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Abstract
Description logics (DLs) are standard knowledge represen-
tation languages for modelling ontologies, i.e. knowledge
about concepts and the relations between them. Unfortu-
nately, DL ontologies are difficult to learn from data and
time-consuming to encode manually. As a result, ontolo-
gies for broad domains are almost inevitably incomplete. In
recent years, several data-driven approaches have been pro-
posed for automatically extending such ontologies. One fam-
ily of methods rely on characterizations of concepts that are
derived from text descriptions. While such characterizations
do not capture ontological knowledge directly, they encode
information about the similarity between different concepts,
which can be exploited for filling in the gaps in existing on-
tologies. To this end, several inductive inference mechanisms
have already been proposed, but these have been defined and
used in a heuristic fashion. In this paper, we instead pro-
pose an inductive inference mechanism which is based on a
clear model-theoretic semantics, and can thus be tightly in-
tegrated with standard deductive reasoning. We particularly
focus on interpolation, a powerful commonsense reasoning
mechanism which is closely related to cognitive models of
category-based induction. Apart from the formalization of
the underlying semantics, as our main technical contribution
we provide computational complexity bounds for reasoning
in EL with this interpolation mechanism.

1 Introduction
In the field of AI, knowledge about concepts has tradition-
ally been encoded using logic, often in the form of descrip-
tion logic ontologies (Baader, Horrocks, and Sattler 2004;
Baader et al. 2017). While this approach has been highly
successful in particular domains, such as health care and
biomedical research, the difficulty in acquiring (description
logic) ontologies has clearly hampered a more widespread
adoption. In open-domain settings, it is almost impossible to
exhaustively encode all relevant knowledge about the con-
cepts of interest. As a simple example illustrating this so-
called knowledge acquisition bottleneck, the SUMO ontol-
ogy1 contains the knowledge that linguine, penne, spaghetti,
couscous and ziti are types of pasta, but none of the many
other types of pasta are included.

Beyond the use of ontologies, there has also been a large
interest in learning concept representations from data, such

1http://www.adampease.org/OP/

as text descriptions. Word embedding models (Mikolov et
al. 2013) learn such representations, for instance. Some
authors have also proposed approaches that exploit semi-
structured data such as WikiData, Freebase and BabelNet
(Neelakantan and Chang 2015; Camacho-Collados, Pile-
hvar, and Navigli 2016; Jameel, Bouraoui, and Schockaert
2017). Data-driven concept representations are highly com-
plementary to ontologies: they excel at capturing similar-
ity but are otherwise limited in the kinds of dependencies
between concepts they can capture. They are essentially tai-
lored towards a form of inductive reasoning: given a number
of instances of some concept, they are used to predict which
other entities are also likely to be instances of that concept.
Conversely, traditional ontology languages use rules to en-
code rigid dependencies between concepts, but they can-
not capture graded notions such as similarity, vagueness and
typicality. Description logic representations are thus rather
tailored to support deductive reasoning about concepts.

There is a growing realization that a combination of de-
ductive and inductive reasoning about concepts is needed
in many applications (van Harmelen and ten Teije 2019;
d’Amato 2020). While several authors have started to ex-
plore ways in which such an integration can be achieved,
existing work has mostly relied on heuristic methods, fo-
cusing on empirical performance rather than the underly-
ing principles. For instance, several approaches have been
proposed to exploit rules (Guo et al. 2016; Demeester,
Rocktäschel, and Riedel 2016), and symbolic knowledge
more generally (Xu et al. 2014; Faruqui et al. 2015), to learn
higher-quality vector space representations. Conversely,
some authors have used vector representations to infer miss-
ing knowledge graph triples (Neelakantan and Chang 2015;
Xie et al. 2016), missing ABox assertions (Rizzo et al. 2013;
Bouraoui and Schockaert 2018), or missing concept inclu-
sions (Li, Bouraoui, and Schockaert 2019).

The main focus of this paper is on the inference of plau-
sible concepts inclusions, that is, concept inclusions which
are not entailed from a given TBox, but which are likely
to hold given the knowledge obtained from vector represen-
tations and the TBox. However, unlike in previous work,
rather than focusing on empirical performance, we aim to
study the underlying principles. In particular, in existing ap-
proaches, inductive and deductive inferences are typically
decoupled. For instance, in (Li, Bouraoui, and Schockaert



2019), missing concept inclusions are predicted in a pre-
processing step, after which the standard deductive machin-
ery is employed. The main purpose of this paper is to pro-
pose a model-theoretic semantics in which some forms of
inductive reasoning about description logic ontologies can
be formalized, and which thus allows for a tighter integra-
tion between the deductive and inductive inferences.

To illustrate the particular setting that we consider in this
paper, assume that we have the following knowledge in a
given TBox about some concept C:

Rabbit v C Giraffe v C

If we additionally have background knowledge about rab-
bits, giraffes and zebras, in particular the fact that zebras
satisfy all the natural properties that rabbits and giraffes
have in common (e.g. being mammals and herbivores), we
could then make the following inductive inference, even if
we know nothing else about C:

Zebra v C (1)

In other words, any natural property that is known to hold
for giraffes and rabbits is likely to hold for zebras as well.
In such a case, we say that zebras are conceptually be-
tween rabbits and giraffes. The corresponding inference pat-
tern is known as interpolation in AI2 (Dubois et al. 1997;
Schockaert and Prade 2013) and is closely related to the no-
tion of category based induction in cognitive science (Os-
herson et al. 1990). Importantly, vector representations of
concepts, e.g. word embeddings, knowledge graph embed-
dings, could be used to obtain knowledge about conceptual
betweenness. For instance, (Derrac and Schockaert 2015)
found that geometric betweenness closely corresponds to
conceptual betweenness in vector spaces learned with multi-
dimensional scaling.

Apart from conceptual betweenness, the notion of natu-
ralness also plays a central role. Indeed, it is clear that the
conclusion in (1) can only be justified by making certain as-
sumptions on the concept C. If C could be an arbitrary con-
cept, the resulting inference may clearly not be valid, e.g.
this is the case if C = Rabbit t Giraffe (i.e. Rabbit or Gi-
raffe). For natural properties, however, interpolative infer-
ences seem intuitively plausible. This idea that only some
properties admit inductive inferences has been extensively
studied in philosophy, among others by Goodman (1955),
who called such properties projectible. As an example of a
non-projectible property, he introduced the famous example
of the property grue, which means green up to a given time
point and blue afterwards. Along similar lines, Quine (1953)
introduced the notion of “natural kinds” to explain why only
some properties admit inductive inferences. This notion was
developed by Gärdenfors (2000), who introduced the term
“natural properties” and suggested that such properties cor-
respond to convex regions in a suitable vector space. To de-
termine which concepts, in a given ontology, are likely to be
natural, a useful heuristic is to consider the concept name:
concepts that correspond to standard natural language terms

2Not to be confused with the notions of interpolation used to
relate logical theories (Craig 1957; Lutz and Wolter 2011)

are normally assumed to be natural (Gärdenfors 2014). In
this paper, we will simply assume that we are given which
concept names are natural.

In particular, we consider the following setting. We are
given a standard DL ontology, in addition to a set of con-
ceptual betweenness assertions (i.e. assertions of the form
“natural properties that hold for C1, ..., Cn should also hold
for C”) and a list of natural concepts. The aim is to reason
about the given ontology by combining standard deductive
reasoning with the aforementioned interpolation principle.
Note that in this way, we maintain a clear separation be-
tween deriving knowledge from data-driven representations
(i.e. the conceptual betweenness assertions) and the actual
reasoning process. We particularly focus on an extension of
the description logic EL (Baader et al. 2017). Our motiva-
tion for choosing this logic is its simplicity. EL allows only
for conjunction and existential restrictions as constructors.
Nevertheless, EL has been successfully used for encoding
large-scale ontologies like SNOMED CT. Furthermore, rea-
soning in EL can be performed in polynomial time. Our
proposed extension allows for reasoning with natural con-
cepts and conceptual betweenness, and thus supports inter-
polative reasoning. Formally defining the semantics of these
notions requires an extension to the usual first-order seman-
tics of description logics. Indeed, to capture e.g. that the
concept blue is natural while grue is not, we cannot simply
model concepts as sets of individuals. To this end, we con-
sider two alternative approaches for characterizing natural
concepts at the semantic level. First, we propose a seman-
tics in which natural concepts are characterized using sets of
features. This approach is closely related to formal concept
analysis (Wille 1982), and is loosely inspired by the long
tradition in cognitive science to model concepts in terms
of features (Tversky 1977). Second, we propose a seman-
tics based on vector space representations, inspired by con-
ceptual spaces (Gärdenfors 2000), in which natural concepts
correspond to convex regions.

As our main technical contribution, we provide complex-
ity bounds for concept subsumption. Concept subsumption
in our considered extension of EL is CONP-complete under
the feature-enriched semantics and PSPACE-hard under the
geometric semantics. The difference in complexity between
the two proposed semantics intuitively stems from differ-
ences in how conceptual betweenness interacts with inter-
section.
Missing proofs can be found in the extended version of
this paper (Ibáñez Garcı́a, Gutiérrez-Basulto, and Schock-
aert 2020).

2 Background
We briefly recall some basic notions about description log-
ics, focusing on the EL logic in particular.
Syntax. Consider countably infinite but disjoint sets of con-
cept names NC and role names NR. These concept and role
names are combined to EL concepts, in accordance with the
following grammar, where A ∈ NC and r ∈ NR:

C,D := > | A | C uD | ∃r.C



For instance, A u (∃r.(B u C)) is an example of a well-
formed EL concept, assuming A,B,C ∈ NC and r ∈ NR.
An EL TBox (ontology) T is a finite set of concept inclu-
sions (CIs) of the form C v D, where C,D are EL con-
cepts.
Semantics. The semantics of description logics are usually
given in terms of first-order interpretations (∆I , ·I). Such
interpretations consist of a nonempty domain ∆I and an in-
terpretation function ·I , which maps each concept name A
to a subset AI ⊆ ∆I and each role name r to a binary re-
lation rI ⊆ ∆I × ∆I . The interpretation function ·I is
extended to complex concepts as follows:

(>)I = ∆I , (C uD)I = CI ∩DI ,
(∃r.C)I = {d ∈ ∆I | ∃d′ ∈ CI , (d, d′) ∈ rI}.

An interpretation I satisfies a concept inclusion C v D if
CI ⊆ DI ; it is a model of a TBox T if it satisfies all CIs in
T . A concept C subsumes a conceptD relative to a TBox T
if every model I of T satisfies C v D. We denote this by
writing T |= C v D.

3 EL with In-between and Natural Concepts
We introduce the description logic EL ./ , which extends EL
with in-between concepts and natural concepts.
Syntax. The main change is that we introduce the in-
between constructor, which allows us to describe the set of
objects that are between two concepts. Specifically, we write
C ./D to denote all objects that are between the concepts C
and D. Further, because we will need to differentiate be-
tween concepts that are natural and concepts which are not,
we will assume that NC contains a distinguished infinite set
of natural concept names NNat

C . The syntax of EL ./ con-
cepts C,D is thus defined by the following grammar, where
A ∈ NC, A′ ∈ NNat

C and r ∈ NR:

C,D := > | A | C uD | ∃r.C | N
N,N ′ := A′ | N uN ′ | N ./N ′

We will call concepts of the form N,N ′ natural concepts.
Notably, we only allow the application of the ./ constructor
on natural concepts. The reason for this will become clearer
once we have defined the semantics. An EL ./ TBox is a fi-
nite set of concept inclusions C v D, where C,D are EL ./
concepts.
Example 1. In the following, we will consider the EL ./
TBox T containing the following concept inclusions:

Rabbit v Herbivore (2)
Giraffe v Herbivore (3)
Zebra v Rabbit ./Giraffe (4)

Herbivore v ∃eats.Plant (5)

such that Rabbit,Zebra,Giraffe,Herbivore ∈ NNat
C .

Note that betweenness in the proposed logic EL ./ is
modelled using a binary connective. In practice, however,
the knowledge we have may relate to more concepts. In-
deed, our general aim is to deal with knowledge of the form

“natural properties which hold for all ofA1, ..., Ak also hold
for B”, or more precisely, that to derive B v N for a nat-
ural concept N , it is sufficient that A1 v N, ..., Ak v N
can be derived. However, in both of the semantics that we
consider in this paper, the in-between operator will be asso-
ciative. For k ≥ 2, we can thus write B v A1 ./ ... ./Ak to
encode such knowledge.
Semantics. Our aim is to characterize the semantics of nat-
uralness and betweenness, in accordance with the idea of
interpolation. For instance, given a TBox containing the ax-
ioms B v C ./D, C v N , D v N with N a natural
concept, we should be able to inferB v N . This means that
we need to distinguish between natural concepts and other
concepts at the semantic level, which is not possible if we
simply interpret a concept as a set of objects. We will thus
refine the usual first-order interpretations, such that we can
characterize (i) which concepts are natural and (ii) which
concepts are between which others.

We will consider two possible approaches to define such
semantics. First, we will consider feature-enriched seman-
tics, which defines a semantics in the spirit of formal con-
cept analysis (Wille 1982). In this case, at the semantic level
we associate a set of features with each concept. Note that
these features are semantic constructs, which have no direct
counterpart at the syntactic level. A concept is then natural
if it is completely characterized by these features, while B
is between A and C if the set of features associated with B
contains the intersection of the sets associated with A and
C. Second, we will consider geometric semantics, which
follows the tradition of Gärdenfors (Gärdenfors 2000). In
this case, concepts will be interpreted as regions from a vec-
tor space. A concept is then natural if it is interpreted as a
convex region, while B is between A and C if the region
corresponding with B is geometrically between the regions
corresponding with A and C (i.e. in the convex hull of their
union). In the following sections, we introduce these two
types of semantics in more detail.

4 Feature-Enriched Semantics
In this section we introduce a refinement of the usual first-
order interpretations, in which each individual is described
using a set of features. Our main motivation here is to find
the simplest possible semantics which is rich enough to cap-
ture betweenness and naturalness.

4.1 Interpretations
The following definition introduces a refinement of the usual
DL interpretations, by introducing features in the spirit of
formal concept analysis (FCA).

Definition 1. A feature-enriched interpretation is a tuple
I = (I,F , π), such that

1. I = (∆I , ·I) is a classical DL interpretation;
2. F is a non-empty finite set of features;
3. π is a mapping assigning to every element d ∈ ∆I a

proper subset of features π(d) ⊂ F;
4. for each proper subset F ′ ⊂ F , there exists an element
d ∈ ∆I such that F ′ = π(d).



The last condition intuitively ensures that the different
features are independent, by insisting that every combination
of features (apart from F itself) is witnessed by some indi-
vidual. The reason why this condition is needed relates to
the fact that natural concepts will be characterized in terms
of sets of features. For instance, it ensures that two concepts
which are characterized by different sets of features cannot
have the same extension. Note that only proper subsets of F
are considered, such that we can associate F itself with the
empty concept.

Under I, a concept C is interpreted as a pair CI :=
〈CI , ϕ(C)〉 where CI ⊆ ∆I and ϕ(C) is the set of all fea-
tures from F which the elements from CI have in common:

ϕ(C) :=
⋂
d∈CI

π(d).

Intuitively, we can think of ϕ(C) as the set of necessary
conditions that an individual needs to satisfy to belong to
the concept C. The features from F themselves can thus
be seen as a set of primitive conditions that humans might
rely on when categorizing individuals. However, note that
the considered features do not play any role at the syntac-
tic level, i.e. one cannot directly refer to them and it is not
possible to specify them when encoding a TBox.

For standard EL concepts C, the set CI is defined as in
Section 2. For concepts of the form N ./N ′, we extend the
definition of ·I as follows.

(N ./N ′)I = {d ∈ ∆I | ϕ(N) ∩ ϕ(N ′) ⊆ π(d)}.
Intuitively, (N ./N ′)I contains all elements from the do-
main that have all the features that are common to both N
andN ′. Finally, each role name r is interpreted as rI := rI .
Definition 2. Let T be an EL ./ TBox and I = (I,F , π) a
feature-enriched interpretation. We say that I is a model of
T , written I |= T if the following hold.

1. CI ⊆ DI , for every C v D in T ;
2. for every natural concept nameA in T , it holds thatAI =
{d ∈ ∆I |ϕ(A) ⊆ π(d)}.

Example 2. Let us consider the following interpretation
I = (I,F , π) of the concept names from Example 1. We
define F = {f1, f2, f3, f4}, I = (∆I , ·I) and ∆I =
{d1, d2, ..., d15}. Furthermore, π is defined as:

π(d1)={f1} π(d6)={f1, f3} π(d11)={f1, f2, f3}
π(d2)={f2} π(d7)={f1, f4} π(d12)={f1, f2, f4}
π(d3)={f3} π(d8)={f2, f3} π(d13)={f1, f3, f4}
π(d4)={f4} π(d9)={f2, f4} π(d14)={f2, f3, f4}
π(d5)={f1, f2} π(d10)={f3, f4} π(d15)=∅

Finally, ϕ and ·I are defined as follows:

ϕ(Rabbit)={f1, f2, f3} RabbitI={d11}
ϕ(Zebra)={f2, f3} ZebraI={d8, d11, d14}
ϕ(Giraffe)={f2, f3, f4} GiraffeI={d14}

ϕ(Herbivore)={f3} HerbivoreI={d3, d6, d8,
d10, d11, d13, d14}

It is easy to verify that the conditions from Definition 1 are
indeed satisfied by I. Furthermore, we have, for instance:

ϕ(Rabbit) ∩ ϕ(Giraffe) = {f2, f3}
and thus

(Rabbit ./Giraffe)I = {d8, d11, d14}
In particular, we have that I is a model of (2)–(4). Note
that for simplicity, we have not considered (5) in this ex-
ample (which would require considering more objects and
features).

The model we considered in the previous example is
rather counter-intuitive, as we would normally think of
Rabbit, Zebra and Giraffe as disjoint concepts. However,
the feature-enriched semantics is rather restrictive when it
comes to modelling disjoint concepts. While this is not an
issue for the logic EL, it shows that a different semantics
would be needed for extensions of EL in which disjointness
can be expressed. The geometric semantics, which we dis-
cuss in Section 5, is more general in this respect.

4.2 Natural Concepts
Observe that Condition 2 in Definition 2 enforces that the
extensions of natural concept names are completely deter-
mined by their features. This is indeed in line with the in-
tended semantics of natural concepts explained above. This
property extends to all natural concepts.
Proposition 1. Let T be an EL ./ TBox and let Nat(T )
denote the smallest set of concepts such that
• > ∈ Nat(T );
• every concept name A ∈ NNat

C occurring in T belongs to
Nat(T );

• if C,D ∈ Nat(T ), then C uD ∈ Nat(T ) and C ./D ∈
Nat(T ).

Then, for every C ∈ Nat(T ) and every model I = (I,F , π)
of T it holds that CI = {d ∈ ∆I | ϕ(C) ⊆ π(d)}.

Intuitively, for a natural concept C, its associated set of
features ϕ(C) corresponds to necessary and sufficient con-
ditions for an element to belong to the concept. A closely re-
lated property of natural concepts is that concept inclusions
can be characterized in terms of feature inclusion:
Lemma 1. Let I = (I,F , π) be a feature-enriched inter-
pretation and D a natural concept in I. Then for every con-
cept C, ϕ(D) ⊆ ϕ(C) iff CI ⊆ DI .

4.3 In-between Concepts
Feature-enriched interpretations allow us to define between-
ness at the level of the objects in the domain of a given
interpretation (I,F , π). For d, d1, d2 ∈ ∆I , we will say
that d is between d1 and d2, denoted by bet(d1, d, d2), if
π(d1) ∩ π(d2) ⊆ π(d).
Proposition 2. Let I = (I,F , π) be a feature-enriched
interpretation. For every pair of natural concepts C,D in I
such that CI 6= ∅ and DI 6= ∅, it holds that (C ./D)I is
equal to the following set:

B = {d ∈ ∆I | ∃d1 ∈ CI .∃d2 ∈ DI s.t. bet(d1, d, d2)}.



Observe that B provides an intuitive definition of be-
tweenness and that the assumption that C and D are natural
is crucial for showing (C ./D)I ⊆ B. This justifies the
syntactic restriction that ./ is only applied to natural con-
cepts.

4.4 Link with FCA
There is a clear link between the notion of natural concept in
an interpretation (I,F , π) and the notion of formal concept
from FCA. Let us consider the formal context (∆I ,F , ι),
where the incidence relation ι is defined as ι(d, f) iff f ∈
π(d), for d ∈ ∆I and f ∈ F .

Observation 1. It holds that C is a natural concept in
(I,F , π) iff (CI , ϕ(C)) is a formal concept of the formal
context (∆I ,F , ι).

Indeed the following two conditions are satisfied:

CI = {d ∈ ∆I | ι(d, f) for all f ∈ ϕ(C)} (6)

ϕ(C) = {f ∈ F | ι(d, f) for all d ∈ CI} (7)

Condition (6) follows from the definition of natural concept,
while (7) follows from the definition of ϕ(C).

Furthermore, note that Conditions 3 and 4 in Definition 1
ensure that (∅,F) is also a formal concept, in fact the least
element of the concept lattice. In other words, if C is a nat-
ural concept in I such that CI = ∅, then ϕ(C) = F . One
consequence of this property is the following.

Observation 2. For every interpretation (I,F , π), it holds
that (C ./D)I 6= ∅ iff CI 6= ∅ or DI 6= ∅.

4.5 Interpolation in Feature-enriched Models
The following example illustrates how the feature-enriched
semantics enables interpolative inferences.

Example 3. Consider again the TBox T from Example 1
and the interpretation I from Example 2. It is easy to ver-
ify that I is a model of T . Moreover, I also satisfies the
following concept inclusion:

Zebra v Herbivore,

which follows the inference pattern explained in the intro-
duction, given that Herbivore is a natural concept. In fact,
this concept inclusion is entailed by T . To see this, note that
in any model (J ,F , π) of T , because of the concept inclu-
sions (2) and (3), it holds that

ϕ(Herbivore) ⊆ ϕ(Rabbit) ϕ(Herbivore) ⊆ Giraffe.

That is,

ϕ(Herbivore) ⊆ ϕ(Rabbit ./Giraffe).

By Lemma 1, and because of Herbivore ∈ NNat
C , we have

that (Rabbit ./Giraffe)J ⊆ HerbivoreJ . Finally by concept
inclusion (4) we can conclude ZebraJ ⊆ HerbivoreJ .

Clearly, the arguments used in the above example gener-
alize. We thus have the following result, which provides the
soundness of interpolative inferences.

Lemma 2. Let T be an EL ./ TBox, andC,D,B be natural
concepts w.r.t T . If T |= {C v B,D v B} then T |=
C ./D v B.

However, the applicability of this lemma is limited, as
it requires specific knowledge about C ./D. For example,
consider the TBox T ′ containing the following assertions:

A u C v B A uD v B X v C ./D

with B a natural concept w.r.t T ′. Since C ./D is char-
acterised by all common features of C and D, a plausible
inference from T ′ is that A u (C ./D) v B holds, which
in turns allows us to draw the conclusion that A uX v B.
However, using Lemma 2 we can only soundly infer that
T ′ |= (A u C) ./ (A u D) v B, provided that A u C and
A uD are both natural w.r.t. T ′. Thus, we shall investigate
under which conditions Au (C ./D) v (AuC) ./ (AuD)
holds.

Lemma 3. Let C,D be natural concepts w.r.t. a given TBox
T . For every model I of T , it holds that ϕ(CuD) = ϕ(C)∪
ϕ(D).

We use this property to show that interpolation pattern ex-
emplified above is indeed sound for natural concepts.

Theorem 1. Let T be an EL ./ -TBox, and letA,B,C,D be
natural concepts w.r.t. T . If T |= {AuC v B,AuD v B}
then T |= A u (C ./D) v B.

5 Geometric Semantics
We now turn to a different approach for defining the seman-
tics of ./ and natural concepts, which is inspired by con-
ceptual spaces (Gärdenfors 2000). The main idea is that
concepts are represented as regions in a Euclidean space,
with natural concepts corresponding to convex regions. One
important advantage of the geometric semantics is that it is
closer to the vector space embeddings that are commonly
used when learning concept representations from data. In
other words, if knowledge about conceptual betweenness is
learned from vector space representations, then it seems nat-
ural to define the semantics in a similar way. Another ad-
vantage is that the geometric semantics avoids some of the
counter-intuitive restrictions of the feature-enriched seman-
tics, in terms of how betweenness and disjointness interact.
This means that the geometric semantics can also be used for
extensions of EL in which disjointness can be expressed, al-
though we leave a detailed study of the computational prop-
erties of interpolation in such extensions as a topic for future
work. On the other hand, as we will see in the next section,
these advantages come at a computational cost, even when
staying within the context of EL.

One key issue of the geometric semantics is that, un-
like for the feature-enriched semantics, X v C ./D does
not imply X u A v (C u A) ./ (D u A), even when all
of the concepts involved are natural. For this reason, we
extend the language of EL ./ with assertions of the form
A l (C,D), where A is a natural concept and C,D are
natural concept names. We will refer to these expressions
as non-interference assertions. Their aim is to encode how
C ./ D interacts with intersections with A (explained in



more detailed below). We will refer to the resulting logic as
EL ./reg . In particular, EL ./reg TBoxes are finite sets of concept
inclusions and non-interference assertions.

5.1 Interpretations
Geometric interpretations represent concepts as regions,
where individuals are intuitively represented as points. In
addition to specifying these regions, however, geometric in-
terpretations also specify some additional mappings, which
will be needed to formalize the idea of non-interference.

In what follows, we use conv(X) to denote the convex
hull of X , that is the intersection of all the convex sets that
contain X , and ⊕ to denote the concatenation of vectors.
Definition 3 (Geometric interpretation). Let Σ ⊂ NC ∪ NR.
An m-dimensional geometric Σ-interpretation I assigns to
every concept name A ∈ Σ a region regI(A) ⊆ Rm and
to every role r ∈ Σ a region regI(r) ⊆ R2·m. Further-
more, I specifies for all natural concept names A,B in Σ ∩
NNat

C , a mapping κI(A,B) from conv(regI(A) ∪ regI(B)) to
regI(A)× regI(B) such that for every p ∈ conv(regI(A)∪
regI(B)) with κI(A,B)(p) = (p1, p2) it holds that

• p is between p1 and p2, i.e. p = λp1 + (1−λ)p2 for some
λ ∈ [0, 1];

• κI(B,A)(p) = (p2, p1).

Note that for a point p ∈ conv(regI(A) ∪ regI(B)) it
is always possible to find points p1 ∈ regI(A) and p2 ∈
regI(B) such that p is between p1 and p2. Intuitively, how-
ever, the mapping κ(A,B) selects the pair (p1, p2) which is
most “similar” to p. This intuition will be made explicit
when discussing the semantics of non-interference asser-
tions below.

The interpretation of complex EL ./ concepts is defined
as follows.

regI(>) = R
regI(C uD) = regI(C) ∩ regI(D)

regI(∃r.C) = {p ∈ Rm | ∃p′ ∈ regI(C), p⊕p′ ∈ regI(r)}
regI(C1 ./C2) = conv(regI(C1) ∪ regI(C2))

Note how the definition of regI(C1 ./C2) defines concep-
tual betweenness in terms of geometric betweenness, i.e. the
instances of the concept C1 ./C2 are intuitively those indi-
viduals which are modelled by points that are geometrically
between the regions modelling C1 and C2.
Example 4. Figure 1 depicts a two-dimensional Σ-
interpretation of the concepts Rabbit, Zebra, Giraffe and
Herbivore from Example 1.

The semantics of EL ./reg TBox assertions is defined as
follows. An m-dimensional Σ-interpretation I satisfies a
concept inclusion C v D, for C,D ∈ Σ, if regI(C) ⊆
regI(D). The interpretation I satisfies the non-interference
assertion X l (A,B) if for all p ∈ (X u (A./B))I , when-
ever κI(A,B)(p) = (p1, p2), it holds that p1 ∈ XI .

The intuition behind non-interference relies on the notion
of domains from the theory of conceptual spaces. For in-
stance, if X v Red ./ Blue then we would expect that

Figure 1: Illustration of a two-dimensional geometric Σ-
interpretation.

Figure 2: A configuration in which both A1 l (C,D) and A1 l
(D,C) can be satisfied (left), and a configuration in which A2 l
(C,D) can be satisfied but not A2 l (D,C) (right)

.

(X u Small) v (Red u Small) ./ (Blue u Small) also holds.
This is because Red and Blue are defined in the color do-
main, whereas Small is defined in the size domain. Con-
cepts that rely on disjoint sets of domains intuitively can-
not interfere with betweenness assertions. In our setting,
we only have a single vector space, whereas in the theory
of conceptual spaces each domain corresponds to a separate
vector space. Instead, as was argued in (Jameel and Schock-
aert 2016), we can think of such domains as sub-spaces of
Rm. The intended intuition is that κI(A,B)(p) selects a pair
of points (p1, p2) which only differ from p in the sub-spaces
of the domains that are relevant to A and B. The statement
X l (A,B) then intuitively asserts that the domains that are
relevant for A and B are disjoint from the domains that are
relevant for X .
Example 5. The left-hand side of Figure 2 depicts a configu-
ration in which the non-interference assertions A1l (C,D)
and A1 l (D,C) can be satisfied. In particular, a suitable
mapping κ(A,B)(p) = (p1, p2) can be found by choosing
p1 ∈ regI(C) and p2 ∈ regI(D) such that p1 and p2 share
their first coordinate with p. Similarly, the right-hand side
of Figure 2 shows a configuration in which A2l (C,D) can
be satisfied, but not A2 l (D,C).
Definition 4. Let T be an EL ./reg TBox. An m-dimensional
geometric Σ-interpretation I is an m-dimensional Σ-model
of T if the following are satisfied:

1. all the concept and role names appearing in T are in-
cluded in Σ;



Figure 3: Even though the region representing X is between those
representing C and D (left), the region for X u A is not between
those for C uA and D uA (right).

2. I satisfies every concept inclusion in T ;
3. I satisfies every non-interference assertion in T ;
4. regI(A) is a convex region for every concept name A ∈

Σ ∩ NNat
C .

We refer to I as a geometric model, or simply a model, if m
and Σ are clear from the context.

5.2 Interpolation in Geometric Models
It is easy to see that Lemma 2 also holds for the geomet-
ric semantics, showing that basic interpolative inferences
are sound. The reason why we need to consider non-
interference is related to the interaction between ./ and u.
Recall from Section 4 that interpolation with inclusions of
the form A u C v B and A u D v B required A,C
and D to be natural concepts in order to have e.g., that
ϕ(A u C) = ϕ(A) ∪ ϕ(C). In the case of the geometric
semantics, naturalness alone is not sufficient to allow us to
derive T |= A u (C ./D) v B from T |= {A u C v
B,AuD v B}. To see this, consider the 2-dimensional in-
terpretation illustrated in Figure 3. We have that regI(X)
is between regI(C) and regI(D) and that regI(C u A)
and regI(D u A) are convex (which is the geometric char-
acterization of naturalness). Nonetheless, we can see that
regI(X uA) is not between regI(C uA) and regI(DuA).
A way to enable interpolative reasoning between conjunc-
tions of concepts is to require that the concepts involved are
non-interfering. This is formalized in the following lemma.
Proposition 3. Let T be an EL ./reg -TBox. If T |= {A l
(C,D), A u C v B,D v B}, with A,B natural concepts
and C,D ∈ NNat

C , then T |= A u (C ./ D) v B.
Analogously, we can show the following result.
Proposition 4. Let T be an EL ./reg -TBox. If T |= {A l
(C,D), A l (D,C), A u C v B,A uD v B}, with A,B
natural concepts and C,D ∈ NNat

C , then T |= A u (C ./
D) v B.
Example 6. The configurations in Figure 2 illustrate how
sound interpolative inferences can be made when the condi-
tions from Proposition 3 (right-hand side) or Proposition 4
(left-hand side) are satisfied.
Finally, the following result shows that non-interference is
closed under intersection.
Proposition 5. LetA,B be natural concepts andC,D natu-
ral concept names. If T |= Al(C,D) and T |= Bl(C,D)
then T |= (A uB) l (C,D).

6 Complexity of Reasoning with
Interpolation

We next analyze the computational complexity of reasoning
in EL ./ and EL ./reg . We show that the ability to perform in-
terpolation increases the complexity of concept subsumption
relative to a TBox.

6.1 Concept Subsumption in EL ./

We start by studying EL ./ and establish that concept sub-
sumption relative to EL ./ -TBoxes is CONP-complete. We
show hardness by reducing non-entailment in propositional
logic to concept subsumption in EL ./ . The main underlying
idea is that a concept inclusion of the form:

X1 u ... uXn v Y1 ./ ... ./ Ym

can be used to simulate a propositional clause of the follow-
ing form:

¬y1 ∨ ... ∨ ¬yn ∨ x1 ∨ ... ∨ xn

where each atom xi or yi is associated with a natural concept
name Xi or Yi. This correspondence allows us to reduce the
problem of entailment checking in propositional logic to the
problem of checking concept subsumption relative to EL ./ -
TBoxes; the proof can be found in the online appendix.

Theorem 2. Concept subsumption relative to an EL ./ -
TBox is CONP-hard, even when restricting to TBoxes with-
out any occurrences of existential restrictions.

For the matching upper bound we provide a polynomial time
guess-and-check procedure. We assume that EL ./ -TBoxes
are in the following normal form. For a TBox to be in nor-
mal form, we require that every concept inclusion is of one
of the forms A v B, A1 u A2 v B, A v ∃r.B, ∃r.A v B,
A v B1 ./B2, B1 ./B2 v A, where A,A1, A2, B are con-
cept names or the concept > and B1, B2 are natural concept
names. It is standard to show that every TBox can be trans-
formed into this normal form in polynomial time such that
(non-)subsumption between the concept names that occur in
the original TBox is preserved.

We start by showing the following property of feature-
enriched interpretations.

Lemma 4. Let T be an EL ./ TBox. For every model I =

(I,F , π) of T , there is a model Î = (I, F̂ , π̂) such that
|F̂ | ≤ poly(T ).

Before presenting the decision procedure, we introduce
some notions. Let T be an EL ./ TBox. A feature assign-
ment for T from a set of features F is a mapping θ assigning
to each concept name in T a subset F ⊆ F . We say that a
feature assignment θ for T is proper if the following condi-
tions hold:

1. For every concept inclusion of the formA1uA2 v B in T
with A1, A2 natural concept names, it holds that θ̂(B) ⊆
θ(A1) ∪ θ(A2);

2. for every concept inclusion of the form A v C in T , it
holds that θ̂(C) ⊆ θ(A),



with θ̂(·) defined as follows: θ̂(A) = θ(A);

θ̂(A./B) = θ(A) ∩ θ(B); θ̂(>) = θ̂(∃r.B) = ∅.

We are now ready to describe our guess-and-check proce-
dure to decide non-subsumption in EL ./ . Given an EL ./
TBox T , we proceed as follows:

1. Guess a feature assignment θ for T from some set of
features F (By Lemma 4, we can assume that |F| ≤
poly(T )).

2. Add concept inclusions A v C to T if θ̂(C) ⊆ θ(A), for
A ∈ NC and C ∈ NNat

C or C = B1 ./B2, occurring in T .
Let Tθ be the TBox obtained after this step.

3. Compute the completion T ′θ of Tθ using the classical com-
pletion algorithm for EL (Baader et al. 2017), where con-
cepts of the form A./B are regarded as concept names.
Let T ′θ be the TBox obtained after this step.

4. Check that θ is proper for T ′θ .
Lemma 5. Let T be an EL ./ TBox and A,B concept
names. Then, T 6|= A v B iff, after applying Steps 1-4
above, A v B 6∈ T ′θ .
Summing up we obtain the following result.
Theorem 3. Concept subsumption relative to EL ./ -TBoxes
is CONP-complete.

6.2 Concept Subsumption in EL ./
reg

We move now to investigate concept subsumption relative to
EL ./reg TBoxes (under the geometric semantics). In this case,
we are able to show the following hardness result.
Theorem 4. Concept subsumption relative to EL ./reg -TBoxes
is PSPACE-hard.

Inspired by (Schockaert and Prade 2013), the proof pro-
ceeds by reduction from the dominance problem in general-
ized CP-nets (GCP-nets). We briefly sketch this reduction.
First we recall the dominance problem. A GCP-net over
a set of propositional atoms A = {a1, ..., am} is specified
by a set of so-called conditional preference (CP) rules ρi
(i ∈ {1, ..., n}) of the following form:

ηi : qi > ¬qi (8)

where ηi is a conjunction of literals and qi is a literal (over
A). The intuition of this rule is that whenever ηi is true, then
it is better to have qi true than to have qi false, assuming
that everything else stays the same (i.e. ceteris paribus). An
outcome is defined as a tuple of literals (l1, ..., lm) where li
is either ai or ¬ai. Outcomes thus encode possible worlds.
Let ω1 = (l1, ...,¬qi, ..., lm) and ω2 = (l1, ..., qi, ..., lm) be
outcomes which only differ in the truth value they assign to
qi and which both satisfy the condition ηi. Then we say that
the rule ρi sanctions an improving flip from ω1 to ω2. More-
over, we say that an outcome ω dominates an outcome ω′,
written ω′ ≺ ω if there exists a sequence of improving flips
from ω′ to ω. A GCP-net is consistent if there are no cycles
of improving flips, i.e. there are no outcomes ω for which
ω ≺ ω. It was shown in (Goldsmith et al. 2008) that the
problem of checking whether some outcome ω dominates

an outcome ω′ is PSPACE-complete, even when restricted to
consistent GCP-nets.

The proposed reduction is defined as follows. Let the ini-
tial outcome be given by (l1, ..., lm). The corresponding
EL ./reg TBox T contains the following corresponding con-
cept inclusion:

τ(l1) u ... u τ(lm) v Z (9)

where the mapping τ is defined by τ(ai) = Ai and
τ(¬ai) = Ai, withAi,Ai and Z natural concept names. We
furthermore extend this mapping to conjunctions of literals
as τ(l1 ∧ ...∧ lk) = τ(l1)u ...u τ(lk). For each CP-rule ρi,
we have that T contains the following concept inclusions:

Xi v Z (10)
τ(ηi ∧ qi) vWi ./ Xi (11)

Wi v τ(ηi ∧ ¬qi) (12)
τ(ηi ∧ ¬qi) vWi (13)

where Wi and Xi are natural concept names. Furthermore,
for each rule ηi : qi > ¬qi and each aj , such that nei-
ther aj nor ¬aj occurs in ηi or {qi,¬qi}, we add the non-
interference assertions Aj l (Wi, Xi) and Aj l (Wi, Xi).

Then we can show that (r1, ..., rm) dominates (l1, ..., lm),
with (r1, ..., rm) 6= (l1, ..., lm) iff

T |= τ(r1 ∧ ... ∧ rm) v Z

We conjecture that a matching PSPACE upper bound can be
found, although this currently remains an open question.

7 Related Work
The problem of automated knowledge base completion has
received significant attention in recent years. Most of the
work in this area has focused on completing knowledge
graphs by learning a suitable vector space representation of
the entities and relations involved (Bordes et al. 2013). How-
ever, some work has also focused on description logic on-
tologies. An early example is (d’Amato et al. 2009), which
proposed to use a similarity metric between individuals to
find plausible answers to queries. More recently, Bouraoui
and Schockaert (2018) proposed a method for finding plau-
sible missing ABox assertions, by representing each concept
as a Gaussian distribution in a vector space, while Kulmanov
et al. (2019) proposed a method to learn a vector space em-
bedding of EL ontologies for this purpose. The problem of
completing TBoxes using vector space representations was
considered in (Bouraoui and Schockaert 2019).

The previously mentioned approaches are essentially
heuristic, focusing on the empirical performance of the
considered strategies, without introducing a corresponding
model-theoretic semantics or studying the formal proper-
ties of associated reasoning tasks (e.g. computational com-
plexity). The problem of formally combining logics and
similarity is addressed in (Sheremet et al. 2005; Sheremet,
Wolter, and Zakharyaschev 2010), where an operator is in-
troduced to express that a concept A is more similar to
some concept B than to some concept C. By focusing



on comparative similarity, the problem of dealing with nu-
merical degrees is avoided. We can thus think of compar-
ative similarity and conceptual betweenness as two com-
plementary approaches for reasoning about similarity in a
qualitative way. Related to concept betweenness is the
notion of least common subsumer (LCS) which has been
broadly studied in the context of DLs as means for support-
ing inductive inference (Cohen, Borgida, and Hirsh 1992;
Küsters and Borgida 2001; Baader, Sertkaya, and Turhan
2007; Ecke and Turhan 2012; Zarrieß and Turhan 2013;
Jung, Lutz, and Wolter 2020). Similarly to the LCS of A
and B, lcs(A,B), A./B subsumes both A and B, thus
generalizing them. However, lcs(A,B) is minimal w.r.t.
the extensions of A and B, whereas A./B is minimal w.r.t.
their intent under the feature-based semantics, i.e., it is the
least common ‘natural subsumer’. The latter is arguably,
closer to to the cognitive notion of the least common sub-
sumer of A and B as the concept capturing their commonal-
ities. Further, in EL, where a syntactic description of LCS is
not guaranteed to exist, betweeness provides such descrip-
tion. Beyond qualitative approaches, it is also possible to
directly model degrees of similarity. For instance, Esteva et
al. (1997) considered a graded modal logic which formal-
izes a form of similarity based reasoning. Fuzzy and rough
description logics can also be viewed from this angle (Strac-
cia 2001; Bobillo et al. 2015; Schlobach, Klein, and Peelen
2007; Klein, Mika, and Schlobach 2007; Jiang et al. 2009;
Peñaloza and Zou 2013; Lisi and Straccia 2013). Within a
broader context, (Lieto and Pozzato 2018) is also motivated
by the idea of combining description logics with ideas from
cognitive science, although their focus is on modelling typ-
icality effects and compositionality, e.g. inferring the mean-
ing of pet fish from the meanings of pet and fish, which is
a well-known challenge for cognitive systems since typical
pet fish are neither typical pets nor typical fish.

The idea of providing a semantics for description log-
ics in which concepts correspond to convex regions from
a conceptual space was already considered in (Özçep and
Möller 2013). Gutiérrez-Basulto and Schockaert (2018) also
studied a semantics based on conceptual spaces for exis-
tential rules. The idea of linking description logic con-
cepts to feature based models has been previously consid-
ered as well. For instance, Porello et al. (2019) introduced
a syntactic construct to define description logic concepts in
terms of weighted combinations of properties, although un-
like in this paper, their properties/features are also syntactic
objects. Description logics with concrete domains provide
means to refer to concrete objects, such as numbers or spa-
tial regions (Lutz 2002; Lutz and Milicic 2007), but (unlike
in our case) they come equipped with syntax to access and
impose constraints on these domains.

The study of the link between DLs and formal concept
analysis has received considerable attention, see e.g. (Baader
and Molitor 2000; Rudolph 2006; Baader et al. 2007;
Sertkaya 2010; Distel 2011) and references therein. How-
ever, unlike in these works, our main objective in this paper
is to use features to characterize natural concepts, and pro-
vide semantics capturing the idea of interpolation.

8 Conclusions and Future Work
Our central aim in this paper was to formalize interpolative
reasoning, a commonsense inference pattern that underpins
a cognitively plausible model of induction, in the context of
description logics. To this end, we have studied extensions
of the description logic EL in which we can encode that one
concept is between two other concepts. In particular, we
have studied two approaches to formally define the seman-
tics of betweenness and the related notion of naturalness:
one inspired by formal concept analysis and one inspired by
conceptual spaces. We furthermore showed that reasoning
in the considered extensions of EL is CONP-complete un-
der the featured-enriched semantics, and PSPACE-hard un-
der the geometric semantics.

There are several important avenues for future work.
First, at the foundational level, we believe that our frame-
work can be used as a basis for integrating inductive and de-
ductive reasoning more broadly. Essentially, inductive rea-
soning requires two things: (i) we need knowledge about
the representation of concepts in a suitable feature space
and (ii) we need to make particular restrictions on how con-
cepts are represented in that feature space. In this paper,
(i) was addressed by providing knowledge about concep-
tual betweenness whereas (ii) was addressed by the notion
of naturalness. However, there may be several other mech-
anisms to encode knowledge about the feature space. One
possibility is to have assertions that relate to analogical pro-
portions (i.e. assertions of the form “a is to bwhat c is to d”),
which can be formalized in terms of discrete features or geo-
metric representations (Miclet, Bayoudh, and Delhay 2008;
Prade and Richard 2014).

Another important line for future work relates to apply-
ing the proposed framework in practice, e.g. for ontology
completion or for plausible query answering. This will re-
quire two additional contributions. First, we either need a
tractable fragment of the considered logics or an efficient
approximate inference technique. Second, we need practi-
cal mechanisms to deal with the noisy nature of the avail-
able knowledge about betweenness (which typically would
be learned from data) and the inconsistencies that may arise
from applying interpolation (e.g. because concepts that were
assumed to be natural may not be). To this end, we plan
to study probabilistic or non-monotonic extensions of our
framework.
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