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SUMMARY

Many of the SARS-CoV-2 proteins have related counterparts across the Severe
Acute Respiratory Syndrome (SARS-CoV) family. One such protein is non-struc-
tural protein 9 (Nsp9), which is thought to mediate viral replication, overall viru-
lence, and viral genomic RNA reproduction. We sought to better characterize the
SARS-CoV-2 Nsp9 and subsequently solved its X-ray crystal structure, in an apo
form and, unexpectedly, in a peptide-bound form with a sequence originating
from a rhinoviral 3C protease sequence (LEVL). The SARS-CoV-2 Nsp9 structure
revealed the high level of structural conservation within the Nsp9 family. The
exogenous peptide binding site is close to the dimer interface and impacted
the relative juxtapositioning of themonomerswithin the homodimer.We have es-
tablished a protocol for the production of SARS-CoV-2 Nsp9, determined its
structure, and identified a peptide-binding site that warrants further study to un-
derstanding Nsp9 function.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) comprises a large single-stranded positive

polarity RNA genome that acts as messenger RNA after entering the host. The 50 two-thirds of the genome

encodes a large polyprotein that is translated into ORF1a and ORF1ab through host ribosomal frameshift-

ing, with the remainder of the viral RNA encoding structural and accessory proteins within smaller ORFs.

The viral proteins necessary for host cell infection such as the RNA polymerase along with enzymes that

facilitate RNA synthesis are largely contained within the SARS-CoV-2 polyproteins and are released by

the action of two internally encoded proteases. The mature proteins thus released are known as non-struc-

tural proteins (Nsps) as they are not incorporated within the virion particles. Owing to their degree of

sequence conservation the enzymatic roles and essentiality of each of the Nsps within SARS-CoV-2 is likely

to mimic the behavior of homologous proteins within previously studied coronaviruses such as SARS-CoV.

The development of therapeutic interventions against SARS-CoV-2 infection has focused on a number of

approaches: vaccination strategies that target the structural spike glycoprotein of the envelope (Wrapp

et al., 2020) and may also include a larger selection of viral proteins (Thanh Le et al., 2020), whereas

small-molecule compounds have predominantly targeted two conserved viral enzymes, the main protease

(Zhenming et al., 2020) (Yang et al., 2005) and the RNA-polymerase (Yan et al., 2020). Nevertheless, some of

the betacoronaviral non-structural proteins appear necessary for viral replication within SARS-CoV and in-

fluence pathogenesis (Frieman et al., 2012). Despite their close homology between viruses, such non-struc-

tural proteins remain of interest as they may have conserved roles within the viral life cycle of SARS-CoV-2

that could be susceptible to inhibition.

During infection of human cells, SARS-CoV Non-structural protein 9 (Nsp9SARS) was found to be essential

for replication (Frieman et al., 2012). Homologs of the Nsp9 protein have been identified in numerous coro-

naviruses, including SARS-Cov-2 (Nsp9COV19), human coronavirus 229E (Nsp9HcoV), avian infectious bronchitis

virus (Nsp9IBV), porcine epidemic diarrhea virus (Nsp9PEDV), and porcine delta virus (Nsp9PDCoV). Nsp9SARS
has been shown to have modest affinity for long oligonucleotides with binding thought to be dependent

on oligomerization state (Egloff et al., 2004) (Sutton et al., 2004). Nsp9SARS dimerizes in solution via a conserved

a-helical ‘‘GxxxG’’ motif. Disruption of key residues within this motif reduces both RNA binding (Sutton et al.,

2004) and SARS-CoV viral replication (Frieman et al., 2012). The mechanism of RNA binding within the

Nsp9 protein family is not understood as these proteins have an unusual structural fold not previously

seen in RNA-binding proteins (Egloff et al., 2004) (Sutton et al., 2004). The fold’s Greek-key motif exhibits
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topological similarities with Oligonucleotide/oligosaccharide binding proteins (OB-fold), but such vestiges

have proven insufficient to provide clear insight into Nsp9 function (Egloff et al., 2004). As a consequence

of the weak affinity of Nsp9SARS for long oligonucleotide stretches it was suggested that the natural RNA sub-

strate may instead be conserved features at the 30 end of the viral-genome (the stem-loop II RNA-motif) (Pon-

nusamy et al., 2008). Furthermore, potential direct interactionswith the co-factors of the RNApolymerase have

been reported (Chen et al., 2017). However, it remains to be determined how the oligonucleotide-binding ac-

tivity of Nsp9 proteins promotes viral replication during infection.

The sequence of Nsp9 homologs is conserved among betacoronoaviruses, suggesting a degree of func-

tional conservation. Nsp9COV19 exhibits 97% sequence identity with Nsp9SARS but only 44% sequence iden-

tity with Nsp9HCoV. The structure of the HCoV-229E Nsp9 protein suggested a potential oligomeric switch

induced upon the formation of an intersubunit disulfide bond. Here, disulfide bond formation shifts the

relative orientation of the Nsp9 monomers, which was suggested to promote higher-order oligomerization

(Ponnusamy et al., 2008). The resultant rod-like higher-order Nsp9HCoV assemblies had increased affinity for

the RNA oligonucleotides. Cysteine mutants of Nsp9HCoV that are unable to produce the disulfide dis-

played reduced RNA-binding affinity (Ponnusamy et al., 2008). The observation of a redox-induced struc-

tural switch of Nsp9HCoV led to the hypothesis that Nsp9HCoV may have a functional role in sensing the

redox status of the host cell (Ponnusamy et al., 2008). Although the ‘‘redox-switch’’ cysteine responsible

for oligomer formation in Nsp9HCoV is conserved among different viral Nsp9 homologs, the higher-order

oligomers were not observed for Nsp9SARS (Ponnusamy et al., 2008). Because of these potential differences

between Nsp9 proteins we sought to further characterize the nature of Nsp9COV19.

RESULTS

Expression and Purification of the SARS-CoV-2 Nsp9 Protein

The Nsp9 protein from SARS-CoV-2 (Nsp9COV19) was cloned and recombinantly expressed in E. coli. The

expression construct included an N-terminal Hexa-His tag attached via a rhinoviral 3C-protease site.

Following Ni-affinity chromatography Nsp9COV19 was further purified via size-exclusion chromatography

to yield >95% pure and homogeneous protein. Nsp9COV19 eluted from gel filtration columns with the

apparent molecular weight of a dimer suggesting that, as with other Nsp9 proteins, Nsp9COV19 is an obli-

gate homodimer. The N-terminal tag was removed prior to any biochemical experiments via overnight

digestion with precision protease, as reported for Nsp9SARS (Sutton et al., 2004).

Nucleotide Binding of Nsp9COV19 Protein

The affinity of viral Nsp9 homologs for oligonucleotides has a range of binding affinities reported, some of

which are dependent on oligomerization state and nucleotide length, ranging from 20 to 400 mM (Zeng

et al., 2018). We therefore sought to assess the potential for Nsp9COV19 to bind to fluorescently labeled ol-

igonucleotides using fluorescence anisotropy. Preliminary experiments were performed under conditions

similar to those previously identified for Nsp9SARS (Sutton et al., 2004). Oligonucleotide affinity was very

limited under our assay conditions (Figure 1). Indeed, protein concentrations up to 200 mM of Nsp9COV19

Figure 1. Nsp9COV19 Nucleotide-Binding Assay

Fluorescence polarization anisotropy assays were used to examine the possibility that Nsp9COV19 could bind to labeled

17-mer and 10-mer single-stranded oligonucleotides. The plot shows corrected anisotropy for each Nsp9COV19 protein

concentration; error bars represent the SD from the mean of triplicate measurements after 60 min incubation.
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did not result in saturated binding and thus indicated an incredibly low affinity KD, or no affinity for these

oligonucleotides at all under these assay conditions.

Crystal Structure of apo-Nsp9COV19

Wenext determined the structure of apo-Nsp9COV19 (Table 1). The apo-Nsp9COV19 structure aligned closely

to that of Nsp9SARS (root-mean-square deviation [RMSD] of 0.57 Å over 113 Ca, Figures 2A–2C) (Egloff et al.,

2004). Like other Nsp9 homologs it exhibits an unusual fold that is yet to be observed outside of coronavi-

ruses (Sutton et al., 2004). The core of the fold is a small six-stranded enclosed bbarrel, fromwhich a series of

extended loops project outward (Figure 2A). The elongated loops link the individual b strands of the barrel,

3c-Nsp9COV19 apo-Nsp9 COV19

Data Collection

Space group P4322 P6122

Cell dimensions

a, b, c (Å) 59.0, 59.0, 85.7 88.8, 88.8, 134.0

a, b, g (!) 90.0, 90.0, 90.0 90.0, 90.0, 120.0

Resolution (Å) 48.5-2.0 (2.1-2.05) 44.7-2.00 (2.06-2.00)

Rpim
a 2.4 (60.4) 1.2 (40.4)

I/s1 13.7 (1.4) 26.4 (1.4)

Completeness (%) 100 (100) 99.4 (93.1)

Total number of.

observations

86,945 (12,241) 423956 (28,236)

Number of unique

observations

10,055 (1,425) 21,482 (1,451)

Multiplicity 8.6 (8.6) 19.7 (19.5)

Refinement Statistics

Rfactor
b (%) 23.3 21.4

Rfree
c (%) 24.7 25.2

Number of atoms

Protein 936 1,716

Water (ligand) 5 (PO4) 18 (3 SO4)

Ramachandran plot (%)

Most favored 95.0 95.9

Allowed region 5.0 4.1

Outlier 0.0 0.0

B factors (Å2)

Protein 72.1 73.8

RMSD bonds (Å) 0.015 0.012

RMSD angles (!) 1.33 1.19

Table 1. Data Collection and Refinement Statistics

Values in parentheses refer to the highest resolution bin.
aRp.i.m = Shkl [1/(N-1)]1/2 Si | Ihkl, i - <Ihkl> |/Shkl <Ihkl>.
bRfactor = (S | |Fo| - |Fc| |)/(S |Fo|)—for all data except as indicated in footnote c.
cFive percent of data was used for the Rfree calculation.
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along with a projecting N-terminal b strand and C-terminal a1 helix; the latter two elements make up the

main components of the dimer interface (Figure 3A). Two loops project from the open face of the barrel:

the b2-3- and b3-4-loops are bothpositively charged, glycine rich, andproposed tobe involved in RNAbind-

ing. The only protrusion on the enclosedbarrel side is the b6-7-loop; theC-terminal half of the b7 strand is an

integral part of the fold’s barrel-core, but its other half extended outward to pair with the external b6 strand

and create a twisted b hairpin, cupping the a1 helix and interacting with subsequent C-terminal residues.

The arrangement of monomers within Nsp9 dimers is well conserved in different viruses and is maintained

within Nsp9COV19 (RMSD of 0.66 Å over 226Ca compared with the dimeric unit of Nsp9SARS). The main

component of the intersubunit interaction is the self-association of the conserved GxxxG protein-protein

binding motif (Figure 3C) that allowed backbone van der Waals interactions between interfacing copies of

the C-terminal a1 helix (Hu et al., 2017). Here Gly-100 of the respective parallel a1 helices formed comple-

mentary backbone van der Waals interactions. These interactions were replicated after a full helical turn by

Gly-104 of the respective chains, thereby forming the molecular basis of the Nsp9COVID19 dimer interface

(Figure 3C). The 2-fold axis that created the dimer ran at a "15! angle through the GxxxG motif allowing

the 14-residue helix to cross its counterpart (Figure 4A), the N-terminal turns of the helix were relatively iso-

lated, only making contacts with counterpart protomer residues. In contrast, the C-terminal portions were

encircled by hydrophobic residues, albeit at a distance that created funnel-like hydrophobic cavities either

side of the interfacing helices (Figure 3A). Strands b1 and b6 and the protein’s C terminus served to provide

Figure 2. apo-Nsp9COV19 Is Structurally Similar to Nsp9SARS

(A–C) Cartoon representation of the monomeric units of (A) apo-Nsp9COV19, (B) apo-Nsp9SARS (Sutton et al., 2004), and (C)

a backbone alignment of the two structures. The COV19 structures are colored with b strands inmarine and the a helix in

wheat; the SARS structures are in teal and orange, respectively.

(D) The bound peptide is highlighted in red.
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a ring of residues that encircled the paired helices. The first 10 residues of Nsp9COV19 exchanged across the

dimer-interface to form a strand-like extension of b1 that ran alongside b6 from the other protomer (Fig-

ure 3A). The interaction these strands made did not appear optimal; indeed, the remaining four C-terminal

residues projected sideways across the dimer interface, inserting between the two strands while contrib-

uting a hydrophobic backing to the main helix.

Extraneous Peptides Occupy the Hydrophobic Cavities of Nsp9

In a separate crystallization experiment we determined the structure of Nsp9COV19 that included the N-ter-

minal tag together with a rhinoviral 3C protease sequence (termed 3C-Nsp9COV19). The 3C-Nsp9COV19 crys-

tal form diffracted to 2.05 Å resolution in space group P4322 and had one molecule within the asymmetric

unit, with the dimer being created across the crystallographic 2-fold axis.

Unexpectedly, the high-resolution structure of 3C-Nsp9COV19 diverged from that of the apo-Nsp9COV19

(RMSD 0.86 Å for the monomer and 2.23 Å when superimposing a dimer). The 3C sequence folded around

either side of the paired intersubunit helices to fill two funnel-like hydrophobic cavities (Figures 2D, 3B, 4C,

and 4D), namely, 3C residues LEVL, inserted into the opposing cavities either side of the dimer interface

and ran parallel to the paired GxxxG motif. Moreover, the 3C sequence formed additional b sheet interac-

tions with the N terminus of the protein from the other protomer (Figure 3B). To accommodate the 3C res-

idues the N-terminal strand residues moved outward by"1.6 Å (residues 6–10). This movement allowed the

N terminus to increase the number of b sheet interactions it formed with b6’. The b barrel core of the fold

remained unchanged, but the increase in interactions between b1 and b60 served to exclude the C termi-

nus, prompting residues 106–111 to condense into a bent extension of the a helix (Figures 4A and 4B). The

Figure 3. Peptide Binding in Nsp9COV19 Alters the Dimer Interface

(A and B) Top-down views of the dimer interface highlighting the interaction helices for (A) unbound Nsp9COV19 in which

the surface of the hydrophobic interface cavity is displayed labeled; (B) an equivalent representation of peptide-occupied

3c-Nsp9COV19 dimer.

(C) Stick representation of the GxxxG protein-protein interaction helices at the dimer interface for apo-Nsp9COV19.

(D) Ca backbone overlay of the Nsp9COV19 interface in the apo and peptide-occupied states. The GxxxG motif residues

are colored light purple.
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subtle structural changes near the interacting GxxxG motifs (Figure 3D) are amplified at the periphery of

the dimer resulting in "6 Å shift in the b barrel core (Figure 4C).

Conserved Cavity Residues Accommodate a Peptide Backbone

When comparing apo-Nsp9COV19 with 3C-Nsp9COV19 the point where the N-terminal interface strand di-

verges is near Leu-9 (Figure 3D). Within the apo form it makes van der Waals interactions with the side

chains of Met-101, Asn-33, and Ser-105; this latter serine is important as it immediately follows the

conserved protein-binding motif (100GMVLGS105), while also specifically interacting with Gly1040 from

the opposing protomer. Within the 3C-Nsp9COV19 structure the extraneous LEVL residues insert at this

point (Figure 5B) and the hydrophobic side chains clasp either side of Ser-105 and allowed its hydroxyl

group to form backbone hydrogen bonds to the glutamate within the extraneous sequence (Figure 5B).

Figure 4. Movements within the GxxxG Motif

(A and B) A side view of the N- and C- terminal structural elements at the dimer interface is shown for the (A) apo and (B)

peptide-occupied forms.

(C) Overlay of the Nsp9COV19 dimer in the apo and peptide-bound forms indicating respective shifts in subunit

orientation. The center of mass of the nonaligned subunit is depicted with a light-pink and dark-pink point, respectively.

(D) Unbiased omit map contoured at 3.2s near the hydrophobic cavities into which the exogenous bound peptide was

refined.
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Meanwhile, the C-terminal leucine from the extraneous residues inserted behind the a helix of the other

protomer (Figure 5B). Cumulatively these changes allow for an "5! rotation of the protomer subunits

about the 2-fold axis compared with apo-Nsp9COV19 (Figure 4C).

Most residues involved in protein binding within the hydrophobic cavity and the structural changes needed

to accommodate them appear broadly conserved among other Nsp9 viral homologs (red highlights in Fig-

ure 5A). The main exception to this is Ser-105, which is a tyrosine in the distantly related Nsp9HCoV and

Nsp9PEDV proteins (Ponnusamy et al., 2008) (Zeng et al., 2018). However, the N-terminal interface b strand

in these homologs is known to be involved in interface re-organization of the subunits (Ponnusamy et al.,

2008) and thus denotes other structural differences at this site.

DISCUSSION

Herewedescribe thestructureof the recombinantlyexpressedNsp9COV19aspartofaglobaleffort tocharacterize

the virus causing a current global pandemic. Nsp9 is important for virulence in SARS-CoV (Miknis et al., 2009). It

remains to be understood whether Nsp9COV19 plays a similar role in SARS-CoV-2; however, the 97% sequence

identity suggestsahighdegreeof functional conservation. TheCoVNsp9proteins are seeminglyobligatedimers

comprising a unique fold that associates via an unusual a-helical GxxxG interaction motif. The integrity of this

Figure 5. Sequence Conservation within Nsp9 Homologs

(A) Sequence alignment for viral Nsp9 proteins encoded by SARS-CoV-2, SARS-CoV, Human coronavirus 229E, and

Porcine epidemic diarrhea virus. The extent of secondary structural elements observed in the 3C-Nsp9COV19 structure is

shown and labeled above. The GxxxG motif residues are highlighted with purple and those making up the extraneous

peptide binding site in pink.

(B) Cartoon-and-stick representation of the peptide-binding site observed in 3C-Nsp9COV19. The side chains of the

extraneous 3C residues on one side of the paired helical-interface are displayed with carbon atoms colored pink. Nearby

residues that make up the binding site are displayed and labeled and listed in the accompanying contacts table.
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motif is considered important for viral replication (Miknis et al., 2009), leading to a proposal that disruption of the

unusual dimer interface impacts on RNA binding and function (Hu et al., 2017). Mutation of the same interaction

motif in the porcine delta coronavirus Nsp9PDCoV also disrupted nucleotide binding capacity (Zeng et al., 2018).

We describe the ability to produce homogeneous Nsp9COV19, which purifies as an obligate dimer, consis-

tent with other Nsp9 proteins. Our preliminary nucleotide binding assays brought into question the RNA-

binding capacity of Nsp9COV19. The structure of the Nsp9COV19 showed conservation of the unique Nsp9

fold when compared with homologs from SARS (Egloff et al., 2004) (Sutton et al., 2004). Indeed, the topo-

logical fold was conserved as was the Nsp9-specific a-helical GxxxG dimerization interface. This a-helical

interface is encircled by hydrophobic residues but the interface includes considerable cavities as observed

previously (Egloff et al., 2004). We made a serendipitous discovery in our 3C-Nsp9COV19 structure, whereby

the hydrophobic cavity captured the 3C cleavage sequence LEVL. The extraneous residues were tightly

bound on all sides within the site situating themselves proximal to the conserved GxxxG motif. Coordina-

tion of the 3C sequence induced changes within interfacing residues, serving to both restructure key struc-

tural elements and cause a modest shift in subunit orientation.

At this stage it is unclear whether the bound residues within our structure have any bearing on the physi-

ological function of Nsp9COV19. In the first instance this would seem unlikely; however, our sequence is that

of a rhinoviral 3C protease site and the SARS-CoVmain protease cleaves consensus sequences following an

LQ sequence (Zhu et al., 2011). The bound 3C-LE residues have hallmarks of the LQ motif and are proximal

to the highly conserved GxxxG motif. There are no obvious structural features to preclude, or select for, a

Glu to Gln substitution within our bound sequence. Notably theMpro cleavage sequence occurs at multiple

points throughout the CoV genome as the majority of viral proteins are released by its activity; thus, it re-

mains possible that Nsp9 may associate with unprocessed viral polyproteins retaining them near the viral

RNA. Within our structure Met-101 provides contacts with the bound valine side chain but the presence of

Asn-33 nearby may also accommodate residues such as lysine at this position. Peptide-binding assays will

need to be developed to rigorously assess if other sequences are preferred by this putative binding site.

Indeed, Nsp9 may be part of the viral replication-transcriptase complex, so we may have serendipitously

identified a protein-protein interaction interface for another viral or host protein.

In summary, we have established a protocol for the production and purification of SARS-CoV-2 Nsp9

protein. We determined the structure of the Nsp9COV19 and described the conservation of the

unique fold and dimerization interface identified previously for members of this protein family. We also

determined the structure of Nsp9COV19 in complex with a 3C sequence, although the significance of this

is yet to be established. The structures we describe here could potentially be utilized in drug screening

and targeting experiments to disrupt a dimer interface known to be important for coronavirus replication.

Limitations of the Study

The identity of the peptide bound to Nsp9COV19 raises follow-up questions that were not addressed within

this study. Namely, it remains to be determined whether a physiological peptide, either of the same

sequence or a 3C peptide variant is also able to occupy this putative site. Further questions remain on

whether this is a retention mechanism for pre-processed or post-processed polyproteins or another pro-

tein altogether, and if so, what its binding affinity might be.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to: jamie.rossjohn@

monash.edu.

Materials Availability

Plasmids generated in this study are available upon request.

Data and Code Availability

The accession number for the atomic coordinates of the apo-Nsp9COV19 with 3C-Nsp9COV19 and associated

diffraction data have been deposited at the protein databank (www.rcsb.org) with accession codes PDB:

6W9Q and PDB: 6WXD, respectively.

ll
OPEN ACCESS

8 iScience 23, 101258, July 24, 2020

iScience
Article

mailto:jamie.rossjohn@monash.edu
mailto:jamie.rossjohn@monash.edu
http://www.rcsb.org


METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparant methods for iScience ISCIENCE-D-20-00543 Littler et al.  
  

Synthetic cDNA for the Nsp9COV19 protein was cloned into pET28-LIC expression vector bearing an N-terminal His- 
tag with a Rhinovirus 3C protease cleavage site (MAHHHHHHSAALEVLFQGPG).   

  

Synthetic cDNA for Nsp9COV19:  

 aat aat gaa ctg agt cct gtc   
 N   N   E   L   S   P   V    
gcg ctg cgt caa atg agt tgc gcc gcc ggt acg acc cag acc gca tgt act gac gac aac   
A   L   R   Q   M   S   C   A   A   G   T   T   Q   T   A   C   T   D   D   N   
gct tta gcc tat tat aac acc aca aag ggg ggt cgt ttt gtt ctt gca ttg ctg tcg gat   
A   L   A   Y   Y   N   T   T   K   G   G   R   F   V   L   A   L   L   S   D   
ttg cag gac ctg aaa tgg gct cgt ttt ccc aaa agc gac ggt act gga aca att tac acg   
L   Q   D   L   K   W   A   R   F   P   K   S   D   G   T   G   T   I   Y   T   
gaa tta gag cca ccc tgt cgt ttc gtt aca gat acg ccc aag ggt ccc aag gtt aaa tac   
E   L   E   P   P   C   R   F   V   T   D   T   P   K   G   P   K   V   K   Y   
tta tac ttc atc aag ggt ctt aac aat ctg aat cgc ggt atg gta ctg ggt tca ctg gcc   
L   Y   F   I   K   G   L   N   N   L   N   R   G   M   V   L   G   S   L   A   
gcc aca gtt cgc ctt caa   A   T   V   R   L   Q    

Cloning  

DAY -5 - Primer design and ordering Determine the cDNA sequence of the constructs you want to make. Design primers based on this 
sequence aiming for a 68oC annealing temperature. Add the LIC-specific extensions “cagggacccggt” to the 5’ end of the fwd primer and 
“cgaggagaagcccggtta” to the 5’ end of the rev primer. For example:   

forward   cagggacccggtaataatgaactgagtcctgtc   

reverse   cgaggagaagcccggttattgaaggcgaactgtggcggc  

  
Primers can be ordered from the Sigma Genosys website 0.025 ug quantity and desalting is sufficient. Delivery time can vary considerably 
allow plenty of time.   

DAY0 - Growth induction   

From glycerol stocks or a plate inoculate 250 -300 mL LB with 30ug/mL Kanamycin in a 1L flask with either DH5a or Nova Blue cells 
containing the pET-NKIb 3C/LIC empty plasmid. Grow to saturation overnight at 37oC 140rpm.   

DAY1 – Vector cleavage   

Perform a Qiagen-Midi or Maxi- prep of the plasmid according to instructions. 1ug of cleaved plasmid will be enough for approximately 20 
LIC reactions. At this stage carefully check the size of the plasmid on a 0.8% Agarose gel, the supercoiled plasmid should run just below the 
MIII Marker 3.5kbp band.   

Cleave the vector with the appropriate restriction enzyme (based on the LIC vector you want to use). For example the reaction for 10ug 
would be something like:   

Example:  

Reagent   Add   

pET-NKIb 3C/LIC   10ug (e.g. 100uL of 100ng/uL stock)   

restriction enzyme   10uL of 1U/uL stock   

10x buffer   14uL   

MQ H20   Make upto 140uL water   



Make up in a 1.5mL eppendorf and incubate at 37oC for 2-3 hours. Remove a small sample and run on a 0.8% Agarose gel to check 
cleavage efficiency.   

  
DAY1 – Insert PCR   

Setup the PCR of the insert in 500uL thermowell tubes.   

Reagent   Add   Final conc.   

DNA template   X uL   20 ng   

10x Stratagene Pfu buffer (contains Mg2+)   10 uL   1x buffer   

10mM dNTPs   2.5 uL   250 uM   

Fwd primer (100pmol/uL)   0.05-1.0 uL   5-100 pmol   

Rev primer (100pmol/uL)   0.05-1.0 uL   5-100 pmol   

Pfu Stratagene polymerase (2.5U/uL)   1.0 uL   2.5U   

MQ H2O   Upto 100uL     

Run with a cycle such as:   

94oC for 5 minutes     

94oC for 1 minute }     

55oC for 1 minute }   Repeat steps 30x   

72oC for 2.5 minutes }     

72oC for 10 minutes     

10oC for ever     

Remove 5 uL of the PCR reaction and mix with 3 uL of 6x Loading dye. Run on a 0.8% Agarose gel and check the size of the bands. Ensure 
that they are correct (usually by looking for slight movements up/down compared to nearby samples).   

Perform a Qiagen PCR-cleanup of the PCR reaction mixtures providing there is a single band only. If two or more bands occur a 
gelextraction may be necessary, but if they are clearly distinct these can be more easily separated by performing a larger number of 
PCRcolony screen   

DAY2 – T4 Polymerase treatment   

Treat the cut-vector and PCR’d insert with T4 polymerase in 1.5mL eppendorf tubes. The number of pg/pmol = (#of bp)x650. So for a 
1000bp PCR-product we have 1000x650 = 650 000 pg/pmol = 650 ng/pmol which means for 0.2pmol of insert we require:   

  650ng/pmol x 0.2pmol = 130ng  

normal yields of Qiagen miniprep are 20ng/uL – 100ng/uL so will require 8uL-1uL of PCR product.   

Reagent Add PCR insert 0.2 pmol 10x buffer (NEBuffer #2) 2 uL 25 mM dATP 2 uL T4 polymerase (NEB 3U/uL) 0.8 uL MQ H2O Upto  
20 uL   

Reagent Add Cut, gel-extracted vector 0.2 pmol 10x buffer (NEBuffer #2) 2 uL 25 mM dTTP 2 uL T4 polymerase (NEB 3U/uL) 0.8 uL MQ 
H2O Upto 20 uL   
1) Incubate at 22oC for 30 minutes.   
2) Denature the T4 polymerase by then incubating the reaction at 75oC for 10-20 minutes.  3) Spin down the 

evaporation.  
  
Conjoin the vector and insert   



1) Add 2 uL of the T4 treated insert to a 1.5 mL eppendorf tube 
2) Add 1 uL of the T4 treated vector (~50ng/uL) 3) Incubate 
together at 22oC for 5 minutes.  
4) Stop the reaction by adding 1 uL of sterile 25 mM EDTA.  
  
Transform the reaction into Novagen NovaBlue’s  
1) Add 10-15 uL of Nova Blue competent cells to 2ul of conjoined vector/insert mix.(Store the other 2ul at -20oC). Include a T4 treated 
vector-only sample to assess background. 2) Incubate on ice for 30 minutes.  
3) Heat shock at 42oC for 30-40 seconds.  
4) Incubate on ice for 2 minutes.  
5) Add 250 uL of SOC media or LB without antibiotic.  
6) Allow the cells to recover by incubating at 37oC, 1400rpm.  
7) Plate out on the appropriate antibiotic for the vector, leave overnight at 37oC.  

DAY3 – Colony screening.   

If colonies have grown (colonies take closer to 20 hours to grow) perform a PCR-screen using the sequencing primers appropriate for the 
vector (e.g. T7 promoter/ T7 terminator primers for the pET vector). Setup a Taq sequencing mix such as:   

Reagent For 1 reaction For 25 reactions 10 x invitrogen Taq buffer ( - Mg2+) 2 uL 50 uL 50 mM invitrogen MgCl2 1 uL 20 uL 10 mM 
dNTPs 0.4 uL 10 uL Fwd primer (10 pmol/uL) 0.3 uL 7.5 uL Rev primer (10 pmol/uL) 0.3 uL 7.5 uL Invitrogen Taq polymerase (5U/uL)  
0.15 uL 3.75 uL MQ H2O Upto 20uL 401.25 uL   
1) Label 2 or 3 bacterial colonies from each samples plate.   
2) Aliquot 20 uL of the master PCR mix into each well of a 96-well thermowell tray.   
3) Take a sterile P10 tip and scrape half of each bacterial colony and put this into the 20 uL. Leave the tip in the tray while going onto the 

next sample.  
4) After scraping all colonies use a pipette to mix briefly and seal the reactions. 5) Run using a program such as:  

96oC for 10 minutes 96oC for 1 minute | 55oC for 1 minute | Repeat steps 25x 68oC for 1 minutes/kbp | 68oC for 10 minutes 10oC for ever  
6) When finished add loading dye to each PCR reaction and run half on a 0.8%-1.0% Agarose gel. Check the size of each band (remember 
the sequencing primers will add approx 170 extra bp compared to the original reaction). If any samples are missing colonies go back and 
rescreen.  
7) Inoculate overnights from the remaining half-spot of the positive colonies.  

DAY4 – Plasmid minipreps.   

From the overnights purify plasmids by either using Qiagen mini-preps or in a 96-well block format. Transform into an expression cell-line 
like BL21 (DE3) or Rosetta (DE3).   

  
Protein purification  

  
The plasmid was transformed into E. coli BL21(DE3) cells which were grown in Luria Broth at 37°C until reaching an 
Absorbance at 600nm of ~1.0 before being induced with 0.5mM Isopropyl β- d-1-thiogalactopyranoside for 4 hours.   
  
Cells were harvested in 20mM HEPES pH 7.0, 150mM NaCl, 20mM Imidazole, 2mM MgCl2 and 0.5mM TCEP and frozen 
until required.   
  
Lysis was achieved by sonicating the cells in the presence of 1mg of Lysozyme and 1mg of DNAase on ice.   
  
The lysate was then cleared by centrifugation at 10,000xg for 20 minutes and loaded onto a nickel affinity column.   
  
Bound protein was washed extensively with 20 column volumes of 20mM HEPES pH 7.0, 150mM NaCl, 0.5mM TCEP before 
being eluted in the same buffer with the addition of 400mM Imidazole.   
  
For His-tag removal samples were incubated with precision 3c protease overnight at 4°C.   
  
All samples were subjected to gel filtration (S75 16/60; GE Healthcare) in 20mM HEPES pH 7.0, 150mM NaCl before being 
concentrated to 50mg/mL for crystallization trials.  

  
Crystallisation  
Nsp9COV19 crystallized in 2.0-2.2M NH4SO4 and 0.1M Phosphate-citrate buffer pH 4.0.   



  
Crystals of the His-tag samples grew with rectangular morphology in space group P4122, however if the His-tag was removed 
the crystals grew in space group P6122 form with hexagonal morphology.   

  
All diffraction data were collected at the Australian synchrotron’s MX2 beamline at the Australian synchrotron (Aragao et al., 
2018) (see Table 1 for details).   
Data were integrated in XDS (Kabsch, 2010), processed with SCALA, phases were obtained through molecular replacement 
using PDB 1QZ8 (Egloff et al., 2004) as a search model.   
  
Subsequent rounds of manual building and refinement were performed in Coot (Casanal et al., 2019) and PHENIX (Liebschner 
et al., 2019).   
  
Nucleotide binding assay  

To examine the RNA-binding affinity, an 18-point serial dilution (212-0 µM) of Nsp9COV19 was incubated with 1 
nM 5'-Fluorescein labelled 17mer poly-U single-stranded RNA (Dharmacon GE, USA) or 10mer PolyT single-stranded DNA 
(IDT, USA) in assay buffer (20mM HEPES pH 7.0, 150mM NaCl, 2mM MgCl2) at room temperature.  
  
The assay was performed in 96-well non-binding black plates (Greiner Bio-One), with fluorescence anisotropy measured in 
triplicate using the PHERAstar FS (BMG) with FP 488-520-520 nm filters.   
  
The data was corrected using the anisotropy of RNA sample alone, then fitted by a one-site binding model using the Equation, 
A = (Amax [L])/(KD+[L]), where A is the corrected fluorescence anisotropy; Amax is maximum binding fluorescence 
anisotropy signal, [L] is the Nsp9COV19 concentration, and KD is the dissociation equilibrium constant.   
  
Amax and KD were used as fitting parameters and nonlinear regression was performed using GraphPad Prism. Measurements 
were taken after 60 minutes incubation between protein and RNA.  
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