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a b s t r a c t 

Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify un- 

certainties arising from the acquisition process. The use of parallel imaging methods, the number of re- 

ceiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal 

distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires in- 

formation about the acquisition process (e.g., coils sensitivity maps or reconstruction coefficients), which 

is usually not available. We introduce two new automated methods using the moments and maximum 

likelihood equations of the Gamma distribution to estimate noise distributions as they explicitly depend 

on the number of coils, making it possible to estimate all unknown parameters using only the magni- 

tude data. A rejection step is used to make the framework automatic and robust to artifacts. Simulations 

using stationary and spatially varying noncentral chi noise distributions were created for two diffusion 

weightings with SENSE or GRAPPA reconstruction and 8, 12 or 32 receiver coils. Furthermore, MRI data of 

a water phantom with different combinations of parallel imaging were acquired on a 3T Philips scanner 

along with noise-only measurements. Finally, experiments on freely available datasets from a single sub- 

ject acquired on a 3T GE scanner are used to assess reproducibility when limited information about the 

acquisition protocol is available. Additionally, we demonstrated the applicability of the proposed methods 

for a bias correction and denoising task on an in vivo dataset acquired on a 3T Siemens scanner. A gener- 

alized version of the bias correction framework for non integer degrees of freedom is also introduced. The 

proposed framework is compared with three other algorithms with datasets from three vendors, employ- 

ing different reconstruction methods. Simulations showed that assuming a Rician distribution can lead to 

misestimation of the noise distribution in parallel imaging. Results on the acquired datasets showed that 

signal leakage in multiband can also lead to a misestimation of the noise distribution. Repeated acquisi- 

tions of in vivo datasets show that the estimated parameters are stable and have lower variability than 

compared methods. Results for the bias correction and denoising task show that the proposed methods 

reduce the appearance of noise at high b -value. The proposed algorithms herein can estimate both pa- 

rameters of the noise distribution automatically, are robust to signal leakage artifacts and perform best 

when used on acquired noise maps. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Diffusion magnetic resonance imaging (dMRI) is a non inva-

ive imaging technique which allows probing microstructural prop-

rties of living tissues. Advances in parallel imaging techniques
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 Pruessmann et al., 1999; Griswold et al., 2002 ), such as acceler-

ted acquisitions (e.g., partial k-space ( Storey et al., 2007 ), multi-

and imaging ( Nunes et al., 2006; Moeller et al., 2010 ) and com-

ressed sensing ( Lustig et al., 2007; Paquette et al., 2015 )), have

reatly reduced the inherently long scan time in dMRI. New ac-

uisition methods and pulse sequences in dMRI are also push-

ng the limits of spatial resolution while reducing scan time

 Holdsworth et al., 2019 ), which also affects the signal distribu-

ion in ways that are challenging to model. Estimation of signal

istributions deviating from theoretical cases is challenging and
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oftentimes requires information such as coil sensitivities or recon-

struction matrices. This information may not be recorded at ac-

quisition time or is even not available from the scanner, making

techniques relying on these parameters difficult to apply in prac-

tice. Even though the magnitude signal model is still valid nowa-

days, the use of image filters ( Dietrich et al., 2008 ), acceleration

methods subsampling k-space (e.g., the SENSE (SENsitivity ENcod-

ing) ( Pruessmann et al., 1999 ), GRAPPA (GeneRalized Autocalibrat-

ing Partial Parallel Acquisition) ( Griswold et al., 2002; Heidemann

et al., 2012 ) or the homodyne detection methods ( Noll et al., 1991 ))

and spatial correlation between coil elements ( Dietrich et al.,

2008; Aja-Fernández et al., 2014 ) influence, amongst other factors,

the parameters of the resulting signal distribution. See e.g., ( Aja-

Fernández and Tristán-Vega, 2015; Aja-Fernández et al., 2009 ) for a

review on estimating noise distributions in MRI and common sta-

tistical distributions encountered therein. 

With the recent trend towards open data sharing and large

multicenter studies using standardized protocols ( Duchesne et al.,

2019; Emaus et al., 2015 ), differences in hardware, acquisition

or reconstruction algorithms may inevitably lead to different sig-

nal distributions. This may affect large scale longitudinal stud-

ies investigating neurological changes due to these “scanner ef-

fects” ( Sakaie et al., 2018 ) as the acquired data may be funda-

mentally different across sites in terms of statistical properties of

the signal. Algorithms have been developed to mitigate these po-

tential differences ( Mirzaalian et al., 2018; Tax et al., 2019; St-

Jean et al., 2020 ), but characterization of the signal distribution

from various scanners is challenging due to the black box na-

ture of the acquisition process, especially in routine clinical set-

tings. While some recent algorithms for dMRI are developed to

include information about the noise distribution ( Collier et al.,

2018; Sakaie and Lowe, 2017 ), there is no method, to the best

of our knowledge, providing a fully automated way to charac-

terize the noise distribution using information from the magni-

tude data itself only. Due to this gap between the physical ac-

quisition process and noise estimation theory, noise distributions

are either assumed as Rician (with parameter σ g related to the

standard deviation) or noncentral chi (with fixed degrees of free-

dom N ) and concentrate in estimating the noise standard devia-

tion σ g ( Veraart et al., 2016; Koay et al., 2009b; Tabelow et al.,

2015 ). This assumption inevitably leads to misestimation of the

true signal distribution as N and σ g are interdependent for some

reconstruction algorithms ( Aja-Fernández et al., 2013 ). Reconstruc-

tion filters preserving only the real part of the signal also cause

N to deviate from the Rician noise distribution, producing in-

stead a half-Gaussian signal distribution ( Dietrich et al., 2008 ).

Misestimation of the appropriate signal distribution could impact

subsequent processing steps such as bias correction ( Koay et al.,

2009a ), denoising ( St-Jean et al., 2016 ) or diffusion model estima-

tion ( Zhang et al., 2012; Landman et al., 2007; Sakaie and Lowe,

2017 ), therefore negating potential gains in statistical power from

analyzing datasets acquired in different centers or from different

vendors. 

In this work, we propose to estimate the parameters σ g and

N from either the magnitude data or the acquired noise maps by

using a change of variable to a Gamma distribution Gamma (N, 1)

( Koay et al., 2009b ), whose first moments and maximum likelihood

equations directly depend on N . This makes the proposed method

fast and easy to apply to existing data without additional infor-

mation, while being robust to artifacts by rejecting outliers of the

distribution. Preliminary results of this work have been presented

at the annual meeting of the MICCAI ( St-Jean et al., 2018b ). This

manuscript now contains additional theory, simulations including

signal correlations and parallel acceleration, and experiments on

phantoms and in vivo datasets acquired with parallel and multi-

band acceleration. As example applications, we perform bias cor-
ection and denoising on an in vivo dataset using the estimated

istribution derived with each algorithm. 

. Theory 

In this section, we introduce the necessary background on the

amma distribution, its moments and maximum likelihood equa-

ions. Expressing the signal with a Gamma distribution highlights

quations which can be solved to estimate parameters σ g and N . 

.1. Probability distribution functions of MRI data 

To account for uncertainty in the acquisition process, the com-

lex signal measured in k-space by the receiver coil array can

e modeled with a separate additive zero mean Gaussian noise

or each channel with identical variance σ 2 
g ( Gudbjartsson and

atz, 1995 ). The signal acquired from the real and imaginary part

f each coil in a reconstructed magnitude image can be expressed

s ( Constantinides et al., 1997 ) 

 N = 

√ 

N ∑ 

n =1 

m 

2 
Rn 

+ m 

2 
In 

, (1)

here m Rn and m In are the real and imaginary parts of the sig-

al, respectively, as measured by coil number n, N is the num-

er of degrees of freedom (which can be up to the number of

oils in the absence of accelerated parallel imaging) and m N is the

esulting reconstructed signal value for a given voxel. The mag-

itude signal can therefore be approximated by a noncentral chi

istribution and has a probability density function (pdf) given by

oay et al. (2009a) ; Dietrich et al. (2008) 

df (m | η, σg , N) = 

m 

N 

σ 2 
g ηN−1 

exp 

(
−(m 

2 + η2 ) 

2 σ 2 
g 

)
I N−1 

(
mη

σ 2 
g 

)
, (2)

here m is the noisy signal value for a given voxel, η is the (un-

nown) noiseless signal value, σ g is the Gaussian noise standard

eviation, N is the number of degrees of freedom and I ν ( z ) is the

odified Bessel function of the first kind. 

With the introduction of multiband imaging and other modern

cquisition methods, parameters estimation of the magnitude data

s not straightforward anymore. The number of degrees of free-

om N , which is related to the number of receiver coils, likely

eviates from heuristic estimation based on the actual number of

oils as N also depends on the reconstruction technique employed

 Sotiropoulos et al., 2013 ). The pdf of the magnitude data can be

odeled by considering spatially varying degrees of freedom N e f f 

nd standard deviation σ eff (also called the effective values) and we

enerally have N e f f ≤ N, ( Dietrich et al., 2008; Aja-Fernández et al.,

014 ). 

The noncentral chi distribution includes the Rician (N = 1) , the

ayleigh (N = 1 , η = 0) and the central chi distribution (η = 0) as

pecial cases ( Dietrich et al., 2008 ). The pdf of the central chi dis-

ribution is given by 

df (m | η = 0 , σg , N ) = 

m 

2 N−1 

2 

N−1 σ 2 N 
g �(N ) 

exp 

(
−m 

2 

2 σ 2 
g 

)
, (3)

here �( x ) is the Gamma function. With a change of variable in-

roduced by Koay et al. (2009b) , Eq. (3) can be rewritten as a

amma distribution Gamma (N, 1) with t = m 

2 / 2 σ 2 
g , dt = m/σ 2 

g dm

hich has a pdf given by 

df (t| N, 1) = 

1 

�(N) 
t N−1 exp (−t) . (4)

q. (4) only depends on N , which can be estimated from the sam-

le values. 
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1 The inverse cdf is also known as the quantile function. 
2 As there is no analytical solution to the inverse cdf of a Gamma 

distribution, one can use the function gaminv (p, α, β = 1) in Matlab or 

InverseGammaRegularized (α, 1 − p) in Mathematica to numerically estimate it. 
3 https://github.com/samuelstjean/autodmri . 
.2. Parameter estimation using the method of moments and 

aximum likelihood 

The method of moments 

The pdf of Gamma (α, β) is defined as 

df (x | α, β) = 

x α−1 

�(α) βα
exp (−x/β) (5)

nd has mean μgamma and variance σ 2 
gamma given by 

gamma = αβ, σ 2 
gamma = αβ2 . (6) 

nother useful identity comes from the sum of Gamma distribu-

ions, which is also a Gamma distribution ( Weisstein, 2017 ) such

hat if t i ~ Gamma ( αi , β), then 

K 
 

i =1 

t i ∼ Gamma 

( 

K ∑ 

i =1 

αi , β

) 

. (7) 

rom Eq. (6) , we obtain that the mean and the variance of the dis-

ribution Gamma (N, 1) are equal with a theoretical value of N . That

s, we can estimate the Gaussian noise standard deviation σ g and

he number of coils N from the sample moments of the magnitude

mages themselves, provided we can select voxels without any sig-

al contribution i.e., where η = 0 . Firstly, σ g can be estimated from

q. (6) as 

g = 

1 √ 

2 

√ ∑ V 
v =1 m 

4 
v ∑ V 

v =1 m 

2 
v 

− 1 

V 

V ∑ 

v =1 

m 

2 
v , (8) 

here V is the number of identified noise only voxels and m v the

alue of such a voxel, see Appendix A for the derivations. Once

g is known, N can be estimated from the sample mean of those

reviously identified voxels as 

 = 

1 

V 

V ∑ 

v =1 

t v = 

1 

2 V σ 2 
g 

V ∑ 

v =1 

m 

2 
v . (9)

erivations of Eqs. (8) and (9) are detailed in Appendix A . 

Maximum likelihood equations for the Gamma distribution 

Estimation based on the method of maximum likelihood yields

wo equations for estimating α and β . Rearranging the equations

or a Gamma distribution will give Eq. (9) and a second implicit

quation for N that is given by Thom (1958) 

og (β) + ψ(α) = 

1 

V 

V ∑ 

v =1 

log t v , (10)

here ψ(x ) = 

d 
dx 

log (�(x )) is the digamma function. For the spe-

ial case Gamma (N, 1) , we can rewrite Eq. (10) as 

(N) = 

1 

V 

V ∑ 

v =1 

log (m 

2 
v / 2 σ 2 

g ) . (11)

ombining Eqs. (9) and (11) , we also have an implicit equation to

nd σ g 

 

( 

1 

2 V σ 2 
g 

V ∑ 

v =1 

m 

2 
v 

) 

= 

1 

V 

V ∑ 

v =1 

log (m 

2 
v / 2 σ

2 
g ) = 

1 

V 

V ∑ 

v =1 

log (m 

2 
v ) − log (2 σ 2 

g ) . 

(12) 

s Eqs. (11) and (12) have no closed form solution, they

an be solved numerically e.g., using Newton’s method. See

ppendix A for practical implementation details. 
. Material and methods 

.1. Automated and robust background separation 

The equations we presented in Section 2.1 are only valid when

= 0 by construction and assume that each selected voxel m v be-

ongs to the same Gamma distribution. Following a methodology

imilar to Koay et al. (2009b) , we assume that each 2D slice with

he same spatial location belongs to the same statistical distribu-

ion throughout each 3D volume. This practical assumption allows

electing a large number of noise only voxels for computing statis-

ics as well as identifying (and subsequently discarding) potential

lice acquisition artifacts which may affect one volume, but not

he rest of the acquisition. Using Eq. (7) , the sum of all diffusion

eighted images (DWIs) can be used to separate the voxels be-

onging to the Gamma distribution Gamma (KN, 1) , where K is the

umber of acquired DWIs, from the voxels not in that specific dis-

ribution with a rejection step using the inverse cumulative dis-

ribution function 

1 (cdf). In the particular case Gamma (KN, 1) at a

robability level p , the inverse cdf is icdf (α, p) = P −1 (α, p) , where

 

−1 is the inverse lower incomplete regularized gamma function. 2 

his relationship can be used to identify potential outliers, such

s voxels which contain non background signal, by excluding any

oxel m v whose value does not fall between λ− = icdf (α, p/ 2) and

+ = icdf (α, 1 − p/ 2) , i.e., m v is an outlier if m v < λ− or m v > λ+ . 
To provide a better understanding of the change of variable

 = m 

2 / 2 σ 2 
g , Fig. 1 shows the histogram for a synthetic dataset at

 = 30 0 0 s/mm 

2 , which will be detailed later in Section 3.2 . Voxels

elonging to the background are easily separated in terms of the

amma distribution after transformation, thus allowing estimation

f parameters from voxels truly belonging to the noise distribution,

ee Appendix C and ( St-Jean et al., 2018b ) for technical details. Our

mplementation of the proposed algorithm is freely available 3 ( St-

ean et al., 2019 ). 

.2. Datasets and experiments 

Synthetic phantom datasets 

Two synthetic phantom configurations from previous dMRI

hallenges were used. The first simulations were based on the ISBI

013 HARDI challenge using phantomas ( Caruyer et al., 2014 ). We

sed the given 64 gradient directions to generate two separate

oiseless single-shell phantoms with either b = 10 0 0 s/mm 

2 or

 = 30 0 0 s/mm 

2 and an additional b = 0 s/mm 

2 volume. The

atasets were then corrupted with Rician (N = 1) and noncentral

hi noise profiles (N = 4 , 8 and 12) , both stationary and spatially

arying, at a signal-to-noise ratio (SNR) of 30 according to 

ˆ 
 = 

√ √ √ √ 

N ∑ 

i =0 , j=0 

(
I √ 

N 

+ τεi 

)2 

+ (τε j ) 2 , where εi , ε j ∼ N (0 , σ 2 
g ) , 

(13) 

here I is the noiseless volume, ˆ I is the resulting noisy volume,

is a mask for the spatial noise pattern, N (0 , σ 2 
g ) is a Gaussian

istribution of mean 0 and variance σ 2 
g = ( ̄m / SNR ) 2 and m̄ is the

verage signal value of the b = 0 s/mm 

2 image inside the white

atter. In the stationary noise case, τ is set to 1 so that the noise

s uniform. For the spatially varying noise case, τ is a sphere with

 value of 1 in the center up to a value of 1.75 at the edges of

https://github.com/samuelstjean/autodmri
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Fig. 1. Histogram of the synthetic data at b = 30 0 0 s/mm 

2 A) before the change of variable to a Gamma distribution and B) after the change of variable to a Gamma 

distribution for N = 1 and N = 12 with the true value of σ g . Summing all K DWIs together separates the background voxels from the rest of the data, which follows a 

Gamma distribution Gamma (KN, 1) by construction. In C) , a view of the left part from B) with the theoretical histograms of Gamma distributions from N = 1 up to N = 12 . 

The black dotted lines represent the lower bound λ− to the upper bound λ+ , with p = 0 . 05 , N min = 1 and N max = 12 . This broad search covers the background voxels in both 

cases while excluding remaining voxels which do not belong to the distribution Gamma (KN, 1) . 
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the phantom, thus generating a stronger noise profile outside the

phantom than for the stationary noise case. Since all datasets are

generated at SNR 30, the noise standard deviation σ g is the same

even though the b -value or number of coils N is different, but the

magnitude standard deviation of the noise only voxels σ m 

is lower

than σ g . 

The second set of synthetic experiments is based on the

ISMRM 2015 tractography challenge ( Maier-Hein et al., 2017 )

which consists of 25 manually delineated white matter bundles.

Ground truth data consisting of 30 gradient directions at either

b = 10 0 0 s/mm 

2 or b = 30 0 0 s/mm 

2 and 3 b = 0 s/mm 

2 im-

ages at a resolution of 2 mm isotropic was generated using Fiber-

fox ( Neher et al., 2014 ) without artifacts or subject motion. Sub-

sequent noisy datasets were created at SNR 20 by simulating an

acquisition with 8, 12 and 32 coils using the parallel MRI simu-

lation toolbox 4 with SENSE ( Pruessmann et al., 1999 ) or GRAPPA

( Griswold et al., 2002 ) reconstructions with an acceleration factor

of R = 2 . The SENSE simulated datasets also included spatial cor-
4 https://mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy 

- phantom- simulator 

n  

c  

e

a  
elations between coils of ρ = 0 . 1 , increasing the spatially varying

ffective noise standard deviation σ g and keeping the signal Rician

istributed (N = 1) . For the GRAPPA reconstructed datasets, 32 cal-

brating lines were sampled in the k-space center, neglecting spa-

ial correlations ( ρ = 0 ) as it is a k-space method ( Aja-Fernández

nd Tristán-Vega, 2015 ). The resulting effective values of N and

g will be both spatially varying. We additionally generated 33

ynthetic noise maps per dataset by setting the underlying signal

alue to η = 0 and performing the reconstruction using the same

arameters as the DWIs. All generated datasets are available online

 St-Jean et al., 2018a ). 

Acquired phantom datasets 

We acquired phantom images of a bottle of liquid on a 3T

hilips Ingenia scanner using a 32 channels head coil with a gra-

ient strength of 45 mT/m. We varied the SENSE factor from

 = 1 , 2 or 3 and multiband acceleration factors from no multi-

and ( MB ), MB = 2 or MB = 3 while fixing remaining acquisi-

ion parameters to investigate their influence on the resulting sig-

al distributions, resulting in 9 different acquisitions. The datasets

onsist of 5 b = 0 s/mm 

2 volumes and 4 shells with 10 DWIs

ach at b = 500 s/mm 

2 , b = 1000 s/mm 

2 , b = 2000 s/mm 

2 

nd b = 30 0 0 s/mm 

2 with a voxel size of 2 mm isotropic and

https://mathworks.com/matlabcentral/fileexchange/36893-parallel-mri-noisy-phantom-simulator
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v

E/TR = 135 ms/50 0 0 ms, 
/ δ = 66.5 ms/28.9 ms. Six noise maps

ere also acquired during each of the experiments by disabling

he RF pulse and gradients of the sequence. The acquired phantom

atasets are also available ( St-Jean et al., 2018a ). 

In vivo datasets 

A dataset consisting of four repetitions of a single subject 5 was

lso used to assess the reproducibility of noise estimation without

 priori knowledge ( Poldrack et al., 2015 ). This is the dataset we

reviously used in our MICCAI manuscript ( St-Jean et al., 2018b ).

he acquisition was performed on a GE MR750 3T scanner at

tanford university, where a 3x slice acceleration with blipped-

AIPI shift of FOV/3 was used, partial Fourier 5/8 with a homo-

yne reconstruction and a minimum TE of 81 ms. Two acquisi-

ions were made in the anterior-posterior phase encode direction

nd the two others in the posterior-anterior direction. The voxel-

ize was 1.7 mm isotropic with 7 b = 0 s/mm 

2 images, 38 vol-

mes at b = 1500 s/mm 

2 and 38 volumes at b = 30 0 0 s/mm 

2 . As

he acquisition used a homodyne filter to fill the missing k-space,

his should lead in practice to a half Gaussian noise profile, a spe-

ial case of the noncentral chi distribution with N = 0 . 5 , due to

sing only the real part of the signal for the final reconstruction

Chap. 13 Bernstein et al., 2004; Noll et al., 1991; Dietrich et al.,

008 ). 

In addition, one dataset acquired on a 3T Siemens Connectom

canner from the 2017 MICCAI harmonization challenge 6 con-

isting of 16 b = 0 s/mm 

2 volumes and 3 shells with 60 DWIs

ach at b = 1200 s/mm 

2 , b = 3000 s/mm 

2 and b = 5000 s/mm 

2 

as used ( Tax et al., 2019 ). The voxel size was 1.2 mm isotropic

ith a pulsed-gradient spin-echo echo-planar imaging (PGSE-EPI)

equence and a gradient strength of 300 mT/m. Multiband acceler-

tion MB = 2 was used with GRAPPA parallel imaging with R = 2

nd an adaptive combine reconstruction employing a 32 channels

ead coil. Other imaging parameters were TE / TR = 68 ms /

400 ms, 
/ δ = 31.1 ms / 8.5 ms, bandwidth of 1544 Hz/pixel and

artial Fourier 6/8. 

Noise estimation algorithms for comparison 

To assess the performance of the proposed methods, we used

hree other noise estimation algorithms previously used in the

ontext of dMRI. Default parameters were used for all of the algo-

ithms as done in St-Jean et al. (2018b) . The local adaptive noise

stimation (LANE) algorithm ( Tabelow et al., 2015 ) is designed

or noncentral chi signal estimation, but requires a priori knowl-

dge of N . Default parameters were used with k ∗ = 20 as recom-

ended. Since the method works on a single 3D volume, we only

se the b = 0 s/mm 

2 image for all of the experiments to limit

omputations as the authors concluded that the estimates from

 single DWI are close to the mean estimate. We also use the

archenko-Pastur (MP) distribution fitting on the principal com-

onent analysis (PCA) decomposition of the diffusion data, which

s termed MPPCA ( Veraart et al., 2016 ). In all experiments, we used

he suggested default local window size of 5 × 5 × 5. Finally, we

lso compare to the Probabilistic Identification and Estimation of

oise (PIESNO) ( Koay et al., 2009b ), which originally proposed the

hange of variable to the Gamma distribution that is at the core of

ur proposed method. PIESNO requires knowledge of N (which is

ept fixed by the algorithm) to iteratively estimate σ g until con-

ergence by removing voxels which do not belong to the distribu-

ion Gamma (N, 1) for a given slice. We set p = 0 . 05 and l = 50 for

he initial search of σ g in PIESNO and our proposed method, with

dditional parameters set to N min = 1 and N max = 12 for all cases.

hen estimating distributions from noise maps, we compute val-
5 https://openfmri.org/dataset/ds0 0 0 031 
6 https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/ 

esearch/projects/cross- scanner- and- cross- protocol- diffusion- MRI- data- 

armonisation 

4

 

t  
es in small local windows of size 3 × 3 × 3. The list of the soft-

are implementations and their version used in this manuscript

s available in the supplementary materials. To the best of our

nowledge, ours is the first method which estimates both σ g and

 jointly without requiring any prior information about the recon-

truction process of the MRI scanner. Because PIESNO and LANE

oth require knowledge of the value of N , we set the correct value

f N for the spatially varying noise phantom experiments and as-

ume a Rician distribution by setting N = 1 for the remaining ex-

eriments when N is unknown. We quantitatively assess the per-

ormance of each method on the synthetic datasets by measuring

he standard deviation of the noise and the percentage error inside

he phantom against the known value of σ g , computed for each

oxel as 

ercentage error = 100 ×
(
σg estimated 

− σg true 

)
/σg true 

. (14) 

s PIESNO and our proposed methods estimate a single value per

lice whereas MPPCA and LANE provide estimates from small spa-

ial neighborhood, we report the mean value and the standard de-

iation of the error estimated inside the synthetic phantoms on

ach slice. For the acquired phantom datasets, we report the esti-

ated noise distributions using both the DWIs and the measured

oise maps for all 9 combinations of parallel imaging parame-

ers that were acquired. For the in vivo datasets, we report once

gain the noise distributions estimated by each method. The re-

roducibility of the estimated distributions is assessed on the four

E datasets while the Connectom dataset is used to evaluate the

erformance of each compared algorithm on a bias correction and

enoising task. In addition, we report N as estimated by our pro-

osed methods for all cases. 

Bias correction and denoising of the Connectom dataset 

In a practical setting, small misestimation in the noise distri-

ution (e.g., spatially varying distribution vs nature of the dis-

ribution) might not impact much the application of choice. We

valuate this effect of misestimation on the Connectom dataset

ith a bias correction and a denoising task. Specifically, we apply

oncentral chi bias correction ( Koay et al., 2009a ) on the in vivo

ataset from the CDMRI challenge using Eq. (B.4) . The algorithm

s initialized with a spherical harmonics decomposition of order 6

 Descoteaux et al., 2007 ) as done in ( St-Jean et al., 2016 ). The data

s then denoised using the non local spatial and angular matching

NLSAM) algorithm with 5 angular neighbors where each b -value

s treated separately ( St-Jean et al., 2016 ). Default parameters of a

patial patch size of 3 × 3 × 3 were used and the estimation of σ g 

s computed by each method was given to the NLSAM algorithm.

or MPPCA, LANE and PIESNO, a default value of N = 1 was used

nd the value of N as computed by the moments and maximum

ikelihood equations for the proposed methods. The bias correction

lgorithm was also generalized for non integer values of N as de-

ailed in Appendix B . 

. Results 

We show here results obtained on the phantoms and in vivo

atasets. The first set of simulations uses a sum of square recon-

truction with stationary and spatially varying noise profiles. The

econd set of simulations includes SENSE and GRAPPA reconstruc-

ions, resulting in both spatially varying signal distribution profiles.

inally, the distributions estimated by each algorithm for the in

ivo dataset are used for a bias correction and denoising task. 

.1. Synthetic phantom datasets 

Simulations with a sum of squares reconstruction 

Fig. 2 shows results from simulations with stationary and spa-

ially varying noise profiles for all datasets as estimated inside the

https://openfmri.org/dataset/ds000031
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-centre/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonisation
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Fig. 2. Percentage of error when the real value of N is unknown and σ g is constant (in A) ) and N is known with σ g spatially varying (in B) ) with the mean (solid line) and 

standard deviation (shaded area). All methods underestimate spatially varying σ g , except for LANE with N = 12 which overestimates it instead. On average, all methods are 

tied at around 5% of error with MPPCA reaching approximately 25% of error. Of interesting note, the proposed methods are tied with PIESNO when the correct value of N is 

given to the latter, but do not require an estimate of N , which is now an output instead of a prerequisite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

a  

t  

a

a  

w  

a  

(  

a  

E  

G  

t  

e  

G  

c  

o  

b  

r  

n  

f  

s  

w  

m  

i  

p  

i  
ISBI 2013 challenge phantom. For stationary noise profiles with N

unknown, estimation of σ g is the most accurate for the proposed

methods with an error of about 1%, followed by MPPCA making an

error of approximately 5% and LANE of 15%. The error of PIESNO

increases with the value of N , presumably due to misspecification

in the signal distribution, whereas MPPCA and LANE are both sta-

ble in their estimation with increasing values of N . The proposed

methods using equations based on the moments and maximum

likelihood recovers the correct value of σ g in all cases with the

lowest variance across slices, indicating that the estimated value

of σ g is similar in all slices as expected. The same behavior is ob-

served for PIESNO when N = 1 , but the estimated σ g is larger than

the correct value by two to three times when N is misspecified. In

the spatially varying noise case where N is known, the moments,

maximum likelihood equations and PIESNO all perform similarly

with approximately 2% of error. LANE generally outperforms MP-

PCA except for the N = 12 case, but still misestimates σ g by ap-

proximately 15% and 25% respectively. Only the proposed methods

and MPPCA are independent of correctly specifying N . Finally, Fig. 3

shows the estimated values of N by the proposed methods. Esti-

mation generally follows the correct value, regardless of misesti-

mation of σ g . 

Simulations with parallel imaging 

Fig. 4 shows the estimated values of σ g from a SENSE re-

construction and Fig. 5 shows the results for the GRAPPA recon-

structed datasets. For SENSE, estimation using noise maps is the
ost precise for both proposed methods and PIESNO where the

verage error is around 0, followed by LANE when using DWIs as

he input which results in 10% of overestimation. MPPCA gener-

lly underestimates σ g by around 15% for data at b = 10 0 0 s/mm 

2 

nd 30% for data at b = 30 0 0 s/mm 

2 . LANE instead overestimates

hen using DWIs and underestimates σ g when using noise maps

nd knowing the correct value of N = 1 . The proposed methods

the moments and maximum likelihood equations) and PIESNO

re performing similarly, but PIESNO requires knowledge of N = 1 .

stimation is also more precise for the three methods using the

amma distribution (moments, maximum likelihood and PIESNO)

han those using local estimations (MPPCA and LANE) and clos-

st to the true values when using noise maps. In the case of

RAPPA, results are similar to the SENSE experiments with the ex-

eption of MPPCA being more precise than the compared meth-

ds for the b = 10 0 0 s/mm 

2 case and performs equally well at

 = 30 0 0 s/mm 

2 as the proposed methods with an average er-

or of about 20%. Results using LANE are similar with increasing

umber of coils when assuming N = 1 , while the estimated value

rom PIESNO also increases with the number of coils as previously

een in Fig. 2 . In this case, LANE overestimates σ g by around 50%

hen using DWIs, but performs similarly to MPPCA when esti-

ating σ g from the noise maps. Estimation from noise maps us-

ng the moments or maximum likelihood equations is the most

recise in all cases. The error of PIESNO increases with N as seen

n Fig. 5 panel C) . This is caused by mistakenly including gray
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Fig. 3. Estimated value of N using equations from the moments (top) and with maximum likelihood (bottom) for the proposed methods. Even for the spatially variable case 

where σ g is slightly underestimated, the estimated values of N are stable and correspond to the real values used in the synthetic simulations in every case. 
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atter voxels of low intensity in the estimated distribution while

hey are correctly excluded automatically by the proposed meth-

ds. Finally, Fig. 6 shows the estimated values of N e f f using the

atasets from Figs. 4 and 5 by the proposed methods. For the

ENSE case, the true value is a constant N = 1 by construction and

he estimated values by both algorithms are on average correct

ith the maximum likelihood equations having the lowest vari-

nce. In the case of GRAPPA, values of N vary spatially inside the

hantom and depend on the per voxel signal intensity, just as σ g 

oes in Fig. 5 . This leads to some overestimation when only back-

round voxels are considered, with the best estimation obtained

hen using the noise maps. For simulations using 8 and 12 coils,

stimated values of N are, in general, following the expected val-

es. However, the spatially varying pattern can not be fully recov-

red as the correct value of N depends on the true signal intensity

in each voxel, which is not present when collecting noise only

easurements. 

.2. Acquired phantom datasets 

Fig. 7 shows the estimated values of σ g for all methods with a

ENSE acceleration of rate R = 1 , 2 and 3 with multiband imaging

t acceleration factors of MB = 2, MB = 3 or deactivated in panel

) . Results show that σ g increases with R and is higher when MB

 3 for R fixed, even if in theory σ g should be similar for a given

 and increasing MB . Panel C) shows the estimated values of σ g 

hen using noise maps as the input for R = 3 and MB = 3. As in

he synthetic experiments, MPPCA and LANE have the lowest es-

imates for σ g with PIESNO and the proposed methods estimat-

ng higher values. Since the correct value is unknown, a reference

ample slice of a noise map is also shown. When compared to val-

es from the measured noise map, estimated values of σ g are ap-

roximately fivefold lower for MPPCA, four times lower for LANE

nd around half for the other methods. Estimation on the noise

aps yields a value of around N = 1 for both proposed methods

s seen in panels B) and E) , irrespective of the acceleration used.

n the case of estimation using the DWIs, the range of estimated

alues is larger and increases at acceleration factors of MB = 2 and

 = 2 or 3. 
.3. In vivo datasets 

Multiple datasets from a single subject 

Fig. 8 shows the estimated value of σ g on four repetitions

f the GE datasets for each method as computed inside a brain

ask. The values from a b = 30 0 0 s/mm 

2 volume (including back-

round) is also shown as a reference for the values present at

he highest diffusion weighting in the dataset. All methods show

ood reproducibility as their estimates are stable across the data.

he value of N as computed by our proposed methods is also

imilar for all datasets with the median at N = 0 . 45 for the mo-

ents and N = 0 . 49 for the maximum likelihood equations. This

orresponds to a half Gaussian distribution as would be obtained

y a real part magnitude reconstruction ( Dietrich et al., 2008 ).

owever, LANE recovered the highest values of σ g amongst all

ethods with a large variance and a median higher than the

 = 30 0 0 s/mm 

2 values, which might indicate overestimation in

ome areas. The median of MPPCA and the proposed methods are

imilar, while PIESNO estimates of σ g are approximately two times

ower. This could indicate that specifying N = 1 was incorrect for

hese datasets, as PIESNO identified about 10 noise only voxels. 

Fig. 9 shows an axial slice around the cerebellum and the top

f the head which are corrupted by acquisition artifacts likely due

o parallel imaging. Voxels containing artifacts were automatically

iscarded by both methods, preventing misestimation of σ g and N .

he values computed from these voxels also offer a better quali-

ative fit than assuming a Rayleigh distribution or selecting non-

rain data. We also timed each method to estimate σ g on one of

he GE datasets using a standard desktop computer with a 3.5 GHz

ntel Xeon processor. The runtime to estimate σ g (and N ) was

round 5 s for the maximum likelihood equations, 9 s for the mo-

ents equations, 11 s for PIESNO, 3 min for MPPCA and 18 min for

ANE. 

Estimation with a Connectom dataset 

Fig. 10 shows in A) the estimated values of σ g inside a brain

ask and in B) the values of N computed by the proposed

ethods. Estimated values of σ g vary by an order of magni-

ude between the different methods. In the case of MPPCA and

ANE, the median of the estimates is higher than the reference
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Fig. 4. Estimation of the noise standard deviation σ g (in A ) and the percentage error (in B ) inside the phantom only for each method using a SENSE reconstruction with 8, 12 

or 32 coils. The left columns (basis = DWIs) shows estimation using all of the DWIs, while the right column (basis = noise maps) shows the estimated values from synthetic 

noise maps in small windows of size 3 × 3 × 3. Results for b = 10 0 0 s/mm 

2 are on the top row, while the bottom row shows results for the b = 30 0 0 s/mm 

2 datasets. 

Figure C) shows the spatially estimated values of σ g using the b = 30 0 0 s/mm 

2 dataset with 32 coils for a single slice from the true distribution and local estimation as 

done by MPPCA and LANE. The general trend shows that even though MPPCA and LANE misestimate σ g , they still follow the spatially varying pattern (lower at edges with 

the highest intensity near the middle) from the correct values. In D) , voxels identified as belonging to the same distribution Gamma( N , 1) are overlaid in yellow over the 

sum of all DWIs. Note how voxels containing signal from the DWIs are excluded by all three methods. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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b = 50 0 0 s/mm 

2 data, while PIESNO and the proposed methods

estimate values lower than the reference and have lower vari-

ability in their estimated values. For the estimation of N , recov-

ered values are distributed close to 1 as is expected from an

adaptive combine reconstruction providing a Rician distribution.

Values estimated with the maximum likelihood equations have a

lower variability than with the moments equations. In C) , the top
ow shows the b = 50 0 0 s/mm 

2 volume and spatial maps of σ g 

s estimated by MPPCA and LANE. The bottom row shows vox-

ls identified as pure noise (in light purple) using the moments,

he maximum likelihood equations and PIESNO. Ghosting artifacts

re excluded, but presumably affect estimation using the entire

et of DWIs shown in the top row. Fig. 11 shows in A) the sig-

al intensity after applying bias correction (left column) and after
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Fig. 5. Estimation of the noise standard deviation σ g (in A ) and the percentage error (in B ) inside the phantom only for each method using a GRAPPA reconstruction 

with 8, 12 or 32 coils, using the same conventions as Fig. 4 . Figure C) shows the the true value of σ g and the spatially estimated σ g from MPPCA and LANE using the 

b = 30 0 0 s/mm 

2 dataset with 32 coils for a single slice. There is once again a misestimation for both methods while following the correct spatially varying pattern. In D) , 

voxels identified as belonging to the same distribution Gamma( N , 1) are overlaid in yellow over the sum of all DWIs. Note how PIESNO mistakenly selects some low intensity 

voxels belonging to the gray matter, in addition to all of the voxels in the background, which causes an overestimation of σ g with a fixed value of N = 1 . Both proposed 

methods instead select voxels with small variations in intensity as belonging to the same distribution without mistakenly selecting gray matter voxels. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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enoising (right column) for each volume ordered by increasing

 -value. The top row (resp. bottom row) shows the mean (resp.

tandard deviation) as computed inside a white and gray mat-

er mask. The mean signal decays with increasing b -value as ex-

ected, but the standard deviation of the signal does not follow

he same trend in the cases of LANE. After denoising, the mean

ignal and its standard deviation decays once again as for the orig-

nal data. Panel B) shows the average DWI at a given b -value for
he original dataset and after denoising using the noise distribu-

ion from each method. Results are similar for all methods for the

 = 0 s/mm 

2 datasets, but the overestimation of σ g by LANE pro-

uces missing values in the gray matter for b = 30 0 0 s/mm 

2 and

 = 50 0 0 s/mm 

2 . In general, averaging reduces the noise present

t b = 0 s/mm 

2 and b = 1200 s/mm 

2 while only denoising is effec-

ive at b = 30 0 0 s/mm 

2 and b = 50 0 0 s/mm 

2 . At b = 50 0 0 s/mm 

2 ,

he MPPCA denoised volume is of lower intensity than when
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Fig. 6. The estimated values of N for SENSE (left column) and GRAPPA (right column) for the b = 10 0 0 s/mm 

2 (first row of boxplots) and b = 30 0 0 s/mm 

2 (second row 

of boxplots) datasets. The left column shows results computed from the automatically selected background voxels (basis = DWIs), while the right column shows local 

estimation using noise maps (basis = noise maps). In A) and B) , the boxplot of N inside the phantom for the SENSE/GRAPPA algorithm with a spatial map of N shown in C) 

and D) computed using the noise maps from the b = 30 0 0 s/mm 

2 datasets. Note how the colorbar is the same in C) , while each row of D) shares the same colorbar. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

i  

i  

h  

b  

t  

n  

c  

g  

p  

t  

i  

l  

c  
obtained by the moments, maximum likelihood equations or

PIESNO. This is presumably due to LANE and MPPCA estimating

higher values of σ g than the three other methods. Finally, panel

C) shows the absolute difference between the original and the de-

noised dataset obtained by each method. At b = 50 0 0 s/mm 

2 ,

LANE removes most of the signal in the gray matter mistakenly

due to overestimating σ g . Other methods perform comparably well

on the end result, despite estimates of σ g of different magnitude. 

5. Discussion 

We have shown how a change of variable to a Gamma dis-

tribution Gamma (N, 1) can be used to robustly and automatically
dentify voxels belonging only to the noise distribution. At each

teration, the moments ( Eqs. (8) and (9) ) and maximum likeli-

ood equations ( Eqs. (11) and (12) ) of the Gamma distribution can

e used to compute the number of degrees of freedom N and

he Gaussian noise standard deviation σ g relating to the original

oise distribution. Voxels not adhering to the distribution are dis-

arded, therefore refining the estimated parameters until conver-

ence. One of the advantage of our proposed methods is that no a

riori knowledge is needed from the acquisition or the reconstruc-

ion process itself, which is usually not stored or hard to obtain

n a clinical setting. Results from Section 4.1 show that we can re-

iably estimate parameters from the magnitude data itself in the

ase of stationary distributions. For spatially varying distributions
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Fig. 7. Estimation of noise distributions for the scanned phantom datasets inside a small ROI. Large outliers above the 95th percentile were removed to not skew the 

presented boxplots. In A) , the estimation of the noise standard deviation σ g for each method using DWIs (top row) and using noise maps (bottom row). Each column 

shows an increasing SENSE factor, where σ g increases (according to theory) with the square root of the SENSE factor. The different hues show an increasing multiband 

factor, which should not influence the estimation of σ g . For the case MB = 3, there may be signal leakage to adjacent slices, which would increase the measured values 

of σ g even when the estimation uses only noise maps. In B) , boxplots for the values of N estimated by both proposed methodologies for the experiments shown in A) . 

Estimated values using noise maps are always close to 1 on average while estimations using DWIs seems to be affected by the possible signal leakage inherent to the 

use of multiband imaging. In C) , an axial slice of a noise map and estimated values of σ g by all methods for the case R = 3 and MB = 3, which is the highest rate of 

acceleration from all of the investigated cases. Note the different scaling between the top and bottom row as MPPCA and LANE estimates of σ g are two to three times 

lower than other methods. In D) , a b = 0 s/mm 

2 image of the phantom and spatially estimated values of σ g for MPPCA and LANE. Note how some signal leakage (orange 

arrows) is affecting the b = 0 s/mm 

2 volume due to using MB = 3. In E) , location of the spherical ROI used for the boxplots overlaid on a noise map and spatially 

estimated values of N for both proposed methods. As less voxels are available near the borders of the phantom, estimating the noise distributions parameters results in lower 

precision. 
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ithout parallel acceleration, the proposed methods achieve an av-

rage percentage error of approximately 10% when estimating σ g ,

hich is equal or better than the other methods compared in this

ork. Estimated values of N are around the true values, even when

g is misestimated. While these experiments may still be consid-

red to be simplistic when compared to modern scanning proto-

ols where parallel acceleration is ubiquitous, they highlight that

ven textbook cases can lead to misestimation if the correct signal

istribution is not taken into account. Practical tasks taking advan-

age of the signal distribution such as bias correction ( Pieciak et al.,

018 ), noise floor removal ( Sakaie and Lowe, 2017 ), deep learn-

ng reconstruction with various signal distributions ( Lønning et al.,

019 ) or diffusion model estimation ( Collier et al., 2018; Zhang

t al., 2012; Landman et al., 2007 ) may be tolerant, but not per-

orm optimally, to some misestimation of the noise distribution.

ee e.g., Hutchinson et al. (2017) for discussions on the impact of

oise bias correction on diffusion metrics in an ex vivo rat brain

ataset. Note that for some applications such as denoising, only

he product of the parameters of the distribution might be needed

i.e., N × σ 2 
g ) ( Pieciak et al., 2016 ), which is a case we did not cover

n the present manuscript. 
Effects of misspecification of the noise distribution 

Experiments with SENSE from Section 4.1 reveal that using a lo-

al estimation with noise maps provides the best estimates for the

roposed methods and PIESNO. MPPCA and LANE perform better

hen using DWIs as the input rather than noise maps, but at the

ost of a broader range of estimated values for σ g and still under-

erform when compared to the three other methods. This is pre-

umably because the signal diverges from a Gaussian distribution

t low SNR ( Gudbjartsson and Patz, 1995 ) and especially in noise

aps, leading to a misspecification of its parameters when the as-

umed noise distribution is incorrect. Phantom experiments carried

ith GRAPPA show similar trends except for PIESNO, which over-

stimates σ g as shown in Fig. 2 . When erroneously fixing N = 1 ,

ow intensity voxels where η > 0 (e.g., gray matter) may be mis-

akenly included in the distribution after the change of variables,

eading to overestimation of σ g . 

The presence of tissue in voxels used for noise estimation might

ompromise the accuracy of the estimated distributions as shown

n Section 4.1 . This can be explained by the lower number of noise

nly voxels available to the proposed methods and PIESNO and to

ifficulty in separating the signal from the noise for MPPCA and
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Fig. 8. Estimation of the noise profiles on four repetitions of a single subject from a GE scanner. In A) , the baseline signal values of a b = 30 0 0 s/mm 

2 volume and estimated 

values of σ g for all methods inside a brain mask and B) estimated values of N by the proposed methods are shown. Note that the values for LANE and the b = 30 0 0 s/mm 

2 

volume were truncated at the 99 percentile to remove extreme outliers. In C) , an axial slice of a b = 30 0 0 s/mm 

2 image from one dataset and the estimated values of σ g for 

MPPCA and LANE. For the proposed methods and PIESNO, a mask of the identified background voxels (in yellow) overlaid on the data. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. An axial slice in the cerebellum from one of the GE datasets. Voxels identified in A) as noise only (yellow) are free of artifacts in a single slice in B) or along the 

sum of all volumes in C) . In D) , the normalized density histogram using the selected voxels from A) (green) fit well a chi distribution (black dashed lines), while assuming a 

Rayleigh distribution (red dashed lines) or using all non brain voxels (orange) leads to a worse visual fit. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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LANE at low SNR. Using measured noise maps is not a foolproof so-

lution as by definition they set η = 0 , while the (unknown) noise-

less signal from tissues is η > 0. As the noise distribution may

depend on η ( Aja-Fernández et al., 2014 ), this means that its pa-

rameters (e.g., from a GRAPPA reconstruction) will be inherently

different than the one estimated from noise maps. This effect can

be seen in Fig. 6 , where the estimated values of N from noise

maps and DWIs are close to 1 for SENSE as expected in theory.

For GRAPPA, they are either overestimated and underestimated in

regions of the phantom and overestimated in background regions

as N locally depends on η. Accurate estimation of σ g and N over

signal regions still remains an open challenge. Nevertheless, the
edian of the estimated distribution of σ g is closer to the true

istribution when using noise maps than when using DWIs for the

roposed methods. Such noise map measurements could therefore

rovide improved signal distribution estimation for, e.g., body or

ardiac imaging, where no intrinsic background measurements are

vailable. 

Effects of parallel imaging and multiband in a phantom 

Section 4.2 presented results from a scanned phantom using

ENSE coupled with multiband imaging. While no ground truth

s available, a SENSE acceleration should provide a Rician sig-

al distribution (N = 1) and σ g should increase with 

√ 

R ( Aja-

ernández et al., 2014 ). Fig. 7 shows that for a common SENSE
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Fig. 10. Estimation of noise distributions for the Connectom dataset. In A) , signal distribution of the original data and noise standard deviation σ g for all methods, where 

data above the 99th percentile for the b = 50 0 0 s/mm 

2 volume and LANE were discarded. In B) , values of N as estimated using the moments (in red) and by maximum 

likelihood (in purple). In C) on the top row, a b = 50 0 0 s/mm 

2 volume and spatial estimation of σ g as measured by MPPCA and LANE. In D) , voxels identified as containing 

only noise (in white) by the moments, maximum likelihood and PIESNO overlaid on top of the sum of the b = 0 s/mm 

2 volumes. Note how each algorithm identifies different 

voxels, while automatically ignoring voxels belonging to the data or contaminated with signal leakage from multiband imaging. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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actor, all values of σ g estimated with MB = 3 are larger than

t lower factors. The use of multiband imaging should not influ-

nce the estimation of σ g as it only reduces the measured sig-

al, and not the noise component unlike SENSE does. Indeed, es-

imated values of σ g are stable until MB = 3 or R = 2 and MB =
 is used; this is possibly due to signal leakage and aliasing sig-

al from multiband folding over from adjacent slices with higher

actors ( Todd et al., 2016; Barth et al., 2016 ). Noise maps are less

ffected by this artifact, which is already present when R = 2 and

B = 2, as adjacent voxels have low values, similarly to unaffected

oxels. However, leaking signal in DWIs might impact parameters
stimation as it can be interpreted as an increase in SNR and there-

ore a lower noise contribution than expected. Estimation of σ g is

lso increasing approximately with 

√ 

R for all methods as expected

 Aja-Fernández et al., 2014 ). While we can not quantify these re-

ults, this follows the synthetic experiments with SENSE shown in

ig. 4 , where PIESNO and the proposed methods were more precise

n estimating σ g from noise maps. 

In the case of estimation using DWIs as input, this expected in-

rease in σ g for increasing SENSE factor is less obvious e.g., LANE

stimates of σ g decrease from R = 2 to R = 1 for the no multi-

and case. As MPPCA and LANE also estimate η, it could explain
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Fig. 11. Bias correction and denoising with the NLSAM algorithm of the Connectom dataset from the noise distributions estimated by each method. In A) , the left column 

(resp. right column) shows the result of noncentral chi bias correction (resp. denoising) on the signal value. The top row (resp. bottom row) shows the mean (resp. standard 

deviation) of the signal inside a white and gray matter mask for each volume. Note how the bias corrected value of LANE goes below 0 (dashed line) due to its high 

estimation of σ g . After denoising, the standard deviation of the signal decreases as the b -value increases, an effect which is less noticeable for the bias corrected signal only. 

However, this effect is less pronounced for the bias corrected signal only in the case of LANE and MPPCA. In B) , spatial maps of the original data and after denoising (in each 

column) when averaging datasets at the same b -value for b = 0 s/mm 

2 , b = 1200 s/mm 

2 , b = 30 0 0 s/mm 

2 and b = 50 0 0 s/mm 

2 (in each row) for each method. Note how 

each b -value uses a different scale to enhance visualization even though the signal intensity is lower for increasing b -values. Panel C) shows the difference in percentage 

between the original data and after denoising using parameters as estimated by each algorithm. 
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the larger variance of σ g as η fundamentally depends on the mi-

crostructural content of each voxel, which is complex and sub-

ject to large spatial variations, e.g., notably across DWIs. This also

means that estimation over DWIs is susceptible to signal leakage,

which would explain the increased estimated values of σ g for MB

= 2 and MB = 3 for a given SENSE factor. In the noise maps, we

have observed that MPPCA and LANE estimated η > σ g in all cases

(results not shown). Overestimating the true value of η = 0 , which
s an implicit assumption in PIESNO and the proposed methods,

ould explain underestimation of σ g when using noise maps. This

verestimation of η in turn leads to lower estimates of σ g . The

se of multiband and the inherent signal leakage at high factors

ould explain this overestimation of η and underestimation of σ g 

or all tested cases. In the case of SENSE, the proposed methods

stimated approximately N = 1 in all cases, suggesting robustness

o multiband artifacts. 
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Estimation of noise distributions for in vivo datasets 

To complement earlier sections, two datasets acquired on dif-

erent scanners combining parallel and multiband imaging were

nalyzed in Section 4.3 . Fig. 8 shows that assuming a Rician dis-

ribution with N = 1 can prove inadequate in some situations. The

our repetitions of a single subject acquired on a GE scanner point

owards a half Gaussian distribution instead as evidenced by the

omputed values of N around 0.5. This is further evidenced by the

ow number of voxels (less than 10) detected by PIESNO while as-

uming N = 1 . In the preliminary results of our MICCAI submis-

ion ( St-Jean et al., 2018b ), using N = 0 . 5 for PIESNO gave simi-

ar results to the proposed methods, suggesting the departure of

he data from a pure Rician distribution. Additionally, Fig. 9 shows

hat those voxels identified automatically as pure noise also ad-

ere closer to a chi distribution than a Rayleigh distribution (where

= 0 in both cases). Considering the whole distribution of the

ata, which is contaminated by artifacts, would also lead to a dif-

erent distribution. Even if local methods can consider spatially

arying noise profile, the local estimation of σ g will invariably be

ffected whenever those same artifacts repeat over the data. This

ntroduce a compromise between avoiding artifacts at the cost of

educed spatial specificity and local methods which may not be

ble to exclude artifacts, but provide local estimations of σ g . Mea-

urements from noise maps, if available, could therefore offer a

iddle ground if N is low or does not depend locally on the coil

eometries (e.g., SENSE or homodyne reconstruction) as shown in

ection 4.1 . 

Fig. 10 shows a large range of estimates for σ g across methods.

n particular, the moments and maximum likelihood equations es-

imate smaller values of σ g than MPPCA and LANE, but larger than

IESNO, while still recovering values of N close to 1 and success-

ully discard voxels contaminated by multiband artifacts. The cor-

ect value of σ g most likely sits between these two results as par-

llel MRI produces spatially varying noise profile, which is higher

n the center and not fully captured by the background signal, but

he local estimation methods also overestimated σ g in our syn-

hetic simulations. In panel A) , MPPCA and LANE estimates of σ g 

ith DWIs are likely affected by multiband artifacts as the median

s larger than the signal level at b = 50 0 0 s/mm 

2 . This indicates

 possible overestimation as σ g should be lower than the mea-

ured signal at the highest b -value. For PIESNO and the proposed

ethods, the median σ g is lower than the median of the reference

 = 50 0 0 s/mm 

2 data. An overestimation of N could explain the

ow values of σ g estimated by the proposed methods just as mis-

stimation of η by MPPCA and LANE could affect their respective

stimate of σ g by balancing out the misestimated values. 

Fig. 11 shows the result of each method on a bias correction

nd denoising task on the Connectom dataset. In panel A) , the

tandard deviation of the signal (bottom left panel) is increased af-

er bias correction for LANE (green line) and decreased (around the

ame level) for the other methods when compared to the uncor-

ected data (blue line). The situation is similar after denoising, but

o a lesser extent, while the moments, maximum likelihood equa-

ions and PIESNO follow the same signal level as the unprocessed

ata on average. Regarding the mean of the signal itself, LANE is on

verage lower or close to 0 after bias correction, indicating poten-

ial degeneracies due to overestimation of σ g . From panels B) and

) , the results of all methods are visually similar except for LANE

especially at b = 30 0 0 s/mm 

2 and b = 50 0 0 s/mm 

2 ), indicating

hat the NLSAM denoising algorithm treated different values of σ g 

n the same way. This is because the optimal regularized solution

which depends on σ g ) is piecewise constant ( St-Jean et al., 2016;

ibshirani and Taylor, 2011 ) and can tolerate small deviations in

g . Finally, MPPCA, the moments and maximum likelihood equa-

ions and PIESNO perform similarly, even if they estimated differ-

nt values of σ g and N , with MPPCA showing slightly lower signal
ntensity at b = 50 0 0 s/mm 

2 . This could be due to the bias correc-

ion having a larger effect when σ g is larger, increasing the stan-

ard deviation of the resulting signal. As shown in panel C) , the

ifference with the original dataset for MPPCA is lower than the

roposed methods or PIESNO, even though the estimated value of

g was larger. 

. Conclusions 

We presented a new, fully automated framework for charac-

erizing the noise distribution from a diffusion MRI dataset us-

ng the moments or maximum likelihood equations of the Gamma

istribution. The estimated parameters can be subsequently used

or e.g., bias correction and denoising as we have shown or dif-

usion models taking advantage of this information. This requires

nly magnitude data, without the use of dedicated maps or param-

ters intrinsic to the reconstruction process, which may be chal-

enging to obtain in practice. The proposed framework is fast and

obust to artifacts as voxels not adhering to the noise distribu-

ion can be automatically discarded using an outlier rejection step.

his makes the proposed methods also applicable on previously ac-

uired datasets, which may not carry the necessary information re-

uired by more advanced estimation methods. Experiments using

arallel MRI and multiband imaging on simulations, an acquired

hantom and in vivo datasets have shown how modern acquisition

echniques complicate estimation of the signal distribution due to

rtifacts at high acceleration factor. This issue can be alleviated

ith the use of noise only measurements or by limiting the accel-

ration factor to prevent signal leakage. Moreover, different ven-

ors implement different default reconstruction algorithms which

eads to different signal distributions, challenging the strategy of

ssuming a Rician distribution or approximations of N based on

he physical amount of channels in the receiver coil. We also have

hown how signal bias correction and denoising can tolerate some

isestimation of the noise distribution using an in vivo dataset.

oteworthy is that the theory we presented also applies to any

ther MRI weighting using large samples of magnitude data (e.g.,

unctional MRI, dynamic contrast enhanced MRI). This could help

ulticenter studies or data sharing initiatives to include knowl-

dge of the noise distribution in their analysis in a fully automated

ay to better account for inter-scanner effects. 
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Appendix A. Estimating parameters of the Gamma distribution 

Estimation using the method of moments 

For any given distribution, we can estimate its parameters by

relating the samples and the theoretical expression of its moments.

The Gamma distribution is parametrized as Gamma (α, β) and has

a probability distribution function of 

pdf (t | α, β) = 

t α−1 

�(α) βα
exp (−t /β) (A.1)

with t, α, β > 0 and �( x ) the gamma function. The first mo-

ments are analytically given by (Chap. 5 Papoulis, 1991; Weisstein,

2017 ). 

μgamma = αβ, σ 2 
gamma = αβ2 , (A.2)

In this paper, the Gamma distribution parameters are

Gamma (α = N, β = 1) after the change of variable t = m 

2 / (2 σ 2 
g )

for our particular case. Since we have β = 1 , this leads to a special

case where the mean and variance are equal with a value of α = N

and can be expressed only in terms of the magnitude signal m . For

simplicity, we will only use the mean μgamma and variance σ 2 
gamma 

to estimate the required parameters N and σ 2 
g , but higher order

moments could also be used. However, in practice, they might

accumulate numerical errors due to the higher powers involved

and are not used here since two equations are enough to estimate

the two parameters. Starting from the analytical expression given

by Eq. (A.2) , we have for the special case Gamma (N, 1) 

μgamma = α, σ 2 
gamma = α (A.3)

Which we can compute using the sample mean and sample vari-

ance formulas such that 

α = 

1 

K 

K ∑ 

k =1 

t k = 

1 

K 

K ∑ 

k =1 

t 2 k −
( 

1 

K 

K ∑ 

k =1 

t k 

) 2 

(A.4)

Substituting the equation for the moments in terms of t = m 

2 / 2 σ 2 
g ,

we obtain 

1 

K 

K ∑ 

k =1 

m 

2 
k 

2 σ 2 
g 

= 

1 

K 

K ∑ 

k =1 

(
m 

2 
k 

2 σ 2 
g 

)2 

−
( 

1 

K 

K ∑ 

k =1 

m 

2 
k 

2 σ 2 
g 

) 2 

(A.5)

⇒ 

1 

2 Kσ 2 
g 

K ∑ 

k =1 

m 

2 
k = 

1 

4 Kσ 4 
g 

K ∑ 

k =1 

m 

4 
k −

1 

4 K 

2 σ 4 
g 

( 

K ∑ 

k =1 

m 

2 
k 

) 2 

(A.6)

⇒ 

K ∑ 

k =1 

m 

2 
k = 

1 

2 Kσ 2 
g 

⎛ 

⎝ K 

K ∑ 

k =1 

m 

4 
k −

( 

K ∑ 

k =1 

m 

2 
k 

) 2 
⎞ 

⎠ (A.7)

⇒ 2 Kσ 2 
g = 

K 

∑ K 
k =1 m 

4 
k 

−
(∑ K 

k =1 m 

2 
k 

)2 

∑ K 
k =1 m 

2 
k 

(A.8)

⇒ σg = 

1 √ 

2 K 

√ √ √ √ 

K 

∑ K 
k =1 m 

4 
k 

−
(∑ K 

k =1 m 

2 
k 

)2 

∑ K 
k =1 m 

2 
k 

(A.9)
 σg = 

1 √ 

2 

√ ∑ K 
k =1 m 

4 
k ∑ K 

k =1 m 

2 
k 

− 1 

K 

K ∑ 

k =1 

m 

2 
k 

(A.10)

herefore, it is possible to estimate the Gaussian noise standard

eviation using Eq. (A.10) and the values of magnitude data m k , as-

uming that the voxels considered here do not contain any object

ignal. With the value of the noise variance σ 2 
g now known, go-

ng back to the original Gamma distribution Gamma (α = N, β = 1)

ields the number of coils N as previously shown by Eq. (9) 

 = α = μgamma = 

1 

2 Kσ 2 
g 

K ∑ 

k =1 

m 

2 
k (A.11)

Estimation using maximum likelihood equations 

An alternative to the method of moments to estimate param-

ters from a given distribution is to solve the equations derived

rom its likelihood function for each unknown parameter. Given

 set of observed data, maximizing the likelihood function from

 known distribution (or equivalently, the log of the likelihood

unction) yields a set of equations to estimate its parameters.

or the Gamma (α, β) distribution, maximizing the log likelihood

y equating the partial derivative to 0 for each parameter yields

 Thom, 1958 ) 

1 

Kβ

K ∑ 

k =1 

t k − α = 0 (A.12)

og (β) + 

d 

dα
log (�(α)) − 1 

K 

K ∑ 

k =1 

log (t k ) = 0 (A.13)

ince we have α = N and β = 1 , in this special case Eq. (A.12) is

he same as Eq. (A.11) . 

Combining Eqs. (A.12) and (A.13) yields an implicit equation to

stimate σ g , which can be written as 

f (σg ) = ψ 

( 

1 

2 Kσ 2 
g 

K ∑ 

k =1 

m 

2 
k 

) 

− 1 

K 

K ∑ 

k =1 

log (m 

2 
k ) + log (2 σ 2 

g ) = 0 

(A.14)

f ′ (σg ) = 

−1 

Kσ 3 
g 

[ 

ψ 

′ 
( 

1 

2 Kσ 2 
g 

K ∑ 

k =1 

m 

2 
k 

) 

K ∑ 

k =1 

m 

2 
k 

] 

+ 

2 

σg 
= 0 (A.15)

nd Eq. (A.13) can be rewritten as an implicit equation of N 

f (N) = ψ(N) − 1 

K 

K ∑ 

k =1 

log (m 

2 
k / 2 σ 2 

g ) = 0 (A.16)

f ′ (N) = ψ 

′ (N) = 0 (A.17)

here ψ(x ) = 

d 
dx 

log (�(x )) is the digamma function and ψ 

′ is the

erivative of ψ , called the polygamma function. Eqs. (A.15) and

A.17) can be solved numerically using Newton’s method provided

e have a starting estimate x 0 . The update rule for Newton’s

ethod at iteration n is therefore 

 n +1 = x n − f (x n ) 

f ′ (x n ) 
(A.18)

or the first iteration, a starting estimate x 0 to approximate the

olution is needed. For Eq. (A.15) , we use x 0 = σm 

, where σ m 

is

he sample standard deviation of the identified noise only voxels.

 starting estimate for Eq. (A.17) is given by Minka (2012) consid-

ring y = 

1 
K 

∑ K 
k =1 log (m 

2 
k 
/ 2 σ 2 

g ) . 

 0 = ψ 

−1 (y ) ≈
{

exp (y ) + 1 / 2 if y ≥ −2 . 22 

−1 / (y + ψ(1)) if y < −2 . 22 

(A.19)
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Algorithm 1: Main algorithm to identify voxels belonging to 

the Gamma distribution 

Data : 4D DWIs data, probability level p = 0 . 05 , length of the 

search grid l = 50 , N min = 1 , N max = 12 

Result : σg , N, mask of background only voxels 

Compute the median of the whole dataset; 

foreach 2D Slice of the 4D dataset do 

Compute the upper bound 

σg max = median / 
√ 

2 icdf (N max , 1 / 2) ; 

Compute the search interval 

� = [1 σg max /l, 2 σg max /l, . . . , lσg max /l] ; 

while σg , N not converged do 

Compute λ− = icdf (N, p/ 2) and λ+ = icdf (N, 1 − p/ 2) ; 

foreach σcand id ate ∈ � do 

Apply change of variable t = 

data 2 

2 σ 2 
cand id ate 

; 

Find voxels from the gamma distribution; 

mask_current = 

( 

λ− ≤
K ∑ 

k =1 

t k 

) ⋂ 

( 

K ∑ 

k =1 

t k ≤ λ+ 

) 

; 

if number of voxels in mask_current > mask then 

mask = mask_current; 

end 

end 

Compute σg with the voxels inside the mask using Eq. 

(8) or Eq. (12); 

Compute N with the voxels inside the mask using Eq. 

(9) or Eq. (11); 

Set N min = N max = N; 

Set � = [0 . 95 σg , 0 . 96 σg , . . . , 1 . 05 σg ] ; 

end 

end 
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n practice, we have observed that 5 iterations of Eq. (A.18) were

ufficient to reach | x n − x n −1 | < 10 −13 . 

ppendix B. Generalized bias correction 

As an application which requires knowledge of both σ g and

 , we now present a general version for non integer values of

 of the signal bias correction from Koay and Basser (2006) ;

oay et al. (2009a) . The correction factor ξ ( η| σ g , N ) can be used

o obtain η from the magnitude measurement m N given the values

f σ g and N such that 

(η| σg , N) = 2 N + 

η2 

σ 2 
g 

−
(

βN 1 F 1 

(
−1 / 2 , N, 

−η2 

2 σ 2 
g 

))2 

(B.1) 

here 1 F 1 is Kummer’s function of the first kind. By defining 

N = 

√ 

π/ 2 

(
N − 1 / 2 

1 / 2 

)
(B.2) 

 

√ 

π/ 2 

(
�(N + 1 / 2) 

�(3 / 2)�(N) 

)
(B.3) 

 

√ 

2 

(
�(N + 1 / 2) 

�(N) 

)
(B.4) 

here 
(

n 
k 

)
is a binomial coefficient, we obtain a generalized ver-

ion of Eq. (B.1) which can now be applied for non integer val-

es of N , such as in the case of a half Gaussian signal distribution

(N = 0 . 5) which occurs when employing half-Fourier reconstruc-

ion techniques ( Dietrich et al., 2008 ). Estimation of η is finally
one with 

= 

√ 

ˆ m 

2 + (ξ (η| σg , N ) − 2 N ) σ 2 
g (B.5) 

here ˆ m is an estimate of the first moment of a noncentral chi

ariable and is estimated from a spherical harmonics fit of or-

er 6 on the DWI datasets for each shell in the present work.

q. (B.5) can be solved iteratively w.r.t. η until convergence, see

 Koay et al., 2009a ) for further implementation details. 

ppendix C. Automated identification of noise only voxels 

This appendix outlines the proposed algorithm and details

or a practical implementation in Algorithm 1 . Our implemen-

ation is also freely available at https://github.com/samuelstjean/

utodmri ( St-Jean et al., 2019 ) and will be a part of ExploreDTI

 Leemans et al., 2009 ). The synthetic and acquired datasets used

n this manuscript are also available ( St-Jean et al., 2018a ). 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.media.2020.101758 . 

eferences 

ja-Fernández, S., Brion, V., Tristán-Vega, A., 2013. Effective noise estimation and
filtering from correlated multiple-coil MR data.. Magn. Reson. Imaging 31 (2),

272–285. doi: 10.1016/j.mri.2012.07.006 . 

ja-Fernández, S. , Tristán-Vega, A. , 2015. A review on statistical noise models for
magnetic resonance imaging. Tech. Rep. LPI, ETSI Telecomunicacion, Universidad

de Valladolid, Spain . 
ja-Fernández, S., Tristán-Vega, A., Alberola-López, C., 2009. Noise estimation in

single- and multiple-coil magnetic resonance data based on statistical models..
Magn. Reson. Imaging 27 (10), 1397–1409. doi: 10.1016/j.mri.2009.05.025 . 

ja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A., 2014. Noise estima-

tion in parallel MRI: GRAPPA and SENSE.. Magn. Reson. Imaging 32 (3), 281–
290. doi: 10.1016/j.mri.2013.12.001 . 

arth, M., Breuer, F., Koopmans, P.J., Norris, D.G., Poser, B.A., 2016. Simultane-
ous multislice (SMS) imaging techniques.. Magn. Reson. Med. 75 (1), 63–81.

doi: 10.1002/mrm.25897 . 
ernstein, M.A. , King, K.F. , Zhou, X.J. , 2004. Handbook of MRI Pulse Sequences. Else-

vier Science . 

aruyer, E. , Daducci, A. , Descoteaux, M. , Houde, J.-C. , Thiran, J.-P. , Verma, R. , 2014.
Phantomas: a flexible software library to simulate diffusion MR phantoms. In:

International Symposium on Magnetic Resonance in Medicine (ISMRM’14), 17,
p. 6407 . 

ollier, Q., Veraart, J., Jeurissen, B., Vanhevel, F., Pullens, P., Parizel, P.M., den
Dekker, A.J., Sijbers, J., 2018. Diffusion kurtosis imaging with free water elim-

ination: a Bayesian estimation approach. Magn. Reson. Med. 80 (2), 802–813.

doi: 10.1002/mrm.27075 . 
onstantinides, C.D., Atalar, E., McVeigh, E.R., 1997. Signal-to-noise measurements

in magnitude images from NMR phased arrays. Magn. Reson. Med. 38 (5), 852–
857. doi: 10.1002/mrm.1910380524 . 

escoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R., 2007. Regularized, fast, and
robust analytical Q-ball imaging. Magn. Reson. Med. 58 (3), 497–510. doi: 10.

1002/mrm.21277 . 

ietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O., 2008.
Influence of multichannel combination, parallel imaging and other reconstruc-

tion techniques on MRI noise characteristics.. Magn. Reson. Imaging 26 (6), 754–
762. doi: 10.1016/j.mri.20 08.02.0 01 . 

uchesne, S., Chouinard, I., Potvin, O., Fonov, V.S., Khademi, A., Bartha, R., Bellec, P.,
Collins, D.L., Descoteaux, M., Hoge, R., McCreary, C.R., Ramirez, J., Scott, C.J.,

Smith, E.E., Strother, S.C., Black, S.E., 2019. The canadian dementia imaging pro-

tocol: harmonizing national cohorts. J. Magn. Reson. Imaging 49 (2), 456–465.
doi: 10.1002/jmri.26197 . 

maus, M.J., Bakker, M.F., Peeters, P.H.M., Loo, C.E., Mann, R.M., de Jong, M.D.F.,
Bisschops, R.H.C., Veltman, J., Duvivier, K.M., Lobbes, M.B.I., Pijnappel, R.M.,

Karssemeijer, N., de Koning, H.J., van den Bosch, M.A .A .J., Monninkhof, E.M.,
Mali, W.P.T.M., Veldhuis, W.B., van Gils, C.H., 2015. MR Imaging as an additional

screening modality for the detection of breast cancer in women aged 50–75
years with extremely dense breasts: the DENSE trial study design. Radiology

277 (2), 527–537. doi: 10.1148/radiol.2015141827 . 

riswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J.,
Kiefer, B., Haase, A., 2002. Generalized autocalibrating partially parallel acquisi-

tions (GRAPPA). Magn. Reson. Med. 47 (6), 1202–1210. doi: 10.1002/mrm.10171 . 
udbjartsson, H., Patz, S., 1995. The Rician distribution of noisy MRI data. Magn.

Reson. Med. 34 (6), 910–914. doi: 10.1002/mrm.1910340618 . 

https://github.com/samuelstjean/autodmri
https://doi.org/10.1016/j.media.2020.101758
https://doi.org/10.1016/j.mri.2012.07.006
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0002
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0002
https://doi.org/10.1016/j.mri.2009.05.025
https://doi.org/10.1016/j.mri.2013.12.001
https://doi.org/10.1002/mrm.25897
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0006
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0006
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0006
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0006
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0007
https://doi.org/10.1002/mrm.27075
https://doi.org/10.1002/mrm.1910380524
https://doi.org/10.1002/mrm.21277
https://doi.org/10.1016/j.mri.2008.02.001
https://doi.org/10.1002/jmri.26197
https://doi.org/10.1148/radiol.2015141827
https://doi.org/10.1002/mrm.10171
https://doi.org/10.1002/mrm.1910340618


18 S. St-Jean, A. De Luca and C.M.W. Tax et al. / Medical Image Analysis 65 (2020) 101758 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P  

 

 

P  

 

P  

 

 

 

 

 

 

P  

 

S  

 

S  

 

S  

 

 

 

S  

 

S  

 

S  

 

 

 

S  

 

 

T  

 

T  

 

 

 

 

T  

 

 

 

 

V  

 

Z  

 

 

S  

S  

 

 

Heidemann, R.M., Anwander, A., Feiweier, T., Knösche, T.R., Turner, R., 2012. k-
space and q-space: combining ultra-high spatial and angular resolution in dif-

fusion imaging using ZOOPPA at 7T. Neuroimage 60 (2), 967–978. doi: 10.1016/j.
neuroimage.2011.12.081 . 

Holdsworth, S.J., O’Halloran, R., Setsompop, K., 2019. The quest for high spatial res-
olution diffusion-weighted imaging of the human brain in vivo. NMR Biomed.

32 (4), e4056. doi: 10.1002/nbm.4056 . 
Hutchinson, E.B., Avram, A.V., Irfanoglu, M.O., Koay, C.G., Barnett, A.S., Kom-

losh, M.E., Özarslan, E., Schwerin, S.C., Juliano, S.L., Pierpaoli, C., 2017. Analy-

sis of the effects of noise, DWI sampling, and value of assumed parameters in
diffusion MRI models.. Magn. Reson. Med. 78 (5), 1767–1780. doi: 10.1002/mrm.

26575 . 
Koay, C.G., Basser, P.J., 2006. Analytically exact correction scheme for signal ex-

traction from noisy magnitude MR signals. J. Magn. Reson. 179 (2), 317–322.
doi: 10.1016/j.jmr.2006.01.016 . 

Koay, C.G., Özarslan, E., Basser, P.J., 2009a. A signal transformational framework for

breaking the noise floor and its applications in MRI. J. Magn. Reson. 197 (2),
108–119. doi: 10.1016/j.jmr.2008.11.015 . 

Koay, C.G., Özarslan, E., Pierpaoli, C., 2009b. Probabilistic identification and estima-
tion of noise (PIESNO): a self-consistent approach and its applications in MRI. J.

Magn. Reson. 199 (1), 94–103. doi: 10.1016/j.jmr.20 09.03.0 05 . 
Landman, B., Bazin, P.L., Prince, J., 2007. Diffusion tensor estimation by maximiz-

ing Rician likelihood. In: Proceedings of the IEEE International Conference on

Computer Vision, pp. 1–8. doi: 10.1109/ICCV.2007.4409140 . 
Leemans, A. , Jeurissen, B. , Sijbers, J. , Jones, D. , 2009. ExploreDTI: a graphical tool-

box for processing, analyzing, and visualizing diffusion MR data. In: Proceed-
ings 17th Scientific Meeting, International Society for Magnetic Resonance in

Medicine, 17, p. 3537 . 
Lønning, K., Putzky, P., Sonke, J.-J., Reneman, L., Caan, M.W., Welling, M., 2019. Re-

current inference machines for reconstructing heterogeneous MRI data. Med.

Image Anal. 53, 64–78. doi: 10.1016/j.media.2019.01.005 . 
Lustig, M., Donoho, D., Pauly, J.M., 2007. Sparse MRI: the application of compressed

sensing for rapid MR imaging. Magn. Reson. Med. 58 (6), 1182–1195. doi: 10.
1002/mrm.21391 . 

Maier-Hein, K.H., Neher, P.F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J.,
Chamberland, M., Yeh, F.-C., Lin, Y.-C., Ji, Q., Reddick, W.E., Glass, J.O.,

Chen, D.Q., Feng, Y., Gao, C., Wu, Y., Ma, J., Renjie, H., Li, Q., Westin, C.-F.,

Deslauriers-Gauthier, S., González, J.O.O., Paquette, M., St-Jean, S., Girard, G.,
Rheault, F., Sidhu, J., Tax, C.M.W., Guo, F., Mesri, H.Y., Dávid, S., Froeling, M.,

Heemskerk, A.M., Leemans, A., Boré, A., Pinsard, B., Bedetti, C., Desrosiers, M.,
Brambati, S., Doyon, J., Sarica, A., Vasta, R., Cerasa, A., Quattrone, A., Yeatman, J.,

Khan, A.R., Hodges, W., Alexander, S., Romascano, D., Barakovic, M., Auría, A.,
Esteban, O., Lemkaddem, A., Thiran, J.-P., Cetingul, H.E., Odry, B.L., Mailhe, B.,

Nadar, M.S., Pizzagalli, F., Prasad, G., Villalon-Reina, J.E., Galvis, J., Thomp-

son, P.M., Requejo, F.D.S., Laguna, P.L., Lacerda, L.M., Barrett, R., Dell’Acqua, F.,
Catani, M., Petit, L., Caruyer, E., Daducci, A., Dyrby, T.B., Holland-Letz, T., Hilge-

tag, C.C., Stieltjes, B., Descoteaux, M., 2017. The challenge of mapping the hu-
man connectome based on diffusion tractography. Nat. Commun. 8 (1), 1349.

doi: 10.1038/s41467- 017- 01285- x . 
Minka, T.P. , 2012. Estimating a Dirichlet distribution. Microsoft Res. (Unpublished

results) 1–15 . 
Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Kar-

macharya, S., Grant, G., Marx, C.E., Morey, R.A., Flashman, L.A., George, M.S.,

McAllister, T.W., Andaluz, N., Shutter, L., Coimbra, R., Zafonte, R.D., Coleman, M.J.,
Kubicki, M., Westin, C.-F., Stein, M.B., Shenton, M.E., Rathi, Y., 2018. Multi-site

harmonization of diffusion MRI data in a registration framework. Brain Imaging
Behav. 12 (1), 284–295. doi: 10.1007/s11682-016-9670-y . 

Moeller, S., Yacoub, E., Olman, C.A., Auerbach, E., Strupp, J., Harel, N., UÇ§urbil, K.,
2010. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using

partial parallel imaging with application to high spatial and temporal whole-

brain FMRI. Magn. Reson. Med. 63 (5), 1144–1153. doi: 10.1002/mrm.22361 . 
Neher, P.F., Laun, F.B., Stieltjes, B., Maier-Hein, K.H., 2014. Fiberfox: facilitating the

creation of realistic white matter software phantoms. Magn. Reson. Med. 72 (5),
1460–1470. doi: 10.1002/mrm.25045 . 

Noll, D.C., Nishimura, D.G., Macovski, A., 1991. Homodyne detection in magnetic
resonance imaging. IEEE Trans. Med. Imaging 10 (2), 154–163. doi: 10.1109/42.

79473 . 

Nunes, R.G. , Hajnal, J.V. , Golay, X. , Larkman, D.J. , 2006. Simultaneous slice excitation
and reconstruction for single shot EPI. Proc. Int. Soc. Mag. Reson. Med 13 (2),

293 . 
Papoulis, A. , 1991. Probability, Random Variables, and Stochastic Processes. Tata Mc-

Graw-Hill Education . 
Paquette, M., Merlet, S., Gilbert, G., Deriche, R., Descoteaux, M., 2015. Comparison of

sampling strategies and sparsifying transforms to improve compressed sensing

diffusion spectrum imaging. Magn. Reson. Med. 73 (1), 401–416. doi: 10.1002/
mrm.25093 . 
ieciak, T., Rabanillo-Viloria, I., Aja-Fernandez, S., 2018. Bias correction for non-
stationary noise filtering in MRI. In: 2018 IEEE 15th International Symposium

on Biomedical Imaging (ISBI 2018). IEEE, pp. 307–310. doi: 10.1109/ISBI.2018.
8363580 . 

ieciak, T., Vegas-Sanchez-Ferrero, G., Aja-Fernandez, S., 2016. Variance stabilization
of noncentral-chi data: application to noise estimation in MRI. In: 2016 IEEE

13th International Symposium on Biomedical Imaging (ISBI). IEEE, pp. 1376–
1379. doi: 10.1109/ISBI.2016.7493523 . 

oldrack, R.A., Laumann, T.O., Koyejo, O., Gregory, B., Hover, A., Chen, M.-Y., Gor-

golewski, K.J., Luci, J., Joo, S.J., Boyd, R.L., Hunicke-Smith, S., Simpson, Z.B.,
Caven, T., Sochat, V., Shine, J.M., Gordon, E., Snyder, A.Z., Adeyemo, B., Pe-

tersen, S.E., Glahn, D.C., Reese Mckay, D., Curran, J.E., Göring, H.H.H., Car-
less, M.A., Blangero, J., Dougherty, R., Leemans, A., Handwerker, D.A., Frick, L.,

Marcotte, E.M., Mumford, J.A., 2015. Long-term neural and physiological pheno-
typing of a single human. Nat. Commun. 6 (1), 8885. doi: 10.1038/ncomms9885 .

ruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., 1999. SENSE: Sensitivity

encoding for fast MRI. Magn. Reson. Med. 42 (5), 952–962. doi: 10.1002/(SICI)
1522- 2594(199911)42:5 < 952::AID- MRM16 > 3.0.CO;2- S . 

akaie, K., Lowe, M., 2017. Retrospective correction of bias in diffusion tensor imag-
ing arising from coil combination mode. Magn. Reson. Imaging 37, 203–208.

doi: 10.1016/j.mri.2016.12.004 . 
akaie, K., Zhou, X., Lin, J., Debbins, J., Lowe, M., Fox, R.J., 2018. Technical note: retro-

spective reduction in systematic differences across scanner changes by account-

ing for noise floor effects in diffusion tensor imaging. Med. Phys. 45 (9), 4171–
4178. doi: 10.1002/mp.13088 . 

otiropoulos, S.N., Moeller, S., Jbabdi, S., Xu, J., Andersson, J.L., Auerbach, E.J., Ya-
coub, E., Feinberg, D., Setsompop, K., Wald, L.L., Behrens, T.E.J., Ugurbil, K.,

Lenglet, C., 2013. Effects of image reconstruction on fiber orientation mapping
from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn.

Reson. Med. 70 (6), 1682–1689. doi: 10.1002/mrm.24623 . 

t-Jean, S., Coupé, P., Descoteaux, M., 2016. Non local spatial and angular matching:
enabling higher spatial resolution diffusion MRI datasets through adaptive de-

noising. Med. Image Anal. 32 (2016), 115–130. doi: 10.1016/j.media.2016.02.010 . 
t-Jean, S., De Luca, A., Tax, C.M.W., Viergever, M.A., Leemans, A., 2018a. Datasets for

‘automated characterization of noise distributions in diffusion MRI data’. Zenodo
doi: 10.5281/zenodo.2483105 . 

t-Jean, S., De Luca, A., Viergever, M.A., Leemans, A., 2018b. Automatic, fast and ro-

bust characterization of noise distributions for diffusion MRI. In: Frangi, A.F.,
Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (Eds.), Medical

Image Computing and Computer Assisted Intervention – MICCAI 2018. Springer
International Publishing, pp. 304–312. doi: 10.1007/978- 3- 030- 00928- 1 _ 35 . 

torey, P., Frigo, F.J., Hinks, R.S., Mock, B.J., Collick, B.D., Baker, N., Marmurek, J., Gra-
ham, S.J., 2007. Partial k-space reconstruction in single-shot diffusion-weighted

echo-planar imaging. Magn. Reson. Med. 57 (3), 614–619. doi: 10.1002/mrm.

21132 . 
abelow, K., Voss, H.U., Polzehl, J., 2015. Local estimation of the noise level in

MRI using structural adaptation. Med. Image Anal. 20 (1), 76–86. doi: 10.1016/
j.media.2014.10.008 . 

ax, C.M., Grussu, F., Kaden, E., Ning, L., Rudrapatna, U., John Evans, C., St-Jean, S.,
Leemans, A., Koppers, S., Merhof, D., Ghosh, A., Tanno, R., Alexander, D.C., Zap-

palà, S., Charron, C., Kusmia, S., Linden, D.E., Jones, D.K., Veraart, J., 2019. Cross-
scanner and cross-protocol diffusion MRI data harmonisation: a benchmark

database and evaluation of algorithms. Neuroimage 195, 285–299. doi: 10.1016/

j.neuroimage.2019.01.077 . 
hom, H.C.S. , 1958. A note on the gamma distribution. Mon. Weather Rev. 86 (4),

117–122 . 
Tibshirani, R.J., Taylor, J., 2011. The solution path of the generalized lasso. Ann. Stat.

39 (3), 1335–1371. doi: 10.1214/11-AOS878 . 
Todd, N., Moeller, S., Auerbach, E.J., Yacoub, E., Flandin, G., Weiskopf, N., 2016. Evalu-

ation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based

fMRI studies at 3T: sensitivity and slice leakage artifacts. Neuroimage 124 (Pt
A), 32–42. doi: 10.1016/j.neuroimage.2015.08.056 . 

eraart, J., Fieremans, E., Novikov, D.S., 2016. Diffusion MRI noise mapping using
random matrix theory. Magn. Reson. Med. 76 (5), 1582–1593. doi: 10.1002/mrm.

26059 . 
hang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. NODDI:

practical in vivo neurite orientation dispersion and density imaging of the hu-

man brain.. Neuroimage 61 (4), 10 0 0–1016. doi: 10.1016/j.neuroimage.2012.03.
072 . 

t-Jean, S., De Luca, A., Tax, C.M.W., Viergever, M.A., Leemans, A., 2019. Samuelst-
jean/autodmri: First release - 2019-07-17. Zenodo. doi: 10.5281/zenodo.3339157 . 

t-Jean, S., Viergever, M.A., Leemans, A., 2020 Harmonization of diffusion MRI
datasets with adaptive dictionary learning, Hum. Brain Mapp. (In press). 

Weisstein, E. W., 2017. Gamma Distribution. From MathWorld—A Wolfram Web

Resource http://mathworld.wolfram.com/GammaDistribution.html Last accessed
2017-10-09. 

https://doi.org/10.1016/j.neuroimage.2011.12.081
https://doi.org/10.1002/nbm.4056
https://doi.org/10.1002/mrm.26575
https://doi.org/10.1016/j.jmr.2006.01.016
https://doi.org/10.1016/j.jmr.2008.11.015
https://doi.org/10.1016/j.jmr.2009.03.005
https://doi.org/10.1109/ICCV.2007.4409140
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0023
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0023
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0023
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0023
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0023
https://doi.org/10.1016/j.media.2019.01.005
https://doi.org/10.1002/mrm.21391
https://doi.org/10.1038/s41467-017-01285-x
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0027
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0027
https://doi.org/10.1007/s11682-016-9670-y
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1002/mrm.25045
https://doi.org/10.1109/42.79473
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0032
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0032
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0032
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0032
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0032
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0033
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0033
https://doi.org/10.1002/mrm.25093
https://doi.org/10.1109/ISBI.2018.8363580
https://doi.org/10.1109/ISBI.2016.7493523
https://doi.org/10.1038/ncomms9885
https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
https://doi.org/10.1016/j.mri.2016.12.004
https://doi.org/10.1002/mp.13088
https://doi.org/10.1002/mrm.24623
https://doi.org/10.1016/j.media.2016.02.010
https://doi.org/10.5281/zenodo.2483105
https://doi.org/10.1007/978-3-030-00928-1_35
https://doi.org/10.1002/mrm.21132
https://doi.org/10.1016/j.media.2014.10.008
https://doi.org/10.1016/j.neuroimage.2019.01.077
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0048
http://refhub.elsevier.com/S1361-8415(20)30122-5/sbref0048
https://doi.org/10.1214/11-AOS878
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1002/mrm.26059
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.5281/zenodo.3339157
http://mathworld.wolfram.com/GammaDistribution.html

	Automated characterization of noise distributions in diffusion MRI data
	1 Introduction
	2 Theory
	2.1 Probability distribution functions of MRI data
	2.2 Parameter estimation using the method of moments and maximum likelihood

	3 Material and methods
	3.1 Automated and robust background separation
	3.2 Datasets and experiments

	4 Results
	4.1 Synthetic phantom datasets
	4.2 Acquired phantom datasets
	4.3 In vivo datasets

	5 Discussion
	6 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Estimating parameters of the Gamma distribution
	Appendix B Generalized bias correction
	Appendix C Automated identification of noise only voxels
	Supplementary material
	References


