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Abstract

For an unsymmetric plate, a pure bending (plate curvature) inevitably causes
a certain amount of stretching to the geometric mid-plane due to the stretching-
bending coupling. However, in the classical thin plate theory, the geomet-
ric mid-plane is assumed to remain unstrained under a pure bending. In
this study, we demonstrate that the classical thin plate theory based on
Kirchhoff-Love hypothesis is not accurate to model the structural behavior
of unsymmetric plates. To overcome this limitation, we propose an improved
theoretical model for unsymmetric plates through taking advantages of neu-
tral plane strains in defining the geometric functions instead of mid-plane
strains. Subsequently, the new governing equations and energy expression
for the cylindrical bending of unsymmetric plates are derived using a modi-
fied constitutive equation. An alternative derivation approach based on the
general stress equations is also presented for further validation. A direct
consideration of stretching-bending coupling in the constitutive equation can
significantly reduce the number of unknown parameters in establishing an ac-
curate analytical model for unsymmetric plates. The pure bending problem
of unsymmetric plates with small deformation is first studied, for which the
improved model proposed in this paper is shown to capture the out-of-plane
deformation of unsymmetric plates, accurately. However, many previous
works have to take into account the nonlinear von Kármán strains even in the
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model of this small deformation problem. For the pure plate bending prob-
lem with large deformation, few unknown terms are needed for the improved
model to give accurate results compared with the conventional mid-plane
strain based method. Later, this improved model is applied to predict the
stable configurations, the bifurcation/loss-of-bifurcation and the static snap-
through phenomena of bistable cross-ply composite laminates. Furthermore,
the application of this improved model for the accurate simulation of the non-
linear dynamics of unsymmetric plates is also demonstrated. Applying this
proposed improved model, the model is reduced into an analogous one for
isotropic or symmetric plates, therefore, the problem of unsymmetric plates
can be solved readily and accurately.

Keywords: unsymmetric plates, compatibility equation, mid-plane strains
membrane strains, Rayleigh-Ritz method

1. Introduction

The classical Kirchhoff–Love thin plate theory is based on the follow-
ing assumptions: thickness is much smaller than the other physical dimen-
sions; deflections are small compared to the plate thickness; normals remain
perpendicular to the mid-plane before and after deformation; mid-plane re-
mains unstrained during bending [1, 2]. Because the material anisotropy
is not taken into consideration in the Kirchhoff-Love theory of plates, the
mid-plane coincides with the neutral plane after bending.

In the study of mechanics of composite structures, the Kirchhoff-Love
theory is often applied to model thin composite plates and shells. In the
Kirchhoff-Love theory of plates, the mid-plane of a composite plate is as-
sumed to be unstrained under pure bending [3]. However, for an unsymmet-
ric plate, the mid-plane does not always coincide with the neutral plane. Due
to the stretching-bending coupling, a pure bending will introduce in-plane
strains to the mid-plane of an unsymmetric plate, and vice versa. There-
fore, this phenomenon is in conflict with the assumption of thin plate theory
that the mid-plane remains unstrained during the pure bending. Many re-
searchers realized that the linear classical thin plate theory is not accurate
for the analysis of unsymmetric plates [4, 5, 6], the mid-plane stain con-
flict or early bending-extension coupling is not considered in their studies.
As an alternative, the large deformation plate theory based on von Kármán
nonlinear strains was often employed even for ”small deformation analysis”
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of unsymmetric laminates [4, 5, 6, 7, 8]. For example, in the study of un-
symmetric composite plates that were cooling down from the curing tem-
perature, the Kirchhoff-Love thin plate theory is applied to establish the
Rayleigh-Ritz model to predict their deformed shapes. In this method, the
mid-plane strains are directly expanded into polynomials, and analytical so-
lutions are obtained through minimizing the potential energy of unsymmetric
plates [9, 7, 8, 10, 11, 12, 13, 14, 15, 16]. Satisfied accurate predictions for
the deformed shapes are achieved if the nonlinear von Kármán terms are
included in mid-plane strains and sufficient number of terms in the polyno-
mial expansion is used in the model. However, no physical insights had been
given to understand why the early bending-stretching coupling can greatly
enhance the large-deflection effect [5], and why some terms in the polyno-
mials expansion of mid-plane strains are critical for obtaining the accurate
solution, whereas other terms are negligible. In the study of snap-through
phenomenon for cross-ply bistable composite plates, it was found that the
Rayleigh-Ritz models established from the classical thin plate theory over
predict the bending stiffness and the critical snap-through load [17]. The
prediction for snap-through load can be improved by increasing the order
of polynomials expansion in the displacement functions [13], but it often in-
volves a large number of unknown variables. Lamacchia et. al [18] proposed
a sophisticated numerical approach that can efficiently and accurately model
the bistable plates. However, the conventional compatibility of mid-plane
strains was employed in their approach, therefore the fundamental mecha-
nism of their modeling approach remains the same compared with previous
work. On the other hand, it is very difficult to establish the nonlinear dy-
namic model for unsymmetric plates even using the high order polynomials
expansion in the displacement functions or applying a sophisticated numer-
ical method [19]. This is because it is often very tedious to solve a set of
nonlinear differential equations with many variables. The previous works
are not sufficiently accurate to capture the complicated nonlinear dynam-
ics behaviour for unsymmetric bistable plates [20, 21, 22, 23]. Establishing
accurate and efficient models for analyzing the nonlinear dynamics of un-
symmetric bistable plates is of critical important in the practical design of
morphing structures [24, 25] and broadband vibration energy harvesting de-
vices [26, 27]. More recently, an efficient analytical model for the nonlinear
dynamics of bi-stable composite plates [19] was proposed and presented by
the authors, which is partially based on the model introduced in this paper.
It is also approved that this improved model for unsymmetric plates can
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effectively and accurately capture the nonlinear relationship between tem-
perature and curvature of the bistable plates with temperature dependent
material properties [28, 29].

After a thorough study of many previous works on unsymmetric plates,
it was found that the conflict between the unstrained mid-plane assumption
in Kirchhoff-Love thin plate theory and the stretching-bending coupling of
unsymmetric plates are the major reasons that lead to the inaccurate pre-
dictions for unsymmetric plates. In this study, the authors make an effort to
overcome this conflict by establishing an improved model for unsymmetric
plates, in which the neutral plane strains are directly utilized, or alternatively
the expressions for the mid-plane strains and the corresponding compatibility
equation are modified to take into account the stretching-bending coupling.
In doing so, the problem of unsymmetric plates is then reduced to an anal-
ogous problem of a symmetric or isotropic plate. Subsequently, the classical
Kirchhoff–Love thin plate theory is modified by following an approximating
method proposed by Ashton in 1969 [30]. Instead of mid-plane strains, this
study introduces the membrane strains to derive the basic geometric func-
tions. Consequently, a new compatibility equation is derived between the
out-of-plane displacement and the membrane strains. Note, as an important
characteristic of the geometric functions, each component of the membrane
strains of an unsymmetric plate could be in different planes. Therefore, new
expressions for the mid-plane strains of an unsymmetric plate are derived
from the membrane strains, and the modified compatibility equation in terms
of the mid-plane strains is also derived accordingly. The paper is structured
as follows. In section 2, the conflict between classical thin plate theory and
the mid-plane strain based constitutive equation in modelling of unsymmetric
plates is firstly illustrated. Next, an improved model that utilize the neutral
plane strains as primary variables for unsymmetric plates is proposed. The
new constitutive equation and modified compatibility equation based on the
mid-plane strains are also derived. In section 3, the pure bending problem of
unsymmetric plates for both the small deformation case and the large defor-
mation case are studied. The corresponding modified governing equation for
the small deformation problem of unsymmetric plates is derived for the gen-
eral three dimensional equilibrium equations. The corresponding modified
energy formula is also derived for establishing a Rayleigh-Ritz model for the
large deformation problem of unsymmetric plates. The results predicted via
the classical theory of plate and the modified theory of plate are compared
and discussed. In section 4, the advantages of applying the new improved
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model to analyze the bistable cross-ply laminates are demonstrated. With
the Rayleigh-Ritz method, the stable configurations, the snap-through loads
and nonlinear dynamics of the bistable cross-ply plates are predicted and
validated with FEM results.

2. An improved model for unsymmetric plates

In the classical thin plate theory, the mid-plane strains are defined in
terms of the in-plane displacements given by, ε0x

ε0y
γ0xy

 =

 ∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x

 (1)

where u0 and v0 represent the in-plane displacements of mid-planes. For
a general plate, the relationship between the in-plane stress resultant N,
bending moment resultant M and the mid-plane strains are defined by the
constitutive equation as,[

N
M

]
=

[
A B
B D

] [
ε0

K

]
(2)

where A, B and D represent the in-plane stretching stiffness matrix, stretching-
bending stiffness matrix and bending stiffness matrix, respectively. K =
[kx, ky, kxy]

T represent the curvatures. For a symmetric laminate, the geo-
metric mid-plane is also the neutral plane of the plate, and all elements of
the stretching-bending stiffness matrix B equal to zero. However, when the
laminated plate is unsymmetric, for instance, if the laminated plies or ma-
terial properties near the bottom region of the plate are much stiffer than
that in the top region, the geometric mid-plane does not coincide with the
neutral plane of the plate. In such a case, the neutral plane will be closer to
the bottom of the plate when it is under a pure bending, as shown in Fig.
1 [31]. This also can be inferred from the constitutive equation Eq. (2), as
the bending curvature gives rise to a mid-plane strain as illustrated in Fig.
1. Similarly, a mid-plane stretching strain to the unsymmetric plate result
in a certain amount of bending deformation.

For unsymmetric plates, the stretching-bending stiffness matrix B 6= 0,
the in-plane strains can be written in an inverse form in terms of the in-plane
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stress resultants and curvatures as, ε0x
ε0y
γ0xy

 = A−1N−A∗K =

 εmx
εmy
γmxy

−
 A∗11 A∗12 A∗16
A∗12 A∗22 A∗26
A∗16 A∗26 A∗66

 kx
ky
kxy

 (3)

where A∗ = A−1B, and εm = A−1N = [εmx , ε
m
y , γ

m
xy]

T are defined as the
strains at the neutral plane, named as membrane strains in this study. For
a general plate under the pure bending, the in-plane forces N equal to zero.
Therefore, the membrane strains εm defined in Eq. (3) also equals to zero.
For example, if a [0n/90n] composite plate is under a pure bending loading,
Eq. (3) is reduced to,  ε0x

ε0y
γ0xy

 =

 A∗11kx + A∗12ky
A∗12kx − A∗11ky

0

 (4)

This nonzero mid-plane strains of this cross ply composite plate from
the constitutive equation is in conflict with the assumption of classical thin
plate theory, which states that the mid-plane remains unstrained after a pure
bending. Substituting Eq. (4) into the compatibility equation expressed in
terms of the mid-plane strains as given by,

∂2ε0x
∂y2

+
∂2ε0y
∂x2

−
∂2γ0xy
∂x∂y

≡ 0 (5)

In this case, the left part of Eq.(5) equals to A∗12

(
∂4w
∂y4
− ∂4w

∂x4

)
rather than

zero. Therefore, the compatibility equation is not satisfied for the cross-ply
composite plate if the geometric function for the mid-plane strains given by
Eq. (1) is applied.

In the classical Kirchhoff-Love thin plate theory, an important assump-
tion is that the in-plane displacements u and v induce identical strains to
each plane of the plate along its thickness direction. In the derivation of Eq.
(1) and Eq. (5), the mid-plane is also assumed to be the neutral surface.
However, the conflict results derived in Eq. (4) and Eq. (5) for the [0n/90n]
composite plate indicate that it is not appropriate to use the mid-plane dis-
placements u0 and v0 to represent the in-plane displacements in the model
of an unsymmetric plate.

To overcome this issue, the in-plane displacements or strains at the neu-
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tral plane are used as the primary model variables for the unsymmetric plates.
As a consequence, the geometric function of an unsymmetric plate in a gen-
eral form is represented using the following Eq. (6) instead of Eq.(1), εmx

εmy
γm

xy

 =

 ∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

 (6)

where u and v represent the in-plane displacements at the neutral surfaces,
and εmx , εmy and γm

xy
denote the membrane strains. Eq. (6) is established

based on the following assumptions: plate thickness is much smaller than the
other physical dimensions; normal to the neutral surfaces before deformation
remain normal to the same surface after deformation; the neutral surfaces
remain unstained after bending. With the use of the membrane strains εm,
the new constitutive equation of Eq. (2) for the unsymmetric plates is then
derived as the following form,[

N
M

]
=

[
A O
B D∗

] [
εm

K

]
(7)

where D∗ = D − BA−1B is the reduced bending stiffness (RBS) matrix,
and O is the null matrix. Note, the improved model for unsymmetric plates
given by Eq. (7) is different with the previous RBS method [30], which sim-
ply applied the reduced bending stiffness D∗, ignored the stretching-bending
stiffness matrix B and retained the mid-plane strains ε0 in the model.

Under this new model system, the definition for the mid-plane strains and
the corresponding compatibility equations must be modified. Substituting
Eq. (6) into Eq. (2), the modified geometric functions for unsymmetric
plates are defined in terms of membrane strains as, ε0x

ε0y
γ0xy

 =

 ∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

−A∗

 kx
ky
kxy

 (8)

Note, u and v represent the in-plane membrane displacements along x and
y directions, respectively, and could be in different surfaces instead of a single
surface. In fact, the first part of the right-hand side of Eq.(8) represents the
plate as a membrane problem and the plate thickness is ignored. The second
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part at right-hand side of Eq.(8) represents the stretching-bending coupling.
The following major improvements are made in the new model: firstly,

additional terms of A∗K are introduced to take into account of stretching-
bending coupling, and it vanishes for symmetric plates; secondly, the mem-
brane strains εmx , εmy and γm

xy
could be located in the different surfaces for

unsymmetric plates. Taking the cross-ply [0n/90n] composite plate as an ex-
ample, the stretching surface along the x direction is below the mid-plane,
the stretching surface along the y direction is above the mid-plane, and the
surface of shear strain γmxy coincides with the mid-plane.

Eq.(8) essentially decouple the mid-plane strains of an unsymmetric plate
into a stretching term and a pure bending term. In addition, the compati-
bility equation in terms of the mid-plane strains must also be modified by
introducing the A∗K terms. According to Eq. (8), the compatibility equa-
tion for an unsymmetric plate in terms of the mid-plane strains is modified
and expressed as,

∂2ε0x
∂y2

+
∂2ε0y
∂x2

−
∂2γ0xy
∂x∂y

=

(
(A∗11 + A∗22 − 2A∗66)

∂4w
∂x2∂y2

+ A∗12

(
∂4w
∂y4

+ ∂4w
∂x4

)
+ (2A∗16 − A∗26) ∂4w

∂x∂y3
+ (2A∗26 − A∗16) ∂4w

∂x3∂y

)
(9)

Eq. (9) indicates that the compatibility equation of unsymmetric plates
contains the influence of stretching-bending coupling (A∗K terms), which is
neglected in many previous studies using the classical thin plate theory, and
may result in the inaccurate shape prediction of unsymmetric plates.

In the subsequent sections, different problems including the pure bending
of unsymmetric plates, curing deformation of cross-ply bistable plates, static
and nonlinear dynamic responses of cross-ply bistable plates are studied,
using the improved theory of unsymmetric plate.

3. Pure bending of unsymmetric plates

3.1. Governing equations

In order to establish an accurate model for unsymmetric plates, the gov-
erning equations based on the improved model are derived from the general
three-dimensional static equilibrium equations. The in-plane displacements
u and v at the neutral planes of a thin plate under pure bending equal to
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zero. Thus, the ply stresses of the thin laminate are expressed as, σi
x

σi
y

τ ixy

 = Qi

 ∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

−A∗

 kx
ky
kxy

+ z

 kx
ky
kxy

 (10)

where the superscript i denotes a ply number, and Qi is the reduced stiffness
matrix of the ith ply. Eq. (11) represents the static equilibrium differential
equations given as,

∂σi
x

∂x
+
∂τ iyx
∂y

+
∂τ izx
∂z

= 0

∂σi
y

∂y
+
∂τ iyx
∂x

+
∂τ izy
∂z

= 0

∂σi
z

∂z
+
∂τ izx
∂x

+
∂τ izy
∂y

= 0

(11)

Substituting the ply stresses given in Eq. (10) into Eq. (11), the shear
stresses τ izx and τ izy are derived by integrating along the thickness direction,

τ izx = −
∫ h/2

−h/2

(
∂σi

x

∂x
+
∂τ ixy
∂y

)
dz

τ izy = −
∫ h/2

−h/2

(
∂σi

y

∂y
+
∂τ ixy
∂x

)
dz

(12)

The expanded expressions of τ izx and τ izy are presented in Eq.(A.01) in
Appendix, in which f i(x, y) and gi(x, y) are derived from the boundary con-
ditions and stress continuity at interfaces. For an unsymmetric plate with n
plies, the boundary conditions for the shear stresses are given by,

τ 1zx,z=−0.5h = 0

τ i
zx,z=−0.5h+

∑i
1 ti

= τ i+1

zx,z=−0.5h+
∑i

1 ti

τnzx,z=0.5h = 0
(13)
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τ 1zy,z=−0.5h = 0

τ i
zy,z=−0.5h+

∑i
1 ti

= τ i+1

zx,z=−0.5h+
∑i

1 ti

τnzx,z=0.5h = 0

(i = 2 ∼ n− 1)

(14)

where h denotes the thickness of the plate, and ti denotes the thickness of
ith ply. Substituting Eqs. (13) and (14) into Eq. (11), two equations for
defining the in-plane equilibrium of a general unsymmetric plate are derived
and expressed in Appendix as Eq.(A.02), which is then further simplified as
followings,

A11
∂2u

∂x2
+ 2A16

∂2u

∂x∂y
+ A66

∂2u

∂y2
+ A16

∂2v

∂x2
+ (A12 + A66)

∂2v

∂x∂y
+ A26

∂2v

∂y2
= 0

A16
∂2u

∂x2
+ (A12 + A66)

∂2u

∂x∂y
+ A26

∂2u

∂y2
+ A66

∂2v

∂x2
+ 2A26

∂2v

∂x∂y
+ A22

∂2v

∂y2
= 0

(15)

The in-plane equilibrium equations of this proposed improved plate theory
for unsymmetric plates shown in Eq. (15) have the same mathematical forms
with that of symmetric plates [32], if the in-plane displacements u and v are
replaced by the mid-plane displacements u0 and v0. However, in physics,
Eq. (15) is essentially different with the equilibrium equations for symmetric
plates. Eq. (15) represents the equilibrium condition for the displacement
fields u and v at the neutral surfaces, which are not geometrically fixed planes
as the mid-planes, and are dynamically varying with respect to the material
properties, the layup and the external applied bending moment. In other
words, Eq. (15) considers the stretching-bending coupling effect for the in-
plane equilibrium in an implicit manner yet using an identical mathematical
form of the symmetric plates.

Substituting Eq.(A.01) in Appendix into the last equation of Eq. (11),
the expression for the ply transverse stress σi

z is derived by integration along
thickness direction as,

σi
z = −

∫ (
∂τ izx
∂x

+
∂τ izy
∂y

)
dz (16)
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A simplified expression of σi
z for the unsymmetric plates is derived and pre-

sented in Appendix, as Eq. (A.03), in which f1, f2, · · · , f13 are functions of
A∗, Qi, h, z and are constant values after the final evaluation. The unknown
function si(x, y) is then derived using the boundary conditions and stress
continuity at interfaces,

σ1
z=−0.5h = 0

σi
z=−0.5h+

∑i
1 ti

= σn−1
z=−0.5h+

∑i
1 ti

σn
z=0.5h = −q

(i = 1 ∼ n− 1)

(17)

where −q is the pressure applied on the upside surface of the plate. The
expression for the third static equation of motion for a general unsymmetric
plate is then deduced by applying the stress continuity at interfaces, and
takes the form of Eq.(A.04), which is further simplified as,

D∗11
∂4w

∂x4
+D∗22

∂4w

∂y4
+ (D∗12 +D∗21 + 4D∗66)

∂4w

∂x2∂y2
+

(2D∗26 + 2D∗26)
∂4w

∂x∂y3
+ (2D∗16 + 2D∗16)

∂4w

∂x3∂y
−

B11
∂3u

∂x3
− 3B16

∂3u

∂x2∂y
− (B12 + 2B66)

∂3u

∂x∂y2
− (B26)

∂3u

∂y3

−B16
∂3v

∂x3
− (B12 + 2B66)

∂3v

∂x2∂y
− 3B26

∂3v

∂x∂y2
−B22

∂3v

∂y3
= −q

(18)

Eqs. (15) and (18) constitute a full set of equilibrium equations for a general
unsymmetric plate, in terms of the in-plane displacements u, v at the neu-
tral surfaces and out-of-plane displacement w. Compared with the governing
equations given by the classical thin plate theory for the unsymmetric plates
[32], Eqs. (15) and (18) have much simpler forms for the governing equations
of the in-plane equilibrium conditions and a similar form for the third equi-
librium equation. However, in the following sections, we will demonstrate
that Eqs. (15) and (18) provide a much more effective and accurate means
to model the structural behaviour of unsymmetric plates than the classical
thin plate theory.
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3.2. Small deformation

To validate the proposed improved model for unsymmetric plates, the
out-of-plane displacement w of cross-ply and angle-ply unsymmetric plates
under transverse pressure are calculated. The geometry, loading and bound-
ary conditions of the unsymmetric plates are illustrated in Fig. 2. A uni-
form pressure is applied on the surface of the plate, and the plate is simply
supported along the four edges. The simulation results given by both the
improved theory model in Eqs. (15), (18) and the classical thin plate theory
in Appendix Eq. (A.06) are obtained and compared with FEA results.

The in-plane and out-of-plane displacements are expanded using the dou-
ble Fourier series [32],

u =
∞∑

m=1

∞∑
n=1

Su
mn sin

mπx

a
sin

nπy

b

v =
∞∑

m=1

∞∑
n=1

Sv
mn sin

mπx

a
sin

nπy

b

w =
∞∑

m=1

∞∑
n=1

Sw
mn sin

mπx

a
sin

nπy

b

(19)

The transverse loading q(x, y) is also approximately expanded using the
double Fourier series form as,

q =
∞∑

m=1

∞∑
n=1

(
4

ab

∫ a

0

∫ b

0

q(x, y) sin
mπx

a
sin

nπy

b
dxdy

)
sin

mπx

a
sin

nπy

b

(20)
Compared with the classical thin plate theory, the equilibrium equations

of in-plane displacements of unsymmetric plates are decoupled from the out-
of-plane displacement as shown in Eq.(15). Therefore, the in-plane displace-
ments u and v are solved directly by substituting Eqs.(19) and (20) into
Eq.(15). After solving the resulting simultaneous algebraic equations for the
Fourier parameters, we find Su

mn = Sv
mn = 0. Therefore, for a small defor-

mation pure bending problem of unsymmetric plates, Eq.(18) can be further
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simplified as,

D∗11
∂4w

∂x4
+D∗22

∂4w

∂y4
+ (D∗12 +D∗21 + 4D∗66)

∂4w

∂x2∂y2
+

(2D∗26 + 2D∗26)
∂4w

∂x∂y3
+ (2D∗16 + 2D∗16)

∂4w

∂x3∂y
= −q

(21)

Although Eq.(21) is identical with the governing equation that is derived from
the well-known Reduced Bending Stiffness (RBS) method [30], the modelling
principle and physics between these two methods are essentially different. In
the RBS method, the mid-plane strains are directly ignored in the definition
of bending moments M, while in this study Eq. (21) is strictly derived with
respect to the membrane strains and no terms are ignored in the model. Only
for this particular case that considers a small deformation of the bending
problem, these two methods lead to the same forms of governing equations.
Completely different equations will be arrived when these two methods are
applied to model either a linear buckling problem or a nonlinear problem for
unsymmetric plates.

In this study, the out-of-plane displacements of two cross-ply plates and
two angle-ply plates, as D∗16 = D∗26 = 0, are predicted using both the im-
proved theory model and the classical thin plate theory model. The cross-ply
layups are [01mm/901mm] and [00.5mm/900.5mm/00.5mm/900.5mm]. The layups
for two angle-ply plates are [601mm/−601mm] and [600.5mm/−600.5mm/600.5mm/−
600.5mm]. The plates are all square plates with 0.2m × 0.2m. The uniform
pressure applied on the plates is 10Pa. The material properties of composite
plates are listed in Table. 1.

Table 1: Material properties of composite plates

E11 E22 G12 ν12 ρ
145GPa 9.75GPa 5.69GPa 0.312 1650kg/m3

For the improved theory model, substituting Eqs. (19) and (20) into
Eq.(21), the unknown parameters Sw

mn for the out-of-plane displacements
are determined. For the classical thin plate theory, the modelling results
can be obtained through substituting Eqs. (19) and (20) into Eq.(A.06) and
solving the three governing equations simultaneously. Note, the displacement
functions are expanded to have 25 terms, i.e. in Eqs. (19) m = 1 ∼ 5 and n =
1 ∼ 5. The obtained results can not benefit from further increasing the terms
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in the displacement functions. The predicted out-of-plane displacements for
cross-ply plates and angle-ply plates are presented in Fig. (3) and Fig. (4),
respectively. The predicted results are compared and validated with Finite
Element Analysis (FEA) using ABAQUS. In the FEA, the plate is modeled
by 1820 S4R shell elements, the deformed shape is predicted using a general
‘Static’ step with “Nlgeom” option off.

In Fig. (3) and Fig. (4), the black dots indicate FEA results, and the
red and yellow continuous surfaces present the simulation results given by
the classical theory model and the improved theory model, respectively. It
can be seen that, for all the cases, the improved model proposed in this
study yields much more accurate results than classical thin plate theory. For
the cases of [01mm/901mm] and [601mm/601mm] with high stretching-bending
coupling effects, the classical thin plate theory produces significantly inaccu-
rate results, whereas the errors between the improved theory model and the
FEA are relatively small. In previous works [4, 5], researchers had to intro-
duce the von Kármán non-linearity even for the model of small deformation
bending problems of unsymmetric plates. The improved model proposed in
this study successfully avoids this issue and can be directly applied to ana-
lyze the unsymmetric plates. It is also worthy to point out, the conclusion
given in the literature [33] that the RBS method is not accurate for analyz-
ing unsymmstric plates is inaccurate, as the RBS method has the identical
mathematical equations of the proposed improved model. The examples of
cross-ply and angle-ply plates in this section clearly approves that the im-
proved model based on the membrane strains is able to accurately capture
the small deformation of bending problem for unsymmetric plates, while the
direct application of classical thin plate theory based on the mid-plane strains
is not accurate.

3.3. Large deformation

For large deformation problems, the geometric nonlinearity is taken into
account and the nonlinear von Kármán terms are included into Eq. (8) as,

 ε0x
ε0y
γ0xy

 =


∂u
∂x

+ 1
2

(
∂w
∂x

)2
∂v
∂y

+ 1
2

(
∂w
∂y

)2
∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

−A∗

 kx
ky
kxy

 (22)
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Eq. (22) illustrates that, the mid-plane strains of an unsymmetric plate are
composed of the contributions given by membrane strains, geometric non-
linearity and stretching-bending coupling effect. According to Eq. (22), the
compatibility equation considering the geometric nonlinearity for an unsym-
metric plate in terms of the mid-plane strains is derived and expressed as,

∂2ε0x
∂y2

+
∂2ε0y
∂x2

−
∂2γ0xy
∂x∂y

=


(

∂2w
∂x∂y

)2
− ∂2w

∂x2
∂2w
∂y2

+ (A∗11 + A∗22 − 2A∗66)
∂4w

∂x2∂y2

+A∗12

(
∂4w
∂y4

+ ∂4w
∂x4

)
+ (2A∗16 − A∗26) ∂4w

∂x∂y3

+ (2A∗26 − A∗16) ∂4w
∂x3∂y


(23)

In this study, we argue that the nonlinear geometric function and the
corresponding compatibility equation for unsymmetric plates in terms of mid-
plane strains need to be modified as in Eqs. (22) and (23). This argument is
approved through solving few unsymmetric plates with specific layups by a
similar Rayleigh-Ritz modelling procedure, which was originally introduced
by Hyer [9]. For illustration purpose, a square unsymmetric plate mounted at
the central is studied. The coordinate system and the boundary conditions
are shown in Fig. 5, four identical forces F are applied on each corner of the
plate along the vertical direction. Applying the principle of potential energy,
the first variation of strain energy subtract the virtual work done is given as,

δ(U −WF ) = 0 (24)

where U denotes the internal strain energy of the plate and expressed as,

U =
1

2

∫ Lx/2

−Lx/2

∫ Lx/2

−Lx/2

([
ε0

K

]T [
A B
B D

] [
ε0

K

])
dxdy (25)

and, the virtual work of external force δWF is expressed as,

δWF =Fδw

(
Lx

2
,
Ly

2

)
+ Fδw

(
Lx

2
,
−Ly

2

)
+

Fδw

(
−Lx

2
,
Ly

2

)
+ Fδw

(
−Lx

2
,
−Ly

2

) (26)

To verify the modified compatibility equation Eq.(23) with respect to
the mid-plane strains, a 100mm × 100mm square plate with the composite
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layup of [601mm/− 601mm] is analyzed. A truncated polynomial expansion of
out-of-plane displacement is assumed as,

w = a1x
2 + b1y

2 + a2x
4 + b2y

4 (27)

where a1, a2 and b1, b2 are the unknown parameters. This form of Eq. (27)
makes the twist curvature kxy of the plate to be zero. The particularity
of the layup [601mm/ − 601mm] is that in the matrix A∗ the terms A∗11 =
A∗22 = A∗12 = 0. Because of the zero twist curvature (kxy = 0), the mid-
plane strains ε0x and ε0y equal to the membrane strains εmx and εmy , which are
all assumed to be zero throughout the whole plate, i.e. ε0x = εmx = 0 and
ε0y = εmy = 0. Two Rayleigh-Ritz models are established for an unsymmetric
plate [601mm/−601mm] based on the improved theory model and the classical
thin plate theory. Note, the two models have identical terms because of the
zero mid-plane normal strains. But, they have different mid-plane shear
strains, which are derived based on the classical thin plate theory Eq. (27)
and expressed as,

γ0xy =
(
2a1x+ 4a2x

3
) (

2b1y + 4b2y
3
)

(28)

and, the other one is given by the modified compatibility equation based on
the improved theory model and expressed as,

γ0xy =
(
2a1x+ 4a2x

3
) (

2b1y + 4b2y
3
)
−A∗16

(
2a1 + 12a2x

2
)
−A∗26

(
2b1 + 12b2y

2
)

(29)
Substituting the above mid-plane shear strains of Eq. (28) and Eq. (29)

and the assumed form of the out-of-plane displacement w(x, y) into Eqs.(24)-
(26), a group of nonlinear algebraic equations of unknown parameters are
obtained. The deformation shape of [601mm/− 601mm] plate can be obtained
by solving the nonlinear algebraic equations. The predicted results given
by the improved model and the classical theory model are compared and
validated with FEA results, as shown in Fig. 4. By using the same number
of unknown parameters, the improved theory model produces much more
accurate predictions than the classical theory model. Fig. 6 also shows that
the classical thin plate theory predicts much larger bending strength than
the improved theory model. In this specific case, the only difference between
the modified theory model and the classical thin plate theory model is the
resultant mid-plane shear strain γ0xy, the difference of which is due to the use
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of different compatibility equations. Therefore, it approves that a direct use
of the compatibility equation based on the classical thin plate theory leads
to inaccurate results in model of unsymmetric plates.

To further illustrate the drawbacks of applying classical thin plate the-
ory to model unsymmetric plates, a more general out-of-plane displacement
function defined using 4th order complete polynomials is employed in the
Rayleigh-Ritz model as,

w = a1x
2 + b1y

2 + a2x
4 + b2y

4 + e1xy + e2x
2y2 + e3xy

3 + e4x
3y (30)

where ai, bi and ei are the unknown parameters. For a pure bending problem,
the membrane strains εmx and εmy are zero, the mid-plane strains given by the
improved theory model are derived using Eq. (22) and expressed as,

ε0x =− A∗11kx − A∗12ky − A∗16kxy
ε0y =− A∗21kx − A∗22ky − A∗26kxy

γ0xy =
∂
(∫
−1

2
(w,x)2 dx

)
∂y

+
∂
(∫
−1

2
(w,y)

2 dx
)

∂x
+
∂w

∂x

∂w

∂y

− A∗16kx − A∗26ky − A∗66kxy

(31)

Therefore, the improved model results in 8 unknown parameters in the model
for the given assumption of displacement function in Eq. (30). The defor-
mation shape of the plate under four corner forces is predicted using the
Rayleigh-Ritz procedure. If the mid-plane strains ε0x and ε0y are used di-
rectly, appropriate forms for ε0x and ε0y should be assumed in the first place.
Assuming that the mid-plane strains ε0x and ε0y have identical terms as the
improved plate theory given in Eq.(31), and the mid-plane shear strain γ0xy
is derived via the classical thin plate theory and given as,

ε0x =c0 + c1x
2 + c2y

2 + c3xy

ε0y =d0 + d1y
2 + d2x

2 + d3xy

γ0xy =2 (c2 + d2)xy +
1

2

(
c3x

2 + d3y
2
)

+

∂
(∫
−1

2
(w,x)2 dx

)
∂y

+
∂
(∫
−1

2
(w,y)

2 dx
)

∂x
+
∂w

∂x

∂w

∂y

(32)

where ci and di are unknown parameters. Therefore, the classical thin plate
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theory leads to 16 unknown parameters in total. For considering a more
general case, the plate lay-up [601mm/ − 300.5mm] with all the terms in the
A∗ matrix are nonzero is studied. The results of the 16-parameter model
Eq.(30) and Eq.(32) derived using the classical thin plate theory are com-
pared with the 8-parameter model given by the improved theory, i.e. Eq.(30)
and Eq.(31), as shown in Fig. 7. The equations are solved by the ”Findroot”
function in ”Mathematica”, and the initial values of unknown parameters are
set to be zero. Although the classical theory model employs more unknown
parameters that offer more degree of freedoms in capturing the deformation
of unsymmetric plates, it results in much larger error than the improved
model, compared with the FEA results.

If we further increase the number of unknown parameters in the classical
theory model for the series expansion of mid-plane strains as,

ε0x =c0 + c1x
2 + c2y

2 + c3xy + c4x
4 + c5y

4 + c6x
2y2 + c7xy

3 + c8x
3y

ε0y =d0 + d1y
2 + d2x

2 + d3xy + d4y
4 + d5x

4 + d6x
2y2 + d7x

3y + d8xy
3

γ0xy =2 (c2 + d2)xy +
1

2

(
c3x

2 + d3y
2
)

+ 4
(
c5xy

3 + d5x
3y
)

+
2

3

(
c6x

3y + d6xy
3
)

+
3

2

(
c7x

2y2 + d7x
2y2
)

+
1

4

(
c8x

4 + d8y
4
)

+
∂
(∫
−1

2
(w,x)2 dx

)
∂y

+
∂
(∫
−1

2
(w,y)

2 dx
)

∂x
+
∂w

∂x

∂w

∂y

(33)

Therefore, in Eq. (33), 26 unknown parameters are used for establishing a
Rayleigh-Ritz model based on the classical thin plate theory. Fig. 8 com-
pared the prediction results given by the classical thin plate theory with 16
parameters and 26 parameters, respectively. It clearly shows that there is
nearly no significant improvement by increasing the number of parameters
in classical theory model.

The resultant in-plane forces Nx and Ny given by the 16-parameter clas-
sical theory model are evaluated and expressed as,

Nx = −132.45 + 497380x2 − 1.86725× 108x4 − 2.17853× 1010x6

Ny = 104.007− 423556y2 + 2.08198× 108y4 − 5.05872× 1010y6
(34)

Eq.(34) shows that the in-plane forces along the edges of the plate are non-
zero due to the constant terms. However, this conclusion is in conflict with
the boundary conditions as shown in Fig. 5, as no in-plane forces have been
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applied on the plate. Because the in-plane forces have a linear relationship
with the in-plane strains, the simulation error induced by the classical the-
ory model is given by the inaccurate compatibility equation rather than the
inaccurate assumptions of displacements or strains. This conclusion further
approves that it is unlikely to obtain an accurate prediction of deforma-
tion shape for the [601mm/ − 300.5mm] unsymmetric plate through applying
a classical thin theory plate. Because the improved theory model naturally
decouples the stretching-bending coupling, the above issues can be success-
fully avoided and the zero stress boundary conditions is satisfied irrespective
of the assumed forms of strains or displacements.

The 8-parameter Modified Theory Model and the 16-parameter Clas-
sical Theory Model are further employed to predict the deformation of a
100mm×100mm, [01mm/900.5mm] plate, and prediction results are compared
with FEA in Fig. 9. Although the two theoretical models predict similar
results, the Modified Theory Model predicts accurate results with less pa-
rameters.

In general, applying the improved plate theory proposed in this study
for the unsymmetric plates, the pure bending problem can be solved in an
analogous way that is similar with the model of symmetric plates. If no in-
plane forces or in-plane boundary conditions are applied on the unsymmetric
plates, it is only needed to assume an appropriate out-of-plane displacement
for this improved model to predict the deformation shapes. If a classical thin
plate theory is applied for the unsymmetric plates, an appropriate assump-
tion for the mid-plane strains ε0x and ε0y are critical for an accurate prediction.
However, it inevitably results in much more unknown parameters. When
complicated boundary conditions are applied on the unsymmetric plates, it
is often difficult to find the appropriate forms for the mid-plane strains ε0x
and ε0y. Moreover, the classical compatibility equation of mid-plane strains
leads to large bending strength prediction for unsymmetric plates. Although
this issue can be slightly overcame by assuming higher order complete poly-
nomials for ε0x and ε0y [18], nevertheless, it inevitably results in low efficiency
and inaccurate results.

4. Bistable unsymmetric plates

4.1. Bistability of cross-ply plates

When a cross-ply plate cools down from the high curing temperature to
the room temperature, residual thermal stress arise due to the mismatch of
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the thermal expansion parameters of different plies. As a result, a cross-ply
plate may have two stable configurations. The bistable cross-ply plates have
been extensively studied since last decades [7, 8, 9, 13, 20, 27, 34, 35]. In
this section, the bistability of cross-ply plates is studied using the improved
theory model, and also compared with the classical thin plate theory. The
boundary conditions and loading of the cross-ply plates are presented in
Fig. 5. The structural behaviour of the plates are followed the assumption
of the Kirchhoff hypothesis and plane-stress [9]. The potential energy of a
composite plate is given by,

Π =

∫ Lx
2

−Lx
2

∫ Ly
2

−Ly
2

∫ t
2

− t
2

[(
1

2
Q11ε

2
x +Q12εxεy +Q16εxγxy +
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2
Q22ε

2
y +Q26εyγxy
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2
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2
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−
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+ Q26αxy

)
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(
Q16αx +Q26αy +Q66αxy

)
γxy∆T

]
dxdydz

(35)

where Lx, Ly and t denote the plate length, width and thickness, respec-
tively. Qij are the transformed reduced stiffness values, and αx, αy and αxy

are the transformed parameters of the thermal expansion. ∆T denotes the
temperature variation. Note, for a cross-ply plate, Q16 = 0 and Q26 = 0.

Applying the classical thin plate theory in terms of mid-plane strains, Eq.
(35) is expressed as,
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(36)
However, if the improved theory model based on membrane strains is

applied, Eq. (35) is rewritten in the following form as,

Π =

∫ Lx
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−Lx
2
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−Ly
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O I

] [
N∆T

M∆T

])
dxdy

(37)
where the superscript T denotes a transpose, the superscript ∆T denotes
the temperature difference between the curing temperature and the room
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temperature. Eq. (36) is derived from the classical theory of plate, and
Eq. (37) is derived from the improved theory model. N∆T and M∆T are
the resultant force and the resultant moment given by the thermal stresses.
It is very interesting to note that the stretching-bending coupling matrix
B is eliminated naturally in this newly derived energy formula based on the
improved theory model. This implies that, under this improved theory model
scheme, the problem of unsymmetric plates can be solved as effectively using
an analogous way of symmetric plates. A detailed derivation process of Eq.
(37) is given in (A.05).

In this section, both the classical plate theory model given by Eq. (36)
and the improved theory model expressed in Eq. (37) are used to analyze the
bistability of unsymmetric plates. In a Rayleigh-Ritz modelling procedure,
the solution stability needs to be checked via the Jacobin matrix. The equi-
librium configurations are stable if and only if the Jacobin matrix is positive,
as given by, ∣∣∣∣∂2Π∂x2i

∣∣∣∣ > 0 (38)

A sixth order out-of-plane displacement is assumed as,

w = a x2 + b y2 + a1x
4 + b1y

4 + a2x
6 + b2y

6 + ex2y2 (39)

where ai, bi, and e are unknown parameters. The form of w in Eq.(39)
is similar with that proposed by Gigliotti et al. [36]. Extra term ex2y2 is
introduced to take into account the anti-classical phenomenon near the plate
corners. As there exists residual thermal stress in the laminate, none zero
membrane strains εmx , εmy are also assumed,

εmx = c+ c1y
2 + c2y

4 + c3y
6 + c4x

2y2

εmy = d+ d1x
2 + d2x

4 + d3x
6 + d4x

2y2
(40)

where ci and di are unknown parameters. For [0n/90n] cross-ply plates,A∗16 =
A∗26 = A∗66 = 0, A∗11 = −A∗22. If applying the improved theory model in
terms of mid-plane strains, the modified form of compatibility equation (23)
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must be satisfied, and the mid-plane strains take the following form as,

ε0x =c+ c1y
2 + c2y

4 + c3y
6 + c4x

2y2 − (A∗11kx + A∗12ky)

ε0y =d+ d1x
2 + d2x

4 + d3x
6 + d4x

2y2 − (A∗21kx + A∗22ky)

γ0xy =4abxy + 2c1xy + 2d1xy + 8a1bx
3y +
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3
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3
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5
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5y +
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7
a2ex

7y + 8ab1xy
3 + 4c2xy

3 +
2

3
d4xy

3

+
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3
bexy3 + 16a1b1x

3y3 − 4

3
e2x3y3 + 24a2b1x

5y3 + 12ab2xy
5 + 6c3xy

5

+
24

5
b1exy

5 + 24a1b2x
3y5 + 36a2b2x

5y5 +
60

7
b2exy

7

(41)

There are 17 unknown parameters that are used in the improved theory model
for the bistable unsymmetric plates. Either substituting Eq.(39) and Eq.(41)
into the energy formulae Eq. (36), or, substituting Eq.(39) and Eq.(40) into
the new form of energy formulae Eq. (37), and applying the Rayleigh-Ritz
method will lead to the same modelling solution. This method is termed as
17-parameter improved theory model.

Eq.(3) clearly indicates that the mid-plane strain ε0 and bending cur-
vature K for an unsymmetric plate are highly coupled. If the out-of-plane
displacement function w, and the mid-plane strains ε0x and ε0y are taken as
the model variables, ε0x and ε0y should have terms that are determined by w
due to the stretching-bending coupling. However, in all the previous studies
of bistable plates [7, 8, 9, 13, 20, 27, 34, 35], the modelling of unsymmetric
plates is based on the independent series expansion of ε0x, ε0y and w. Some
researchers intended to increase the number of terms in the series expansion
of mid-plane strains [13] to obtain better prediction results. However, the
influence of stretching-bending coupling on the modelling variables between
out-of-plane displacement w and mid-surface strains ε0x and ε0y have never
been deliberately considered. As a result, this independent variables model
is only able to produce accurate results for some very limited cases of un-
symmetric plates, and often give inaccurate results for many other cases.
In this section, for the illustration purpose, a similar 17-parameter model
is established based on the classical thin plate theory and the conventional
compatibility equation Eq. (5). Therefore, the mid-plane strains are assumed
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as,

ε0x =c+ c1y
2 + c2y

4 + c3y
6 + c4x

2y2

ε0y =d+ d1x
2 + d2x

4 + d3x
6 + d4x

2y2

γ0xy =4abxy + 2c1xy + 2d1xy + 8a1bx
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5y3 + 12ab2xy
5 + 6c3xy

5

+
24

5
b1exy

5 + 24a1b2x
3y5 + 36a2b2x
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7
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(42)

The model using Eq. (39) and (42) is termed as 17-parameter classical theory
model.

The Rayleigh-Ritz method is applied to solve either the 17-parameter
improved theory model or 17-parameter classical theory model. For the
bistable laminates, the nonlinear-coupled equations have three groups of so-
lutions. Each group of solution represents an equilibrium configuration. In
this study, the integration, differentiation, and other operations were carried
out in Mathematica c©. The “FindRoot” function is employed to solve the
nonlinear coupled equations. Initial values of unknowns are needed for the
“FindRoot” function to start the iteration, and the final equilibrium config-
uration then depends on the initial value of unknowns. To obtain the two
stable configurations, the initial values of a and b in displacement function w
are set to be a = 5 and b = 0, or a = 0 and b = −5, respectively. To obtain
the unstable configuration, the initial values of a and b are set to be a = 5
and b = −5. Initial values of other parameters in assumed displacement and
strain functions are all set to be zero.

4.2. Configuration and bifurcation/loss-of-bifurcation prediction

In this study, the curing temperature is 180◦C, and the room temper-
ature is 20◦C. The stable configurations and profiles of a 300mm×80mm,
[00.5mm/900.5mm] plate and a 150mm×150mm, [00.25mm/900.25mm] plate are
predicted using both the 17-parameter improved theory model and the 17-
parameter classical theory model. The obtained configurations are compared
with FEM results, as illustrated in Fig. 10 and Fig. 11, respectively. Fig. 10
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and Fig. 11 show that the results given by two Rayleigh-Ritz models almost
coincide with each other, and match well with the FEA results.

For the stable configuration prediction, the classical theory model and
the improved theory model give the similar results. The difference between
the improved theory model and the classical theory model is merely the
(A∗11kx + A∗12ky) and (A∗12kx + A∗22ky) in the mid-plane strains ε0x and ε0y. If kx
and ky are constants, the two Rayleigh-Ritz models will give identical results.
It is well known that the stable configuration of a cross-ply bistable plate is
cylindrical [9, 16], as it is also illustrated in Fig. 10 and Fig. 11. Conse-
quently, for a stable configuration prediction, the difference between classical
theory model and improved theory model is reduced due to the principle of
Rayleigh-Ritz method. Nevertheless, for the problem of bifurcation/loss-of-
bifurcation prediction of cross-ply plate, superior results are obtained by the
17-parameter improved theory model, as it is illustrated in Fig. 12 and Fig.
13.

Fig. 12 presents the predicted bifurcation phenomenon of a square cross-
ply [00.25mm/900.25mm] plate, in which the curves represent out-of-plane dis-
placement of the mid-point of an edge. To show a clear illustration, the
deflection curves are normalized by multiplying L−1x . The bifurcation is in-
vestigated by varying the plate length Lx. Two analytical models predict
similar bifurcation phenomenon for the square [00.25mm/900.25mm] plate. The
plate has only one stable configuration if the plate length is smaller than the
critical length, and become bi-stable when the plate length is larger than
the critical length. In Fig. 12, branches AB, BC and BE represent stable
configurations, and branch BD represents the unstable saddle configuration.
Compared with the FEA results, it illustrates that the proposed 17-parameter
improved theory model predicts better results than the 17-parameter clas-
sical theory model. The difference between the two Rayleigh-Ritz models
decreases with the increase of the plate length.

Fig. 13 illustrates the loss-of-bifurcation phenomenon of a rectangular
[00.5mm/900.5mm] plate with constant length Lx and varying width Ly. The
loss-of-bifurcation is due to that the two stable configurations of a rectangular
bistable plate have different values of internal strain energy [36]. For this
problem, there are also three branches of deflection curves. Branches AB and
CE are stable solutions, and branch CD represents unstable solutions. This
rectangular cross-ply plate shows no bifurcation phenomenon as the plate
width increases. Both of these two models predict the loss-of-bifurcation
phenomenon, correctly. However, the 17-parameter classical theory model is
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less accurate in branch AB, and the predicted critical widths for the plates to
be bi-stable are not satisfied. In contrast, the improved theory model gives
nearly identical results with FEA in all aspects.

4.3. Critical static snap-through load prediction

A bistable cross-ply plate snaps form one stable configuration to the other
when external force is applied on it [9]. For the prediction of critical static
snap-through load, the geometry and load conditions of the plate is illustrated
in Fig. 5. The snap-through process is predicted by gradually increasing the
corner forces F . The configurations corresponding to different values of F
are predicted by the two 17-parameter Rayleigh-Ritz models. The solution
stability is checked by the corresponding Jacobin matrix. The stable and un-
stable configurations are obtained using different initial values of unknown
parameters. When the F increases up to the snap-through load, the solu-
tion given by “FindRoot” function in “Mathematica” converges to only one
configuration.

The force-displacement curve of the 150mm×150mm, [00.25mm/900.25mm]
plate is shown in Fig. 14. In this case, the solid lines represent stable
configurations, and the dotted lines represent unstable configurations. Pre-
dictions show that the force-displacement curve of the 150mm × 150mm,
[00.25mm/900.25mm] plate is anti-symmetric, which illustrates that the bend-
ing strength and the snap-through events of stable configuration A and B
are exactly the same. The 17-parameter classical theory model predicts high
stiffness with respect to FEA. The 17-parameter classical theory model over
predicts the snap-through load by 13.61%. On the other hand, the improved
theory model predicts identical bending stiffness with that given by FEM,
and the prediction error of snap-through load is only 4.63% compared with
the FEM result.

In Fig.15, the load-displacement curves of a rectangular 150mm×100mm,
[00.5mm/900.5mm] plate are presented. The results of 17-parameter improved
theory model agree with the FEA results in all aspects. Note, the load-
displacement curves in Fig. 15 are not anti-symmetric, because the two
stable configurations of a rectangular bistable plate have different structural
performance, e.g. bending strength and critical snap-through load. The
17-parameter classical theory models predict similar nonlinearity and snap-
through characteristics as FEA, nevertheless, the predicted snap-through
loads are not as accurate as those predicted by the 17-parameter improved
theory model. Comparison with respect to FEM shows that the accuracy
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of 17-parameter improved theory model is better than 17-parameter classi-
cal theory model, in aspect of both the bending strength and the critical
snap-through load.

5. Nonlinear dynamics analysis

The advantage of the improved theory model proposed in this study is
further verified on the prediction of dynamics of unsymmetric plates. Hamil-
ton’s principle is employed to establish a nonlinear dynamic model for cross-
ply bi-stable composite plates. The first variation of the Lagrangian function
is expressed as, ∫ t2

t1

δ (T (t) + ΠF (t)− Π (t)) dt = 0 (43)

where T (t) is the kinetic energy, ΠF (t) is the work done by the applied force,
and Π (t) is the total potential energy, which has been given in Eq. (24). The
time integration of the variation of total kinetic energy is derived as follow,∫ t2

t1

δT (t)dt = −
∫ t2

t1

(
ρ

∫∫∫ [
d2u(t)

dt2
δu(t) +

d2v(t)

dt2
δv(t)+

d2w(t)

dt2
δw(t)

]
dxdydz

)
dt

(44)

Since the in-plane displacements u(t) and v(t) are very small compared with
the out-of-plane displacement w(t), the contribution of in-plane displace-
ments on the kinetic energy is ignored in this study. Eq. (44) is then ex-
pressed as,∫ t2

t1

δT (t)dt = −
∫ t2

t1

(
ρh

∫∫ (
d2w(t)

dt2
δw(t)

)
dxdy

)
dt (45)

where ρ denotes density, h is the total plate thickness. According to Hamil-
ton’s principle, the variation of Lagrangian function is expressed in the fol-
lowing form, which represents the nonlinear dynamics as,

ρh

∫ Lx
2

−Lx
2

∫ Ly
2

−Ly
2

(
d2w(t)

dt2
∂w(t)

∂X

)
dydx+

∂Π(t)

∂X
= 0 (46)
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where X = [a(t), b(t), a1(t), b1(t), a2(t), b2(t), e(t)]
T, Eq. (44) can be repre-

sented in a matrix form as,

MẌ +
∂Π(t)

∂X
= 0 (47)

where M denotes the mass matrix. The expression of M is presented in
Appendix, as Eq.(A.07).

The nonlinear dynamics of the bistable cross-ply plate is predicted using
both the 17-parameter classical theory model and the 17-parameter improved
theory model, and the obtained results are compared with the FEA. Four
identical concentrated forces of 1.25N are initially applied at each corner of
the plate, which is mounted at the centre. The applied forces are then sud-
denly removed, and the dynamic characteristics of the plate are analyzed. For
an illustration purposes, the 150mm × 150mm, [00.25mm/900.25mm] bi-stable
plate is studied. The static stable configurations of the bi-stable plate are
predicted first, and then are used as the initial deformation for the nonlin-
ear dynamics analysis. The dynamics response of the bi-stable plates needs
to obtain the solution of Eq. (47). In this study, Eq. (47) is solved us-
ing the ”NDSolve” function with an automatically selected algorithm (e.g.
Runge–Kutta method) in Mathematica c©. The maximum time step is set to
be 1µs. In the FEM analysis, damping is not considered in the analysis, the
concentrated forces are first applied in the “Static” step, and are removed
in the “Dynamic implicit” step. The predicted responses of both time series
and FFT are presented in Fig. 16. The peak point of the frequency response
near 100Hz indicates the fundamental mode of the stable configuration of
plate. The 17-parameter improved Rayleigh-Ritz model leads to the similar
dynamic response with that predicted by FEA. However, the 17-parameter
classical theory model over predicts the first dominant frequency.

In our previous work [19], the present improved model method for unsym-
metric plates is also extended to study the nonlinear dynamics of cross-ply
bi-stable composite plates. The accuracy of this improved model in predicting
the nonlinear dynamics of bi-stable composite plates is validated against with
our experimental results. For example, the Fig. 10 in [19] shows the single
well vibrations of the bi-stable plates under low level sinusoidal excitation at
different frequencies. It shows that the prediction of the resonant frequency
given by our improved model well matches with experimental results, albeit
that this nonlinear vibration behaviour is very challenge to predict using the

27



classical plate theory, and very time consuming using the “dynamic implicit”
in FEA.

6. Bistable unsymmetric plates with temperature dependent ma-
terial properties

In this section, the improved model for unsymmetric plates is applied
to study the bistability of unsymmetric plates with temperature dependent
material properties [28, 29]. Hyer et al. [37] found that the material prop-
erties of composites are significantly varying with respect to temperature
except the transverse thermal expansion (a22). The variation of each mate-
rial property of T300/5028 graphite–epoxy composites is curve-fitted using
polynomial functions from the experimental data, as given by the Table 1
in [37]. The bifurcation phenomenon of a square (80mm × 80mm) cross-
ply [00.25mm/900.25mm] T300/5028 composite plate with respect to continu-
ously varying temperature conditions is studied using the proposed improved
model. The obtained bifurcation curves of this square cross-ply bistable plate
are illustrated in Fig. 17. Compared with the FEA results, the proposed 17-
parameter improved theory model predicts more accurate bifurcation point
than the 17-parameter classical theory model. Note, the accuracy given by
the classical theory model will not be improved by increasing the number of
terms in the shape function.

Consequently, the improved theory model is much more accurate than the
classical thin plate theory in predicting the bifurcation/loss-of-bifurcation,
the critical snap through loads, the temperature variation and the nonlin-
ear dynamics for bistable unsymmetric plates, albeit both models employed
17 unknown parameters. The above results demonstrate that applying the
improved theory model, modifying the constitutive equation and the com-
patibility equation in terms of mid-plane strains is critical for establishing an
accurate model for predicting the bistable characteristics of cross-ply plates.

7. Summary

For an unsymmetric plate, the pure bending inevitably induces in-plane
stretching strains due to the stretching-bending coupling. However, this is
in conflict with one of the basic assumptions employed for the classical thin
plate theory, i.e. the mid-plane remains unstrained during the pure bend-
ing. This study proposes an improved model for the unsymmetric plates,

28



in which, the in-plane strains are no longer taken at the middle planes, but
on the neutral planes. In doing so, the stretching-bending coupling is de-
coupled and the problems for unsymmetric plates can be solved effectively
and accurately. In this improved theory model, the geometric function is
modified by replacing the mid-plane strains by the membrane strains and a
new constitutive equation is derived.

To apply this improved model for unsymmetric plates, one can either use
the newly derived forms in terms of membrane-plane strains, or alternatively,
retain the use of mid-plane strains but modify the geometric function and the
compatibility equation. In this study, a new set of laminate equilibrium equa-
tions in terms of displacements is derived from stress equilibrium equations.
For the linear pure bending problem of unsymmetric plates, the modified
equilibrium equations have the same mathematical forms with that of the
well-known RBS method, but the physics are essentially different. As an
alternative way of applying this improved model, the pure bending problem
of unsymmetric plates with large deformation is analyzed. Numerical exam-
ples approve that the Rayleigh-Ritz models based on the improved theory
model predict much more accurate results than that given by the classical
thin plate theory, albeit the improved theory model uses much less number
of unknown parameters. It is also shown that the classical thin plate theory
based Rayleigh-Ritz models predict high bending strength for the angle-ply
plates. This phenomenon indicates that the classical geometric functions
induce inaccurate compatibility for the unsymmetric plates in terms of mid-
plane strains.

The modified theory of plate is also verified by investigating the bistabil-
ity of cross-ply plates. Two 17-parameter Rayleigh-Ritz models are respec-
tively established based on the modified theory of plate and classical theory
of plate. The two 17-parameter Rayleigh-Ritz models show equivalent ac-
curacy on stable configuration of cross-ply bistable plate due to its nearly
constant bending curvature. Nevertheless, for the further prediction on the
bistable characteristics of cross-ply plates, the modified theory of plate con-
firms its superiority via predicting more accurate critical plate length to have
bistability, snap-through load, nonlinear dynamic response and temperature
variation for cross-ply bistable plates. For future research, the potential of
applying proposed modified theory of plate on the buckling/post-buckling
problem of unsymmetric plates will be studied.
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A. Appendix
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Mij = ρh

∫ Lx
2

−Lx
2

∫ Ly
2

−Ly
2

(
∂w(t)

∂Xj

∂w(t)

∂Xi

)
dxdy; i, j = 1 ∼ 7 (A.07)

where ρ denotes plate density, Lx and Ly are the plate dimensions, n is the
number of unknown parameter.
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Figure 1: Transverse deformation in an unsymmetric plate, and an illustration of its mid-
plane and neutral plane.
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Figure 2: An illustration of a plate simply supported at edges
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Figure 3: Predicted out-of-plane displacement of 0.2m × 0.2m cross-ply plates with the
uniform surface pressure of 10Pa. The black dots represent FEA results, and the contin-
uous surface is predicted by the static equation of motion. (a): [01mm/901mm] plate (b):
[00.5mm/900.5mm/00.5mm/900.5mm] plate.
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Figure 4: Predicted out-of-plane displacement of 0.2m × 0.2m angle-ply plates with the
uniform surface pressure of 10Pa. The black dots represent FEA results, and the continu-
ous surface is predicted by the surface differential equations. (a): [601mm/− 601mm] plate
(b): [600.5mm/− 600.5mm/600.5mm/− 600.5mm] plate.
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Figure 5: The sketch map of a square unsymmetric plate mounted at its central.
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Figure 6: Predicted shape of 100mm×100mm, [601mm/−601mm] plate under concentrating
forces. The black dots represent FEA results, and the continuous surface is predicted by
the Improved Theory Model and Classical Theory Model, respectively.
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Figure 7: Predicted shape of 100mm× 100mm, [601mm/− 300.5mm] plate under concen-
trating forces. The black dots represent FEA results, and the continuous surfaces are
predicted by Improved Theory Model and Classical Theory Model, respectively.
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Figure 8: Comparing of the 16-parameter Classical Theory Model and the 26-parameter
Classical Theory Model for 100mm× 100mm, [601mm/− 300.5mm] plate.
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Figure 9: Predicted shapes of 100mm×100mm, [01mm/900.5mm] plate under concentrating
forces. The black dots represent FEA results, and the continuous surfaces are predicted
by the Improved Theory Model and the Classical Theory Model, respectively.
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Figure 10: Stable configurations of 300mm × 80mm, [00.5mm/900.5mm] plate. The black
dots represent FEA results, and the continuous surfaces are predicted by 17-parameter
improved theory model and 17-parameter classical theory model. The results of two the-
oretical models overlap in the figure.
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Figure 11: Stable configurations of 150mm×150mm, [00.25mm/900.25mm] plate. The black
dots represent FEA results, and the continuous surfaces are predicted by 17-parameter
modified theory model and 17-parameter classical theory model. The results of two theo-
retical models overlap in the figure.
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Figure 12: Normalized out-of-plane deflections of middle points at the edges of
[00.5mm/90

0.5mm]T plates.
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Figure 13: Out-of-plane deflections of middle points at the transverse edges of
[00.5mm/900.5mm] plates with constant length (Lx = 300mm).
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Figure 14: Load-displacement curve of 150mm × 100mm, [02/902]T plate mounted at
central.
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Figure 15: Load-displacement curve of 150mm × 100mm, [00.5mm/900.5mm]T plate
mounted at central.
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Figure 16: Dynamic response of the 150mm×150mm, [00.25mm/900.25mm] bi-stable plate.
(a) Time series; (b) FFT.
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Figure 17: Out-of-plane deflections of middle points at the edges of 80mm × 80mm,
[00.25mm/900.25mm]T plate with temperature dependent materials properties mounted at
central.
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