigable. Further performance gains 

may almost certainly be achieved by optimising the thread allocator. This has not been undertaken 

yet due to time constraints. 

4.3.7. Performance testing 

The performance tests were running on a Linux desktop computer with 32Gb of RAM, and a 12-core 

Intel CPU. Due to the cores available, some of the tests using more than 12 threads may not be 

indicative of the true efficiency at this scale. However, given the thread availability issue, it can also 

be beneficial to add more threads to the allocator than can be simultaneously assigned to separate 

CPU cores.  

The following tests are run using subsets of DNA from the NCBI Escherichia coli reference genome 

(Blattner 1997), and subsets of protein sequence from the Apis mellifera proteome (Consortium 

2006). The depth of all trees, as in the value of k, was 30 for all tests. 
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Figure 73. Performance tests for N values over [0,3], one thread. Left: DNA input sets, ranging from 20-100K bases sampled 
from the E. coli reference genome. Right: 20-100K peptides sampled from the Apis mellifera proteome. 

Insofar as the complexity of the N-mask increases by powers of 2 with every additional N (2n), the 

performance of the program reflects this with exponential computation time increments. 

Interestingly the difference in performance between DNA and peptide input sets are almost a factor 

of 10. This is likely due to the extreme sparsity of the peptide tree (the space expanding to 2030 at 

the end), resulting in far fewer nodes are meeting the qualifying conditions for the generation of a 

merged subtree. Additionally, owing to the higher alphabet, the average saturation depth in the 

peptide tree will also be much shallower (3.94 with reversals in the peptide 100k test set, versus 8.8 
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in the DNA test).

 

Figure 74. Performance test, multithreaded (N=3), for 1-22 threads executing on a single machine. Left: DNA input sets, 
ranging from 20-100K bases sampled from the E. coli reference genome. Right: 20-100K peptides sampled from the Apis 
mellifera proteome. 

The results shown in Figure 33 show that the DNA search tree fails to make performance gains above 

8 threads. The difference in performance between 2 and 4 threads also suggests that the equal 

distribution of work between threads from a single originating node of the tree (as discussed in 

2.3.6) plays the most significant role in thread efficiency. Figure 34 shows that in both cases, the only 

time the per-thread efficiency increases following incremental increases from single threaded 

performance is when the thread number becomes equal to the alphabet size. 

 

Figure 75. Performance test; Thread Efficiency. Left: DNA input sets, ranging from 20-100K bases sampled from the E. coli 
reference genome. Right: 20-100K peptides sampled from the Apis mellifera proteome. 
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The peak RAM usage (see Figure 35), rather than being exponentially related, only increases in a 

proportional linear manner as the N-mask increases in complexity. This is in part due to the 

immediate memory deallocation performed on all measured subtrees. Only a single slice of the 

exponentially increased complexity space need be stored in memory at any given time. Since this 

test was performed using 12 threads, it would be easy to trade-off performance time for memory 

usage by decreasing the thread count.

 

Figure 76. Performance test; Memory Usage (12 threads). Left: DNA input sets, ranging from 20-100K bases sampled from 
the E. coli reference genome. Right: 20-100K peptides sampled from the Apis mellifera proteome. 

The implementation of this method is may still be subject to improvement in terms of computation 

time and memory usage. Despite this, it is currently enough to calculate signatures for the smaller 

values of N and has not crashed during testing on several machines. 

4.4. Results 

Given the exponential time cost of calculating more complex N-masks (as seen in 3.3.7.), the 

demonstrated application of this program will be limited to values of N at 3 or lower. For the sake of 

generating inter-comparable signatures, it is also important that all parameters be equal aside from 

the input set. As in the performance tests, the value of k will be 30 in all cases. 

4.4.1. Visualisation 

Biological information is often only so meaningful as the human eye can comprehend. As the multi-

dimensional nature of these signatures does not plot spatially in an intuitive manner in their native 

dimensions, the visualisations have been flattened into 2D plots, with extra-dimensional information 

encoded in colour, alpha, and point size. To provide a basic set of interpretive aides for the 

signatures, the illustrations in Figures 36-38 were created as a reference for users looking at more 
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complex plots. These can be referred to by the reader whilst viewing later sections. For a quick guide 

to the colour key see Figure 38. 

Another useful visualisation which has been applied to the 3D output matrix is the concept of 

‘threads’. As will be shown, the higher dimensional output signatures typically have categories which 

follow a linear or curved gradient at multiple depths. These categories are usually identical in ‘left 

seed’ length but increment by one in ‘right seed’ length between depths. For this reason, faint lines 

have been added to plots which connect all points that observe this single right increment 

relationship. Figure 8 shows the creation of single thread visualised. 

To clarify the meaning of ‘dispersal’ patterns, Figure 36 shows two miniature cases of sequence 

structures. 

The source code written in R for the visualisation functions described here is available in Appendix 

2.1.3 ‘Source Code->Visualisation’. 
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Figure 77. Relationship between unmasked sequence threads and motif variability (not to scale). 
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Figure 78. Illustrative relationship between N-masks and threads. 

 

Figure 79. Illustrative relationship between graph colours, seed lengths and l-mer frequency. 
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4.4.2. Random Case Signatures 

To interpret any signature that is produced by this method it is important to understand visually the 

baseline null case from which all structured sequence inputs will deviate. For this reason, two (DNA 

and peptide) random sequence noise input sets were tested. Both of 100K characters in length. 

Since the purpose of the random tests is to establish a null-looking signature, there was one 

considered difference in generation between DNA and peptides. Random DNA sequences were 

generated with even base ratios, but random peptide sequences were generated with the average 

peptide frequencies found in the UniProtKB database (see Table 4). 

Table 12. Peptide Frequencies Used in Random Tests (EMBL et al. 2013) 

 

The reasoning is simply that the typical peptide ratios vary so greatly between them that even 

unstructured input sets will universally register higher structures at the top of the tree, unlike most 

DNA sequence trees, which are expected to be closer to 0. 

Figure 39 shows the output of the 2D aggregate matrix (Formula 9) using the local null corrected 

weighted arithmetic mean distinctness per N, per l (as in Formula 21), for the random noise input 

sets. The typical pattern for distinctness values at l, as they ascend beyond saturation depths, is to 

move swiftly towards 1 (the value found when a frequency 2 branch splits). The return to zero is 

thus indicative that there are no more structures to be measured for distinctness in the entire tree 

at this point. Even a very small and improbable number of >1 frequency branch will cause a 

distinctness mean to be recorded. 

Noticeably, the random DNA tree continues to find some measurements of structure even as high as 

l=22 when N=3 (effective minimum sequence space of size 419). While highly improbable, the 

frequencies of these small structures may also be due to the slightly inconsistent effects of 

pseudorandom number generation. 
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Figure 80. 2D Structure matrix outputs for null cases. Left: 100K DNA bases, Right: 100K protein peptides. 

The random peptide tree, with its greater sequence space, loses all structure very quickly in 

comparison. 

The null dispersion of frequency can be seen very clearly in Figure 40, with the value of N only 

slightly modulating the depths at which the sequences disperse. The relationship between saturation 

and distinction scores also is clearly displayed. At 200Kb (100Kb input + 100kb reverse complement), 

the null average saturation depth is approximately 8.8. It is only after this depth that the cohort of 

means begins to show the results of the dispersal of the set of structures retained by chance. 

Naturally, as the depth gets lower, the probability of any given structure retaining enough 

frequencies to disperse amongst the child-nodes decreases exponentially. This also applies to the 

parent nodes of by-chance dispersals, meaning that the calculation of (1-Dparent) component of the 

calculation of Da (Formula 6) is far more likely to also be 1. It is this relationship with drives the 

distinctness curve to 1 in the null/random case. 

Looking at the random peptide output, Figure 41, the curve is similar in shape but occurs far more 

rapidly, as in Figure 39. One positive aspect of the null peptide signature is that we can reasonably 

expect almost all structures recorded above 2 * log20(fr) to be the result of actual biological effects. 
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Figure 81. 3-Dimensional output signatures for random DNA. 100Kb random sequence used in each execution, visualisation 
of four values given for parameter N. Top-left: N=0, Top-right: N=1, Bottom-left: N=2, Bottom-right: N=3. 

Insofar as these graphs inform our interpretation of other plots, we should make note of the natural 

signature of null sequence dispersal and attempt to distinguish it from structured dispersal. For the 

DNA graphs we observe the steepest part of the 0-1 distinctness curve beginning near the saturation 

depth, the tendency towards 1 at the top of the signature, and the tendency towards zero near the 

start. This shape will be referred to as the ‘DNA null curve’ in discussion of later plots. We should 

observe therefore the modulations of the null curve as biological signatures. Similarly, the pattern of 

natural effects which occurs in the peptide graphs, as discussed at the start of this section, varies 

slightly. We observe the head of the tree commencing at ~0.4 distinctness, moving quite sharply 

lower, and reversing after the saturation depth to curve back towards 1. Again, this will be referred 

to in later sections as the ‘peptide null curve’. 
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Figure 82. 3-Dimensional output signatures for random peptides. 100K random peptide sequence used in each execution, 
visualisation of four values given for parameter N. Top-left: N=0, Top-right: N=1, Bottom-left: N=2, Bottom-right: N=3. 

4.4.3. Small Subset Signature Tests 

The next series of tests involves using subsets of biological sequence at the same scale as the test set 

(100K characters). There was no additional randomisation of subset, in both cases they were 

selected under the conditions of being the first 100K characters in the files they were extracted 

from. The two source material files were as such: Apis mellifera proteome retrieved from Uniprot 

(EMBL et al. 2013), and Escherichia coli reference genome retrieved from the NCBI genome database 

(NCBI 2016).  

The objective of these tests is to examine the way in which the null curve begins to change when 

biological sequences are used, with relatively low structure in the input. In the case of ‘omic scale 
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datasets, many of the sequence structures that might be found are only discoverable in the context 

of the entire set. For example, a 30-mer which occurs only five times in the genome is unlikely to be 

present more than once in a 2% subset. By extension, we can suggest that whilst these small subsets 

of sequence will be more structured than random, the actual discoverable structure ought to be on a 

much lower scale than in a typical input set. This makes them a good ‘stepping stone’ between the 

random signatures and full input sets. The signatures developed here are purely aggregates of 

weighted mean distinctness scores and have not been subject to ‘local-null’ corrections. 

 

Figure 83. E. coli 100Kb subset 2-Dimensional signature output. Top-left: N=0, Top-right: N=1, Bottom-left: N=2, Bottom-
right: N=3. 

Figure 42 is directly comparable to the Figure 39 (left), this is to say that the N=0 plot follows a 

similar pattern with two exceptions, a faster ascent in the saturation depths and a longer reach into 
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the unsaturated depths (14 vs 18). The effects of introducing Ns has a far more marked effect. N=1 

only loses all structure at l=28, and the other values of N continue to find low frequency merged long 

l-mers throughout the set. This speaks to the fragility of long substrings in biological sequence more 

generally, and would be expected concordance with the development of gk-SVM (Ghandi et al. 

2014), as discussed the introduction.  

Figures 42-45 are all subsets of larger permutation tests. Their expanded paired images are 

available in Appendix 2.5, as IMG1-4 respectively. 

 

Figure 84. E. coli 100Kb subset 2-Dimensional structure output. Top-left: N=0, Top-right: N=1, Bottom-left: N=2, Bottom-
right: N=3. 

The 3D matrix outputs (Figure 43) begin to show in more detail the N>0 results found in Figure 42. 

The braid-like structures forming at the saturated depths show that the detection of uneven 2-8mer 
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substring frequencies becomes possible at this scale. The masked-index category threads here tend 

to repeat earlier unmasked, or lesser masked threads at higher depths. The post-saturation gradient 

is still largely present, however the component which collapsed at 1 in the null curve is showing 

various relatively distinct medium-to-low frequency N-masked complex structures with long right 

seeds at the higher depths. This is an example of how the specificity of the signature allows direct 

description of the type of flexibility found in the reference structures.  

The peptide 2D subset test (Figure 44) produces a substantially difference result to the null test. 

With saturation depths typified by an early spike in distinctness followed by a curve which tends 

slowly higher. The peptide null curve tendency to return to lower mean distinctness immediately 

following saturation is repeated here, however the dispersal of frequencies seems to be far more 

gradual for each structure. A case where a frequency-50 12-mer loses 10% of its frequencies per 

depth, would be typical of a sequence structure that drags the mean distinctness towards 0.1, as can 

be seen here. 

What this suggests biologically is a set of similar sequences which are each dissimilar from each-

other in different ways, suggesting that an N-mask would struggle to reunite them at longer for 

fragile values of l. The opposite case would be a set of sequences which all differ a one or two fixed 

location, this would disperse over far fewer depths, generation very high distinctness scores.   

The rapid spike towards 1 demonstrated by the N>0 should also be considered more the effect of 

the terminal-k depth backward subtraction process described in 2.2. Figure 44 is also directly 

comparable to Figure 45 in shape. However, Figure 45 also begins to show another feature related 

to the single right seed extension per depth relationship discussed in 3.4.1., threading, and a certain 

banding pattern of threads. A banding pattern can be described as a case where multiple threads 

cluster into a single channel. To understand banding, consider the opposite cases described above, 

of high frequency structures which typically disperse either over many depths, or only over one or 

two, as in Figure 36. Bands represent specific biological prominences in the modes of structure 

dispersal within that range. This might suggest evolution acting differently on several different types 

of sequence motifs. Some motifs are flexible in a highly regular manner, these may present as higher 

distinctness bands, some motifs have the evolutionary flexibility to diverge at almost any base, just 

so long as most of the sequence remains similar, these types of sequence structure will manifest 

more as bands towards the lower distinctness range. The number, and complexity of the bands, are 

thus to be read as indicative of the prominence of sequence structure types exhibiting separate 

modalities of evolutionary change. 
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For example, the N=3 graphs in Figure 45 shows in the 17-23 l-mer range, an unusually distinct set of 

structures typified by a relatively small region of flexibility and a long right seed. This structural 

category decomposes in a slightly more homogenous manner that the other content of the test set. 

 

Figure 85. Apis mellifera 100K AA 2-Dimensional structure matrix. Top-left: N=0, Top-right: N=1, Bottom-left: N=2, Bottom-
right: N=3. 



195 
 

   
 

 

Figure 86. A. mellifera 100K AA 3-Dimensional structure matrix. Top-left: N=0, Top-right: N=1, Bottom-left: N=2, Bottom-
right: N=3. 

4.4.4. Test Set: Invertebrate Proteome Signatures 

This is the first of three test sets designed to explore the ways in the which the signatures can be 

used to interpret biological data types. This test set also serves to further explore the peculiarity of L. 

rubellus in comparison to relative to three other annelids, and an arthropod. Capitella teleta, 

Helobdella robusta and Apis mellifera reference proteomes were all retrieved from Uniprot (EMBL et 

al. 2013), L. rubellus proteome was extracted from a genome assembly discussed in Chapter 2. A. 

gracilis proteome was extracted from the genome assembly performed in Chapter 3. 

Here we introduce the test of Pareto shape parameters and full tree summaries as described in 

3.2.5. and 3.2.4. respectively. Table 5 shows the summarisation of the total structure in the trees 
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built out of these proteomes. In addition to the summary scores, it also shows the result of applying 

the ‘local-null’ correction/subtraction discussed in 3.2.6.  

Table 13. Proteome Tree Summaries 

 

The final column in Table 5 also shows the percentage of the sequence structures which did not 

disperse within the tree and were negated by the terminal subtraction process described in 3.2.2. 

Interestingly the only non-annelid in the set has the lowest escaped frequency count by far, with 

rubellus, arguably the most difficult genome to analyse conventionally, showing a huge quantity of 

escape frequency – this suggests a very large number of either recent protein family expansions, or 

sufficiently divergent allelic copies, which might be right answer given the conclusions drawn in 

Chapter 3. For example, an >K Freq %-score of 50 could be achieved by every sequence being 

duplicated once identically. 

The Pareto shape results are interesting for how consistent they are despite considerable changes 

across the rest of the scores. This indicative that the distributions of structure in these proteomes 

has a very steep pareto curve, to see simulated Pareto distributions which demonstrate the meaning 

of the shape parameters, see 3.4.7., and Figure 70. 

Many of the other results in Table 5 are particularly informative when paired with the signature. 

Rather than describing the rest of Table 5 in depth independently, it will be frequently referred to in 

the following summary of the five 3D signatures. Each of the signatures also represent the post local-

null correction. 

The data representation provide in Figure 46, reveals further evidence of how the odd-one out in 

this set (in evolutionary distance) is also substantially difference in sequence structure. However, 

first it is also necessary to cover the usage of absolute and relative frequencies in this plot. The 

individual absolute categorical frequency density is coded to the red component of the pixels. 

Typically, we would expect the lower l-mer categories to be denser in frequency as the sequence 

space is substantially smaller, and the categories far fewer in number. However, towards the 

saturation depths the absolute frequencies will be lower for two reasons: 1) local null subtraction 2) 

absolute null correction, both of which are described in 3.2.6. 
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Figure 87. Apis mellifera full proteome 3D-signature. 

Secondly, frequency scaling across a single depth has been coded to the alpha-value (transparency) 

of the point. This allows the user to see the relative quantities composing various features. For 

example, if we were to observe the faint single-thread proceeding from the left of the rightmost 

band from depths 11-28. It seems insignificant; however, this is likely the effect of one large, or a 

small number of similar domain types which have a very specific dispersal profile. Other similar 
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threads following their own patterns can also be seen further into the signature. One of the flaws of 

this visualisation methods is that much of the complexity discovered is packed into broad but dense 

bands of distinctness, making threads impossible differentiate, leaving only colour gradients as 

informative. 

 

Figure 88. Capitella teleta full proteome 3D-signature. 
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Comparing Figures 47 and 48 shows the threading complexity which is visually collapsed in mellifera 

and still very hard to discern in teleta. Another feature which is particularly prominent in Figure 47 

but is present in all proteome signature to some degree is the band separation between a narrower 

rightmost group, and a much broader leftmost group. Typically, the rightmost group is represented 

by categories with either a very long left or right seed, and perhaps only a single N in the mask. This 

can be thought of as the scaled modularity of the motifs which are the most resistant to variation. A 

rightmost band moving quickly towards 1 suggests a large portion of unique/non-duplicated 

sequence, or low frequency fragile long motifs. The width of the gap is perhaps more descriptive of 

distances between similar motifs groups, rather than the conservation patterns within the most 

uniform.  

Returning to Figure 46, there are several datapoints which resonate in the interpretation from Table 

5. The signature has the greatest tendency to curve towards 0 of all the proteomes, the tree 

structure summary is also the lowest of out the set, and when local-null corrected this difference 

only becomes more pronounced. It has the lowest rate of frequency escape, and the highest post-

correction Pareto shape. What this says more broadly about the signature is that it is likely to have 

many smaller groups of internally homologous sequence motifs, rather than fewer larger groups 

(proportionally speaking). It is also the case that the most common protein domains are less likely to 

be disproportionately overabundant in the set. This could be summarised as a ‘high complexity, low 

structure’ proteome, insofar as structure is defined in terms of stacked sequence homologies. 

Figure 47 and 48 both represent the tied 2nd most unstructured proteomes after A. mellifera, 

although H. robusta shows a much greater tendency towards the heterogenous structure dispersal 

that C. teleta this could reflect the higher shape score of robusta. Capitella also has a more 

differentiated set of deeper banding patterns across the categories of medium length left and right 

seeds, suggesting a wider variety of motif forms. 

Looking at the earthworm plots (Figures 49 and 50), we can see a much greater range of banding 

patterns, particularly in the case of L. rubellus which seems to have a combination of a great many 

diverse smaller structures which can be merged into lower distinctness, higher frequency categories. 

Most interestingly the type of N-mask applied appears to have a very significant effect on the 

dispersal patterns, this might be suggestive of large-scale gene family expansions which diverged in 

several different ways and would also make some sense of the very high rate of frequency escape in 

Table 5. 

One caveat to the ‘banding spread equals diversity’ argument is that dispersal patterns generating 

similar levels of distinctness need not originate from the same type of structure, it is only more 
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apparent when they are more spread out. Additionally, within the narrower, denser bands of many 

threads there may also be structure which is simply too densely arranged in these plots to be 

discernible. For this reason, additional visualisations have been generated, using a z-axis to expand 

these thicker leftmost banding patterns. Figures 51 and 52 show two versions of this additional 

dimensionality. They have the advantage of separating thick bands when rotated suitably, but the 

simultaneous disadvantage to obscuring other parts of the plot. To present the data in another form 

which attempts to make maximum advantage of the 3D plot, a series of animated rotations of the 

3D plots for each image have been produced. 

Appendix 2.4 contains ANIMATION2-11, which display the five proteome signatures rotating 

around multiple axes, both with and without ‘thread’ lines. 
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Figure 89. Helobdella robusta full proteome 3D-signature. N=3. 
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Figure 90. Amynthas gracilis proteome signature. N=3. 
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Figure 91. Lumbricus rubellus full proteome signature. N=3. 
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Figure 92. Lumbricus rubellus full proteome signature, alternative visualisation. N=3. 

The 3D plots produced of these signatures are primarily illustrative of the depth of complexity 

discovered by this method. It is relatively difficult to compare between them due to the rotation-

occlusion issue. Adding the thread lines, as in Figure 52, makes them particularly dense. 

In summary, the proteome test set was able to demonstrate a wide variety of signatures, with key 

correlates between the singular tree summaries, and the patterns found in the signature graphs. The 

visualisation density issue is still a limiting factor on the user’s interpretation, however there are also 

higher perspectives in the interpretation which don’t always require the discernment of every single 

category’s distinctness, or it’s thread pattern. 
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Figure 93. Helobdella robusta full proteome structure, alternative visualisation with threads. N=3. 
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4.4.5. Test Set: E. coli Genome Signatures 

The second test set involves the signatures from the DNA of 18 E. coli genomes, retrieved from NCBI 

Genome database (NCBI 2016). The genomes were sampled from six of the seven major phylogroups 

as defined by the Clermont typing method (Clermont et al. 2013). Group C was only excluded due to 

data quality/availably issues. The phylogroup selection was applied with the intention of viewing the 

range of signatures across the broadest range of genomes available within the restriction of a single 

species. This serves as a counter-point to the previous test, which reached across hundreds of 

millions of years of evolutionary time. Here we investigate the variability of signatures within a 

tightly restricted set – to see if it might be informative, and to see the visual differences of with 

relatively small changes in input. 

Table 14.  E. coli, 18 genome structure summary scores. 

 

Table 6, like Table 5, shows the range of structures and shapes across the test set. Perhaps as 

expected the structure and shape scores for all entries are highly consistent. More interestingly, the 

escaped frequency rate remains quite variable from 0.9-4.4%. The phylogroup categories did not 

have any significant correlation with any of the scores. This could be indicative of the substantial 

genomic variation present within phylogroups. Additionally, the signature and shape scores are 

intended as indicators of sequence set structure and complexity rather than evolutionary distance. 

Any distance between genomes describable by these scores could be thought of more as a biological 

architecture distance, which is only tangentially related to evolutionary time. 
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All the signatures generated by this test are available in Appendix 2.2 in the file E.coli_signatures, 

and additionally presented in series as a short .gif as ANIMATION1, in Appendix 2.4. 

To demonstrate the effects of applying the local-null correction to the signature Figures 53 and 54 

were created, pre- and post-correction. The main difference is the removal of most of the pre-

saturation (~11.6) points. This shows that there was no over-abundance of shorter oligomers which 

wasn’t also emergent in the random-shuffled input. 

If there is a trend which Figures 54-57 follow, it is one of similarity to the DNA null-curve. The 

aspects of the small subset set of E. coli DNA which began to emerge as different to the null-curve 

are exaggerated in scale, but the transformation of signature shape is nowhere near as dramatic as 

in the proteomes. Additionally, whilst the structure scores in the Table 3 are significantly higher than 

Table 2, they are not directly comparable, as structure is always measured relative to sequence 

space occupation only equivalent alphabets may be compared numerically without additional 

transformation. The coherence to the null curve suggests that these DNA inputs were highly 

complex, and relatively low in highly duplicated structures. The corrected distribution shapes were 

also generally higher than most of the proteomes, except Apis mellifera, which also bore the most 

similarity to the small input subset, and to the peptide null curve more generally. 
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Figure 94. E. coli strain: S88 full genome signature. N=2. Without local-null subtraction. 

This relatively low structural scale could be reasonably expected in bacterial genomes that usually 

have fairly small gene families, with many genes being unique single copies (Pushker et al. 2004). Still 

there are differences between the strains which may highlight their evolutionary behaviours. For 

example, despite being very closely related in structure scores, S88 and B185 (Figures 54 and 55) 

have quite a marked difference in the frequency densities of short left and right seed N-masks across 

the l=20-30 range, suggesting a pattern of motifs with multiple mutations separated by ~15+ bases 

are far more common in B185. 

A similar comparison is possible between strains HS and O111 (Figures 56 and 57), the highest and 

least structured entries in the table respectively. However, in this case we can see the scale of the 

structures reflected also in the convexity of the curve of the rightmost band. Interestingly part of the 
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signature of higher overall structure manifests as less distinct primary sequence threads in these 

cases. 

 

Figure 95. E. coli strain: S88 full genome signature. N=2. 

The original conception of the k-mer tree signature method was to describe the structures in large 

and complex genomes, however given the current memory and performance limitations of the 

software, smaller bacterial genomes were chosen. When the signatures are expanded in 3D plots 

(see Figure 58), the patterns do not expand to a greater depth of complexity and remain very similar 

at different depths of the z-axis. Further performance gains must therefore be made before the DNA 

tree signatures can be suitably refined for the intended 0.5 - 1Gb genome inputs. 
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Figure 96. E. coli strain: B185 full genome signature. N=2. 



211 
 

   
 

 

Figure 97. E. coli strain: HS full genome signature. N=2. 
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Figure 98. E. coli strain: O111 full genome signature. N=2. 
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Figure 99. E. coli strain: O111 full genome signature. N=2. 3D visualisation. 
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4.4.6. Test Set: Protein Families 

The third test set was intended to test the program’s ability to describe smaller, yet highly structured 

datasets. Protein families were expected to satisfy this criteria due to the anticipated number of 

repeated domains in the input set. The input sets were retrieved from PFAM (Lee et al. 2015) ftp 

server. Due to the extreme size range in the protein family reference sets (100K – 5M), some files 

were limited to the top 10K lines. To maximise the utility of this test, the protein families selected 

were identical to the six highly allelically divergent environmentally adaptive families identified in 

both Lingula anatina and Lumbricus rubellus in Chapter 2. Of interest is Chapter 2, Figure 21, which 

shows the variable rates and distributions of allelic divergence amongst them. The hypothesis being 

that the rates of evolutionary divergence between alleles may have some correlate in the signatures.  

Mucin-like glycoproteins were identified as being the more divergent group, followed by ZIP metal 

transporters. Interestingly, it appears that in Table 7 these two also the highest structure scores, 

with mucins coming out as the most by far the most structured. The two least divergent families 

were Glucuronosyltransferase and GPCR Chemoreceptors, and again the extremes align in reverse, 

with GPCRs achieving the lowest structure. Although this is not a statistically valid proof of allelic 

divergence and structure correlation more broadly, it does appear to have some interesting 

intersection in this case. 

Table 15. Protein Families Structure Summaries 

 

This test set will also offer the chance to demonstrate the first derived measurement type, the WSD 

of category distributions (see 3.2.5.). Weighted deviations are more descriptive in the case that a 

specific set of structures are in question, as the can reveal the extent to which a category represents 

a singular feature of the protein family. Here the inverse scale of the WSD has been coded to the size 

of the points used to show each category. The WSD scale has also been normalised to the maximum 
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per depth, this ought to help combat the effect of WSD always shrinking towards distinctness 

boundaries, however this effect does persist. To be clear, the smaller the WSD, the narrower the 

distribution, the larger the point will be drawn on the plots in Figures 59-66, on a linear scale. 

The information which can be gleaned simply from the WSD component of the signature is 

demonstrated by several comparisons within these images. Firstly, looking at the differences 

between epithelial sodium channels and Glucuronosyltransferase (Figures 59 and 60), there is only 

particular WSD pattern which stands out. This is the ~0.3 distinctness ‘backbone’ band between 

depths 9 and 16 found in Figure 60. Whilst both plots show a typical pattern of high deviation 

throughout the middle of the plot, suggesting most component signatures found in this range are a 

diverse structural mix, the 0.3 band feature in Figure 60 suggests a specific consistency to the 

dispersal patterns within that range, perhaps indicative of a conserved active domain, or conserved 

motifs within them. Figure 59 by contrast has far more ‘distinctness outliers’ generated by low-

frequency N-masks with relatively large left and right seeds – these being depth-specific points 

which to not cohere to banding patterns. This suggests the presence of rarer variants present within 

motifs already typified by more regular variation patterns; smaller groups of domains which break 

away from the main set in an unusual manner. Given the breadth of the Epithelial Sodium Channel 

family, and the variety of sub-groups within it, this could be expected (Hanukoglu & Hanukoglu 

2016). 

All the protein family signatures generated by this test are also available as 3D visualisations in 

Appendix 2.3. 
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Figure 100. Epithelial Sodium Channel, (PFAM) Protein Family, Signature with WSD. N=3. 



217 
 

   
 

 

Figure 101. Glucuronosyltransferase, (PFAM) Protein Family, 3D Signature with WSD. N=3. 
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Comparison between Figures 60 and 61 may also be illustrative of the WSD signatures. It seems that 

the GPCR Chemoreceptor family, although considerably less structured than 

Glucuronosyltransferase in Table 7, has far narrower categorical distributions of dispersal type 

across the entire signature, although as in Figure 59, there are also many distinctness-outliers 

present. This may also be a commonality of membrane bound proteins with active sites, although it 

suggests GPCRs as a family have more homogeneity in their predominant variant patterning. A final 

point of comparison between them is the shape and distinctness position of the lower half of the 

signature. Although they both trend similarly, Figure 60 shows a more concave shape, whilst 61 is 

more convex. From this we can also infer than the flexible AA positions in GCPR Chemoreceptors 

may also be functionally more restricted to a certain set of replacements. Given that GCPRs are 

known to possess seven membrane spanning a-helices (Hollenstein et al. 2014), this could be a 

signature of the importance of hydrophilic/lipophilic AA restriction at regular helical sequence 

positions. Given that the slight convexity is also present in Figure 59, also representing a protein with 

membrane-spanning domains, this could be a more general signature of that attribute. 

Returning to Chapter 2 Figure 21, and the mystery of the hyper divergent Mucins, we can now 

compare its signature (Figure 63) to the rest of the set. Remarkably, it is incredibly different. In 

addition to having a less structured tree summary, it also presents a signature far closer to the small 

subset curve than any of the other family signatures. Additionally, like Figure 60, although to a much 

greater degree there is a very low deviation dispersal pattern for very low left/right seeds along the 

leftmost band, reaching all the way up to depth ~25. This suggests a very large and consistently 

heterogenous variation pattern for most of the sequence content in these proteins. It has been 

observed that typically only the terminal domains in mucin-like proteins are conserved between 

species, whilst the central, threonine rich region, is made up of many tandem repeats whose 

primarily function appears to become highly glycosylated, thus creating the hydrophilic properties 

required to form gels or mucus (Acosta-Serrano et al. 2001). It seems that the signature of this large 

highly variable central domain is dominating the protein family signature and is responsible for the 

huge sequence variation seen in Chapter 2. We can also suggest that the propensity towards many 

repeats within the protein is the main constituent factor in the higher tree structure scores.  
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Figure 102. GPCR Chemoreceptors, (PFAM) Protein Family, 3D Signature with WSD. N=3. 
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Figure 103. Laminins, (PFAM) Protein Family, 3D Signature with WSD. N=3. 
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Figure 104. Mucin-like Glycoproteins, (PFAM) Protein Family, 3D Signature with WSD. N=3. 

The Mucin-like family, with its high structure summary and low distinctness signature curve, shows 

us that both measurements must be read together to form a fuller understanding of the k-mer tree. 

From the signature and the summary, we can read that this is an example of abundant highly 

repetitive, yet highly flexible domains. 

As the second most structured entry in Table 7 (although by a considerable margin), ZIP metal 

transporters. The signatures here show a slight backbone effect, and a concave low to middle 

distinctness curve, with broad motif distinctness distributions for almost all categories. These 
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transporter types have been shown to possess eight well conserved transmembrane domains with 

extra- and intra-cellular loops by contrast being highly divergent (Grotz et al. 1998)(Guerinot 2000). 

That there is a combination of two variant modalities could be the origin of the high deviation 

category distributions. The large number of conserved domains increasing overall structure, with the 

large number of highly variable loops reducing distinctness. 

 

Figure 105. ZIP Metal Transporters, (PFAM) Protein Family, 3D Signature with WSD. 



223 
 

   
 

In summary of the family test set. The results combined with those in Chapter 2, Figure 21, suggest 

that protein families which have less duplicative structures may also be more resistant or sensitive 

to allelic variation, this could be possibly be described in the high-distinctness, low structure, high 

complexity category of sequence, and possibly high-fragility. The more duplicative and many-domain 

proteins typically are more structured in terms of sequence repetition, but with very indistinct 

variant patterning, and perhaps low overall complexity. These are of course early estimations of the 

possible set of relationships between signatures and family types. A full study of 1,000+ PFAM 

families via this interpretive method would be required to yield a stable reference set of guidelines 

for biological signature interpretation beyond the observations of pure entropic sequence 

descriptions. 

 

Figure 106. GPCR Chemoreceptors, (PFAM) Protein Family, 3D Signature with WSD, 3D Plot. 
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Figure 107. Mucin-like Glycoproteins, (PFAM) Protein Family, 3D Signature with WSD, 3D Plot. 

Three-dimensional plots of GPCR chemoreceptors and Mucin-like glycoproteins have both been 

produced (Figures 65 and 66). These can further indicate visually the inner complexity of the low-

structure GPCR family of sequences, and the contrast this presents to the low-complexity, yet highly 

structured sequence of Mucin domains. 
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4.4.7. The Pervasiveness of the Power-Law 

The shape parameters generated for the uncorrected datasets are remarkably consistent. Figures 

67-69 show that between the heterogenous data in the three test sets, the post saturation shape 

always ends up within the 1.5-2.0 range, with ~1.65 being the most common shape score. The 

distribution shape is discovered at all post saturation l values, and at all counts of N. There does not 

appear to be a correlative relationship (save for the saturation effect) between l and a, nor does 

there between N and a, nor does there between genomic and proteomic sequences. 

For reference Figure 70 illustrates the steepness of the Pareto curve for the value of 1.6, in 

comparison to other values registered by some of the null-corrected summaries. The pervasiveness 

of this value of a, may also suggest to us that perhaps correcting shape parameters by local-nulls 

could be inadvisable, as it appears that the true biological power-law shape is manifest universally. 

Instead it could be suggested that the smaller variations within this 1.5-2 range ought to be 

considered with greater weight. In Table 7, the pre-corrected difference between GPCRs and Mucin-

likes is between shapes of 1.625 and 1.561. Likely showing that the higher abundance of the most 

frequent motifs in Mucins due to the repeat-structured central domain creates the steeper Pareto 

distribution. 

 

Figure 108. Pareto shape parameters distributed across l and N, Five Proteome Test Set (one line per proteome per N value). 
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The consistency observed here suggests that further work to establish the impact and value of the 

range of variation observed in uncorrected shape scores could be useful in maximising the 

information utility of the signatures. 

 

Figure 109. Pareto shape parameters distributed across l and N, E. coli Genome Test Set (one line per genome per N value). 

 

Figure 110. Pareto shape parameters distributed across l and N, Protein Family Test Set, (one line per protein family per N 
value) 
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Figure 111. Example Pareto Distributions across shape parameters. Top-left: a=1.6, Top-right: a=2.6, Bottom-left: a=3.6, 
Bottom-right: a=4.6. 
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4.5. Discussion 

4.5.1.  Signature Performance 

Having developed these aggregation, summarisation and visualisation methods for N-masked k-mer 

trees, we can begin to review their effectiveness as tools for the description of sequence sets. The 

objective of this research was to find methods of describing large self-contained sets of biological 

sequence in a manner which yielded an ‘at a glance’ impression of the content of that sequence, and 

that this signature ought to also be composed of datapoints which could be dissected into the points 

of biological origin that composed such an image. 

One of aspects which this work has overlooked to some extent is the potential for further dissection 

of the signature categories. Any given signature category could, for example, have a paired set of 

annotation labels from the input set, and could be described in its proportional representation of 

those categories. This could be secondary structures, or domain types in protein families. It could be 

functional attributes of entire proteins (cell signalling, transmembrane, DNA binding, enzyme, matrix 

structure and so forth), in the case of proteomes, or it could be any prominent DNA annotation in 

the case of genomes (known binding motifs, intra/extra-genic DNA, intronic/exonic, LTRs, etc.). 

Although a certain degree of human error might be introduced by adding annotation categories to 

signatures, this might also further the informativeness of the decomposition of a signature. For 

example, in the case of L. rubellus it could show at a glance which proteins were creating the huge 

separations in banding patterns, or the in the case of Mucins, the glycosylated repeated domains 

causing the total distinctness collapse. As every point in the k-mer tree has spatial sequence origins 

it would not be difficult program the propagation annotation categories throughout the tree in the 

same manner as basic frequencies. Through a hash-map of parallel storage variables in the Node 

class, an arbitrary dictionary of annotation types could be fit to the tree at run-time. This would 

however have a larger memory footprint. Another method of programming the annotation overlay 

with a lower memory footprint, but a higher time-cost, could be to generate the tree as many times 

as annotation categories are present, using only annotated sequence each subsequent tree. The 

final set of signatures could then be merged into a categorical ratio overlay.  

Many of the observations made of signatures in this work have been post-hoc speculations on the 

origins of signature sub-formations, each of which would need further investigation to flesh out into 

suitably dependable theories that might be relied upon in future research. The alternative 

annotation methods for the tree might thus be a reverse search capacity whereby the user selects 

signature components of interest, and searches an annotated sequence set for its constitutive 

spatial information. This might be as simple as re-building the tree, and searching (&DFS subtree 
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merging) for only a specific set of N-mask patterns, and converting all discovered sequences with any 

degree of distinctness into a finite state automata, in a similar manner to BLAST (Camacho et al. 

2009). This approach might have the advantage, compared to the above paragraph, of allowing the 

user to search a specific pattern type across a far wider array of annotations without the per-

annotation time cost, and with a fixed peak memory footprint. The disadvantage being the 

signatures remain initially quite abstract. 

At present the signature system appears to function quite well at processing entire proteomes, 

however the DNA processing capacities have limited its application in other ways. A point of interest 

might have been the Lumbricus rubellus and Lingula anatina genomic signatures in comparison to 

other less-divergent genomes in the same clade, or in comparison to the more well researched 

model species. However, further efficiency gains will need to be made before such a comparison is 

possible. 

4.5.2. Experimental scope for performance gains 

In the context of the possibility of major efficiency improvements, there are several parameters that 

sequences signatures could be expanded. These are 1) the dimensionality of the N-mask, 2) the 

depth of the tree, and 3) the size of the input sets. 

4.5.2.1. N-Mask Dimensionality 
Regarding the first parameter, N: It would be ideal to be able to expand the maximum number of Ns 

in each mask up to k – log(fr), meaning that all N-masked sequences in the tree would still reach null 

saturation by their leaves. A more comprehensive summary of the structure, and even more 

sensitive detection of sparse motifs would be also be achievable if techniques were developed to 

compute the complete set of all (2n) N-masks per k-mer, however a more reasonably expectable 

near-term objective might be a moderate expansion of the N-count. One primary inefficiency of the 

current method are the excessive heap memory allocation and deallocation during the creation and 

destruction of subtrees in the merging function. This could be replaced by some fixed size pre-

allocated working memory used for tree merges. Another bottleneck in terms of clock cycles is the 

repetitive paired-DFS function executions required to merge subtrees. It might be possible to by 

subtraction discover extra merged node combinations for ‘free’ by storing multiple different merged 

frequency scores in the same node.  

4.5.2.2.  Tree Depth Limitation 
The depth of the tree, unlike the N-mask, does not have a theoretical complete solution. In terms of 

absolute utility, the depth of the tree could extend to the length of the longest string in the input 

set, however this is also wildly unfeasible. At present, the frequencies which ‘escape’ the tree ranged 
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between 1-4% of the total for E. coli DNA, and 2-11% for the protein families, and 1.5-18% for the 

proteomes. It would perhaps be wise to suggest that frequency escape isn’t always a bad thing, or 

that is ought to be considered an effect which renders the analysis compromised. For example, if 

analysing both alleles of a highly allelically divergent genomes, one might expect 30-40% of 

frequencies to escape, and be backwards subtracted from the tree. A hyper-conserved protein 

family could be expected to give a similar reading. The real consideration with depth is whether it 

captures the breakdown of the high frequency structures which are expected to break down, and 

which are meaningfully interpretable when they do so. Still, it remains desirable yet to extend the 

tree’s depth, if only to discover the point at which it becomes ineffective. 

4.5.2.3. Size of Input Sets 
The memory and processing time capacity for larger input sets would be very useful, as mentioned 

several times, for the sake of full genome signatures. It could also be utilised for other large 

sequence inputs, such as metagenomes, which can be hard to analyse and whose description might 

be facilitated by sequence signatures. Another area of large sequence set inputs is transcriptomics. 

Since frequency is currently coded to 1-per-k-mer, there would be no significant performance 

penalty for coding x-per-k-mer, where x is the normalised read count spatially resolved for a 

transcript from a given sample. There are many possible input configurations which could be 

explored with performance gains, and memory footprint reductions. 

4.5.3. Potential Experimental Applications 

There are many unexplored potential use-cases for the signatures developed in this research. Those 

that will be expanded up here include 1) Traits and phylogenetic association, 2) Stress/dose 

response signatures, 3) Reference signature database development. 

4.5.3.1. Intersection with Traits and Phylogeny 
Taxonomic classification and the prediction of evolutionary history has become a very powerful tool 

for understanding evolutionary biology, particularly since the advent of NGS technology. With 

functionally informative signature tools, there exists the possibility to describe the ‘-omic scale’ 

architectures many types of lifeform, and to intersect these outputs with the structure of 

phylogenetic trees of various scales. This might concern a small monophyletic clade of species, or 

diverse samples separated by 100s of millions of years. This may lead to the discovery of ‘typical’ 

signatures for certain clades, or the possible association of signature types with other traits, such as 

environmental plasticity, k- or r-selection, life history, and other phenotypic qualities. 
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4.5.3.2. Stress/Dose Response Signatures 
Stress responses in transcriptomes are a frequent research objective. Even the earlier transcriptomic 

studies revealed that organism stress responses can have huge impacts on the entire expression 

pattern of transcripts, for example, in 2002 Arabidopsis thaliana was found to have 30% of its 

transcripts in some way differentially regulated because of common stressors (Kreps 2002), and 

currently the results of transcriptome stress experiments have similar results across the board. For 

example, a 2017 study shows that in human mononuclear blood cells repress two thirds of their 

genes in response to heat stress, whilst up-regulating many others (Bouchama et al. 2017). Stress 

responses have the effect of drastically altering gene expression in most organisms. By encoding a k-

tree with read-depth scaled frequency scores for all input k-mers, it would be possible to deploy a 

system of signature differentials for stress response, with the aim of qualifying the extent of a stress 

response in an organism which annotates very poorly when compared to the available references. 

There might also be a variety of signature differential types depending on whether stressors are 

singular or multiple, or based on their severity. 

Another avenue of mathematical development which might aide this potential research direction 

would be the formalisation of distance metrics between signatures within the same set of samples. 

This would include estimation of null variance of category scores between replicates, and the testing 

of stress or other variable response samples against them. Distances would also be subject to the 

signatures form, with the possibility of ‘distance signatures’ displaying most prominently the range 

of distances exhibited by the categories or threads which separate the samples the most. 

4.5.3.3. Reference Database Development 
Although signatures are informative of sequence features by themselves, much of their value can 

come from comparison. The highly visual aspect of the output allows a researcher to very quickly see 

if one sequence set ‘looks like’ another one. By extension, the notion that digital means to 

quantitatively assess which signatures look-like which seems sensibly forthcoming. In terms of 

comparing between a small number of pre-calculated outputs this might be trivial, however much of 

the modern quest for biological insight comes in the form of queries directed at massive data banks 

via sophisticated search tools. Should enough signatures be generated, it would be useful for a 

signature-specific distance metric heuristic search function to be developed, such that a user might 

query a database of signatures with their own outputs to see which other organisms manifest similar 

sequence variation and structure patterns, in a manner that is liberated from comparisons of 

homology. The type of sequence data in this use case is not limited to the types of any of the test 

sets used in this work. However, a relatively low-computational cost first endeavour might be to 
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generated signatures for all 1000+ PFAM protein families, and to deploy a PFAM-indexed search 

function, as an adjunct the current protein family knowledge base. 

4.6. Conclusion 

A biological sequence signature creation tool was developed. The tool was applied to 5 invertebrate 

proteomes, 6 protein families, and 18 E. coli genomes, as test sets. The results showed that the 

peptide trees are capable generating varied and informative signatures of the sequence inputs, 

which relate directly to the biology of the sample sources. The DNA trees have yet to achieve the 

computational performance required to perform large scale analysis on genomic scales. Multiple 

aggregation methods were proposed for tree aggregation. The research then focused on two 

aggregation methods that were most suitable for the trees generated, given the performance 

boundaries of its parameters. Visualisation methods were developed for the outputs, with 

infographics also created to aide in the interpretation of the ‘signature’ plots. This work shows that it 

is possible to create dense and complex signatures of sequence structure, without sacrificing their 

biological utility, when highly optimised navigations of high dimensional space are deployed instead 

of generalisations which first seek to reduce it. 
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5. Chapter 5: Discussion 

This thesis aimed to discover more about how mechanistic information sources of evolutionary and 

environmental flexibility were stored and used in biological systems by examining models which 

demonstrated an abundance of such information (Chapter 2), by analysing a system in which high 

tolerance a retained abundance of neutrally selected genetic material could have a large potential 

selective advantage (Chapter 3), and by further developing information processing methods to 

characterise the sequence structures in these model systems (Chapter 4). Here follows an initial 

review of the progress made in this thesis, with the core messages derived from the analysis 

associated with each specific aim. The rest of the discussion will then focus on several areas of 

theoretical advancement informed by the results found here, with suggestions for further study. 

5.0. Aim 1 

To assess the allelic diversity metrics of two highly divergent invasive global 

species  

The genomes of two organisms were analysed: Lumbricus rubellus an earthworm, and Lingula 

anatina a marine brachiopod. Lingula anatina was found to have a published draft genome (Luo et 

al. 2015) with substantial mis-assembly as a result of an absolute allelic divergence of ~10%, around 

the current maximum observed for a natural population (i.e. not an F1 hybrid). Lumbricus rubellus 

was found to have an unprecedented ~33% base sequence divergence between alleles, with even 

the protein sequences between alleles separating by ~10%. Distributions of the divergences were 

quite uneven, and both genomes appeared to be mosaic-like, with both a low diversity and a high 

diversity set of allele fragment pairs in their assemblies. Working towards this aim found that the 

extent of divergence between alleles in some genomic systems may be almost unlimited and opened 

the door to new theoretical considerations surrounding re-combination and the Meselson effect 

(Welch & Meselson 2001). 

5.1. Aim 2 

To describe the potentially acclimative or adaptive information present in hyper-

divergent alleles 

Gene families found in the hyper-divergent regions of the genomes analysed in Aim 1 were 

described. The top six families shared by both genomes were found to be highly environmentally 

interactive proteins types. This suggested that the mechanistic commonalities between the genomes 

also led to commonalities in the outcomes for phenotypic diversity, although this diversity would be 

highly cryptic to a non-molecular taxonomist given the discussed morphic stasis of both species. 
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5.2. Aim 3 

To develop a general theory of redundant information structures  

A straightforward summarisation method of k-mer tree data structures was proposed. Other 

sequence signature evaluation methods were reviewed and found to be either insufficiently 

detailed, or insufficiently functionally informative. Structure in the total sequence domain (a single 

genome, proteome etc.) was defined as over-representation of k-mers given their expected 

incidence rate, and the relationship between the sequential extensions of each l-mer within the tree 

was defined as the product of child node frequency gini-like coefficients between a parent node and 

a child node, with the parent co-efficient being inversed. It was found that the dimensionality to be 

navigated computationally was extremely high, but that there was an unexplored analytical space 

available to be discovered, given that most other sequence summaries act by heuristically limiting 

dimensionality in some way. 

5.3. Aim 4 

To implement and apply the developed theory to different sequence types  

Implementation of the sequence structure scoring algorithm was achieved. Some degree of success 

was had in implementing multi-core processing, although the threading efficiency could still be 

dramatically improved. Although the implementation is theoretically capable of processing all k-

mers with any number of gaps (N), in practise it was found that limiting N to values of 2 or 3 was 

required for execution to complete in usable times (<48hrs per input set). A signature visualisation 

method was developed to explore these scoring systems, and three types of sequence input sets 

were evaluated (two protein, one DNA). Changes in signature were found to qualitatively describe 

the prior known characteristics of some of the inputs quite well, whilst in other non-model systems, 

the results were more informative. Lumbricus rubellus was found to have the most diverse set of 

information structures in its proteome compared to four other invertebrates of lower diversity. 

5.4. Aim 5 

To assemble the genome of a species with high theoretical need of both adaptive 

and acclimative mechanisms to cope with its environment 

A genome of Amynthas gracilis was assembled. The assembly had an N50 of 478kb 4,350 scaffolds, 

and a size of 589Mb. Several ad hoc assembly finishing processes were adapted from work on the 

similarly allelically divergent Ciona savygni genome assembly (Vinson et al. 2005). Allelic divergence 

was found to be bi-modal, with peaks approximately at 0.5% and 3% (although this varies somewhat 

with window-size). The transitions between these divergence rates were incredibly sharp, suggesting 
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that the genome was an allelic mosaic of alleles originating from lineages of several different 

degrees of evolutionary distance. A full suite of gene prediction programs were run, and their 

outputs were collapsed with MAKER2 (Holt & Yandell 2011). Overall, 26,951 gene models were 

created. 

5.5. Aim 6 

To discover the simultaneous roles of acclimative plasticity and atavistic adaptivity 

mechanisms in an organism under high environmental stress 

A dataset originating from a reciprocal transplant experiment was analysed. This dataset contained 

next-gen sequencing of RNA-Seq, miRNA-Seq and MEDIP-Seq, for sample individuals which had been 

transplanted between active and inactive volcanic soils for 31 days. Activation of acclimative 

responses was most readily detected in RNA-Seq differentials and was also a substantial signature in 

miRNA expression. The differentials between soil origins in miRNA expression suggested that this 

system reacted less readily to acclimative plasticity and seemed to preserve some of the long-term 

molecular expression stability from the original habituated environment. DNA methylation was 

found to have a highly stochastic abundance differential between samples. However, miniature 

gene-models of methylation distribution patterning were highly consistent between individuals 

despite the massive per-gene variations. 

5.6. Theory 1: Sexual Dimorphic vs Plastic Multimorphic 

Sexual dimorphism is an extremely common feature in many complex lifeforms (Lande 1980). It was 

only in the 1980s that the idea of sexual phenotypes originating from sex chromosomes began to be 

formally investigated and accepted (Rice 1984). However, the non-recombinant and partially haploid 

allele as a sex morphotype determinant is not a single origin evolutionary event, and appears to 

have independently evolved in many taxa (Ayling & Griffin 2002). Step-wise processes for the 

evolution of sex-determination have even been identified in fungal genomes (Fraser et al. 2004), 

suggesting that this pattern of evolutionary genomics has a universality to it which goes far deeper 

than we presently understand. 

The processes by which a collection of linked genes becomes non-recombinant is a destabilisation of 

classic allelic evolution. Through an inversion, a divergence or some other translational mutation 

which prevents recombination for a large portion of one chromosome, a collection of linked genes 

with a combined haplotype effect become a singular morphotype determinant. 

Lumbricus rubellus is known to have extremely divergent lineages, as explored in Chapter 2. It is also 

known that these lineages are reproductively active (Giska et al. 2015b). Annelid earthworms are 
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also known to be hermaphrodites lacking any sexual dimorphism (Lavelle 1997b), they are also long 

understood to be facultative parthenogens (Jaenike & Selander 1979). As the regular transmission of 

alleles between lineages discussed in Chapter 2, the question of recombinant validity allelic 

compatibility arises. Are there large regions of DNA which no-longer recombine when paired against 

their ancestral lineage partner in a hybrid individual? Given that most worms surveyed so far appear 

to be a combination of lineages, is this introduction of non-recombinant regionality a theoretical 

equivalent to the same process by which sex chromosome evolution converges across the tree of 

life? 

Perhaps it is the case that sex chromosome evolution is in fact merely a large sub-section of a 

broader trend, of non-recombinant regions which confer contextual function to the phenotype, with 

dimorphism the result of the naturally emergent phenotypic game between emergent traits 

governed by the non-recombinant DNA’s presence/absence. Alternatively, given that the range of 

earthworms, and the diversity of environments in which they reside is so vast, perhaps we might 

think of non-recombinant allele pairings as miniature ‘enviro-genders’ or an ‘enviro-sex’. While not a 

serious proposition for terminology, this perspective is illustrative of the systematic continuity 

between these ideas. This theoretical position would also extend to other long-distance hybrid 

systems in hermaphrodite species, such as the Mytilus trossulus/edulis hybrid zone in the Baltic Sea 

(Strelkov et al. 2017). In this regions two mussels which ordinarily dwell in different substrates 

hybridise (benthic vs algal adhering) (Katolikova et al. 2016). This might also either lead to or emit 

from the incidence of aneuploidy which has been widely documented to exist across many species of 

Oligochaeta (Pavliček et al. 2016). 

To further an understanding of the morphotype characteristic of non-recombinant alleles, the first 

prerequisite would be an improved assembly (500 kb+ N50) of the genomes of both lineages of 

rubellus, and substantial genomic population data which could be obtained in the form of RAD-Seq 

or low-depth genome sequencing from individuals of various populations. The objective would be to 

identify large non-recombinant regions of the genome which remain consistently non-recombinant 

in several populations. The challenge would then be to associate these regions with potential 

phenotype characteristics (which would more likely be metabolic rather than morphological, given 

the discussion of morphostasis in Chapter 2). 

5.7. Theory 2: Doubling the Distance: Allelic Aivergence and Ploidy 

In the Introduction, various evolutionarily active processes by which information was duplicated 

within the genome were discussed, one of which was genome duplication, and one of which was 

allelic divergence. Considering the sustained allelic divergence observed in Chapter 2, it might also 
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be worth considering the potential relationship between allelic divergence and duplication of various 

scales under the condition of reduced recombination or, as terminology might suit, a preponderance 

of large and tightly linked genomic islands of divergence. 

To consider how these pieces of information machinery might fit together generally, it is worth 

looking first at the 2R hypothesis. Originally inspired by the discovery of four hox gene clusters in the 

human genome, this hypothesis asks whether the ancestral vertebrate genome was subject to two 

rounds (2R) of whole genome duplication, and whether this is the source of the size and complexity 

of the genomes we see today (Spring 1997). Substantial genomic evidence began to amass for this 

theory in the 2000s (Dehal & Boore 2005), and by now the evidence from next generation 

sequencing is overwhelming to the point of general consensus around its accuracy (Van de Peer et 

al. 2010). 

One such paper proposing this theory in 1997 asks provocatively, ‘are we polyploid?’(Spring 1997). 

Human genomes are diploid now of course, but the corollary to the consensus around 2R is that 

researchers must then ask of our alleles, how does four become two? Or more specifically, how did 

the allele pairs revert to diploid meiosis? To this end Xenopus is once again a valuable model. 

Genetic studies of its evolutionary history suggest that the invasive polyploid tropicalis is in fact an 

allopolyploid, which resulted from a rare event during interspecific hybridisation (Abu-Daya et al. 

2012). In this case there will already be paired alleles in the set of four which are more like each-

other. This suggestion is that the difference between ‘autopolyploidy’ and ‘allopolyploidy’ is one of 

substantial evolutionary value. Already an often observed feature in plants, such as wheat (Feldman 

& Levy 2005), newly allopolyploid organisms exhibit dramatic cascades of genomic modifications and 

gene silencing described as ‘genomic shock’ (Comai 2000). The capacity of small RNAs to ‘defend’ 

one diploid allele pair against the genes of the other pair by gene silencing seems to be deeply 

involved with an organisms capacity to tolerance these hybrid duplication events (Malone & Hannon 

2009). One other vertebrate example is the allopolyploid Iberian cyprinid Squalius alburnoides, of 

which there are both diploid and triploid populations (Alves et al. 2001). 

Another attribute of allopolyploidy is the speciation which follows the event. Particularly in plants, 

(as well as Xenopus tropicalis (Evans 2008)), examples of these speciation events have been seen in 

brassicas (Widmer & Baltisberger 1999), knot-weeds (Persicaria) (Kim et al. 2008), and cotton 

(Gossypium) (Wendel et al. 1995). The mechanistic model by which speciation occurs with 

duplication has been proposed as ‘divergent resolution’ (Lynch 2000), by which duplicate genes 

change function and proffer new reproductively isolating phenotypes. Although other work on 
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speciation suggests that, as in genomic shock, divergent resolution is more likely to take the form of 

reciprocal loss or silencing (Taylor et al. 2001) (McGrath et al. 2014). 

We can summarise this overall view of the process as Hybridisation -> Allopolyploidy -> Genomic 

Shock -> Divergent Resolution -> Speciation -> Gradual reversion to diploid through karyotype 

rearrangement, sub/neofunctionalization and subgenome divergence (Zadesenets & Rubtsov 2018). 

The problem with this interaction is that it is assumed that it is the hybridisation event which triggers 

the allopolyploid event. Reasoning this out with respect to the genetics of invasive species appears 

to reveal something of a blind-spot in evolutionary theory. Consider the following: in the genetics of 

invasive species there is a paradox. Invasiveness has been widely identified as benefiting from 

information redundant systems as discussed in the Introduction and in Chapters 2 and 3. However 

most invasive populations (that are not of deliberate anthropogenic origin) are generally founded by 

a handful of individuals, or in the case of facultative parthenogens such as the earthworm, even by a 

single individual (Estoup et al. 2016); severe genetic bottlenecks which can deplete a population of 

its diversity. The theoretical (and observed) association of hybridisation with invasiveness addresses 

this to some extent to propose that certain organisms can retain inclusively the combined fitness of 

multiple lineages or even multiple species, resulting in the type of ‘blocky’ looking polymorphism 

pattern in the genome as seen in Chapter 3. For example, a highly fecund R-selected organism with a 

high percentage of diverse alleles, despite facultative parthenogenic reproduction, may still be able 

to retain the presence of most of both alleles in the second generation if enough young are 

successful, although some loss is inevitable. 

Organisms already capable of bi-allelic regulation of such extremely divergent alleles may be pre-

equipped to deal with the ‘genomic shock’ of duplication. Regular genome duplication events in 

populations undergoing the stochastic drift of many hyper-divergent alleles, would eventually 

coincide with a mosaic genome which harbours a species/lineage selection of allelic diversity that is 

maximally compatible and retains the essential contextual fitness advantages of both. Since the 

origins of most genomic duplications are so ancient, it is incredibly difficult to describe the nature of 

the origin event. It could be that in analysis of the myriad complexities involved in the ‘diploidisation’ 

process described following assumed singular allopolyploidy (Zadesenets & Rubtsov 2018), the 

researcher may overlook the possibility that some apparent ‘rearrangement’ originates from 

extreme diploid hybridisation and subsequence intrapopulation drift prior to duplication.  

Duplications could happen within this population repeatedly and unsuccessfully until an 

autopolyploidy event occurs within a genome possessed of the type of ‘goldilocks’ mosaic as 

described above. 
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Although this is a speculative theory, studies of earthworm ecology provide various examples of 

situations in which both extreme hybridisations and regular genome duplication events are 

detectable – and might provide excellent model systems to further the understanding of ancient 

duplications in the more ‘charismatic’ terrestrial taxa. For example, Amynthas catenus the 

Taiwanese mountain earthworm has been shown to exhibit morphotype variants of three different 

ploidy levels (di, tri-, and tetraploid), with chromosome count and ploidy levels being association 

with both reproductive isolation and parthenogenic tendency (Shen et al. 2011). The European 

Dendrobena genus contains many species which are both invasive (Pop & Pop 2006) vary in ploidy 

level (Bakhtadze et al. 2008), Dendrobaena rubida alone is known to exhibit di-, tri-, tetra-, hexa-, 

and octoploid varieties (Cosin et al. 2011), and also acts as an invasive peregrine (Tiunov et al. 2006). 

The invasive Dendrobaena octaedra (Cameron et al. 2008) has been reported to have hexa-, penta- 

and octoploid variety of the parthenogenic subspecies (Hongell & Terhivuo 1989). Aporrectodea 

rosea is a similar global species present in western Europe, Russia and (more recently) Canadian 

(Addison 2009) soils, and may be diploid, decaploid, and most duplication levels in-between 

(Vsevolodova-Perel & Bulatova 2008). This is by no means an exhaustive list and illustrates the 

potential for these model systems as research tools for evolutionary genomics. 

A final piece of the puzzle with respect to allelic divergence and polyploidy might come from a very 

common correlative observation often made of earthworms: that the polyploids are most often 

parthenogenic (Jaenike & Selander 1979)(Cosin et al. 2011). As most earthworms are facultative 

parthenogens already, it is hard to draw a line which indicates that polyploid parthenogenesis 

becomes obligate, despite the correlation, however it seems to be the preferred reproductive 

strategy. Some parthenogenic earthworms reproduce meiotically, whilst others appear to have a 

mitotic process of self-fertilisation (Terhivuo & Saura 2006). The hypothesis here would be that, in 

the same way that large scale regulatory systems respond to genomic shock, the earthworms’ 

evolved response to the same signal might be to limit sexual breeding. For the sake of the 

evolutionary question, it would have to be asked, why is this adaptive? Whilst creating large invasive 

populations from few individuals is clearly an advantage for genetic self-propagation, the case of a 

sole invader is in the extreme minority. Typically one might expect the function of Muller’s ratchet 

(Haigh 1978) in the absence of non-clonal reproduction, following from the loss of genetic load 

mitigation (Keightley & Eyre-Walker 2000) to be a substantial long term adaptive cost to the 

organism’s survival. There is a reason why parthenogens appear only to exist at the tips of the leaves 

of the tree of life. Yet it is not just the chance invaders which participate in this costly exchange. To 

the question of the benefit we then return to the ‘goldilocks’ mosaic hypothesis. Diploid hybrids of 

extreme divergence as seen in Chapter 2 likely must negotiate some trade-off between allelic 
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incompatibility/misregulation and the potential for inclusive retention of the plasticity or metabolic 

fitness evolved in multiple lineages or species. If one imagines the continuous range of all possible 

mosaics by their intrinsic fitness as normally or likewise distributed, the near term (~50 generation) 

fitness benefit of the right-hand tail might well exceed the cost of no sex, and maintenance of that 

improbable allelic arrangement could only be sustained by the germline’s abstention from meiotic 

recombination events. Meiotic clonality might limit recombination to between the sub-genomes of 

the polyploid, whilst mitotic reproduction would prevent unique mosaic alternation altogether. Even 

though the polyploidisation may occur stochastically (or with increased frequency in hybrids) the 

fairly frequent (in evolutionary timescales) intersection between ‘goldilocks’ mosaics and duplication 

events might be sufficient for nature to selectively retain this function as a survival strategy. 

5.8. Theory 3: Fighting the Dimensionality of Entropic Structure 

The entropic structure model developed in Chapter 4 was stymied with respect to its application in 

earthworm genomes by the algorithm’s computational memory and time efficiency. Consequently, it 

was only capable of working with smaller full genome sequences (E. coli). Another limitation of the 

ID-based N-root tree indexing system (piggybacking off the N=0 tree structure), was that any 

increase in K over 32 would require a doubling of ID variable size from 4 to 8 bytes per index, which 

would only impose further limitations on the input set size. Application of this algorithm to the full 

genomes (including full allele copy cohort) of earthworms of various ploidy and mosaic types might 

have been used to as a knowledge-free metric to assess the information structures in these 

organisms. The way in which information structure sizes change with genome size or ploidy 

correlations could also be informative of less recent duplication events, or the scale of the sequence 

based regulatory mechanics behind them. 

Many systems exist to discover disproportionately enriched motifs in DNA sequence, however 

almost all of these utilise some form of dimensional reduction. For example ‘mCUDA-MEME’ (Liu et 

al. 2011) uses hyper-parallelised short alignments based on an identity scoring system as does 

‘EXTREME’ (Quang & Xie 2014), and ‘Quick-motif’ is built on the basis of pruning the set of 

subsequence pairs to combat the inefficiency quadratic difficultly (Y. Li et al. 2015). Although these 

methods are highly advanced and have made significance performance improvements to sequence 

space navigations where heuristic outcomes are acceptable, it is not possible to adopt most of their 

optimisations. To stick with the objective of the original mathematical model, it remains necessary 

not to optimise the search space, but to optimise the methods for navigating it. 

In order to implement a measurement system for the mathematical theory of structure scores in the 

form of manageably efficient algorithm (i.e. requiring less than 1 TB RAM, execution time of no more 
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than a few days per genome), the central algorithm would need to be re-designed. Another 

desirable feature for such a redesign would be to alter the efficiency with respect to N, as the 

present efficiency is unsustainable to discover sparse motifs. Here will follow a discussion of a 

possible re-design which could accommodate far larger input sets, with the caveat of restriction to a 

hard-coded alphabet. 

The difficulty with fully exploring the k-mer space with flexible bases is that the actual space is far 

too large. We cannot expect even our most high performing CPUs to do 432 of any simple operation 

in a reasonable timeframe, and that is only the scale of the N=0 tree. Therefore, as the present 

program implements, the sparsity of the tree data-structure can be allowed to be reflective of the 

sparsity of the dataset, and its navigation thus avoids any querying of the unused sequence space. 

However, because of the extreme sparsity, when ‘folding’ child-nodes of a single N-root over into 

merged subtrees, this results in many memory operations to extend the pre-existing data structure, 

and then deallocate the memory once that operation is complete. However, there is no way around 

the need for a subtree to hold the merged subtrees, and pre-calculation of the substructure would 

only yield an unmanageable load in RAM. 

The solution proposed to combat this deficiency would be a novel data structure which holds sparse 

single-depth tree-foldings in sequence space and exploits subtractive redundancy. Firstly, the idea of 

subtractive redundancy needs exposition. This is simply the idea that, if three values must be stored 

in memory, A, B, and C¸ where C = A + B, we can simply store A and B, and calculate C at runtime. 

This on its own does not seem to be a huge performance gain. However, if it were necessary to store 

at depth l=4, all possible tree-folding combinations of eight terms in a 4-level binary tree: 

A 

A B 

A B C D 

A B C D E F G H 

Considering that any of the nodes above the bottom layer can be turned into an N value, and merge 

their subtrees, what is the set of all values created by the merged subtree? 

N=1: 

AB CD EF FG 

AC BD EG FH 

AE BF CG DH 
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N=2: 

ABCD EFGH 

AEBF CGDH 

ACEG BDFH 

N=3: 

ABCDEFGH 

Above, the letter adjacencies indicate summation. Thinking subtractively, we can see that many of 

these scores do not need to be stored in memory. If the N=3, ABCDEFGH value is present, only the 

first or second half of the columns in N=2 are needed, etc. The eventual progress of this line of 

thinking is the conclusion that if the original nodes were simply stored in a list, an algorithm could 

calculate all the values for N from 1 to 3 on the fly (and add them to the structure score/save 

remarkable features etc). But, when the size of the set of all nodes at that depth is 432, this becomes 

prohibitive. It would be better to discover merged terms as the sparse tree is folded. But how can we 

still retain the advantages of subtractive redundancy whilst limiting navigation to the actual sparsity 

of the tree, and do so in a way which limits the memory allocation churn? 

The solution proposed is to fold the k-mer tree fully (i.e. such that N=k), but not to permit any gaps 

in the N-mask. Effectively this means merging the subtrees of the head-node, and deleting all but 

the merged tree, then repeating this process on the next increment of l (which is now effectively the 

new head-node) until the tree has been collapsed into a linked list of length k. Each merged node 

however retains the values present in all nodes which were collapsed onto it in a subtractive 

efficient data structure. The k=4 tree folding to the fourth depth is illustrated in Figure 112.  

 

Figure 112. Illustration of successive folding/merging of a binary tree, beginning with the topmost node and terminating 
with the bottommost. In the original algorithm from Chapter 4, the combined node values are simply summed. 
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Under the current implementation’s rules, AE or BF would simple by the sum of those two nodes’ 

values. However, with the proposed efficiency changes, these would be stored in slightly more 

advanced structures, see Figure 113. 

 

Figure 113. Retentive data structures for storing merged subtree information in single nodes, demonstrating their growth in 
a binary tree successively merged downwards from the topmost node to the bottommost.  

In Figure 113 the curved connections denote the same relationship you might find in a tree (a one 

way linked memory address connection between node class elements). The final fold now contains 8 

elements, the same number as the original number of nodes, however they are structured in a 

subtractive efficient format, which allows, by traversal, an algorithm to re-calculate on the fly the 27 

unique node combinations (19 combined + 8 un-merged) values created by all possible tree folds. It 

does this by subtracting any node’s value from one of its children, and recursively subtracting all 

children left of the queried child from the queried child’s children. For example, see Figure 114. 
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Figure 114. Illustration of algorithmic exploration of subtractive redundancy space within the proposed merged-node data 
structure. 

The advantage of this subtractive system is that by structuring the 8 values as this type of data 

structure, we can find all required actual folded values on the fly, without needing to store all 

possible entries in the list or index every list entry by its location in the space. For example, given a 

sparse version of the demonstration tree, it will still fold successfully (see Figure 115). In this 

demonstration the absent values are retained as 0s for the point of illustration, but all terminal 0s 

are simply elements which no longer needs to be allocated in memory. The key advantage of this 

system is that the tree only needs to be folded once per depth, and the N-mask N_N_ can be derived 

from subtractive operations on NN__ and NNN_. Eliminating the need for huge numbers of subtree 

merge operations, whilst retaining the sparsity of the original dataset. 
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Figure 115. Demonstration of tree-folding data-structure production under conditions of tree sparsity. (Top) underscores 
indicate absent nodes, (left) two of eight nodes absent, (right) four of eight nodes absent. 

This algorithm only applies to the discovery of node merges for a single tree-depth and has been 

given as an example of a binary tree. However, we can easily convert this system to any alphabet in 

a power of 2 by adding intermediate depths to the data-structure. Another aspect of this potential 

solution to be considered is that all structure score calculations are multi-depth operations, so the 

discovery of the full set of values for one level must occur as part of an algorithm which discovers 

the connected information for all depths. The fully folded tree would look like Figure 116.  
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Figure 116. Fully folded/merged four-level binary tree merged via the sparse subtractive redundancy method. This now 
functions as a linked list between head-nodes of the proposed data structure type. 

This is not by any means a thorough formalisation of the algorithm or it’s efficiencies but is a 

proposed starting point from which further work might advance. This would require formal 

definitions and tests conducted on, a) the tree folding/structure building algorithm, b) the data 

structure subtractive navigation algorithm, c) the pairing function which associates the results 

obtained from the iterations of (b) over the set of all depths, such that the structure scores could be 

calculated. 

The implementation of this algorithm would likely go a long way towards extending the usefulness of 

the structure score metric to whole genomes, however this is a task which would require substantial 

investment and has not therefore yet been completed due to the time constraints of this thesis. 
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