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Genome-wide association studies have identified nearly 40 genome-wide significant

single nucleotide polymorphisms (SNPs) which are associated with Alzheimer’s Disease

(AD). Due to the polygenicity of AD, polygenic risk scores (PRS) have shown high potential

for AD risk prediction. PRSs have been shown to successfully discriminate between

AD cases and controls achieving a prediction accuracy of up to 84% based on area

under the receiver operating curve. The prediction accuracy in AD is higher compared

with other complex genetic disorders. PRS can be restricted to SNPs which reside in

biologically relevant gene-sets; the predictive value of these gene-sets in the general

population is not as high as genome-wide PRS, but they may play an important role to

identify mechanisms of disease development and inform biological experiments. Multiple

methods are available to derive PRSs, such as selecting SNPs based on statistical

evidence of association with the disease or using prior evidence for SNP selection.

All methods have advantages, but PRS produced using different methodologies are

often not comparable, and results should be interpreted with care. Similarly, this is true

when PRS is based on different background populations. With the exponential growth in

development of digital electronic devices it is easy to calculate an individual’s disease

risk using public databases. A major limitation for the utility of PRSs is that the risk

score is sample and method dependent. Therefore, replicability and interpretability of

PRS is an important issue. PRS can be used to determine the probability of developing

disease which incorporates information about disease risk in the general population or

in a specific AD risk group. It is essential to consult with genetic counselors to ensure

genetic risk is communicated appropriately.
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INTRODUCTION

Genome-wide association studies (GWAS) have identified over 40 genome-wide significant single
nucleotide polymorphisms (SNPs) which are associated with Alzheimer’s Disease (AD) (1–5). AD,
similarly to other common genetic diseases and disorders, is now recognized to be polygenic (6–10).
The polygenicity of AD leads to polygenic risk scores (PRS) being a successful approach in AD
risk prediction. PRSs have been shown to discriminate between AD cases and controls achieving
a prediction accuracy of 75–84% based on area under the receiver operating curve (AUC) in
pathologically confirmed cases and controls (6, 9).
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PRSs are advantageous for genetic prediction since genome-
wide “big data” instigated by a large number of potentially
contributing SNPs, are reduced into one variable which makes
analysis much simpler by negating issues with overfitting and
multiple testing penalties. PRSs account for the small effects of
a large number of SNPs which still contribute to disease risk,
successfully capturing the polygenicity of a disease. In AD, the
PRS which includes all SNPs with p ≤ 0.5 shows the highest
predictive ability, therefore, SNPs which show any association
more than chance, may contribute to AD risk (6). PRS can be
calculated at any point in an individual’s life, so it is possible to
assess disease risk prior to the onset of any disease or symptoms.
This is particularly useful in late-onset diseases, or diseases which
likely progress while an individual is asymptomatic, such as AD.

PRS has underlying requirements which result in a few
limitations. Firstly it assumes independence between SNPs,
therefore, SNPs in linkage disequilibrium (LD) are removed prior
to analysis, resulting in loss of information. When PRS is derived
for a dataset with individual genotype data, an independent
summary statistic dataset is required to select the relevant SNPs.
This is an increasing concern due to the amount of big data
from large consortia which are produced using a meta-analysis
of smaller datasets, where the independence is difficult to assess.
Additionally, a p-value threshold is often used for SNP selection
and this threshold may differ depending on genetic architecture
of the disease and the power and quality of the data used for
SNP selection (summary statistics). Without prior information,
it is most common to test a number of arbitrary significance
thresholds for SNP selection, and the threshold which optimizes
prediction accuracy in a particular dataset is taken forward, this
does however, incur a multiple testing penalty and is sample-
specific. PRS assumes an additivemodel and interactions between
SNPs are not taken into account.

The PRS distribution can be divided into cases and controls;
the ideal scenario would show distinct separation between the
two distributions, however, there is a great deal of overlap
between the two, with the majority of individuals residing
in the central part of the joint distribution. It is, therefore,
not straightforward to use PRS to distinguish between cases
and controls in general, but the distribution tails show better
separation. Finally, because a large number of SNPs are
incorporated into the score, it can be labor intensive to tease
out which SNPs are driving the PRS, to further understand the
biology of the disease.

METHODOLOGY

In order to address the limitations highlighted in the
introduction, there have been a number of methods developed
to generate the PRS, these include PRSice, POLARIS, LDAK,
LDpred, and PRS-CS. The original method using LD pruning
and p-value thresholding will be referred to as PRS(P+T) in the
remainder of the manuscript.

The traditional process, PRS(P+T), is to (1) remove SNPs
in LD using intelligent pruning which retains SNPs with the
strongest association with the disease, (2) choose SNPs which

have a p-value below a defined threshold, and (3) compute the
PRS on the remaining SNPs as a sum of the number of risk
alleles, weighted by the SNP effect sizes (11). This method is very
straightforward, but potentially removes a lot of information, and
requires the specification of certain parameters, such as p-value
threshold and LD pruning parameters (strength of LD, and the
window size where the SNP × SNP LD is calculated). However,
the simplicity of this method provides easily interpretable results,
and a possibility to delve further into SNP profiles to see
which SNPs are contributing to the PRS and how large this
contribution is. The latter can be easily extracted from the
summary statistics dataset.

PRSice (12, 13) is a software which implements the PRS(P+T)
method. It tests a number of p-value thresholds in order to find
the most appropriate for the particular dataset. One of the pitfalls
is that the correction for testing at multiple p-values thresholds
could be overlooked when association of the most appropriate
PRS with the disease or trait is reported. In addition, since the
p-value selection is based on the input data, the optimal p-
value threshold may not be consistent across different datasets.
Finally, the selected SNPs are dependent on LD structure of the
input sample and even if the same parameters for PRS(P+T)
and PRSice are specified, the resulting list of SNPs is very likely
to be different for different input datasets. Nevertheless, PRSice
is able to process very large datasets quickly, run regression
models, adjust for covariates, plot results and restrict the PRS
to pathways/gene-sets. The PRSice software is user-friendly,
however, as with many software, it may take some investigation
to understand all steps undertaken by the software, for instance,
SNP removal due to ambiguity.

POLARIS (14) does not require LD pruning. It accounts for
LD between SNPs across the full chromosome, and creates LD-
adjusted genotypes, therefore enabling all SNPs to be included in
the PRS. The contribution of each SNP is recalculated, usually
downweighed accounting for the number of SNPs in LD and the
strength of LD between them. The p-value threshold is also not
required, however the pre-selection of SNPs based on p-values
or any other criteria can be imposed prior to the analysis. This
method is very computationally demanding since it requires the
inversion of very large SNP × SNP LD matrices. The advent of
cloud computing and cheaper hardware for computersmay result
in these methodologies becoming more accessible.

Similar to POLARIS, LDAK (15) was originally designed to
adjust SNP effect sizes for LD, by reducing the contribution
of SNPs in regions of high LD. Now, its primary function
is to estimate SNP heritability and heritability enrichment in
summary statistic data, whilst adjusting for local LD and allowing
specification of the heritability model.

LDpred (16) and PRS-CS (17) are both Bayesian approaches
which use a prior of SNP effect sizes and heritability captured by
the regional LD structure. LDpred estimates the LD from datasets
specified by the user. It can be either the same dataset which
was used to generate the GWAS summary statistics or external
(publicly available) data. In the current version of PRS-CS LD
can only be estimated using the 1,000 Genomes data (18). While
using publicly available QC-ed data (e.g., 1,000 genomes) can
be useful to avoid additional pre-processing steps of individual
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genotype data provided to the PRS-software, researchers should
be cautious about whether the sample used to estimate LD
is representative of the summary statistic data, otherwise the
adjustment for LD may be incorrect. This happens if the degree
of concordance between Beta coefficients (effect sizes) for certain
SNPs does not correspond to the strength and direction of LD
between these SNPs. Both these methods attempt to adjust for
local LD. LDpred uses a sliding window of size specified by
the user, and PRS-CS divides the genome into 1,703 relatively
independent chunks with around 500 SNPs. Both methods have
been shown to predict well, with PRS-CS outperforming LDpred
whilst maintaining computational efficiency, due to the use of
continuous shrinkage priors. PRS-CS gives very similar results to
PRS(P+T), whereas LDpred performs slightly worse (17). These
methods have their value, but due to the complex nature of the
methodologies, it is difficult to determine exactly which SNPs are
most impacting the PRS.

All the methods presented compute PRS in a different
manner. All of them will pick up a polygenic signal in a
sample en-masse, however, when attempting to interpret and
communicate the PRS value for a particular person, PRSs are

difficult to compare and interpret. In order to demonstrate
these discussion points in real data, we generated a PRS in the
HipSci open access data (19) merged with the 1,000 genomes
data (18), weighted with AD GWAS (5) summary statistics.
Only SNPs with p ≤ 0.5 were included into the score, and
the APOE region was excluded (chr19: 44.4-46.5Mb). The PRS
was produced using PRS (P+T), PRSice, LDpred, and PRS-
CS; for PRS (P+T) both HipSci and 1,000 genome data were
used separately to estimate LD. Figure 1 shows scatterplots
between the standardized PRS from PRS(P+T), PRSice, PRS-
CS, and LDpred. As expected, PRS(P+T) and PRSice are the
most correlated approaches. PRS(P+T) is least correlated with
PRS-CS and LDpred. Figure 2A shows the unstandardised PRS
distributions generated in the same sample, with the same SNPs.
Due to additional filtering by PRSice, the number of SNPs in
the score differs and the distributions show a systematic shift
[this is more pronounced with other software (see Figure 1)]. An
individual’s PRS generated with a different software may differ
dramatically [e.g., green and black vertical lines in the positive
part of the PRS distribution in Figure 2B, indicating the same
person’s PRS calculated with PRS(P+T) and PRSice]. Figure 2B

FIGURE 1 | Comparison of PRS using Different Methodologies; PRS(P+T), PRSice, PRS-CS and LDpred. The PRS is computed for all individuals in HipSci (19) open

access data merged with the 1,000 Genomes data (18), scores are weighted using AD GWAS (5) summary statistics. Only SNPs with p ≤ 0.5 are included and the

APOE region (chr19: 44.4-46.5Mb) is excluded for all methods.
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FIGURE 2 | (A) Histogram of PRS Scores in HipSci (19) open access data + 1,000 Genomes data (18) for both PRS(P+T) and PRSice methods. Only SNPs with p ≤

0.5 are included in the score, and a clumping threshold of 0.1 was used. (B) Histogram displaying PRS extremes using PRS(P+T) estimating LD in HipSci (19) data.

Additional vertical lines display the PRS of the same two individuals when LD is estimated from a different sample, or PRS is computed using a different method.

also demonstrates that PRS is sensitive to the sample used to
estimate LD (compare black and red vertical lines).

Since the disease architectures defined by the SNP specific
disease models are likely to be different, some areas of the
genome should not be modeled within the PRS. For example,
amyloid protein precursor (APP), presenilin 1 (PSEN1), and
presenilin 2 (PSEN2) genes contain rare highly penetrant
dominant mutations (20), which if modeled as a part of PRS will
demonstrate very little contribution to the disease risk. Another
example is the APOE gene. APOE has a very strong genetic
effect on the risk of developing AD (21); many SNPs both within
and around APOE are in high LD and show a strong statistical
association with AD. Since APOE is so influential in AD, the
greatest prediction accuracy of the case/control status is given
when APOE is modeled separately to the PRS (6). The number
of ε4 and ε2 alleles are modeled against AD, and an APOE
weighted score using the effect sizes from these models as weights
is produced. This is then included in the model with PRS, where
the effect of APOE is excluded from the PRS by excluding all
SNPs in the region (chr19:44.4-46.5Mb). Unfortunately, standard
software do not have the ability to select disease specific regions
which ought to be modeled separately or removed from the risk
score. This is an important feature which PRS methods would
benefit from if incorporated into the software.

For prediction in clinical settings, methods to date do not
incorporate environmental factors which would be a beneficial
addition in order to further explain more disease heritability and

improve prediction. Current PRS methods allow us to capture
SNP-based (narrow-sense) heritability. The incorporation of
environmental factors, SNP × SNP and SNP × environment
interactions, rare variants and SNP-specific disease models (e.g.,
dominant, recessive, etc.) into the risk score may enable the
capture of broad-sense heritability (22, 23). In addition, when
prediction accuracy is calculated, reported and communicated,
the adjustment for relevant confounding factors, population
stratification in particular, have to be considered. The software
discussed do not explicitly provide these adjustments.

STANDARDIZATION OF THE PRS

Comparability of PRS across different populations and datas is
one of the most important issues which requires addressing.
PRSs computed in different populations are not necessarily
comparable. For individuals from different ethnic backgrounds,
the SNPs which are selected for the score may differ and LD
structure between SNPs and SNP allele frequency will vary
based on ethnicity. For example, in our in-house analyses, PRS
values of ∼10 have been observed for individuals with African
ancestry when the remainder of the individuals in the sample
have European ancestry. To date, the PRS approach has mostly
been used in European populations, but even multiple PRSs
from the same population may not be comparable and require
harmonization before statistical standardization (24). A GWAS
conducted in samples of European ancestry and used for PRS
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calculations in other populations, may still be predictive of the
disease risk but accuracy is likely to be reduced, especially in
samples of African ancestry (25).

In addition, other characteristics of a sample need to be
carefully considered and accounted for. For example, since
AD is an age-related disorder and disease prevalence varies
depending on age, sample age may impact the PRS distribution
and consequently, the prediction accuracy of the PRS. For
example, AD prevalence in the general population is around
2% (26), in individuals who are aged 65+ prevalence is around
10% (27) and in those aged 85+ prevalence increases to 30%
(28). It is also known that the effect of APOE is weaker in
the age group 85+ (29). Therefore, PRSs should account for
such factors before statistical standardization to ensure scores
are comparable between samples and interpreted correctly. Since
PRS is comprised of many risk variants of small effect, scores
are Normally distributed but differences in factors (such as
age and ancestry) will be reflected in the parameters of the
PRS distribution [mean and standard deviation (SD)]. For easy
interpretation PRS are often standardized within the study
to make the mean=0 and SD=1. However, this does not
make the scores comparable between studies, as the original
(unstandardised) mean and SD may have been different due to
the specifics of the sample (age, gender, ancestry, education etc.).

PRS FOR FUNCTIONAL STUDIES

The identification of gene mutations that alter risk for a disease
is an important route to understanding the disease mechanism.
For common sporadic AD, the genetic risk is dispersed over
a large number of variants and, with the exception of APOE,
variants have small effects and most occur in non-coding regions
where the functional variant/s are ambiguous. It is also clear
that the genetics of common AD is underpinned by several
components or pathways, which combine together to trigger
disease. Pathway analysis of AD shows significant patterns of
association implicating immunity, lipid processing, endocytosis,
ubiquitination and more recently, Abeta and tau processing
(5, 30). Cell type specific expression patterns have repeatedly
associated the AD polygenic signal with microglia-specific gene
expression patterns while recent single cell dissection of AD post-
mortem tissue has found microglia dysfunction as a significant
early event, all identifying microglia as a key AD cell type.

Most commonly, a genome-wide PRS is used across all
available SNPs in the data, however, it is possible to restrict the
SNPs to those within biologically relevant genes. Generally, these
do not show as good prediction accuracy as the genome-wide
PRS (31). Nevertheless, to improve prediction ability, the goal is
to lower the number of SNPs whilst maintaining the heritability
explained by the SNPs (23), thus reducing the signal-to-noise
ratio. The hope is to make the risk score muchmore interpretable
when it is comprised of the effect of biologically important SNPs.
Identifying a small number of hub genes whose perturbation can
capture the larger polygenicity will also be key for therapeutically
targeting these networks.

PRS is often used to test the polygenicity and predictive ability
of genetic data. By investigating individuals at the extremes of risk
for a particular disease, PRS has other applications. For example,
it is possible to create a PRS for iPSC lines, and identify and
study cell lines which are at risk extremes. Since the biological
experiments are quite expensive, selecting polygenic extremes
can increase confidence in the cell line developing disease or
remaining a control. In addition, PRS could be used to recruit
individuals into clinical trials, by taking those most and least
likely to develop a disease, such as AD, it is possible to increase
the statistical power of your study.

The use of PRS to identify individuals at the extremes of
risk is a promising approach, however, the interpretation of
what it means to be in the “extremes” of a risk distribution
should be taken with caution. For example, if the AD polygenic
risk was computed for a group of people who happen to have
very low risk for AD, when this risk is standardized (to give
a distribution with a mean of 0 and standard deviation of 1),
some individuals may look to be positive extremes, at high
risk of developing AD, however, when compared to the general
population, even the positive extremes are at lower risk compared
to the rest of the population. Therefore, PRS alone should not
be used to determine AD risk, but instead a probability of
developing disease which incorporates information about the
disease prevalence in the sample and in the general population.
To minimize this effect, the PRS can be standardized against a
population sample, this helps to identify extremes based on the
general population. To do this, your data of interest has to be
merged with a population sample with similar ancestry, such
as the 1,000 Genomes data (18), and PRS is computed on the
merged sample. The PRS is then standardized based on the mean
and standard deviation of the PRS in the 1,000 Genomes sample.
Once individuals at the extremes of risk are identified; the most
influential SNPs which drive the PRS and differentiate between
positive and negative extremes can be highlighted using a GWAS
of SNPs in the score, for extreme individuals.

With the reducing cost of genetic testing, and the rise of
companies offering this service to the public, the importance
of genetic counseling is ever increasing. Much research has
been done by clinicians and genetic counselors to guide how
to communicate genetic risk (32). Individuals may prefer not
to know their genetic risk of late-onset disorders such as AD,
especially when there is no available intervention or treatment.

Genetic prediction based upon PRS alone is insufficient
for precision medicine. An approach based upon combination
of genetics, environmental factors, and disease biomarkers is
necessary. To be able to use precisionmedicine, an understanding
of the relationship between genotype and phenotype is required.
This understanding would aid in targeting treatments and
interventions, based on both the individual and disease
characteristics (33, 34).

CONCLUSIONS

PRS has the potential to be a very useful resource in complex
genetic diseases to suggest diagnosis in the early phase of
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illness when patients present with very general and non-
specific symptoms. Prediction by a genetic component alone
can contribute to the risk prediction accuracy, however, it is
unlikely to be a stand-alone predictor of a specific disease. When
results are communicated to individuals, a careful explanation
needs to be provided clearly separating a genetic test with a
very high predictive value (e.g., rare fully penetrant mutations),
and the PRS which alone has a limited predictive value. With
the appearance of commercial companies which provide genetic
data inexpensively to the general public, doctors might soon
face the challenge of explaining PRS risk to individuals. The
comparability of PRS values at the personal level, and therefore
a unified approach to PRS generation and standardization will
become more of an issue in the near future (if not already) in
the digital health field. There are still a number of technical and
methodological issues which need to be resolved, but as the field
moves in the direction of PRS, these will likely be addressed and
the utility of PRS in complex disorders will be substantial.
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