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Key Points: 

1. Bayesian Model Averaging with fixed and flexible prior structures were applied to combine the 

posterior probability distribution of four hydrological models. 

2. Custom prior inclusion and uniform prior induced a much sharper posterior median. 

3. Putting a prior on both θ and g makes the analysis naturally adaptive and avoids the information 

paradox. 
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Abstract  

This paper introduces for the first time the concept of Bayesian Model Averaging (BMA) with multiple 

prior structures, for rainfall-runoff modeling applications. The original BMA model proposed by 

Raftery et al. (2005) assumes that the prior probability density function (pdf) is adequately described 

by a mixture of Gamma and Gaussian distributions. Here we discuss the advantages of using BMA with 

fixed and flexible prior distributions. Uniform, Binomial, Binomial-Beta, Benchmark, and Global 

Empirical Bayes priors along with Informative Prior Inclusion and Combined Prior Probabilities were 

applied to calibrate daily streamflow records of a coastal plain watershed in the South-East USA. 

Various specifications for Zellner's g prior including Hyper, Fixed, and Empirical Bayes Local (EBL) 

g priors were also employed to account for the sensitivity of BMA and derive the conditional pdf of 

each constituent ensemble member. These priors were examined using the simulation results of 

conceptual and semi-distributed rainfall-runoff models. The hydrologic simulations were first coupled 

with a new sensitivity analysis model and a parameter uncertainty algorithm to assess the sensitivity 

and uncertainty associated with each model. BMA was then used to subsequently combine the 

simulations of the posterior pdf of each constituent hydrological model. Analysis suggests that a BMA 

based on combined fixed and flexible priors provides a coherent mechanism and promising results for 

calculating a weighted posterior probability compared to individual model calibration. Furthermore, the 

probability of Uniform and Informative Prior Inclusion priors received significantly lower predictive 

error whereas more uncertainty resulted from a fixed g prior (i.e. EBL).  

 

Plain Language Summary 

This study presents a two-step procedure that includes model calibration of a range of hydrological 

models using DREAM (zs) algorithm, followed by ensemble prediction of streamflow using Bayesian 

Model Averaging (BMA) with various prior structures. The hydrological modeling simulations were 

first coupled with a new sensitivity analysis model and a parameter uncertainty algorithm to assess the 

sensitivity and uncertainty associated with each hydrologic model simulation. BMA was then used to 

subsequently combine the simulations on the most important parts of the posterior probabilities of each 

constituent hydrological model. Analysis suggests a BMA with fixed and flexible priors provides a 

coherent mechanism and promising results for calibrating a weighted posterior probability compared to 

individual model calibration. The hierarchy of prior distributions used in this study increased the 

flexibility of BMA fitting for daily streamflow simulation and reduced the dependence of posterior and 

predictive uncertainty (including model probabilities) on prior assumptions of hydrological modeling 

simulation. 

 

1. Introduction 

Model uncertainty is a critical problem that raises questions about the alternative modelling paradigm 

to simulate observed processes. Which set of the model approaches is appropriate to faithfully simulate 

and explain the variation in the observational records? How should one explicitly or implicitly evaluate 

the suitability of alternative models and characterize predictive uncertainty arising from different 

modeling assumptions? In addressing these questions, multi-model ensembles (MME) has become a 

popular alternative for probabilistic merging of simulations. By exploiting the information contained in 

multiple modeling structures, the MME approach is expected to provide better and more reliable 

estimates of forecast uncertainty. In the last decade, MME has gained popularity in different research 

disciplines including climatology (Grimitt and Mass, 2002; Barnston et al., 2003; Palmer et al., 2004; 

Raftery et al., 2005; Bao et al., 2010), public health (e.g. Thomson et al. 2006), and agriculture (e.g. 

Cantelaube and Terres 2005). In hydrology, MME has led to significant improvement in flow simulation 

and estimates of the forecast probability density function (pdf; e.g., Rajagopalan et al., 2002, 2005; 

Doblas-Reyes et al., 2005; Gneiting et al., 2005; Min and Hense, 2006; Duan et al. 2007; Rings et al., 

2012; Madadgar and Moradkhani 2014; Najafi and Moradkhani, 2015; He et al., 2018; among others).  

 

The first attempt in using MME in hydrology used the simple average method (SAM), the weighted 

average method (WAM) and the neural network method (NNM) in simulation (Shamseldin et al., 1997). 

Fuzzy systems were also employed to combine the simulation results of different conceptual rainfall-

runoff models in a flood forecasting study (Xiong et al., 2001). Subsequently a number of studies 

showed that ensemble simulations outperformed the best model if the aim was to use the outputs in 
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operational forecasting system (Butts et al.;2004; Georgakakos et al.,2004; Rajagopalan et al., 2005; 

Grantz et al., 2005).  

 

The theoretical basis of MME was strengthened by the introduction of Bayesian Model Averaging 

(BMA), a statistical method of producing probabilistic forecasts from ensembles of regression models, 

accounting for model uncertainty within a Bayesian framework.  An excellent overview of the theory 

behind BMA is given by Hoeting et al. (1999).  Raftery et al. (2005) provided an early application of 

BMA to weather forecasting.  BMA addresses uncertainty by calculating a weighted average of all 

potential model combinations (Feldkircher and Zeugner, 2009) and describes both between- and in-

model variances (e.g., Ajami et al., 2006). These weights arise naturally as posterior model probabilities 

(PMP) and sum all strengths of individual competing models based on the probabilistic likelihood 

measures of a model.  

 

Despite recent applications of BMA in hydrology (Grantz et al., 2005; Rajagopalan et al., 2005; Ajami 

et al., 2006; Duan et al., 2007; Viney et al., 2009; Vicuæa et al., 2011; Parrish et al., 2012; Mendoza et 

al., 2014; Schepen and Wang, 2015; Najafi and Moradkhani, 2015; Sharma et al., 2019; Darbandsari 

and Coulibaly, 2019; Xu et al., 2019), limited insight has  been provided into the conditional distribution 

of each individual forecast model. The preliminary reason is that the most common BMA approach 

centers on a linear function of the original forecast and standard deviation and assumes each ensemble 

member has a normal prior distribution with a similar variance. However, Rings et al. (2012) have 

recently strengthened this approach and proposed a joint particle filtering and Gaussian mixture 

modeling framework to derive the conditional pdf. Nevertheless, both approaches can be criticized for 

relying too strongly on a symmetric prior distribution (i.e. normal or Gaussian priors) that may be 

difficult to justify in hydrological applications (see Samadi et al., 2018). In other words, BMA posterior 

model probabilities in the context of model uncertainty are typically rather sensitive to the specification 

of the priors (Fernández et al., 2001). An alternative and more appealing approach would apply a 

hierarchy of prior specifications.    

 

BMA uses a Bayesian approach to quantify model uncertainty.  Specifically, consider a class of 

regression models denoted by M  where the subscript represents a model index.  The analyst specifies 

a prior on the unknown    ),,( , where   denotes an intercept that is common to all 

models,  is the p
-dimensional vector of nonzero regression coefficients, and  represents a precision 

parameter (the inverse of the error variance) in each model.  The priors on the regression parameters 

generate prior distribution for the possible models 
)( Mp

, and from these posterior probabilities of 

each model can be obtained (Liang et al., 2009):  

.
)|()(

)|()(
)|(




 




MYpMp

MYpMp
YMp                                                                   (1) 

This study aims to use four rainfall-runoff models to predict (via simulation) daily average discharge. 

The outputs of these rainfall-runoff models are denoted as 𝑋1, 𝑋2, 𝑋3, 𝑋4 (Equation 2). As explained in 

Section 2.2, the models use forcing input data to simulate the streamflow. The simulated outputs from 

the hydrological models are then used as the regressors in the BMA approaches to predict observed 

daily discharge Y from 2003 to 2005, each simulation model provided a weight to the predicted daily 

streamflow records:  

 

 𝑌 =∝ +𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝜀              (2) 

 

Where 𝛽𝑖 is considered as the weight of the ith hydrological model and 𝜀 represents the random error 

term. 
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BMA was applied in model selection to calculate the weights based on the performance of each 

hydrological model during a training period.  Various priors on the regression coefficients will be 

considered. One should be wary of subjective priors for model-specific coefficients that are not robust 

enough for a high-dimensional model space (Fernández et al., 2001; Liang et al., 2009).  However, 

despite the acknowledgment that posterior model probabilities can be quite sensitive to the specification 

of the prior distribution (Zellner, 1986; Kass and Raftery,1995; George, 1999; Garthwaite and 

Mubwandarikwa, 2010), the BMA approach has not gained significant attention in practice primarily 

due to the perceived computational burden.   

To address this shortcoming, Zellner’s (1986) g prior for   (Equation 3) with sample size N and design 

matrix X (which contains K potential variables or, in this case, hydrologic simulations) was employed 

in this study. Zellner’s prior takes the form of the normal distribution with zero mean vector and 

covariance matrix 
1)( 

 XXg T
. 

 

),)(,0(~,| 1

  XXgNM T                                                                                        (3) 

 

Zellner’s priors can be used as a special case of mixtures of g priors (Liang et al., 2009), usually 

combined with a locally uniform (Jeffreys) prior on 0  (Bové and Held, 2011), if the design matrix 
T

nxxX ),...,( 1   is centered to ensure  pn

TX 01 
.    

 

As an extension to Zellner’s g priors, the hyper-g priors distribution, proposed by Liang et al. (2009), 

was applied in this study. These priors permit a closed form expression for the corresponding marginal 

likelihood )( yf which is vital for efficient model inference (Bové and Held, 2011). The prior on the 

hyperparameter g is selected, based on standard Bayesian asymptotic theory proposed by  Bernardo and 

Smith (2000), so that the prior distribution converges to the normal distribution (Equation 4).   

 

),)(,0(~,| 1

  WXXcgNg T

pp                                                                               (4) 

Both the Zellner’s g and hyper-g prior families provide flexibility, adaptability, and a computationally 

efficient procedure to deal with high dimensional (noisy) data that are common in hydrological 

simulation. 

 

The practical advantage of Zellner’s g is that it exerts non-negligible influence on posterior inference 

and governs how posterior mass is spread over the models while Hyper-g prior families adjust the 

distribution of posterior mass based on the information provided by the data (prior dependence) and 

greatly reduce the g prior sensitivity. More significantly, the hyper-g prior has several advantages for 

hydrological model simulation. First, the hyper-g prior greatly reduces the g prior sensitivity of posterior 

mass by shrinking the estimated coefficients more toward zero in noisier data sets, which allows for a 

data dependent shrinkage factor (also known as a Bayesian “Goodness-of-fit” indicator). Secondly, it 

adjusts the distribution of posterior mass based on the patterns in the data. Thus, if noise dominates the 

dataset, the posterior distribution will be distributed more evenly, whereas in the case of minor noise, 

posterior mass will be concentrated even more as in fixed settings that impose large values for g 

(Feldkircher and Zeugner, 2009). Thirdly, in addition to being computationally feasible, it gives the 

user the flexibility of formulating prior belief without the risk of affecting posterior statistics.  

 

Since the introduction of these priors in 2009, they have rarely been implemented in any hydrological 

modeling application. In this sense, we implemented the contributions of Liang et al. (2009) and 

Feldkircher and Zeugner (2009) to BMA for a coastal plain streamflow calibration where a closed-form 

representation of posterior mass was appropriate based on the noisy dataset. In addition, we included 

several prominent prior structures such as the benchmark prior (Fernandez et al. 2001) to examine the 
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predictive properties of various settings for g. These priors lead to simple closed form expressions of 

posterior statistics and the resulting marginal likelihood that may shed light on predictive posterior mass 

driven by various prior structures for streamflow calibration. We hypothesize that these priors can 

enhance hydrological simulation if we relax the assumption of a preconceived and time-invariant form 

of prior in favor of fixed (Zellner’s g families) and flexible (hyper-g prior families) priors. This should 

further help integrate the concept of BMA with multiple prior structures into hydrological modelling 

calibration.  

 

This paper introduces the theory and concepts of fixed and flexible priors and demonstrates their 

usefulness and applicability for daily streamflow simulation of a coastal plain drainage system in the 

south-east USA (SEUS). A new sensitivity analysis model, the Generalized Parameter Sensitivity 

Analysis (GSA), was developed to define which parameters have significant influence on streamflow 

calibration of conceptual to semi-distributed hydrological models.  The simulations were then 

accomplished using the BMA procedure with various prior specifications, combining the simulations 

of the posterior model distribution for each potential hydrological model.  As the first attempt to employ 

this learning process, this paper does not deal with the details of each individual modeling simulation, 

but rather focuses on the application of multiple priors for the BMA simulation, aiming at better 

modeling performance and introducing this procedure to the hydrology community. 

 

This paper is organized as follows: In section 2, the underlying theory and concepts of BMA with 

various priors are introduced. This is followed with a detailed description of the hydrological models, 

parameter uncertainty algorithm, and the study area. In section 3, we present the results of parameter 

uncertainty and streamflow simulation. Section 4 shows the results using fixed and flexible priors in 

BMA analyses. Finally, in section 5 a summary with conclusions is presented. 

 

2. Materials and Methods  

2.1. Bayesian Model Averaging  

BMA is a statistical postprocessing method that addresses model uncertainty in a canonical regression 

problem (Raftery et al. 2005). If we consider a linear model structure, with y being the dependent 

variable,  a constant,   the coefficient, and  a normal independent and identically distributed (IID) 

error term with variance
2 : 

 

                     ).,0(~ 2IN   (5) 

In the following discussion, X is a model matrix whose columns correspond to candidate explanatory 

variables and X
 denotes any model containing a subset of such explanatory variables. If there are 

many potential explanatory variables, each subset of which forms a model X
 from the columns of 

matrix X, then variables that should be included in the model need to be determined by estimating 

models for all possible combinations of these variables X1, X2, .... In perusing this, a single linear model 

that includes all possible variables may be inefficient and infeasible especially if there are a limited 

number of observations.  Including unnecessary explanatory variables can also lead to bias in the 

estimates of the coefficients of the important explanatory variables. 

 

To overcome this challenge, BMA has become a popular alternative to model selection. BMA tackles 

the problem by estimating models for all possible combinations of models and constructs a weighted 

average over all of them (Zeugner and Feldkircher 2015). If X  contains K  potential variables, this 

means estimating 
k2  variable combinations and thus 

k2  models. The weighted average stems from 

posterior model probabilities that arise from Bayes’ theorem shown below:  

 

,   Xy
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Where, )|( XyP represents the integrated likelihood which is constant over all models (a 

multiplicative term). Thus, the posterior model probability (PMP, ) is proportional to ),|( XMyP   

as the integrated likelihood (Zeugner and Feldkircher, 2015) which reflects the probability of the data 

given model M . By re-normalization of the Equation 6, the PMPs and the model weighted posterior 

distribution can be inferred for any statistic   or the estimator of the coefficient  .  
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One can elicit the model prior 
)( Mp

that reflects prior distribution. In BMA theory, Markov Chain 

Monte Carlo (MCMC) samplers are used to gather results on the most important part of the posterior 

model distribution; thus, to approximate it as closely as possible (e.g., Zeugner and Feldkircher 2015). 

This study used two MCMC samplers that are different in the way they propose candidate models. 

Specifically, we used Birth-Death (BD) and Reversible-Jump (Rev.jump) MCMC samplers. BD is the 

most common sampler in BMA that wanders through model space by adding or dropping regressors 

from the model. In this algorithm, a potential covariate (K) is randomly chosen; if K forms as part of 

model 
iM , then jM as the candidate model will have the same set of covariates as 

iM but for the 

chosen variable (Zeugner and Feldkircher, 2015).   

 

Rev.jump was proposed by Madigan and York (1995) that draws a candidate model using BD algorithm 

with 50% probability. jM randomly drops one covariate with respect to iM
and (randomly) adds one 

chosen from the potential covariates that were not included in the model iM
(Zeugner and Feldkircher 

2015). We refer the readers to Zeugner and Feldkircher, (2015) for more information on this sampler.  

The readers are referred to Raftery et al. (2005), Fernández et al (2001) and Ley and Steel (2009) for 

more information on BMA. 

 

2.2. Mathematical Structures of Priors 

2.2.1. Zellner’s g Priors 

Noting that the Zellner’s g prior forms part of the conjugate normal-gamma family in Equation 3, the 

posterior probabilities of models can be expressed through the Bayes factor for pairs of hypotheses 

using Equation 8:   

 

 
 ,:)(

:)(
)|(

' ''


 





b

b

MMBFMp

MMBFMp
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                                                                     (8) 

Where 
 bMMBF :'  is the Bayes factor that compares each M

to a base model bM  (known as the 

“encompassing” approach; see Zellner and Siow, 1980) given by:  

 

  .
):(

):(
:

'

'

b

b

MMp

MMp
MMBF




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                                                                                                     (9) 
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Here, we refer the choice of the base model of NM (the null model) as the null-based approach, while 

the full-based approach utilizes the full model as the base model (see Liang et al., 2009). M
 and NM  

are compared through the hypotheses 
0:0 H

 and 



pRH :1 .  

 

We may assume here that the columns of X  have been centered so that 01 XT
, in which case the 

intercept  may be regarded as a common parameter to both M
 and NM (Liang et al., 2009). This 

has led to the adaptation of  

,
1

)|,(


  Mp                                                                                                                  

(10) 

),)(,0(~,| 1




 XX
g

NM T                                                                                                

(11) 

Where  represents the (scalar) intercept. The priors in Equations (8) and (9), as a default prior 

specification for α, βγ, and φ under M
 are simply Zellner’s 

g
 prior. The marginal likelihood of 

Equations (10) and (11) can be estimated as below: 

 

𝑝(𝑌|𝑀𝛾 , 𝑔) =
𝛤((𝑛 − 1)/2)

√𝜋
(𝑛−1)

√𝑛
||𝑌′ − 𝑌||−(𝑛−1)

−

 

×
(1+𝑔)(𝑛−1−𝑝𝛾)/2

[1+𝑔(1−𝑅𝛾
2)]

(𝑛−1)/2,                                                (12) 

Where 
2

R
denotes the ordinary coefficient of determination of the regression model M

. If we 

compare M
with the null model NM , the resulting Bayes factor is:  
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                                                                   (13) 

In the next subsection, we explain fixed and flexible g priors based on Zellner’s priors used in this study.   

 

2.2.2. Fixed g Priors 

In BMA theory, the choice of g effectively controls model selection. A large g typically concentrates 

the prior on parsimonious models with a few large coefficients (Liang et al., 2009), while a small g 

leads to concentrate the prior on saturated models with small coefficients (George and Foster, 2000). In 

this study we used below fixed g priors and key terms are explained below in the following.  

 

- Unit information prior (UIP or g-UIP) or uniform prior: The UIP g prior, proposed by Kass 

and Wasserman (1995), includes the amount of information about the parameter equal to the 

amount of information contained in one observation. The amount of information in a parametric 

family is defined through the Fisher information. In this prior, the unit information prior 

corresponds to taking ng  , leading to a Bayes factor that behaves like the Bayesian 

information criterion (BIC; Liang et al., 2009). The UIP prior reflects a common prior model 

probability of
KMp  2)(  .  K denotes the number of potential regressors (in our context, the 
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number of hydrological models). The restriction in choosing prior expected model size and 

other factors is the main drawback of uniform prior distribution model in the BMA theory.  

 

- g-Risk inflation criterion (g-RIC or RIC): Foster and George (1994) proposed to calibrate a 

BMA model based on the g-RIC. Setting 
2Kg  calibrates the posterior model probability to 

asymptotically match the risk inflation criterion proposed by Foster and George (1994). 

 

-  Benchmark (g) prior (BRIC): Fernández et al. (2001) recommended the use of

),max( 2KNg   where K is the number of potential regressors, and N represents the sample 

size. BRIC bridges the g-UIP and the g-RIC priors, depending on the dimension of K.  

 

- Empirical Bayes Local (EBL) prior: EBL estimates a separate g for each model. The estimated 

g using the EBL prior is the maximum marginal likelihood estimate that is nonnegative and is 

computed using the following formula.   

 

 ,0,1max
^

 Fg
EBL

 

              where  

                                                                                             

(14) 

denotes the usual F statistic to test  0 .   

 

- Global empirical Bayes (GEB) prior: This prior assumes one common g for all models in the 

BMA model and estimates g from the marginal likelihood of the data and averages them over 

all models (Equation 15).  
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(15) 

One may view the marginal maximum likelihood estimate of g as a posterior mode under a 

uniform (improper) prior distribution for g.   

 

- Binomial model prior: The binomial model prior is a simple alternative to the uniform prior. 

This approach sets a common probability   of including each regressor. The prior probability 

of a model of size k
is given by:  

 

kKk
Mp


 )1()(                                                                                      (16) 

In this approach, setting prior model size ( m ) at a value <1/2 leads to a smaller model (e.g., 

Zeugner and Feldkircher, 2015).  

 

2.2.3. Flexible g Priors 

Let )(g denote the prior on g.  The marginal likelihood of the data 
)|( MYp

is proportional to the 

Bayes factor computed as below: 
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Under NMM  , the posterior mean of 
],,|[, YME 

can be calculated:  

𝐸[𝜇|𝑀𝛾, 𝑌] = 1𝑛𝛼 + 𝐸[
𝑔

1+𝑔
|𝑀𝛾 , 𝑌]𝑋𝛾𝛽𝛾

^

,                                                                 (18) 

Where 
^

  and 

^

 are the ordinary least squares estimates of   and  , respectively, for model M
. 

As explained above, the posterior mean of  under a specific selected model is a linear shrinkage (or 

Bayesian “Goodness-of-fit” indicator) estimator with a fixed shrinkage factor )1/( gg  .  On the other 

hand, using a set of flexible g priors leads to adaptive data-dependent shrinkage. In the flexible g priors 

under model averaging, the optimal (Bayes) estimate of 


under squared error loss is the posterior 

mean calculated using Equation (19).  
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                                                                          (19)  

Since g is involved in Bayes factors, model probabilities, and posterior means and predictions, the 

choice of prior on g is vital for accurate computations of these quantities. In this study, we used flexible 

priors based on fully Bayesian approaches proposed by Zellner and Siow 1980 (or Zellner–Siow’s 

Cauchy prior) which is based on an Inverse-Gamma prior on g as well as an extension of the 

Strawderman (1971) prior to the regression context (i.e. the hyper g prior). Zellner–Siow’s Cauchy prior 

is a special case of mixtures of g priors. A brief description of these two priors is given below.  

 

-  Binomial-Beta model prior: To reflect prior uncertainty about model size, one should rather 

impose a prior that is less tight around the expected model size (Zeugner and Feldkircher 2015). 

Therefore, Ley and Steel (2009) proposed a hyperprior on   effectively drawing it from a Beta 

distribution.  They adopted a combination of a ‘non-informative’ improper prior on the common 

intercept and scale, a so-called g prior (Zellner, 1986) on the regression coefficients, leading to 

the prior density of ))(,0|()|,,( 1'21  jjj

kj

Njj ZgZfMp  which 

makes   random rather than fixing it. In this formula, is an intercept, Z represents a design 

matrix (all possible combinations of the models),  K represents a set of possible regressors (here 

the number of rainfall-runoff models) in Z, Mj is the model with the 0 ≤ kj ≤ k regressors grouped 

in Zj, βj contains the relevant regression coefficients and σ is a scale parameter. 

 

- Custom prior inclusion probabilities: In this prior, for each model size k, there are K over k 

models (K choose k), of which K-1 over k-1 models (K-1 choose k-1) contain the user preferred 

variable i (e.g., Zeugner and Feldkircher, 2015). This information can be integrated into a more 

general model prior ‘creator’ function that can be achieved using  


 
j jMp )1()(

. The advantages of choosing this prior is that one could add much more general options to the 

model and define the proportion of weights (or probability) that each model contributes to the 

BMA posterior probability. We refer the readers to Zeugner and Feldkircher (2015) for more 

information.  

 

- Zellner–Siow prior: Zellner and Siow (1980) introduced multivariate Cauchy priors. If the two 

models under comparison are nested, the Zellner–Siow strategy is to place a flat prior on 

common coefficients and a Cauchy prior on the remaining parameters (Liang et al., 2009). The 

Zellner–Siow prior can be represented as a mixture of g priors with an Inverse Gamma prior on 

g, computed as:  
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This prior computes a one-dimensional integral over g using standard numerical integration 

techniques or using a Laplace approximation (see Liang et al., 2009).  

  

- Hyper g prior: The posterior distribution corresponding to the hyper g prior can be derived 

using Equation 22.   
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 Where );;,(12 zcbaF is the Gaussian hypergeometric function explained by Abramowitz and Stegun 

(1970). Liang et al. (2009) advocated that the normalizing constant in the prior on g is a special case of 

the 
12 F function with 0z , which is referred to as the hyper g prior. This normalizing constant in the 

posterior g that leads to the null-based Bayes factor formulated in Equation 23.   
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The posterior mean of g under M
can be calculated as  
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The shrinkage factor of under each model can be estimated using Equation 25.  
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 leads to nonlinear data dependent shrinkage. 

g

g

1
represents the posterior 

distribution of the shrinkage factor or goodness-of-fit that behaves similar to information criteria. 

Readers are referred to Tierney and Kadane (1986) and Liang et al. (2009) for further information on 

the hyper g prior.  

 

The practical application of BMA prior selection and posterior calculation were performed using two 

Markov Chain Monte Carlo (MCMC) samplers.  Specifically, this study used Birth-Death (BD) and 

Reversible-Jump (RJ) MCMC samplers to summarize the conditional pdf. BD is the most common 

sampler in BMA, which wanders through the model space by adding or dropping regressors (i.e., 

rainfall-runoff models) from the model simulation. In this algorithm, a potential covariate (from the set 

of K potential covariates) is randomly chosen; if at the i-th step in the algorithm, the current model is 

denoted model 
iM , then 

jM as the candidate model will have the same set of covariates as 
iM  except 

for the chosen variable (Zeugner and Feldkircher, 2015).   

 

RJMCMC was proposed by Madigan and York (1995) that draws a candidate model using BD algorithm 

with 50% probability. jM randomly drops one covariate with respect to iM and (randomly) adds one 

chosen from the potential covariates that were not included in the model iM (Zeugner and Feldkircher 

2015). For more details on the sampler readers  see Zeugner and Feldkircher,(2015).  

 

2.3. Rainfall-Runoff Models 

This study coupled BMA with a range of conceptional to semi-distributed hydrological models and 

simulated daily average streamflow data. HYdrological MODel (HYMOD; Boyle, 2001), a modified 

version of soil conservation service curve number model (SCS-CN; Soil Conservation Service, 1956 ), 

and Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS; USACE, 2000) models 

were used as lumped/conceptual hydrological models while Soil and Water Assessment Tool (SWAT; 

Arnold et al., 1993) was employed as a semi-distributed model. The simulation of all four rainfall-

runoff models was conducted using daily average streamflow data from 2003-2005 (continuous 

simulation), excluding the three-year spinning-up period (i.e., 2000–2002). All models were validated 

using daily streamflow records of 2006-2007, the calibration simulation (2003-2005) was used for the 

BMA modeling. We calibrated hydrological models using different starting points. Each simulation 

period was shifted by 1 year, such that subsequent periods have 2 years of data in common. Overall five 

different calibration periods were considered, and for each data set, parameter sensitivity was evaluated. 

Model sensitivity did not vary significantly during those subsequent periods suggesting that 3 years of 

daily streamflow data contains enough information about the estimation of parameters in hydrological 

models for this particular watershed system, and therefore, no significant variation in parameter 

estimates between calibration data sets is anticipated. The four hydrological models are briefly 

described below. 

 

2.3.1. HYMOD 

HYMOD is a parsimonious daily step hydrological model with typical conceptual hydrological 

components, based on the theory of runoff yield under excess infiltration (Moore, 1985). HYMOD 

computes the rainfall-runoff processes using five parameters including the maximum storage capacity 

in the catchment Cmax (L), the degree of spatial variability of soil moisture capacity within the catchment 

bexp, the factor distributing the flow between the two series of reservoirs Alpha, and the residence times 

of the linear slow and quick flow reservoirs, Rs (days) and Rq (days; see Table1). HYMOD uses potential 

evapotranspiration (PET) if enough water is available; otherwise, (actual) evapotranspiration (ET) is 

calculated based on the available water storage. The Alpha parameter divides the surface runoff into 

quick flow and slow flow, which are routed through three identical quick flow tanks (or surface flow; 

Q1, Q2, and Q3) and a parallel slow flow tank (groundwater), respectively. The resident time in the 

quick (Kq (day)) and the slow (Ks (day)) tanks are then used to compute the flow rates in the routing 

system. HYMOD calculates the evaporation based on water storage concept in the watershed. If the 



 

©2020 American Geophysical Union. All rights reserved. 

available water in storage is greater than the potential evaporation, the real evaporation is equal to the 

potential evaporation, otherwise all available water evaporates (e.g., Boyle, 2001).    

 

2.3.2. HEC-HMS 

HEC-HMS, developed by the United States Army Corps of Engineers (USACE, 2000), is a standard 

and widely used model to simulate the complete hydrological processes of a watershed system. This 

model includes the procedures for both continuous modeling (long-term daily rainfall-runoff simulation 

based on the soil moisture accounting; SMA) and single- event based hydrological modeling (SCS-CN; 

USDA 1986). SMA as a lumped bucket-type model is employed in this study. It represents a subbasin 

with well-linked storage layers/buckets accounting for canopy interception, infiltration, surface 

depression storage, evapotranspiration, as well as soil water and groundwater percolation. Given 

precipitation and potential ET, the SMA model computes basin surface runoff, groundwater flow, losses 

due to ET, and deep percolation over the entire basin. Potential ET is calculated using the Priestly-

Taylor (P-T) method  (Priestly and Taylor, 1972). The parameters associated with the SMA approach 

used in this study are provided in Table 2.  

 

2.3.3. SWAT 

SWAT is a watershed modeling program developed by the USDA–Agricultural Research Service to 

simulate hydrological and water quality at various scales (Arnold et al., 1998). It was developed to 

simulate streamflow, sediment, and agricultural chemical yields in large complex watersheds with 

varying soils, land use, and management conditions (Neitsch et al., 2004). SWAT integrates various 

spatial environmental data such as soil, land cover, climate, and topographic features (Zhang et al., 

2017; Samadi et al., 2017).  

 

SWAT subdivides the watershed system into sub-watersheds and Hydrologic Response Units (HRUs) 

connected by a stream network. The HRUs vary in terms of land cover, climate, forest-covered area, 

cultivation, and hydrologic behavior, and therefore provide an opportunity to test the SWAT procedure 

under different conditions. In this study, the output of SWAT modeling is based on P-T 

evapotranspiration method (see Samadi, 2016), the Muskingum method (Schroeter and Epp, 1988), and 

the improved one-parameter depletion coefficient for adjusting the CN based on plant ET (see Samadi 

and Meadows, 2017). For PET calculation, the Priestly-Taylor method is preferable compared to other 

models such as Hargreaves and Penman–Monteith due to wet and humid surfaces of the coastal plain 

drainage system, as stated in Lu et al.(2005) and Samadi (2016).  SWAT parameters and their ranges 

are given in Table 3.   

 

2.3.4. SCS-CN 

In this study, the modified SCS-CN code was developed in a MATLAB environment. This model 

simulates temporal and spatial variations of various processes involved in the runoff generation 

mechanism by incorporating storage concepts to represent the catchment response over time. The 

differences between the original and the modified model are that the former model is based on an 

infiltration-excess model assuming that the surface runoff generates from the entire catchment, whereas 

the latter model assumes that certain dynamic contributing areas vary with storm intensity (e.g. Geetha 

et al., 2008). Further, it considers three different stores of moisture: interception store, soil moisture 

store, and groundwater store. Modified SCS-CN simulates flow using 13 different parameters by 

accounting for the antecedent moisture effect and temporal variations of the curve number (see Geetha 

et al., 2008), while in this study, a slight second modification is achieved in the original SCS-CN 

methodology and included a pan coefficient (PANC) parameter to calculate evaporation. A description 

of the modified SCS-CN parameters and their absolute ranges are given in Table 4.  

 

2.4. Parameter Sensitivity and Uncertainty Algorithm 

This study used the Generalized Parameter Sensitivity Analysis method with three primary components 

proposed by Spear and Hornberger (1980). GSA code was linked to the outcome of sampling method 

(here DREAM(zs); Laloy and Vrugt, 2012) as a post processing step to carry out parameter sensitivity 

analysis. This method uses a parameter set after DREAM(zs) reaches a convergence. Next, the 

parameter set is classified into behavioral and non-behavioral solutions using a cut-off threshold (e.g., 
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Nash-Sutcliffe) to distinguish between behavioral (>0.55) and non-behavioral (<0.55) solutions. The 

behavioral parameter sets are then divided into 10 equally sized groups based on sorted Nash-Sutcliffe 

efficiency (NSE; Nash and Sutcliffe, 1970) value as recommended by Wagner and Kollat, (2007). The 

modeling procedure was preceded by plotting the cumulative distribution function (CDF) of the 

parameters within each group (10 CDF curves, in total).  The sensitivity of the parameters was 

determined by looking at the spread among the produced CDF curves.  The Kolmogorov–Smirnov (K-

S) test (Kottegoda and Rosso, 1997) was then used to calculate differences among the CDF curves. A 

high K-S value (a value close to 1) indicates higher parameter sensitivity whilst a low K-S ensures low 

sensitivity.  

The four hydrological models explained above contain parameters h  that were calibrated using 

DREAM(zs) with a generalized likelihood (GL) function (Schopus and Vrugt, 2010). This research 

used a GL function that is especially developed for nontraditional residual distributions with correlated, 

heteroscedastic, and non-Gaussian errors (Schopus and Vrugt, 2010). GL skillfully described the 

heteroscedastic and auto-correlated error model. This approach yielded a tight predictive uncertainty 

band that was far less sensitive to the particular time period used for calibration. DREAM(zs) used the 

R̂ -statistic (Gelman and Rubin, 1992) to determine convergence to the stationary posterior 

distribution. Readers are referred to Vrugt et al., (2009), Schoups and Vrugt (2010), and Pourreza-

Bilondi et al., (2016) for more discussion on DREAM(zs).  

Several indices were used to quantify the goodness of sensitivity analysis as well as calibration 

performance for BMA: the P-factor which is the percentage of data bracketed by a 95% prediction 

uncertainty band (95PPU; maximum value is 100%), and R-factor (or d-factor), which is the average 

width of the uncertainty band divided by the standard deviation of the corresponding measured variable 

(minimum value is zero; Abbaspour et al., 2004). Theoretically, the value for the P-factor ranges 

between 0 and 100%, while the R-factor ranges between 0 and infinity (see Pourreza-Bilondi et al., 

2016 for further information). Based on the requirement of the geometric structure of the prediction 

bounds, two different indices for assessing the average asymmetry degree of the prediction bounds with 

respect to the observed hydrograph are proposed. The first index is defined as S (Equations 26, 27, and 

28): 

 

𝑆 =
1

𝑁
∑ 𝑠𝑖

𝑁
𝑖=1     (26) 

𝑠𝑖 = |ℎ𝑖 − 0.5|    (27) 

 

With: 

ℎ𝑖 =
𝑞𝑖

𝑢−𝑄𝑖

𝑏𝑖
    (28) 

The second index for assessing the average asymmetry degree of the prediction bounds with respect to 

the observed hydrograph is defined as T: 

 

𝑇 =
1

𝑁
∑ 𝑡𝑖

𝑁
𝑖=1                               (29) 

With 

𝑡𝑖 = (
|(𝑞𝑖

𝑢−𝑄𝑖)3+(𝑞𝑖
𝑙−𝑄𝑖)3|

((𝑞𝑖
𝑢−𝑞𝑖

𝑙)3)
)1/3     (30) 

Where 𝑄𝑖, 𝑞𝑖
𝑢, 𝑞𝑖

𝑙 and 𝑏𝑖 , respectively represent observed discharge, upper and lower limits of predictive 

bound and actual band-width (Xiong et al., 2009). Small values of T and S are desirable for a perfect 

simulation. In addition, KGE (Kling and Gupta Efficiency; Gupta et al., 2009), root mean square error 

(RMSE), and NSE were used to calculate calibration performance.  

 

2.5. Study Area and Data 

The methodologies and procedures explained above were applied to the upper Waccamaw watershed 

(UW2), a coastal plain drainage system located in North Carolina (NC; Figure 1). Due to tidal effects in 



 

©2020 American Geophysical Union. All rights reserved. 

the downstream region, this study simulated daily average streamflow of the upstream part of the 

watershed. The study area is 1881.67 km2 and characterized by a low elevation (5.5-46.3m), low erosive 

energy streams, varying soil wetting fronts, dense vegetation, broad and flat alluvial floodplains and 

complex groundwater structure dominated by a shallow aquifer (e.g., Samadi et al., 2018). The climate 

of the region is specified as humid subtropical and precipitation in the summer is dominated by 

convection storms and in the winter by frontal boundaries (Samadi and Meadows, 2017; Samadi et al., 

2017). In the study region, spring and fall are wetter, which receives the highest amount of rainfall in the 

summer due to convective storms. The average annual precipitation in the study area ranges between 

46.3" (1176 mm) and around 80" (2032mm) occurring throughout the year. Average temperature ranges 

near 90 °F (32 °C) with overnight lows near 70 °F (21 °C). Winter temperatures are much less uniform. 

During the calibration period (2003-2005), precipitation ranged from an extremely wet year in 2003 (320 

mm above average rainfall) to an average range in 2005 (~1350 mm). Soils are typically sandy loam 

and sandy clay loam – moderately drained in the uplands and poorly drained in the floodplain.  

 

Meteorological data (daily precipitation, maximum and minimum air temperatures, wind speed, 

humidity, and solar radiation), and spatial data inputs (digital elevation model (DEM), land use, and soil 

coverage) were acquired from the National Climatic Data Center (NCDC) and USGS portals on 

September 25, 2015.  Model calibration was carried out using data from US Geological Survey (USGS) 

gauging station at Freeland. We used three climate stations namely Longwood, Loris, and Whiteville to 

incorporate the rainfall and temperature fields in the hydrological models. Data from climate stations 

were interpolated using Thiessen polygon and Inverse Distance Weighting (IDW) methods to capture 

the spatial continuity of rainfall fields in the study area. 

 

 

A linkage between multiple hydrological models used in this study and BMA with the various priors is 

illustrated in Figure 2. Briefly, the simulation of the UW2 is achieved using conceptual to semi-

distributed rainfall-runoff models. Due to the computational burden of the BMA code, this study used 

two steps to combine the results of hydrological models. First, the outputs of models were coupled with 

GSA and DREAM(zs) algorithm to assess the sensitivity and parameter uncertainty of the models. Next, 

the outcomes of hydrological models were fed to the BMA to combine the simulation with the most 

important parts of the posterior model distribution of hydrological model and improve daily streamflow 

prediction. A weighted posterior probability simulation was then outperformed using BMA with the 

most appropriate fixed and flexible priors for the watershed under study. 

 

3. Applications to Rainfall‐Runoff Modeling 

3.1. Parameter Sensitivity Analysis  

In this study, SWAT and HEC-HMS models were forced by 18 parameters, while HYMOD and 

modified SCS-CN were calibrated using five and 14 parameters, respectively. Parameter sensitivity 

analysis proved that the DREAM(zs) sampling algorithm is onerous and time consuming, especially for 

the SWAT and HEC-HMS analyses. This is partly related to the fact that some parameters contributed 

more weight to simulation, making the MCMC results being more sensitive to changes of these 

parameters. For instance, shallow aquifer and soil properties are two key parameters that are proved to 

have a significant effect on the coastal plain simulation (e.g., Samadi and Meadows, 2017; Samadi et 

al., 2017).  

 

Marginal distributions derived from DREAM(zs) were computed for all four hydrological models 

(results not shown here). Optimal parameter values, and the upper and lower bounds that define the 

prior uncertainty ranges of HYMOD parameters as well as sensitivity rank are given in Table 1. In 

HYMOD, residence time slow flow reservoir (days) that computes the groundwater parameter showed 

more spiked and narrower range and depicted most sensitive parameters (see Table 1) whereas 

parameters related to quick flow (e.g., Rq) were ranked as the most insensitive ones. Note that the 

marginal pdfs of the HYMOD parameters appeared approximately Gaussian except for those of bexp and 

Rs, which significantly departed from a normal distribution and tended to concentrate most of the 

probability mass at their upper and lower bounds (sharp response; results not shown here). Indeed, the 

mathematical approaches used to estimate bexp and Rs appear to be insufficient to capture appropriate 
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ranges for the spatial variability of the soil moisture storage as well as the residence time of groundwater 

flow.  

 

Table1. HYMOD parameters, initial parameters range, their optimal values driven by DREAM(zs), 

and the parameters sensitivity rank. 

Parameter 

Number 

Parameter  Description K-S 

Value 

Minimum  Maximum Sensitivity 

Rank 

Optimum 

Value 

1 Cmax maximum 

storage in 

watershed 

(mm) 0.32 

1.00 500 4 213.07 

2 bexp spatial 

variability 

of soil 

moisture 

storage 0.45 

0.10 2.00 2 1.99 

3 Alpha distribution 

factor 

between 

two 

reservoirs 0.36 

0.10 0.99 3 0.17 

4 Rs residence 

time slow 

flow 

reservoir 

(days) 0.66 

0 0.10 1 0 

5 Rq residence 

time quick 

flow 

reservoir 

(days) 0.25 

0.1 0.99 5 0.1958 

 

The HEC-HMS model results indicate that the range of maximum infiltration was considerably 

narrowed by DREAM(zs), whilst other parameters such as groundwater, maximum percolation, and 

threshold to peak flow occupied a relatively large region interior to the uniform prior distribution. These 

ranges were not further narrowed by DREAM(zs) even when the number of iterations were increased. 

Further, the ranges of the GW2 routing coefficient, storage capacity and GW1 storage capacity 

narrowed significantly by the MCMC algorithm indicating the sensitivity associated with these 

parameters in the model (see Table 2). HEC-HMS showed low sensitivity when the tension capacity 

was lower than storage capacity; thus, a multiplier-value was used for the storage capacity. What should 

be noted here is that the degree of sensitivity of infiltration rate, storage and groundwater routing 

showed more fluctuations that could be decreased if groundwater/shallow aquifer properties were 

formulated appropriately by the HEC-HMS. This is because there is a strong interaction among shallow 

aquifer properties, overland flow and channel routing parameters in the coastal plain drainage system 

as recently shown by Samadi and Meadows (2017). This interaction may affect the runoff amount and 
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runoff travel time in downstream. Thus, the groundwater routing and storage properties of the HEC-

HMS model should be discreetly limited in this current version.  

 

Table 2. HEC-HMS calibrated parameters, initial parameters range, their optimal values driven by 

DREAM(zs), and the parameters sensitivity rank. 

Parameter 

number 

Name of 

Parameter  

Aggregate 

Parameter 

Minimum 

Parameter 

 Value 

Maximum  

Parameter 

Value 

K-S 

Value  

Sensitivity 

Rank 

Best 

Parameters 

1 Soil percent Sol% 0 100 0.35 14 66.86 

2 GW1 percent GW1% 0 100 0.31 17 16.37 

3 GW2 percent GW2% 0 100 0.37 13 90.55 

4 Maximum 

Infiltration MaxI 0 50 0.33 16 16.72 

5 Storage 

capacity S 0 15 0.56 2 0.93 

6 Tension 

capacity 

(multiplier) 

T 0 1 0.39 12 0.68 

7 Maximum 

percolation MaxP 0 20 0.53 4 0.62 

8 GW1 storage 

capacity 

GW1 S 0 25 0.55 3 3.19 

9 GW1 routing 

coefficient 

GW1 R 1 500 0.53 5 340.67 

10 GW1 

maximum 

percolation 

Max 

GW1 

0 10 0.44 7 5.88 

11 GW2 storage 

capacity 

GW2 S 0 30 0.39 10 13.43 

12 GW2 routing 

coefficient 

GW2 R 1 1500 0.64 1 835.41 

13 GW2 

maximum 

percolation 

Max 

GW2 0 15 0.39 11 10.89 

14 
Time of 

concentration Tc 2 100 0.43 8 69.14 

15 Storage 

coefficient Sc 200 800 0.46 6 380.66 

16 Recession 

factor Rf 0 1 0.34 15 0.40 

17 Initial 

baseflow Bf 0 10 0.40 9 8.49 

18 Threshold to 

peak flow Tr 0 1 0.22 18 0.57 

 

In terms of SWAT parameter sensitivity, CN2, SOL_AWC, CH_N2 and SOL_BD appear to be the 

most sensitive parameters (see Table 3) while other parameters with K-S values less than 0.75 seem to 

be almost identical. Most parameter values covered their completely pre-defined ranges except 

SOL_AWC and SOL_K. The ranges of these parameters are narrower than their pre-defined scopes 

suggesting high sensitivity of SWAT groundwater parameters. Further, some of SWAT parameters 

occupied a relatively small region interior to the uniform prior distributions of the individual dimensions 

(results not shown). This reveals that the observed streamflow data contains sufficient information to 



 

©2020 American Geophysical Union. All rights reserved. 

estimate these parameters. This is further confirmed with relatively small parameter ranges as shown in 

Table 3.  

 

Table 3. SWAT calibrated parameters, initial parameters range, their optimal values driven by 

DREAM(zs) and the parameters sensitivity rank. 

Parameter 

number 

Aggregate 

Parameter  

Name of Parameter Parameter’s Range 

Sensitivity 

Rank 

Parameter 

Range 

K-S Value Optimal 

Value 

1 CH_N2.rte Manning's "n" value for 

the main channel 

4 

0 0.3 0.9 0.11 

2 SOL_K().sol  Saturated hydraulic 

conductivity (mm/hr)  

6 

-0.5 0.5 0.74 0.37 

3 ESCO.hru Soil evaporation 

compensation factor 

11 

0.01 1 0.59 0.01 

4 OV_N.hru Manning's "n" value for 

overland flow 

8 

0 0.8 0.73 0.03 

5 SOL_BD().s

ol 

Moist bulk density 

(Mg/m3 or g/cm3) 

2 

-0.5 0.5 0.96 0.19 

6 GWHT.gw Initial groundwater 

height (m) 

18 

-0.9 0.9 0.36 -0.29 

7 EPCO.hru Plant uptake 

compensation factor 

9 

0.01 1 0.68 1 

8 SHALLST.g

w  

Initial depth of water in 

the shallow aquifer 

(mm H2O)  

17 

-0.9 0.9 0.42 0.81 

9 CN2.mgt SCS runoff curve 

number for moisture 

condition II 

3 

-0.5 0.5 0.94 -0.37 

10 LAT_TTIME

.hru 

Lateral flow travel time 

(days) 

7 

0 180 0.73 11.92 

11 SOL_AWC()

.sol 

Available water 

capacity of the soil 

layer (mm H2O/mm) 

soil) 

1 

-0.5 0.5 0.96 0.48 

12 GW_REVAP

.gw 

Groundwater "revap" 

coefficient 

15 

-0.5 0.5 0.45 0.21 

13 GW_SPYLD

.gw 

Specific yield of the 

shallow aquifer (m3/m3) 

12 

-0.9 0.9 0.55 -0.87 
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14 GW_DELA

Y.gw 

Groundwater delay 

time (days) 

13 

0 500 0.54 469.9 

15 
RCHRG_DP.

gw 

Deep aquifer 

percolation fraction 

10 

-0.5 0.5 0.6 0.48 

16 
ALPHA_BF.

gw 

Base flow alpha factor 

(days) 

16 

-0.5 0.5 0.45 0.19 

17 

CH_K2.rte 

Effective hydraulic 

conductivity in 

tributary 

14 

-0.5 0.5 0.46 0.46 

18 
SLSUBBSN.

hru 

Average slope length 

(m) 

5 

-0.5 0.5 0.75 -0.49 

 

Table 4 shows modified SCS-CN parameter ranges, their optimal values, the KS values and parameters 

sensitivity rank. As expected, subsoil drainage coefficient and coefficient of transpiration from soil zone 

are ranked as the most sensitive parameters. Like SWAT, modified SCS-CN showed more sensitivity 

to curve number. Further, this model showed more sensitivity to hydrogeological properties (e.g., 

subsoil permeability) and surface energy balance. It appears C1 depends on the available soil water in 

the topsoil layer. PNAC is another sensitive parameter that indicates inadequate atmospheric 

evaporation capability in the model.  

 

Table 4. Modified SCS-CN calibrated parameters, initial parameters range, their optimal values driven 

by DREAM(zs) and the parameters sensitivity rank.  
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3.2. DREAM(zs) Predictive Uncertainty 

Once the posterior distribution of the model parameters is determined, the predictive uncertainty of 

daily discharge simulation for each hydrological model was computed by propagating the different 

samples of the posterior distribution at the 95% confidence interval. Table 5 compares the results of 

DREAM(zs) simulation for different hydrological models. Based on several performance criteria, 

SWAT well calibrated streamflow records compared to the rest of models. This would imply that the 

GL function, used as an objective function in DREAM(zs) to remove heteroscedasticity and 

autocorrelation, was particularly successful for a semi-distributed hydrological model calibration. The 

modified SCS-CN model and HEC-HMS are posed in the next ranks. The HYMOD model showed the 

weakest performance, which may be because of its simplicity and lumped concept.  

 

Figures 3, 4, 5, and 6 show diagnostic plots of the residuals (i.e. difference between observed and 

simulated streamflow) derived from the GL likelihood function. In most cases, the heteroscedasticity 

has been removed by the GL function and the residuals are not sensitive to the magnitude of streamflow. 

Figures 3(b), 4(b), 5(b), and 6(b) clearly show that the double exponential (heavy-tailed) distribution 

used by the error model is suitable and consistent with the pdf of the residuals. This would reveal that 

Parameter 

number Name of 

Parameter 

Minimum 

Parameter Value 

Sensitivity 

 Rank 

K-S 

Value 

 

Maximu

m 

Paramete

r Value 

Aggregate 

Parameter 

Optima

l Value 

1 
Curve number  

70 3 0.82 90 CN0 88.76 

2 Coefficient of the 

initial abstraction 0.01 4 0.69 0.7 λ1 0.01 

3 exponent of the 

initial abstraction 0.01 14 0.20 10 Α 7.40 

4 coefficient of 

antecedent 

moisture 0.1 6 0.56 10 Β 8.84 

5 storage coefficient 0.001 7 0.52 20 K 14.65 

6 coefficient of 

transpiration from 

soil zone 0.01 2 0.93 1 C1 0.01 

7 subsoil drainage 

coefficient 0.001 1 0.94 1 C2 0.0013 

8 maximum 

potential water 

retention (mm) 300 12 0.24 5000 S abs 304.53 

9 wilting point of 

the soil (mm) 5 13 0.23 250 θw 246.03 

10 Fraction of field 

capacity of the 

soil (mm) 0.001 8 0.46 0.55 θf 0.51 

11 unsaturated soil 

zone runoff 

coefficient 0.01 10 0.29 1 C3 0.106 

12 exponent of 

groundwater zone 0.01 9 0.32 2 E 0.011 

13 groundwater zone 

runoff coefficient 0.005 11 0.27 1 BCOEF 0.08 

14 Pan coefficient 0.6 5 0.57 0.9 PANC 0.60 
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MCMC Bayesian algorithm applied in this study is promising for relaxing the residual error assumption 

of the upper Waccamaw watershed.  

 

Temporal dependence of the residuals is illustrated in Figures 3(c), 4(c), 5(c), and 6(c), which indicate 

that the residuals still exhibit substantial dependence at higher lag autocorrelations. Although 

autocorrelation of the residuals has been substantially reduced by DREAM(zs), the challenge of 

omitting temporal correlation in the coastal plain simulation is understandable. DREAM(zs) was 

particularly successful in eliminating temporal dependencies in SWAT and modified SCS-CN 

simulation. HEC-HMS and modified SCS-CN predictive uncertainty seems to be similar, although the 

latter one provided a wider band. HYMOD, on the other hand, converged to a very different posterior 

pdf revealing less capability of this model in simulating flow dynamics across a coastal plain 

environmental system. However, DREAM(zs) was somewhat successful in removing correlation in the 

HYMOD model.  

 

Overall, the total predictive uncertainty bound seems reasonably accurate for SWAT and HEC-HMS 

(see Figures 7, 8, 9, and 10). These two models mimicked the observed data quite well, reproducing 

most minor and major flow events. However, closer inspection of the calibration results indicates that 

DREAM(zs) was not quite successful in calibrating the modified SCS-CN model. Further, HYMOD 

results revealed that, although error assumptions are fulfilled, the predictive uncertainty band is too 

large and meaningless. This indicates that this model is less capable of simulating coastal rainfall-runoff 

processes. On the other hand, the inconsistency in simulation may also arise due to uncertainty in input 

data when repeated rainfall events occur in the coastal plain (e.g. Samadi et al., 2018).  

 

The assumption of a double exponential prior distribution, as explained above, relatively well 

approximated the conditional pdf of SWAT, HEC-HMS and the modified SCS-CN model. Daily 

streamflow data of the coastal drainage system are naturally bounded by fat- to highly skewed-tailed 

distributions which is difficult to justify according to the outcomes of one specific prior distribution. 

This inspired the authors to employ BMA with a hierarchy of prior formulations to marginally combine 

the simulation on the most important parts of the posterior probability distribution of each potential 

hydrological model explained in next section.  

 

Table 5. Performance criteria for different hydrological models. 

Model 

Total Uncertainty Parameter Uncertainty 
Best  

Simulation 

 

P-

Factor 

d-

Factor 
T S P-Factor d-Factor T S KGE NSE RMSE 

HEC-HMS 93.43 2.07 0.61 0.18 5.47 0.08 9.11 7.15 0.74 0.72 11.98 

HYMOD 93.97 2.59 0.60 0.18 8.39 0.12 12.89 10.13 0.70 0.57 15.05 

SWAT 75.91 2.28 0.59 0.17 7.48 0.14 4.43 3.40 0.73 0.66 13.37 

Modified 

SCS-CN 
93.03 2.43 0.56 0.16 11.54 0.11 5.53 4.26 0.72 0.61 14.36 

 

4. BMA Computation 

The outcomes of four hydrological models were coupled with Bayesian model averaging using a variety 

of prior structures. This study included fixed to flexible model priors and examined the possibility of 

subjective inference using prior inclusion probabilities according to the user’s belief. Two efficient 

MCMC samplers (i.e. BD and RJMCMC) were then applied to create a weighted posterior probability 

distribution from BMA exercise that sorted through the model space. Below is a discussion of the results 

of BMA simulation for different prior structures.  

 

4.1. Fixed Priors 

A uniform prior with the unit information prior on Zellner's g was first applied to compute the expected 

prior parameter size. The variable names and corresponding statistics are shown in Table 6. Posterior 

mean (PM) displays the coefficients averaged over all models. Posterior inclusion probabilities (PIP) 
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or shrinkage factor represents the sum of the posterior model probability for all models wherein a 

covariate (a modeled streamflow) was included. In other words, PIP displays the importance of the 

various hydrological models in explaining daily streamflow data. Interestingly, the majority of the 

posterior mass virtually rests on models that include HEC-HMS, SWAT, and modified SCS-CN. In 

contrast, HYMOD has the lowest PIP (i.e. 4%), indicating that HYMOD does not seem to matter much, 

implying an inability of a simple lumped model in simulating coastal observational records.  

Accordingly, the rank of models (see Table 6) that are sorted by PIP reveals that HEC-HMS and SWAT 

were successful in simultaneously describing observations in terms of magnitude. The posterior 

expected model size (i.e., the average number of included regressors, which ranges from 1 to 5) using 

the uniform prior was 3.04, which is the sum of PIPs. The uniform model prior puts more mass on 

intermediate model sizes (e.g. 32/ k with 31% probability); therefore, it is important to consider 

other popular priors that allow more freedom in choosing model size and other factors. It is interesting 

to note that the uniform prior better calibrates the shrinkage factor (or PIP) by avoiding overfitting. As 

the shrinkage factor increases, the model tends to yield a tighter posterior.   

Next, we used a Binomial model prior to place a common and fixed inclusion probability on each 

hydrological model. The model included a prior model size of 2.5 (i.e. 5.22/ k ) which tilted the prior 

distribution toward smaller model sizes. Simulating BMA using the Binomial prior with model size of 

2.5 yielded a posterior model size of 3.07, near that of the uniform prior. As a result, the PIP of each 

rainfall-runoff model is the same as uniform prior. Although the PIP of HYMOD improved slightly, the 

rank of the hydrological models is similar to when using the uniform prior (see Table 6). 

In addition, BMA calibration using g-RIC, BRIC, EBL, and GEB priors were computed and the results 

presented in Table 6. Among these priors, EBL provided the most discouraging results, indicating 

marginal likelihood evaluation using a Laplace approximation was less appropriate for integrating the 

posteriors. Overall, these results indicate that the BMA model concentrated posterior mass tightly on 

HEC-HMS and somewhat SWAT whereas modified SCS-CN model resulted less model mass 

concentration. HYMOD was the least capable model, and thus BMA avoided including this model for 

summarizing the posterior mass.  

 

4.2. Flexible Priors 

In view of the pervasive impact of HEC-HMS and SWAT models on posterior model distribution, one 

might wonder whether their importance would still remain robust to a greatly unfair prior. In perusing 

this, we specified our own model priors (custom prior inclusion) and offered a possibility of subjective 

inference by setting prior inclusion probabilities according to the user belief. We defined a low prior 

inclusion probability (i.e. 01.0 ) for the HEC-HMS and SWAT simulations whilst setting a standard 

prior inclusion probability of 5.0 for the rest of the hydrological models. Results indicated that 

HEC-HMS and SWAT still retain their shrinkage factors near 100%. Posterior model size, on the other 

hand, increased to 3.2 while HYMOD obtained a larger PIP (0.16). The modified SCS-CN model also 

retained its PIP of 99%. The coefficients averaged over all models improved slightly for HYMOD 

where it remained similar for the rest of models.  

The Binomial-Beta prior was the second prior that was implemented for the BMA calibration. Since the 

fixed common   in the Binomial prior (explained above) centers the mass of its distribution near the 

prior model size, this may increase prior uncertainty about model size. Thus, Ley and Steel (2009) 

proposed to include a hyperprior on the inclusion probability of   that effectively draws from a Beta 

distribution. In pursuing this, the Binomial-Beta prior put a completely flat prior on an expected model 

size of each hydrological model. Consequently, the posterior model size resulted in a value of 3.32. In 

terms of coefficient and posterior model size distribution, the results are similar to Binomial model 

priors, although the latter approach involved a tighter model prior. The use of the Binomial-Beta 

framework supports the results found in aforementioned prior calibrations that 100% of all posterior 

mass virtually rests on models that include HEC-HMS and SWAT.  

BMA was also calibrated using Zellner–Siow and hyper g priors. Zellner- Siow implicitly proposed an 

inverted Gamma distribution as a prior and put a lot of weight on regions of g with high marginal 

likelihood. Thus, this type of prior does particularly well in simulation. Unlike Zellner–Siow, the hyper 

g prior seems to weaken the marginal likelihood estimates. The hyper g assigns large prior mass to the 
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model which provides a fat-tailed posterior that seems difficult to justify for the coastal hydrological 

dynamics.   Roughly 66% and 59% of the Zellner–Siow and hyper g posterior mass, respectively, 

virtually rests on the model that include HEC-HMS (see Table 7).  

Overall, marginal information of different priors on g resulted a tighter pdf with a heavier tail. As a 

consequence, the pattern of Bayes factors among the models with different priors on g is different. In 

this respect, custom prior inclusion and uniform priors showed better results compared to the rest of 

priors. We therefore combined the results of these two priors and computed the posterior probability 

distribution explained in next section. Results suggest that HEC-HMS, SWAT and somewhat modified 

SCS-CN put more weight (mass) on the posterior probability distribution.  However, complete 

prediction of the coastal plain streamflow records, especially during low and high flow events, can be 

quite challenging, as pointed out recently by Joseph and Guillaume (2013), Samadi and Meadows 

(2017), and Samadi et al., (2017, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Variable names and corresponding statistics for fixed priors used in this study. 

 

 

 

Table 7. Variable names and corresponding statistics for each prior used in this study. 

 

 

  Model 

Flexible Priors 

Binomial-Beta  Custom Prior 

Inclusion 

Zellner–Siow  Hyper g  

PM PIP Rank PM PIP Rank PM PIP Rank PM PIP Rank 

HYMOD 0.04 0.23 4 0.007 0.23 4 -0.05 0.13 3 0 0.15 3 

HEC-HMS 0.56 1 1 0.73 1 1 0.66 1 1 0.59 1 1 

 

 Model 

Fixed Priors 

Uniform  Binomial  g-RIC BRIC EBL GEB 

PM PIP Rank PM PIP Rank PM PIP Rank PM PIP Rank PM PIP Rank PM PIP Rank 

HYMOD 0 0.04 4 0.05 0.07 4 0.05 0.07 4 0.05 0 4 -0.9 0.15 3 -0.03 0.04 3 

HEC-HMS 0.71 1 1 0.53 1 1 0.51 1 1 0.55 1 1 0.51 1 1 0.62 1 1 

SWAT 0.30 1 2 0.29 1 2 0.28 1 2 0.31 1 2 0.24 1 2 0.31 1 2 

Modified 

SCS-CN 

0.16 0.99 3 0.13 0.99 3 0.17 0.99 3 0.22 0 3 0.15 1 4 0.20 0.99 4 
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SWAT 0.32 1 2 0.30 1 2 0.20 1  2 0.34 1 2 

Modified 

SCS-CN 

0.22 0.99 3 0.17 0.99 3 0.09 0.99 4 0.20 1 4 

 

4.3. Ensemble of Rainfall-Runoff Models 

4.3.1. Combining Sampling Chains 

Based on the results that were achieved using different priors, it is now straightforward to enumerate 

all potential model combinations to obtain an ensemble posterior pdf. This study used BD and 

RJMCMC samplers that are different in the way they propose candidate models. In this respect, MCMC 

samplers combined results on the most important parts of the posterior model distribution of each 

potential hydrological model and approximated it as closely as possible. We retained model 

convergence and posterior statistics for HEC-HMS, SWAT and modified SCS-CN that presented the 

highest PMPs.  The quality of an MCMC approximation to the actual posterior distribution depends on 

the number of draws the MCMC sampler runs for. Thus, our simulation started out with 20,000 

simulation runs and slightly increased the numbers of iterations until no difference was found between 

PM and PIP.  

 

A combined uniform and custom inclusion priors with the BD MCMC sampler were primarily 

employed with 20,000 iterations and the numbers of runs increased slightly. The results suggest 200,000 

iterations, after a substantial number of burn-in iterations (i.e. 80,000), provided a good PMP and proper 

marginal likelihood. The same procedure for the numbers of iterations and burn-ins were also used to 

ensemble three hydrological models using the RJMCMC sampler. PMP correlation using the BD 

algorithm indicated a good degree of convergence among analytical likelihoods. However, the more 

complicated the distribution of marginal likelihood, the more difficulties the sampler meets before 

converging to a good approximation of PMPs (Zeugner and Feldkircher, 2015). In addition, the sum of 

PMPs using the RJMCMC algorithm indicated that in total, modified SCS-CN accounted for less than 

20% of posterior model mass while the rest of models accounted for greater than 80%. 

 

Further, the PMP correlation of the combined model using the BD algorithm seems to be more 

promising because it estimated more than 90% of posterior probability. The coefficient of the combined 

model was also better than the individual ones when we compared the simulation results. The results 

are presented in Figures 11, 12, and 13. All statistics are based on a combined iteration chain using 

uniform and custom inclusion priors as the best model likelihoods.  BMA simulation revealed a tight 

posterior shrinkage that is concentrated around 0.91 when a combined prior was used. It is interesting 

to note that an overfitting shrinkage factor that was too large leads to tight PMP concentrations and 

skewed distribution. In contrast, an excessively small shrinkage factor does not reflect the data signals, 

and typically leads to intermediate PIPs for models. Therefore, a combined prior provided an average 

shrinkage factor or Bayesian goodness-of-fit indicator.  

 

The sharper the posterior density, the more information the sample contains about models and the less 

important prior choice of g becomes. In other words, if the posterior density is sharper relative to the 

prior density, this means BMA more strongly relies on the data. As illustrated in Figures 11, 12, and 

13, HEC-HMS put more significant prior mass around small values of the shrinkage factor than SWAT 

and modified SCS-CN. Specifically, 95% of the posterior coefficient mass of HEC-HMS seems to be 

concentrated between 0.56 to 0.73, while this range is 0.25 to 0.37 and 0.11 to 0.24 respectively, for 

SWAT and modified SCS-CN. This would imply that HEC-HMS and somewhat SWAT are more robust 

hydrological models in simulating the upper Waccamaw watershed daily streamflow since both 

included in virtually all models mass.  

 

BMA analysis was preceded by predicting streamflow during 2003-2005. 365 datasets (2003 data) were 

used to train the BMA model. Table 9 and Figures 14 and 15 present BMA training and testing results. 

As illustrated, the sharpness of the predictive uncertainty ranges has substantially increased, which led 

to reducing the average spread of the 95PPU. However, the overall best results are obtained by 
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combining fixed and flexible priors in the BMA model. This approach not only exhibited the best 

predictive performance, but also adequately narrowed the predictive uncertainty band and captured the 

expected percentage of observations. We thus conclude that combined flexible (time varying 

conditional pdf) and fixed priors have significant practical advantages for the coastal plain hydrological 

simulation when the aim is to skillfully simulate the data records that contain frequent high and low 

flow events. We presented the error associated with the BMA modeling as well as the spread and percent 

of observations (see Table 9) that refer to the average width of the 95% uncertainty ranges, and the 

percentage of discharge observations contained in this interval, respectively. 

 

These results also support model averaging rather than the selection of any individual model based on 

performance criterion, the approach that was performed by DREAM (zs). In summary, the use of BMA 

for combining the results of conceptual to semi-distributed hydrological simulations provided 

considerable predictive improvement compared to relying on one individual model, although care 

should be taken in the methodology adopted in the BMA modeling and the prior.   

 

Table 9 Summary Results of the BMA Model during training and testing periods. 
 Train 

 RMSE NSE KGE 
p 

Factor 

d 

Factor 
T S 

SWAT 18.8 0.37 0.61 

97 1.21 0.75 0.29 SCS 15.3 0.58 0.73 

HMS 14.2 0.64 0.73 
 Test 

 RMSE NSE KGE 
p 

Factor 

d 

Factor 
T S 

SWAT 17.9 0.656 0.62 

92.4 1.02 0.82 0.35 SCS 19.27 0.6 0.53 

HMS 15.28 0.75 0.7 

 

5. Conclusions 

This paper presents a two-step procedure that includes model calibration for a range of conceptual to 

semi-distributed hydrological models using DREAM (zs) algorithm, followed by ensemble prediction 

of streamflow using BMA with various prior structures. DREAM (zs) was first employed to address 

the parameter uncertainty of individual model simulation. A new sensitivity model based on the Monte 

Carlo sampler GSA was implemented to post process DREAM (zs). GSA determined the sensitivity of 

the parameters by calculating the spread among the CDF curves of model parameters. The sensitive 

parameters were then used in DREAM (zs) to simulate daily streamflow records. DREAM (zs) used the 

GL error assumption to diminish parameter and predictive uncertainty of each hydrological model. 

 

GSA analysis revealed that soil and groundwater properties are the most sensitive parameters for 

streamflow simulation. In coastal plain watersheds, high and repeated storm events increase water levels 

to the saturated condition, resulting in frequently ponded regions, especially in the riparian wetland 

area, that might be the reason why both soil and groundwater parameters were both particularly 

sensitive.  In addition, this result may reflect the deficiency of the numerical solver employed in each 

hydrological model to capture coastal flow dynamics, a topic which is out of the scope of this study. 

DREAM (zs) calibration showed proficiency in calibrating surface and subsurface flow interaction and 

summarizing the posterior parameter distribution. Furthermore, GL was useful in removing 

heteroscedasticity and skewness; thus, it may prove to be a good choice for the coastal plain 

hydrological simulation, as correlation and the absence of homoscedasticity (error variances do not 

depend on the magnitude of streamflow) in standardized residual errors have been reported in several 

other studies (e.g., Samadi et al., 2017, 2018).   
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The results of BMA with fixed and flexible priors used in this study led to tight and sharp posterior 

distributions. BMA provides a coherent mechanism and promising results for calculating a weighted 

posterior probability compared to the DREAM (zs) calibration for each individual model. BMA analysis 

revealed the influence that a poorly chosen prior exerts on the (weighted) posterior when applied to 

noisy data (coastal plain streamflow records), which leads to the relative merits of BMA being less 

pronounced and its predictive power deteriorating. 

 

Marginalizing out the posterior model probabilities with the fixed priors induced a much flatter pdf 

while flexible priors led to a much tighter pdf. BMA calibration using two different MCMC algorithms 

revealed that compared to the Reversible-Jump approach, the Birth-Death algorithm is preferable when 

the aim is to deal with mixture g priors with unknown numbers of states. The advantage of using the 

BD algorithm is that it is a continuous time MCMC sampler, which is used to construct ergodic chains 

for models with a varying parameter space. This makes prediction reasonably straightforward for every 

g drawn in the sampler as predictions are simply mixed over values of g in the sampler. The prediction 

of the RJMCMC algorithm as a general extension of the Metropolis-Hastings algorithm seems less 

straightforward and the quality of its approximation is not that reliable.  

 

Focusing on the simulation of various prior structures, this study can make recommendations for 

hydrological simulation. Assuming that modelers/users want BMA priors to be consistent, to avoid the 

information paradox and to perform well in a wide variety of situations, combined flexible and fixed 

priors are consistent and perform well on continuous daily streamflow data. The global empirical Bayes 

prior is hard to recommend for situations where ranges of hydrological models are used. This is because 

it assumes one common g for all models in the BMA formula making the marginal likelihood estimation 

unreliable. Binomial, BRIC and Binomial-Beta priors do not fare well in prediction in terms of the 

posterior mean. The Zellner–Siow prior performs relatively well, except for the HYMOD model, where 

it gets very little support from the data. However, the results of BMA depend on how well each 

individual hydrological model simulates the streamflow. Nevertheless, we feel the Zellner–Siow prior 

deserves a place in the tool-box of BMA for hydrologists, especially if the aim is to simulate flash flood 

events (the number of data records is relatively small).  

 

In our view, the two priors that stand out by not having displayed any truly poor behavior in our 

experiment are the custom prior inclusion and uniform prior. When dealing with complexity and lack 

of fit in simulation, we view the custom prior inclusion and uniform prior as a reasonable default prior 

and starting place. Marginalizing out the posterior model probabilities with these priors on θ and g 

induced a much better result and much tighter/sharper posterior median of g.  This made BMA analysis 

more strongly supported by the data. Thus, both priors provided an interesting compromise and would 

be our general recommendation to hydrological communities.  

 

Putting a prior on both θ and g makes the analysis naturally adaptive and avoids the information paradox 

(Liang et al., 2008) compare to analyses with fixed g. We now allow the data to inform us (the concept 

of “letting the data decide the function” expressed by Philips et al., 2018) on variable inclusion 

probabilities and the appropriate region for g. To a much greater extent, this will reduce the lack-of-fit 

for each given hydrological model.  Therefore, we feel the BMA model used herein with the 

recommended priors on θ and g can be considered a safe “automatic” choice for hydrological 

calibration, although, additional efforts are needed to build up series of benchmarks in simulation. For 

example, the BMA model with multicollinear regressors that includes alternative priors such as different 

sets of Heredity priors introduced by Chipman (1996) and the Tessellation prior presented by George 

(2010) can be further applied. These priors propose some other promising approaches to dilution prior 

construction based on predictive and empirical Bayes ideas that make the analysis naturally adaptive.  

We feel the models used herein with the fixed and flexible priors on both θ and g can be considered a 

safe benchmark prior structure choice for use in Bayesian Model Averaging that can be applied in a 

variety of hydrological/geoscience settings. The BMA, GSA and modified SCS-CN codes used herein 

can be obtained from the corresponding author upon request. 
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Figure 1. The 1881.67 square km upper Waccamaw watershed located in North Carolina, United 

States of America (USA).  
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Figure 2 A conceptual model explaining the linkage between four rainfall-runoff models and BMA. R 

denotes Rainfall, PET is potential evapotranspiration, ET represents actual evapotranspiration, T is 

transpiration, REVAP means groundwater "revap" coefficient, EPCO is plant uptake compensation 

factor, and ESCO denotes soil evaporation compensation factor. 
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Figure 3. The heteroscedasticity of the residuals (a), comparison of observed pdf of the residuals to 

normal distribution (b), and autocorrelation of the residuals (solid blue lines in (d)) using HYMOD. 
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Figure 4. The heteroscedasticity of the residuals (a), comparison of observed PDF of the residuals to 

normal distribution (b), and autocorrelation of the residuals (solid blue lines in (d)) using HEC-HMS. 
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Figure 5. The heteroscedasticity of the residuals (a), comparison of observed pdf of the residuals to 

normal distribution (b), and autocorrelation of the residuals (solid blue lines in (d)) using SWAT. 
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Figure 6. The heteroscedasticity of the residuals (a), comparison of observed pdf of the residuals to 

normal distribution (b), and autocorrelation of the residuals (solid blue lines in (d)) using modified 

SCS-CN. 
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Figure 7. 95% predictive uncertainty of the HYMOD model using DREAM(zs). 

  



 

©2020 American Geophysical Union. All rights reserved. 

 

 

 

Figure 8. 95% predictive uncertainty of the HEC-HMS model using DREAM(zs). 

  



 

©2020 American Geophysical Union. All rights reserved. 

 

Figure 9. 95% predictive uncertainty of the SWAT model using DREAM(zs). 
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Figure 10. 95% predictive uncertainty of the modified SCS-CN model using DREAM(zs). 
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Figure 11.  SWAT posterior density attached to observation conditional on custom inclusion and 

uniform priors. The results are based on Empirical Bayes Local (see Appendix A) g prior. Cond. EV 

represents the posterior expected value condition. SD is the posterior standard deviation and median 

denotes the median of the posterior distribution. The vertical grey bars are drawn based on EBL g 

prior via maximum likelihood. The right panel also shows the posterior expected value of the single 

best models, and the conditional expected value based on MCMC frequencies. 
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Figure 12. HEC-HMS posterior density attached to observation conditional on custom inclusion and 

uniform priors. The results are based on Empirical Bayes Local (see Appendix A) g prior. Cond. EV 

represents the posterior expected value condition. SD is the posterior standard deviation and median 

denotes the median of the posterior distribution. The vertical grey bars are drawn based on EBL g 

prior via maximum likelihood. The right panel also shows the posterior expected value of the single 

best models, and the conditional expected value based on MCMC frequencies. 
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Figure 13.  Modified SCS-CN posterior density attached to observation conditional on custom 

inclusion and uniform priors. The results are based on Empirical Bayes Local (see Appendix A) g 

prior. Cond. EV represents the posterior expected value condition. SD is the posterior standard 

deviation and median denotes the median of the posterior distribution. The vertical grey bars are 

drawn based on EBL g prior via maximum likelihood. The right panel also shows the posterior 

expected value of the single best models, and the conditional expected value based on MCMC 

frequencies. 
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Figure 14. 95% posterior simulation uncertainty ranges for daily streamflow simulation for 2003 as 

training period. The red and black dots refer to the observed and BMA simulated flows, respectively. 
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Figure 15. 95% posterior simulation uncertainty ranges for daily streamflow simulation for 2004-2005 

as testing period. The red and black dots refer to the observed and BMA simulated flows, 

respectively. 

 


