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Abstract 

 

For many contemporary manufacturing processes, autonomous robotic operators have become 
ubiquitous. Despite this, the number of human operators within these processes remains high, and as a 
consequence, the number of interactions between humans and robots has increased in this context. This 
is a problem, as human beings introduce a source of disturbance and unpredictability into these 
processes in the form of performance variation. Despite the natural human aptitude for flexibility, their 
presence remains a source of disturbance within the system and make modelling and optimization of 
these systems considerably more challenging, and in many cases impossible. Improving the ability of 
robotic operators to adapt their behaviour to variations in human task performance is, therefore, a 
significant challenge to be overcome to enable many ideas in the larger intelligent manufacturing 
paradigm to be realised. This work presents the development of a methodology to effectively model 
these systems and a reinforcement learning agent capable of autonomous decision-making. This 
decision-making provides the robotic operators with greater adaptability, by enabling its behaviour to 
change based on observed information, both of its environment and human colleagues. The work 
extends theoretical knowledge on how learning methods can be implemented for robotic control, and 
how the capabilities that they enable may be leveraged to improve the interaction between robots and 
their human counterparts. The work further presents a novel methodology for the implementation of a 
reinforcement learning-based intelligent agent which enables a change in behavioural policy in robotic 
operators in response to performance variation in their human colleagues. The development and 
evaluation are supported by a generalized simulation model, which is parameterized to enable 
appropriate variation in human performance. The evaluation demonstrates that the reinforcement agent 
can effectively learn to make adjustments to its behaviour based on the knowledge extracted from 
observed information, and balance the task demands to optimise these adjustments. 

 

Keywords: Intelligent Manufacturing; Reinforcement Learning; Human-Robot Interaction; Human 

Factors; Adaptability;  

 

 

 

 



1. Introduction 

 

The adoption of automation within manufacturing processes has experienced accelerated growth over 

the past decade, which shows no signs of imminent abatement. Due in part to governmental and industry 

initiatives, like the German developed Industry 4.0 [1], the increased adoption of automated systems is 

perhaps the inevitable conclusion of concurrent developments in several relevant areas [2]. These 

advancements, particularly within computer science and control, have enabled autonomous systems to 

leverage intelligent processing of data to generate process knowledge, which may be used to inform 

behaviour [3-5].  

 

Despite the rapid adoption of automation technologies within manufacturing processes, the transition 

from manual to robotic processes is gradual, and many operations require a level of dexterity, flexibility, 

or adaptability which remains unachievable by contemporary robotic systems. The result of which is an 

increasing number of interactions between humans and their machine counterparts. Whilst such a 

combined approach has numerous advantages (combining the strengths of both disciplines), it also 

introduces significant complexities to the system and necessitates the study and understanding of how 

best to facilitate collaborative behaviour within these new robotic elements [4, 6]. 

 

The presence of human operators within automated systems presents such a problem, as repeatability 

and accuracy are arguably the hallmarks of robotics, and conversely the main traits which prevent 

human beings from remaining competitive. Reconciliation of these behaviours is a challenge that 

remains to be overcome, for manufacturing systems to fully realize the potential that robotics and 

automation can provide. 

 

The variation in human task performance exists both between individuals and between iterations of the 

same task, temporally dependent on a wide range of other human factors, most notably manifesting 



thorough fatigue [7-10]. This variation introduces disturbance through a disparity in performance that 

is dynamic and prevents robotic systems and their behaviours from being optimized at the process level. 

 

Improving the capacity for adaptability and flexibility of robotic systems within manufacturing is seen 

as both a key indicator of the level of a system's intelligence [11] and provides a solution for overcoming 

the performance disparity within human-machine interaction, mitigating the effect on the system. 

Reducing this performance disparity can also be said to improve the fluency of the interactions 

themselves [12], and enable manufacturing processes to move towards a one-piece-flow, in line with 

the modern application of lean-manufacturing methods [13, 14].  

 

Enabling an agent, such as a robotic operator, to intelligently process observations of their environment, 

to make decisions about their actions and operating parameters, has already been demonstrated to 

improve the ability of numerous control and autonomous decision-making systems. The most effective 

approaches utilising reinforcement-based machine learning, typically employing neural networks to 

make predictions for the value of an action based on an observed state. The reinforcement approach has 

enabled similar agents to be trained without supervision to achieve additional capabilities and human 

level task performance in many domains [15-17]. However, there remains a lack of research on how 

best to apply these capabilities in the in terms of adjusting behaviours to improve adaptability, and even 

less on how such agents and the abilities may be leveraged to reduce disparity in performance and its 

resultant influence on the system as a whole, in scenarios with complex system dynamics, where such 

approaches have proven successful.  

 

This work presents a study of applying the principles of reinforcement learning to robotic control, under 

the context of HRI within manufacturing processes. A methodology is presented based on the presented 

literature review, to define the necessary capabilities of a reinforcement learning agent for robotic 

process control, given sufficient knowledge of the process and the performance and behaviours of the 

human counterparts.  

 



2. Literature Review 

 

The following section presents a review of relevant literature and is divided into three key areas of 

relevance. Further study on the current state of intelligent manufacturing and the applications of 

learning and intelligence are considered, the enabling machine learning technologies are discussed in 

the second section, and the third section presents current work in the application of these technologies 

and methods to Human-Robot-interaction.  

 

2.1.    Intelligent Manufacturing 

 

Intelligent Manufacturing is the term given to research and work covering the wide variety of disciplines 

and applications necessary to integrate intelligence within modern manufacturing systems [18, 19]. 

Advances in the capabilities of computational systems have enabled numerous aspects of manufacturing 

to be improved through the use of observation, and appropriate processing of data generated by these 

processes [20]. Undoubtedly, it is the increasing rate of data generation, and the ease and widespread 

practice of data collection within the manufacturing industry, which is responsible for the emergence 

of intelligent manufacturing [21, 22]. Processing of this data enables the Digitalization of manufacturing 

systems, as the processes and events can be captured, processed, and analysed to build digital 

representations of these systems [23-25] for modelling, prediction and optimization. The world that 

exists today is one of continuous and widespread data collection. The moral concerns over the 

appropriate and moral usage of such data, especially where such data is human-generated are beyond 

the scope of this work but represent an important area for discussion. 

 

The digitalization of these systems is crucial for realizing Cyber-Physical-Systems (CPS)[11, 26, 27], 

combinations of hardware and software components which are characterized by their capacity for 

intelligent behaviours. Advanced systems are capable of adaptation and autonomous decision making, 

based on their observations of the environment [28] facilitating flexibility and optimization in 



manufacturing processes [29-31]. Digitalization of manufacturing systems has in itself given rise to 

focused work on how digital representations can be used for system control [24]; although this has 

identified a key challenge that is presented by advanced digitalization methods. As the representations 

of production processes become increasingly detailed and complex, contemporary hierarchal structures 

present some problems and challenges when faced with enabling intelligent systems to behave in a 

manner which is autonomous and adaptable [32, 33].   

 

To overcome this, systems based on the distribution of control aim to divide and distribute the control 

problem into multiple tasks with their own computational demands, which are distributed to a number 

of agents representing the elements in the system. These agents may be entirely virtual, or a combination 

of hardware and software which forms a logical unit within the system referred to as a holon [34, 35]; 

with these being the common constituents of CPS's. The software-based nature of these agents 

additionally facilitates a simulation-based approach, as the necessary structure closely resembles that 

of Object-Oriented programming languages. Individual agents can be represented within a process 

simulation as instances of an object; each with protected and distinct internal and external structures 

and functions to facilitate their behaviour. These agents then coordinate their actions to achieve the 

given goal, with the result of decreasing the overall system complexity. Importantly, these agents have 

individual autonomy and are governed by their own cumulative experiences, enabling agents with an 

identical structure to learn optimal behaviours based on the systems they are presented with [36]. The 

use and capabilities of multi-agent systems have continued to increase, with a number of demonstrable 

applications in the manufacturing sector [37, 38]. The variation in behaviour that distributed control 

enables places simulation as a critical tool in developing distributed control systems, as the use of 

simulation is a powerful tool enabling the design, evaluation and subsequent optimization of intelligent 

agent performance on representative and varied tasks in a repeatable environment [39]. A detailed 

overview of intelligent agents can be found in [40, 41].  

 

To enable intelligent processing of sensory data, and coordination of actions with those of others, 

significant consideration must be given to the agent’s control structure, and how it is implemented to 



enable an adaptable and appropriate response. This requires consideration of collaborative behaviours, 

and the internal structure of learning and data analysis. Whilst of course teamwork is not unique to 

Homo Sapiens, collaboration is commonly considered a very human trait, many studies on collaboration 

have sought to understand cognitive processes as they occur in humans, and to replicate these cognitive 

processes. This field of work has existed for many decades as a branch of neuropsychology, and 

numerous cognitive architectures [42], which define the structure of control systems, enable intelligent 

behaviour to develop for various purposes. A common feature among many is a modularized structure, 

with multiple interacting separate elements responsible for different aspects of cognition.  The modules 

contained within each architecture are often structured around a central module which acts as a 

controller for internal processes and the sharing of information between modules. This module is then 

extended by other modules to facilitate necessary behaviours; such as Perception, Learning, Decision-

Making, and Memory. This serves to further reduce the complexity of control and facilitates the 

integration of low-level perceptual and motor control systems with higher-level knowledge extraction 

and decision-making processes [43]. The isolation of these elements enables established control 

techniques for image capture and robotic motion planning to be used for control alongside higher-level 

processing without interference.  This separation is analogous to the distinction between two types of 

cognitive processing found in human beings; Type 1 and Type 2. The former fast and intuitive; the latter 

slower and analytical [44]. Both types of processing are necessary, dependent on the situation at hand. 

Type 1 processing is typical in familiar situations where rapid response time is required, and where a 

large number of points of observation exist simultaneously. Conversely, situations where Type 2 

processing is dominant, are those where response time is non-critical and focus on the specific 

relationships between a relatively small number of observations. These situations are typically 

unfamiliar, and analytical reasoning is used to identify relationships, to form appropriate behaviours 

[45, 46].  

 

Many architectures exist to best achieve a level of cognition. Notable examples of these architectures 

include ACT [47], SOAR [48], and C4 [49]. These architectures, whilst conceptualized before the 

current capabilities of computational systems were fully understood, retain several insights with regards 



to structure and interaction, which are still valid today. There is, however, a wide variance in their 

application and capabilities; and many problems must still be resolved for effective integration and use 

of such methodologies in addition to the questions of agent behaviour and design, including the 

standardization and issues relating to connectivity, and security[50, 51]. 

 

Recent applications of intelligence to these autonomous agents have made use of machine learning 

(typically a neural network-based approach) to automate each agent's control and analytical processes, 

enhance the cumulative experience of each agent, and to control the decision-making processes [52-

55]. 

 

2.2.    Recent Machine Learning advances in Manufacturing 

 

With increasingly high-profile success stories in recent years, the emphasis on the utilization of machine 

learning for intelligent data processing continues to grow, and consequently its adoption in intelligent 

manufacturing methodologies [56]. Continual developments in computer science, of both hardware and 

software, have enabled machine learning techniques to become ever more powerful, and increasingly 

feasible to implement on accessible hardware [57, 58]. Consequently, the application of machine 

learning for prediction and decision making has emerged as a field of research in its own right, enabling 

highly accurate prediction of values concerning large numbers environmental and process parameters 

enables the autonomous control and optimization of complex systems [16, 21, 59, 60]. 

 

In the manufacturing domain, machine learning has been leveraged in numerous ways in recent years, 

and as discussed, is a key enabler of realising autonomous CPS’s. The intelligent analysis of data that 

supervised machine learning techniques have demonstrated have allowed for the development of 

advanced predictive systems, utilized to great effect with respect to maintenance problems [61], and 

productivity and logistics optimisation through detailed knowledge extraction from data and more 

accurate and dynamic simulated models, environments, and scenarios [23, 55]. More recently,  



advances in deep learning and reinforcement learning have further improved on these predictive models, 

computer vision capabilities, and furthered work towards realising systems capable of autonomous 

decision making and control [62, 63]. A thorough discussion of the application of machine learning in 

the manufacturing domain can be found in [64]. 

 

Within the field of machine learning techniques, artificial neural networks have emerged as a capable 

and versatile learning methodology [65]. These algorithms are, with minimal apriori knowledge, able 

to approximate the complex functions which govern the relationships between multidimensional 

datasets. Numerous network structures have been developed to successfully utilise numerous data 

sources: Convolutional networks, have been shown to improve perceptive ability by reducing high 

dimensional data to extract knowledge, successful applications in image recognition [66]; Recurrent 

neural networks can accurately track temporal changes and improved pattern recognition over time 

from time-series data, with demonstrated success in speech and written word comprehension and 

generation [67, 68]. 

 

In line with the identified applications of adaptability and flexibility, neural networks are also able to 

iteratively learn from experience (as opposed to an existing dataset) in cases of Reinforcement Learning 

where multidimensional input data captures the environment, and the network approximates the effects 

of actions taken and the resultant influence on the environment. This ability has proven to be the critical 

factor in enabling a wide number of recent applications to control and decision-making problems; as 

the capacity for self-improvement ultimately enables the networks to experience a wider variety of 

situations, and to genuinely learn interactions as opposed to patterns in the dataset. Networks able to 

explore and iteratively improve have demonstrated great success when applied to many tasks, including 

those with high dimensional input data and for advanced manipulation using sensory data [69]. 

 

Reinforcement learning, from a mathematical perspective, is often implemented in the form of a 

Markov-Decision-Process or MDP, which models a decision-making process based on a set of states, 

actions and rewards. Actions are selected based on a policy, π, which maximises the cumulative sum 



of rewards. Deep Q-learning Network’s (DQN’s), makes use of a multi-layered neural network to 

approximate the policy in an MDP, by calculating an optimum value function Q(s, a), or  ‘Q-Score’, 

representative of the quality of an action in a specific state [70, 71]. Such an approach is well suited to 

enabling adaptability in robotic systems, based on observations of the environment, as it makes use of 

state observations and observed feedback to determine performance and drive decision-making. This 

approach termed Q-Learning has proven exceptionally competent at learning complex and non-

deterministic systems, due to the ability of neural networks to act as function approximators and to 

evaluate their performance based on received feedback, which minimizes the need for labelled data, 

and the need to fully define the environment and its possible states [66, 72, 73]. Other, more involved 

reinforcement learning algorithms and approaches exist, such as policy gradient algorithms, which 

stochastically model the probabilities of positive and negative actions as opposed to assigning a direct 

value. This enables them to act in a continuous action space, and to determine appropriate action policy 

in more complex environments, at the cost of necessitating on-policy training, and increased training 

time [74]. Other approaches, such as actor-critic models, seek to combine the benefits of both a value 

and policy-based approach to reinforcement learning, but again with the increased complexity of 

computation and the associated disadvantages [75, 76]. 

 

Multiple techniques exist to improve DQN performance, including more advanced action-selection 

policy methods, such as epsilon decay, where the epsilon parameter is used to choose between random 

and selection action and is decreased over the training duration to encourage initial exploration of the 

environment. More recently, Google's Deepmind developed a network that outperformed existing 

examples on several ATARI 2600 games via two key insights. Firstly, the use of training methodologies 

such as Experience Replay, where a buffer of recent transitions is collected and sampled for training, 

serving as a form of memory, and secondly, using a separate target network to make predictions for 

training, enabling the algorithm to converge to a stationary target. This Target network is then updated 

using the decision-making network after a certain number of training steps [77]. This work by deep 

mind was also one of the first to consider additional layer architectures, by utilising the strength of 

convolutional nets to extract abstract representations from images, or in the case of the Atari Work, 



from the generated game screen pixels. This ability to create simple representations from high 

dimensional inputs further highlights the strength of neural networks to effectively learn from complex 

state information and has since been applied across varied domains, including manufacturing [78].  

More recent work has looked to combine aspects of Recurrent neural networks with DQN’s, due to 

their strength in tasks with temporal dependencies [79]. This has particular applicability to 

manufacturing tasks as many operations are constrained to a sequential task structure, i.e. many 

operations are detrimental if other actions have not been performed first. Consequently, developing 

network models capable of understanding these temporal links is crucial to the effective application of 

DQN Agent control to many manufacturing systems. 

 

The applicability of neural networks to manufacturing control is necessary to consider, as the strengths 

of the approach lend themselves well to manufacturing control tasks. Such tasks are commonly 

composed of sets and subsets of instructions, with a temporal order additionally, the identification of 

sub-tasks through abstraction can improve generalization of a developed approach, as many sub-tasks 

are likely to be similar across manufacturing operations. There exist already, a significant number of 

approaches that aim to utilise reinforcement learning, often DQN's, to improve a variety of tasks across 

the manufacturing domain [80, 81]. 

 

2.3.    Applications of Human-Robot-Interaction in Manufacturing 

 

As discussed, the extension of decentralized control into the intelligent manufacturing field necessitates 

the consideration of the interactions of intelligent agents with their human counterparts [82]. In the 

application focused on in this work, these interactions occur between robots and their human colleagues, 

either directly or as sequential members of a production process. At the system level, it also necessitates 

consideration of more traditional elements of collaborative robotics, and how multiple agents (human 

or robotic) may observe and adapt to one another to achieve a common goal. Work in this area is 

particularly applicable to dealing with the challenge of Human-Robot-Interaction, as humans possess 



their own agency, as well as a great deal of variation in their task performance due to a wide variety of 

external Human Factors, most notably fatigue [7, 8, 83], requiring a degree of adaptability to overcome.  

 

Some of the more directly collaborative (that is, featuring humans and robots performing a single 

combined action, as opposed to coordinating their actions) human-robot tasks have already benefited 

from the introduction of intelligent control systems; particularly those involving direct, physical 

collaboration in a shared workspace. Robotic operators are frequently used to improve strength in 

handling tasks, and the use of learning techniques for improving precision and coordinating motion in 

such tasks enables large components to be manipulated safely and with relative ease [84]. Similar 

learning methods have also been used in these tasks to improve Direct-Teaching of robotic operators, 

and enable some complex manufacturing processes such as composite layup and welding fabrication 

(which often require a level of flexibility to be automated and to achieve a similar finish and quality to 

human professionals), to be automated [85-88]. 

 

Other work in the field has focused on more passive forms of collaboration, such as how knowledge of 

others in terms of ability and expertise, combined with context, can be sampled from the environment, 

or observed directly, and used to inform behaviour to achieve or optimise a current shared goal [89-91]. 

Such techniques have proven useful in techniques such as gesture control which is increasingly used 

for robotic control in human-machine-interactions [92]. Expanding the application of intelligent 

manufacturing and learning techniques to the field of human-robot-interaction, by considering the 

impact of human factors on performance, may enable adaptable behaviour to be expressed in response 

to changes in human performance.  

 

Despite the successful application of neural network-based learning to improve the autonomy and 

adaptability of computational systems, and the demonstrated benefits of enabling adaptability to robotic 

systems which interact and collaborate with human counterparts; there remains limited work in applying 

reinforcement learning techniques to robotic control. Within the field of intelligent manufacturing, 

some implementations exist which look at machine learning from the system level. Such applications 



inherit several challenges due to the system complexity, whereas the benefits of a decentralized 

approach are well recognized as able to overcome such issues. The following section presents a 

methodology for implementing a reinforcement learning algorithm within a cellular robotic operator, 

to enable it to align its actions with humans which exist within the same process. 

 

3. Methodology 

 

As discussed in the previous section, the utilization of agents with a DQN used for decision-making 

within a discrete action space is well understood in many domains, and learning Agents continue to be 

developed and applied to various simulated and virtual tasks. Despite this, little work exists to 

implement their ability for robotic control, and virtually none on leveraging these abilities to understand 

and account for human behaviours. 

 

The authors hypothesise that a learning agent equipped with a DQN may be used to provide adaptability 

to robotic operators via a control algorithm which generates instructions to adjust the operational 

parameters of the robot. A DQN based approach to this reinforcement learning problem is chosen as 

the action space of robotic operators is discretized in the form of routines executed by the robotic 

controller. As such, the advantages of a stochastic approach do not apply in this case, without a different 

approach to affecting the decided behaviours with the hardware. The interaction dynamic present in 

most manufacturing operations is typically modelled in terms of speed, via the cycle time of the 

operator. As discussed, human operators inherently introduce variation and consequent disturbance into 

many processes leading to an increased idle time of operators and components and consequent decreases 

in productivity. 

 

The following section presents the authors novel methodology, which may be used to implement a 

Learning Agent within a simulated manufacturing environment, with the intent of using the agent's 

capability for improving the interaction dynamics between human and robotic elements. The 



methodology takes inspiration from many different approaches and existing frameworks and outlines 

the necessary considerations and process for appropriately discretizing a manufacturing process and 

providing the contextual information necessary for the agent to make informed decisions. 

 

The methodology also defines a learning system, which enables an intelligent agent to effectively adjust 

its operating parameters in response to changes from its environment and collaborators, intending to 

reduce this performance disparity. This improved adaptability can be leveraged to reduce the influence 

of disturbances on the process dynamics. The methodology is outlined in terms of information flow, in 

Figure.1 below: 

 

 

 

Figure 1. Architecture illustrating information flow through the Agent, and how it interacts with the 

simulation environment. 

 

Furthermore, the agent must be designed to facilitate effective collaboration and adaptability with other 

operators, both robotic and human, whilst also maintaining a balance with operational demands. The 

actions selected by the agent act as calls to subroutines via traditional robotic controllers, which enables 



a large variety of different commands to be represented dependent on the application and process. The 

methodology outlines 5 distinct steps that should be addressed to provide the desired functionality. 

Consideration must be given to the input observations and the output actions, and how these effectively 

model the environment and enable the desired control to be realised; The way rewards are defined and 

presented to the reinforcement agent, to enable effective learning of the interaction dynamic and the 

effect of its actions; How the agent interacts with the simulation environment to effect changes; how 

the simulation environment is parameterized, to appropriately model various interaction dynamics, and 

important to improve validity and generalizability of the approach;  And finally,  how such an agent 

may be evaluated concerning its ability, and its application to a real-world problem.   

 

3.1.    Defining the Observation & Action Spaces 

 

Within the system, there exist a potentially unlimited number of generated data instances. As discussed 

in the previous section, observations may take many forms, they may be low-dimensional array-based 

sources or full pixel images. The data necessary to capture the desired knowledge will vary between a 

wide number of applications. Consequently, most intelligent control solutions are bespoke, and it is 

likely this will (to a certain degree of customization and fit) remain the case. As such, a cohesive set of 

rules for defining which observations to make is crucial to enabling systems capable of learning and 

adapting based on the influence on performance. These key capabilities can be defined as follows: 

• The ability to conceptualize time and temporal patterns, enabled by observing some time-

keeping data source. This enables identification of changes from one event to the next, critical 

for the analysis of changes over time. 

• An awareness of the agents own performance, which is necessary to quantify this value to 

enable a value comparison with the respective rewards, and how it varies from target 

performance. 

• Conversely, awareness of other agents’ performance, and how this changes in response to the 

actions taken.  



• Observation of any additional factors that are necessary to model the required dynamics of the 

system. i.e. anything that may change and influence the system that it should be able to account 

for.  

 

These abilities allow the intelligent agent to build a sufficiently detailed representation of the 

manufacturing process, concerning the desired control factors. To reduce performance disparity, the 

following data points are defined to encompass the necessary information. Combined, these form the 

observation space: [CT, TCT, CT, IT, CIT, SM, BC]: 

 

• The Agent Cycle Time (CT), defined as the time between completion of each action. 

• The Target Cycle Time (TCT), given by: 

• Remaining No. Products to Target/Shift duration remaining 

• The Collaborator Cycle Time (TCT), multiple of these may be defined for multiple 

collaborators. 

• The Idle Time (IT), which is the consequence of performance disparity and is indicative of the 

task performance 

• The Collaborator Idle Time (CIT), an additional consequence of performance disparity 

• The Speed Modifier (SM), which represents the current state of the control parameter. 

• The Buffer Contents (BC), the number of products in the transition space, necessary to infer 

the impact of actions on the collaborator. 

 

Similarly, to the Observation Space of the agent, it's Action Space must also be defined, which describes 

the available actions that the agent can make to influence its environment. As with the Observation 

space, the application domain is almost limitless, and there exist no standard frameworks for developing 

and defining these actions. To develop an agent able to control and adjust operating parameters, such 

as movement speed, force application, etc. there are several considerations. These actions provide a 



large range of functionality and enable a robotic operator to achieve a wide range of tasks; and 

importantly, the final action, to adjust the operating parameters, enables dynamic adaptability of the 

control system. In the presented application, this takes the form of movement speed. To enable effective 

integration with a reinforcement learning model, the range is discretized to the necessary degree of 

fidelity (i.e. smaller steps enable finer control), and the action space can be defined as: 

[Increase Parameter, No Change, Decrease Parameter] 

This identified set of actions will enable the agent to control the sequence of operations of the robotic 

operator and adjust how it performs these operations concerning its parameters. To further facilitate 

effective learning of the DQN, it is important to provide a measure of maximum and minimum values 

for each observation during the learning process to enable progressive normalization of the observations 

over a range 0 to 1. As these values are not known in advance, it is necessary to update the network 

with a re-normalized memory each time a new minimum or maximum value is encountered during 

training. This will likely lead to initial instability in training, but ultimately a more effective learning 

process. 

 

3.2.    Defining Reward Structure 

 

Within any reinforcement learning process, defining the reward system for the intelligent agent must 

be given careful consideration. Attention must be paid to not only the value of the rewards, and the 

factors that require positive or negative feedback, but also how these rewards are presented to the agent. 

 

A manufacturing scenario is comprised of several discrete states and actions which are governed by 

certain rules. For example, certain actions must be performed in the order of operation for the assembly 

or manufacturing task to be a success, whereas certain other actions may not have a clearly defined 

necessary order. Nonsensical operations, such as attempting to put something down when there is no 

held object should also be avoided by the design of the reward schema. A degree of reward shaping is 

applied through the assignment of values of similar magnitude for both positive and negative actions, 



avoiding large changes at single steps in learning. There are often cases where a non-ideal action must 

be taken to reach a state where a much more valuable action can then be performed. These issues are 

compounded by how these rewards should be presented, in what form, to what scale, and at which 

intervals. These factors influence agent behaviour by altering the feedback it receives from the 

environment based on its actions. Current work does not have a consensus or best practise established, 

and much of how rewards are generated and presented must be developed heuristically alongside the 

agent itself.  

 

The design of a reward structure in an application such as this, where the agent aims to optimise its 

performance against a dynamic variable, presents additional difficulties. The agent must achieve a 

balance between several dynamic values, which also are influenced by the agent's performance. In a 

typical Reinforcement learning application, agents are provided with fixed rewards which are selected 

to result in desired behaviours. In this application, the agent may be provided with a fixed reward, R, 

for each advancement of the manufacturing sequence, which is reduced by a Reward Penalty in 

proportion to the magnitude of the error between its completed Cycle Time and its operational targets. 

It may also be influenced by other values, both positively and negatively. In the case considered, the 

reduction of idle time is a key aim, and this value may be used to penalise the agent for choosing actions 

which lead to these states. This is illustrated in Equation 1. Furthermore, there exists the potential to 

prioritize the agent if necessary, by weighting the value of these errors proportional to the impact this 

has on the reward received, represented by w1 and w2 in Equation 2. 

Reward Penalty = (|TCT-CT|+|CCT-CT|)-Idle Time                                   (1) 

Reward = R-(w1 |TCT-CT|+w2 |CCT-CT|)-Idle Time                                   (2) 

Alternatively, rewards may be scaled for the agent, based on the combined error between the Robotic 

cycle time, the target performance cycle time, and the cycle time of the collaborator(s), the reward factor 

is calculated using Equation.3 below: 

Reward = R⁄(((|TCT-CT|+|CCT-CT|)-Idle Time))                                       (3) 



This equation will scale rewards based on how close the agent is towards a balance of its operational 

targets and amplify the smaller differences in performance when close to the idealised point of 

operation. These observations which equations 1-3 depend on are made for state, s’, and so represent 

the Cycle Time which the operator has just completed, the calculated Target Cycle Time for all products 

remaining in the shift, and the predicted value of the Collaborators next Cycle Time.  Furthermore, 

these values are dynamic, presenting issues for effective learning, as optimization towards a moving 

target has been a significant challenge for reinforcement learning systems, as evidenced by the 

performance gains Deepmind achieved using their target-fixing approach, which will also be leveraged 

here.  

 

It was mentioned in the previous section that to effectively deliver rewards to the agent, each parameter 

update precedes an iteration of the control loop. At each decision-making point, the agent can choose 

to increase or decrease the value of the controlled parameters, or effectively take no adjustment action 

and just advance the manufacturing sequence. As the rewards are influenced by the effects on the 

environment, i.e. by the balance of performance and target/collaborator performance, the manufacturing 

sequence must be advanced with the parameter selection to avoid a negligible state change and no 

meaningful reward generation. To be effective, rewards must be delivered in response to actions on 

either side of an update to the environment. 

 

3.3.    Simulation Integration 

 

With the capabilities of the intelligent agent defined to enable the reinforcement network to 

appropriately observe, respond, and affect the environment, the simulation model can be designed 

appropriately. Using the Anylogic simulation package [93], a system-dynamics based simulation can 

be combined with agent-based control to explore agent performance. The package is Java-based, 

enabling easy integration with the Deep-Learning-4-Java (DL4J library)[58]. The library facilitates the 

development of a Q-Learning network, that can be integrated effectively with the simulated 



environment to provide control decisions.  

 

3.3.1.  Agent Interaction 

 

The simulation model contains elements to represent several different operations, which are suitable 

generalized. Within a manufacturing operation, we can define again several key capabilities that are 

required to enable the necessary behaviours: Pick up and put down products; Move products from one 

location to another; Capacity to scrap a product in the event of error; and the ability to manipulate 

products by following pre-set motions/routines. 

 

The elements within the simulation are consequently chosen to reflect the modelling of these abilities. 

Queue elements are used to represent individual or groups of products at a given position, which may 

be inserted or removed as necessary; Delay elements are used to represent operations with a fixed (or 

potentially variable) time associated with them (i.e. a fixing/glueing operation), and hold the product 

object for a defined period; additionally, Queue element with a capacity of one is used to represent the 

robotic gripper, which can move product objects around the simulation positions through variable 

output gates. These elements can be combined to represent any number of manufacturing operations, 

and the relevant observation and action spaces defined to enable a corresponding Q-learning model to 

be built. 

 

Within the simulation model, the robotic operator is controlled by a statechart, which makes the 

appropriate function calls to the neural network and enacts the result action which the neural network 

decides upon. This enables the control structure to be designed in response to the available states and 

actions of the operator for each application and isolates the control structure from the rest of the 

simulated environment, whilst triggering actions which influence the environment. The statechart takes 

the generic form illustrated in Figure.2. 

 



When in the Decision-Making state, function calls pass an observation of the environment to the neural 

network, which produces and returns a set of Q scores for the available actions, the highest-scoring 

action is selected (Although any policy can be used to make an action selection based on these scores 

epsilon greedy, Boltzmann etc.). This action is returned to the statechart, which triggers the action 

within the simulated environment, advances the simulation by the next operation sequence, generates a 

reward, and returns the full transition to the neural network where it is stored in its memory. The 

network is then fitted using a randomly sampled batch from its memory, using the target network to 

make forward predictions. The target network is then updated from the main network every tau training 

steps. As the received rewards are generated based on the influence of these factors the agent learns 

over time, to adjust these parameters to adjust its performance, and minimise the disparity between 

itself, and its collaborators. 

 

Figure 2. Generic behavioural Statechart format to discretize robotic processes within manufacturing 

simulation. Multiple similar states may be defined, and each state corresponds to a chosen action. 

 

3.3.2.    Environment Parameterization 

 

To effectively develop a learning model capable of minimising variation between robotic and human 

operators, a representative degree of variation must be represented in the simulation model. This is done 

by defining objects representing human operators and parameterising their task-performance based on 



several identifiable human factors. As discussed previously. there exist many manifestations of fatigue, 

particularly in cases involving dexterous manipulation of products. The task-duration, time-of-day, and 

day of the week all influence human performance, in ways which are dependent on the individual. To 

effectively parameters the environment, profiles are defined for three operators who will form the 

human element of the process, based on nominal cycle time CT. After each cycle, their performance is 

evaluated using a sequence of parameters: A shift modifier (SM), which adjusts performance based on 

the time of day (AM shift, midday shift, PM shift); a Weekday Modifier (WM), similar adjusting 

performance based on the day of the week; and a Fatigue Modifier (FM), which represents the 

susceptibility to time-on-task fatigue, and which scaled over the shift duration representing decreasing 

performance. 

 

Different profiles are defined to provide a wide range of conditions and combinations of susceptibility. 

Operator 1 was parameterized as an experienced operator, with low initial cycle time, but a 

susceptibility to time-on-task fatigue; Operator 2 was designed to represent an average case, with a 

nominal base CT equal to that of the design takt time of the system, and no fatigue influence was 

included.; and operator 3 was designed to represent a more novice worker with slower cycle time, but 

a pace which reduces the influence of fatiguing. No fatigue influence was included. The combination 

of the modifiers enables the calculated cycle time for each human operator at a specific point in time 

(Monday, AM, in the illustrated example.) to be obtained via equation (4), where n is the specific 

operator, and the values for each modifier for each defined operator is illustrated in Table.1. 

Calculated CTAnn = CTn · WMan · SMn · FMn                                              (4) 

Table 1.  Breakdown of the values used to modify the performance of each operator. 

Operator Number 1 2 3 

Base Cycle Time CT1 CT2 CT3 

Fatigue Modifier (End of shift) FM1 FM2 FM3 

Shift Modifier AM SMAM1 SMAM2 SMAM1 

Shift Modifier Midday SMMD1 SMMD2 SMMD1 



Shift Modifier PM SMPM1 SMPM2 SMPM1 

Weekday Modifier Monday WMa1 WMa2 

Weekday Modifier Tuesday WMb1 WMb2 

Weekday Modifier Wednesday WMc1 WMc2 

Weekday Modifier Thursday WMd1 WMd2 

Weekday Modifier Friday WMe1 WMe2 

 

Using these modifiers and the outlined equations, the simulation can generate models of HO 

performance, to induce different interaction dynamics and evaluate the DQN Agents versatility and 

ability to generalize over varied conditions. This is done by iterating the day of the week (Monday-

Friday), representing each week of production, and then by varying the shift order of the operators each 

week, to vary the Time of Day each is working (These orders are: 123, 231, 312). 

 

3.3.3    Evaluating Hyperparameters 

 

Q-Learning Agents have demonstrated a great deal of success across several applications in recent 

years, as discussed in section 2. The key issue with implementing and developing learning algorithms 

is hyperparameter selection, as these values are often crucial to the learning efficacy and are difficult to 

determine apriori. The initial stages are to evaluate the performance of these algorithms given different 

learning parameters to identify potentially viable configurations. This is achieved using a grid search 

and a pre-defined training and test set.  

 

Neural Networks are dependent on their internal structure, defined by the number of hidden layers and 

the number of hidden nodes in each of these layers. There are additionally dependent on a learning rate, 

and the choice of updater function, which describes how errors are propagated through the network.  

 

To evaluate the effect of these hyperparameters on learning, two datasets are constructed containing a 

set of state, action, reward tuples by selecting random actions over several simulation runs and 



observing the received rewards. These datasets form a training and a test set respectively (with a ratio 

of 10:1), and) and are used to evaluate each hyperparameter configuration. A DQN built and trained 

using the test set for each of the parameter configurations, which is then evaluated using the isolated 

test set producing an average error score for each configuration. The Root-Mean-Squared-Error, 

(RMSE) is used as the error score in this case, and for N samples, is given by: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑(𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)2𝑁𝑁                                                     (5) 

This error is indicative of the networks predictive accuracy in terms of assigning the correct Q-Value 

to each action, and this method enables fairly high confidence in the hyperparameters to be achieved in 

advance of implementation. 

 

In addition to the parameters associated directly with building an effective neural network 

implementation, there are other parameters which influence the integration and learning over time. In a 

Q-learning approach, consideration must be given to gamma, the discount factor, which influences the 

effect of future rewards; and Epsilon, which is used to implement Epsilon Annealing; enabling an agent 

to fully explore the state space. Defined through an initial maximum value which tends towards a 

minimum based on a specified decay rate, annealing to fast or to slowly can influence training 

performance. Both of these parameters should be evaluated where possible although typical values are 

gamma = 0.7 and epsilon decay = 0.99. 

 

The hypothesis of this work, based on the reviewed literature, and the application of similar learning 

techniques to similarly discretizable problems, is that an agent equipped to learn to utilise some form 

of Q-Learning Agent will be able to achieve an optimal solution based on its performance constraints; 

which may be utilised for robotic control through the selection of appropriate action. The simulation is 

intended to be suitably generalized, although as the design of such systems is application-specific, such 

a generalization is not entirely possible. Furthermore, once the simulation environment is defined, the 

approach provides a training platform for the agents, which is non-invasive of the real-world process; 



alongside the capacity to integrate agents within customizable and definable processes. These are both 

strengths of the approach, enabling variations and improvements to be evaluated and an optimal solution 

developed with ease and with minimal disruption.   

 

3.4.    Evaluating Methodology Performance 

 

Evaluation of the proposed methodology includes several considerations, as multiple elements must be 

verified. Most of the constituent elements are validated as part of their development, but a method for 

establishing benchmark performance and enabling comparisons to be drawn must also be defined. As 

mentioned in section 3.2, the key metric to validate the approach is performance disparity. Minimising 

the performance disparity is the key goal of the agent for several reasons: It reduces the impact of human 

variation on the process by minimising the development of operator idle-time, and the build-up of 

product between processes. This can be said to improve the interactions in terms of fluency, and has 

real benefits for manufacturing systems, by moving closer to an idealised one-piece-flow. 

 

This must be done, however, whilst maintaining process aims and constraints, including appropriate 

productivity. Balancing these contrasting demands is a key capability of the agent and must also be 

evaluated. The key metrics can, therefore, be said to be the cumulative idle time observed in the system 

(the product of performance disparity), and the number of products produced. 

 

To evaluate the efficacy of the approach, a static case will be defined, utilising a separate agent which 

cannot adjust its parameters and executes the operation sequence as a traditional robotic operator, and 

the resultant idle times and productivity used to benchmark the existing dynamics. The defined 

intelligent agent will then be implemented in the static agents' place, and the simulation re-run to 

provide a comparison.  The intelligent agent should be able to reduce the observed cumulative idle time, 

whilst maintaining an acceptable level of production. To further determine the generalizability and 

validity of the approach, several different simulation environments will be explored, and the process 



repeated to ensure that the agent can achieve an optimised level of performance in multiple cases. This 

is achieved partially by adjusting the simulation parameters as discussed to represent different 

conditions and interacting behavioural changes in the operators and will partially be addressed by 

varying the task and production demands. Furthermore, the simulation environment explored in this 

work is based on, and representative of, an existing real-world problem and process; with improvement 

over a static control case lending further validity to the approach. 

 

4. Case Study 

 

This section presents an initial case-study to demonstrate the simulation and learning methodologies 

and explore how they can be practically applied to a manufacturing process simulation. Within the 

observed process, performance disparity between robotic and human operations in terms of the duration 

of each operation is a source of disturbance to the overall process. This disparity is the result of changing 

behaviours in human individuals and is an inherent part of such interactions. The capacity for robotic 

operators to adapt their behavioural policy as a result of these changes can reduce this disparity with 

benefits at the interaction and process level. Consequently, it is hypothesized that the agent responsible 

for controlling the operation sequence will be able to, via reinforcement learning, be able to identify 

ideal actions for each of the states of the process and converge to an optimal policy capable of matching 

an identified target speed.  

 

4.1.   Manufacturing Process Modelling 

 

Following the methodology presented in the previous section, a case-study scenario was developed 

using the simulation package to demonstrate the feasibility of the approach, which is based on the semi-

automated production line of an industrial partner. The production line is responsible for the 

manufacture of single-use medical suction devices and features numerous automated and manual 

operations. The interaction between the first and second stages of the process provides an ideal case 



study, The initial manufacturing cell 1, is a robotic process which contains a combination assembly and 

glueing processes, and a curing process, before the product is passed to the second cell, which contains 

a manual assembly step. Furthermore, this manual assembly step is a good example of both physical 

and cognitive loading, as it involves both dextrous manipulation of objects and visual verifications and 

decision-making.  The two cells are separated by a discrete buffer that holds 10 products, which, when 

either empty or full, leads to observable idle time in each operator. The manufacturing process is 

illustrated in Figure.3.  

 

The manufacturing process was monitored, and timings made and averaged to develop nominal times 

for each operation in the process, and the overall nominal cycle time; alongside human performance in 

the simulation model. The parameters for human performance were defined as in Table.2. based on a 

combination of nominal process observations used to establish a baseline cycle time, and work 

examined in the existing literature regarding the impact of the discussed human factors, these values 

range approximately ±10s from the nominal 50s of cell1 operation.  

 

 

Figure 3. Tripolar production line at OSTE, illustrating the interaction between the robotic cell and 

human-operated cell, and the simulation model for the robotic operator developed in Anylogic.  

 

The operations performed by cell 1 in the process may be broken down into four key operations, two 

instances of retrieving product stock (one from an upstream process, one from a stockpile of 

components), a task that joins these two components, and another task with an associated processing 



time or time delay. These are represented by the elements down the left side and the block to the right 

acts as the robot's manipulator in Figure.3.  

 

 

 

 

 

Table 2.  Values used to profile performance for each of the three operators based on observed case-

study 

Operator Number 1 2 3 

Base Cycle Time 40 45 50 

Fatigue Modifier (End of shift) 1.2 1 1.1 

Shift Modifier AM 1.1 1 1.1 

Shift Modifier Midday 1 1 1 

Shift Modifier PM 0.9 1 0.9 

Weekday Modifier Monday 1 1.1 

Weekday Modifier Tuesday 1 1.05 

Weekday Modifier Wednesday 1 1 

Weekday Modifier Thursday 1 0.95 

Weekday Modifier Friday 1 1 

 

The action space of the agent is defined as detailed in the methodology, with actions identified to adjust 

the identified parameters, in this instance, the speed of operation (within acceptable limits) used to 

correct the overall cycle time to reduce the discrepancy between upstream or downstream operations. 

The resulting control logic of the agent is managed using the statechart illustrated in Figure.4, which 

makes the appropriate function calls depending on the current state of the operator. Again, following 

the presented methodology, the observation space of the agent is defined for the simulation 

environment. The state observation is provided as a 1D array of vector values representing the data 

points or input values, that are necessary to provide the policy with appropriate decision-making 



information. Such information will vary between applications, but in the presented case study contains 

6 main variables: the Robotic Operator's previous Cycle Time (CT); The calculated Target Cycle Time 

to reach the production target (TCT); The cycle time(s) of the current collaborators (upstream or 

downstream operators, each will have their own input variable) Collaborative Cycle Time (CCT); the 

current parameter modifier, the Speed Factor (SF) in this application; the current buffer contents (BC); 

and the Idle Time (IT) for the last cycle.  

 

 

 

Figure 4. Statechart used within Anylogic to determine robotic operator behaviour, each yellow state 

is an action 

 

4.2.   Agent Training 

 

Initial hyperparameters were identified following the search approach detailed in the methodology. 

Figure.5 below presents the grid search results for the DQN. Both approaches were evaluated on 

different dataset sizes, of 1000 and 10,000 instances. The networks were constructed using RELU 

activation functions and Adam updater. The networks were trained using stochastic-gradient-descent. 

Anomalous results were identified and not included in the colour-mapping, to provide a clearer 

indication of performance variation.  



 

From the graphs illustrated, ideal hyperparameters can be selected based on the combinations which 

result in the lowest overall RMSE. The concentration of blue value at the top of the graphs in Figure.5 

suggests that the most accurate estimations can be achieved using two hidden layers and 10 hidden 

nodes per layer, achieving the highest and stable accuracy for multiple learning rates. However, Figure.5 

also suggests that a very simple, single hidden layer 3-node network is also highly accurate in terms of 

predicting these values, however, this configuration is likely to suffer from overfitting of the model, as 

a result of the low number of hidden nodes in relation to the number of input variables. As the heatmap 

shows that minimal gains come from significantly increasing the number of hidden nodes, a 5-hidden-

node network as also selected to evaluate a simple model’s performance, as this is less susceptible to 

overfitting in relation to the number of input variables. The influence of the learning rate on predictive 

accuracy is present, but negligible in comparison to the influence of the network structure. A Learning 

rate of 0.0025 will be used as lower rates tend to offer the best performance overall.   

 

Figure 5. Hyperparameter grid search results for DQN Agent using: a)10k training instances, and 

b)25k training instances. RMSE scores represented by the colour (blue lowest).   

 

Both datasets generate results of the same order of magnitude in term of accuracy for both training set 

sizes, with the 25k instance training set being slightly worse. This is potentially due to the greater 



variance within the examples. This indicates that smaller training batches may be advantageous in terms 

of training time with limited impact on predictive accuracy. 

 

Training episodes were set to represent a full day of real-time operation, to enable the agent to explore 

as much of the state space as it was likely to encounter. These days further represented each weekday, 

and three shift patterns were used to provide examples of operator performance at different times of the 

day. Epsilon annealing was utilised as discussed in the methodology. The following sub-sections 

present the results of the heuristic development process for the agent implementation, and the series of 

simulations run representing the changing temporal conditions for the specified number of training 

iterations. 

 

5. Simulation Results 

 

The following section presents the results of the heuristic development process and outlines the 

application of the methodology to a generalized manufacturing interaction. The agents were generated 

and trained as outlined in the methodology, and a series of simulations run representing the changing 

temporal conditions for the specified number of training iterations. The first section discusses the 

training performance of the DQN Agents alongside the static behaviour case and the relevant metrics 

of evaluation. The second section compares the effect of the gamma parameter determining the weights 

of future rewards, alongside different reward structures and their effect on Agent performance. 

 

5.1.   Evaluation of Algorithm Performance 

 

This section explores the impact of the DQN approach to generate an action policy and compares the 

effect of this to the static control case.  As discussed in the methodology, the simulation environment 

is parameterised to represent three different human operators and to investigate the variation of 

performance of several factors over time. As such, the static policy performs better under some 



conditions than others, as a result of the natural variation in how these factors influence the system in 

combination. As discussed at various points throughout this work, the key aim is to reduce performance 

disparity between robotic and human operators based on parameter selection. Consequently, to evaluate 

the efficacy of these approaches in terms of providing benefit to the system, the cumulative Idle Time 

and the number of products produced are the best indicators of performance. These values are recorded 

for the Static case and used as a benchmark for DQN Agent performance.  

 

Using the combination of hyperparameters identified from Figure.6 as providing the best predictive 

accuracy, two DQN agents were trained in the simulation environment over 500 iterations. The agent's 

scores, productivity, and total idle time were recorded for each iteration, and are illustrated in Figure.6. 

These DQN Agents were then evaluated over another full simulation run of 15 iterations without further 

training, to evaluate performance in terms of the system. The values of idle time, DQN score and 

productivity can be seen, alongside those for the benchmark case in Figure.7. These figures show that 

both configurations converge to a solution, and that performance after training and compared to the 

static behaviour case is improved in terms of decrease idle time and maintained levels of production. 

 



Figure 6. Results of DQN Agent training over 500 iterations for both the 5 Hidden Node and 10 

Hidden node configurations.  

 

 

 

 

 

 

 

 

Figure 7. Comparison of DQN Agents to benchmark case in terms of Idle Time, DQN score and 

Product Count.  

 

5.2.   Comparison of Reward Structures 

 

After evaluating the initial parameter selections, the influence of both the selected reward structure and 

effect of the gamma parameter is evaluated. The same methodology as before is repeated using the 

single-layer 5 hidden node configuration (selected for its simplicity and overall training stability), for 



each of the reward structures outlined in the methodology. A base value of 10 is used for R. Each of 

these evaluations is repeated for gamma values of 0.1, 0.7, and 0.9. Further to this, both the penalty 

(Equation (1)) and the scaled reward structure (2) are evaluated for similar agents to explore how this 

may influence learning ability and policy generation, as described in Section 3.3). Figure. 8 illustrates 

the training of these agents for different gamma values for both reward structures in terms of the score 

achieved by the agent. 

 

 

 

Figure 8. Comparison of DQN structures i)5 Hidden Nodes ii) 10 Hidden Nodes, and training in terms 

of DQN score for different gamma values and reward structures: a) Penalty rewards, and b) Scaled 

rewards. 

 

Figure.8. shows that the gamma parameter has a negligible effect on learning or training performance 

for this application using the penalty reward policy. Conversely, the scaled reward policy can be seen 

to be much more sensitive to the gamma value, with only the 0.1 network (prioritising immediate reward 

and usually associated with poor generalizability) showing any indication of convergence to a consistent 

policy. Moving forward, the single-Layer, 5 Hidden Node configuration will be used, following the 



penalty rewards policy, and using a gamma value of 0.7 will be chosen to balance the demands of 

current and future rewards. 

 

5.3.   Evaluating Performance in multiple scenarios 

 

With the optimal hyperparameters and reward structure established, the fully developed agent can be 

comprehensively evaluated over multiple scenarios to determine its generalized knowledge and 

performance. As discussed, in the methodology, human task performance is dependent on multiple 

human factors which affect fatigue and introduce variation. The simulation is parameterized to represent 

the influence of these factors, and the intelligent agent is evaluated across the range of different 

scenarios. The benchmark static-case agent is run in the simulation initially and used to create a 

comparison case. Figure.9 illustrates both agents' performance with regards to the differing variation 

introduced by the human colleagues, in terms of both the time of day (shift order) and day of the week 

respectively and compares this performance to the static behaviour case. 

 

 



Figure 9. Breakdown of DQN performance over a 3-week simulation run incorporating different shift 

orders. 

 

The agent's performance is also evaluated in terms of multiple constraints, as already evidenced in the 

previous sections, where the agent was shown to find an optimal solution prioritising minimising idle 

time, Figure.10 illustrates the agent's performance when tasked with an increased workload, the target 

products is increased to 80 per hour or a nominal cycle time of 45s. This is important, as it demonstrates 

that the agent is capable of generalizing its policy dependent on varied demands; providing a policy that 

balances both demands without one becoming a priority, and consequently improving the reliability of 

the approach in different applications and scenarios. 

 

 

Figure 10. Comparison of DQN to benchmark for increased production demands.  

 

6. Discussion 

 



The results presented in the preceding section validate the author's hypothesis that a software agent 

made intelligent by the use of machine learning techniques, may be effectively used to improve robotic 

adaptability to minimise the impact of human performance variation. The presented results support the 

author's proposed methodology and demonstrate that the outlined approach may be used to effectively 

reduce performance disparity between a robotic operator and its human colleagues, over a varied set of 

scenarios. 

 

The results support the observations from the literature suggesting that a reinforcement learning 

approach has an application in terms of improving robotic adaptability and that such an application may 

be further exploited to improve interaction dynamics between robots and their human counterparts. In 

contrast to the existing documented cases, where the focus is on directly aiding or learning from human 

motion, the authors' approach proposes a novel application of adaptability that focuses on accounting 

for performance variation in terms of factors which influence human repeatability; ultimately improving 

the scope for the use of Intelligence, to provide benefits to manufacturing systems. Adaptability to 

change behaviours and actions to different demands and contexts is a key identifier in the CPS 

architecture and has significant implications for improving the manufacturing process as a whole. 

 

The results support the author's hypothesis that such adaptability, leads to reduced idle times whilst 

maintaining production, which can be said to improve productivity and bring production in line with 

idealised one-piece-flow objectives set by the case company. Furthermore, the application of the 

approach to a real-world case-study outlines its validity and demonstrates how tangible benefits may 

be realised. 

 

Figure 6 illustrates that both DQN Agent configurations can effectively learn a policy to maximise their 

scores within the simulated process and that surprisingly, the more stable learning performance can be 

seen in the less complex network. The scores are initially random due to the initially high epsilon value, 

but the scores can be seen to converge over time to a consistent value; although this could be further 

refined through training for additional iterations, as there is still some variance in the DQN scores. 



Additionally, as with the static case, the difference in variation between different conditions may also 

prevent the Agent from achieving a perfectly repeatable policy; i.e. in some conditions, the optimal 

policy may result in lower performance, simply due to the specific combination of factors.   

 

Figure.7. shows that the DQN Agents are capable of learning and applying an appropriate action policy, 

to match the level of production and generate a decrease in observed idle time compared to the static 

case. This is the result of relatively few training iterations and demonstrates the effectiveness of DQN’s 

being employed for robotic control in such a manner. What is not clear from the illustrated figures, is 

that in the static case, the observed idle time is largely that of the robotic operator itself, with the 

associated costs. When adaptable control is implemented, the cumulative value of observed idle time is 

moderately decreased, but it is the human collaborator that is idle, providing cost savings alongside 

softer benefits such as lower stress levels and a better working environment. 

 

The evaluation of different reward structures illustrated in Figure.8 shows a disparity in performance 

across the two evaluated reward structures, most likely as a result of the structure design. Rewards for 

most states will be similar in terms of value, as there is limited potential for one state to lead to a much 

more valuable future state under the penalty policy, whereas the opposite is true for the scaled policy, 

where the closer performance is to optimal, the greater these potential differences become. The stability 

of rewards is also likely the reason why the gamma parameter has a lesser influence on the penalty 

reward structure. This evaluation provides good evidence for use of a fixed reward, penalty-based policy 

for generating rewards for an agent in this application, resulting in a generally fast and robust training 

process.  

 

Figure.9 illustrates that the Agent can achieve a consistent policy across a number of scenarios and with 

interacting dynamics. This consistency of performance supports the validity robustness of the approach, 

along with its generalizability to different applications. This is further supported by the multiple 

potential network configurations and the general resilience of the agent to adjustments to its parameters. 

This is additionally supported by Figure.10, which further demonstrates the agent's ability to generalize 



to an optimal solution that represents a balance of the demands placed on it.  It may also be indicative 

of a robust learning policy in the algorithm and is likely a combination of both these factors.  

Furthermore, the best performing network architecture was, by contemporary standards, a simple 

model, which suggests that the approach may be greatly expanded in terms of scope and capability by 

incorporating more advanced network architectures moving forwards. 

 

Besides, the software developed during this research, when utilised with the appropriate software 

package, forms an easy to implement the tool with which to experiment with reinforcement agents in a 

customisable simulation package. When utilised with an appropriate simulation package, this enables 

advanced control systems to be evaluated in an isolated environment, facilitating both development and 

implementation of the approach. This furthers the scope for the application of reinforcement learning 

technologies into manufacturing systems and provides a foundation for others to build on this work, 

which is anticipated and hoped for by the authors, to further expand the merits of this approach. The 

primary limitation of the presented framework and reinforcement learning implementation is its relative 

simplicity to other more current demonstrations, and the extension of the learning elements proposed 

to make use of more advanced algorithms may enable more advanced and effective policies to be 

developed.  

 

7. Conclusion 

 

To conclude, the work presented is intended to illustrate the applicability of reinforcement learning to 

the problem of robotic control within manufacturing. Presented within the focus of utilizing intelligence 

within data processing, the results indicate that there is potential for distributed agents to improve the 

adaptability of robotic systems, specifically in cases where there is significant variation introduced by 

human operators. 

 

The work extends the theory in this area, by providing a novel method to develop and implement a 

reinforcement learning-based intelligent agent and demonstrating the efficacy of the approach. The 



presented results illustrate that an intelligent agent utilising a relatively basic learning algorithm is 

capable of building a model representing an environment and selecting an action policy to optimize its 

performance; and that such an agent’s policy may be used within these interactions, to provide robotic 

operators with enough adaptability to minimise the performance disparity and reduce the idle time 

observed whilst maintaining the appropriate level of production. This has tangible benefits to 

manufacturing systems, in terms of facilitating lean operation. The work also demonstrates that 

effective simulation can enable reinforcement learning agents to be developed and trained in a 

controlled environment as opposed to an online and real-world setting, potentially speeding this process 

whilst minimizing risk, and provides a robust methodology to do so.  

 

Concerning the future direction of this work, the modular nature of the proposed implementation 

intentionally provides scope for more advanced algorithms to be implemented for data analysis, and 

more capable agents to be developed, and more detailed representations built, to further leverage the 

potential benefits of the approach. It is also suggested that more work is warranted into understanding 

more passive modes of interactions between robotic operators and their human collaborators is also 

warranted, across a number of different human-robot-interaction scenarios.  
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