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Abstract 

 

Introduction The lifetime prevalence of symptomatic osteoarthritis (OA) in the knee is 

< 44% compared to 3.4-4.4% in the ankle. This has led to the theory that ankle articular 

cartilage must have some degree of inherent resistance to osteoarthritis (OA), 

although it is unknown whether this is attributed to biomechanical and/or biochemical 

differences. It has been previously hypothesised that biochemical differences in ankle 

cartilage extracellular matrix composition confers this resilience. Interestingly, 

previous studies have demonstrated that the ankle is also more resistant to pro-

inflammatory cytokine mediated degeneration. Therefore, this thesis aimed to further 

characterise the response of human ankle and knee cartilage to pro-inflammatory 

cytokines, commonly found in OA, to elucidate whether this may account for the 

inherent difference in OA prevalence between these two different joints of origin. 

 

Methods Talar domes and femoral condyles donated by patients following amputation 

were harvested and full-depth articular cartilage explants cultured in the absence or 

presence of a combination of physiological ‘low’ and pathological ‘high’ concentrations 

of cytokines, namely Interleukin-1 alpha (IL-1α), Oncostatin M (OSM) and Tumour 

Necrosis Factor alpha (TNFα) over a short-term (7 days) or long-term (28 days) culture 

period.  Media was assessed for sulphated glycosaminoglycan loss (sGAG), lactate 

dehydrogenase, synthesis of nitric oxide (NO) and prostaglandin E2 (PGE2) and 

synthesis and/or activation of the Matrix Metalloproteinases MMP-2 and 9.  

 

Results A significantly higher proportion of sGAG loss, increased production of PGE2 

and NO, in addition to induction and activation of pro MMP-9 was observed for knee 

cartilage explants only; furthermore, significant differences between joints was 

independently observed following culture in ‘high’ concentration TNFα. Consistent 

patient specific heterogeneity was observed across all outcome measurements 

confirming the hypothesis that there is an ‘inflammatory osteoarthritic phenotype’.  
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Conclusion Novel findings have identified that in the presence of cytokines, ankle 

cartilage chondrocytes do not synthesise significant levels of NO, PGE2 or MMP-9, 

unlike that observed in the knee. In contrast, knee cartilage was most responsive to 

TNFα stimulation in inducing potential degenerative effects, therefore targeting of the 

TNFα pathway may aid production of bespoke biological treatments to prevent 

inflammatory knee OA. Further characterisation is necessary to elucidate the 

mechanism(s) that protect the ankle cartilage from cytokine insult; utilisation of this 

knowledge will undoubtedly inform on therapeutic approaches for consideration in 

treatment strategies for primary knee OA.  
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 Introduction 
 

 Composition of Articular Cartilage     
Hyaline cartilage or “articular” cartilage is a specialised tissue that facilitates low 

friction movement between joint surfaces in synovial joints. Cartilage is an avascular, 

alymphatic and aneural tissue that comprises predominantly of extracellular matrix 

(ECM) with chondrocytes sparsely spread throughout.  The tissues’ biological 

composition confers biomechanical functionality in providing: a low-friction gliding 

surface, acting as a shock absorber and minimising peak pressures on the subchondral 

bone (Bhosale and Richardson, 2008); these mechanical properties are imparted 

mainly by the collagen and proteoglycans that make up the ECM.  

 

 Chondrocytes 
Cartilage is mesenchymal in origin and is first seen in utero at 5 weeks of gestation. 

Chondroblasts in the blastema start to produce ECM, separating the cells. Once totally 

separated by primitive matrix, the cells become chondrocytes. In healthy adult 

articular cartilage the cellular volume comprises between 5-10% of the total cartilage 

volume (Lin et al., 2006).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Metacarpal phalangeal chondrocyte taken with a transmission electron microscope 
(>13 500x magnification); Modified from Muir, 2005.  
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In the absence of mechanical load, chondrocytes are spherical with a diameter of 

around 13μm and are isolated in lacunae. The cells have a single nucleus in humans 

and well developed golgi apparatus (Figure 1.1) which become unusually large during 

matrix synthesis (Muir, 1995). The chondrocytes’ role is to maintain homeostasis of the 

ECM by “mediating synthesis, assembly and degeneration of the matrix proteins” (Lin 

et al., 2006), the main two components of which are type II collagen and aggrecan. 

Furthermore, cell-matrix interaction is a reciprocal process. The chondrocyte is 

responsible for production and homeostasis of the ECM whilst the matrix components 

themselves influence cell migration, adhesion, differentiation and survival.  

 

The metabolism of the chondrocyte is predominantly anaerobic as would be expected 

given that the deep zone of cartilage has oxygen tensions as low as 1%. Interestingly 

however, the cells will preferentially continue to use glycolysis to produce lactate even 

in the presence of an aerobic environment (Muir, 1995). These resilient chondrocytes 

are capable of living as long as their occupant and retain the ability to divide at any 

stage in response to disruption of the local collagen network.  

 

Single or small groups of chondrocytes are encapsulated in a network of fibrils 

containing type VI, II and IX collagens called chondrons. These chondrons appear to be 

compression-resistant fluid-filled bladders that dampen mechanical, osmotic and 

physico-chemical changes induced by dynamic loading (Muir, 1995). Chondrons are 

consistently orientated parallel to compressive forces, but the number of cells within 

each chondron is variable between joints (Kuettner and Cole, 2005).  

 

 

 Cell-matrix Interactions 
 
Chondrocytes have an important mechanotransducive function with physiological 

dynamic load promoting matrix production and excessive, reduced or static 

compressive load resulting in matrix degeneration. Mechanical load is perceived by the 

pericellular matrix and mechano-signals transmitted to the cell via mechanoreceptors 

including integrins, connexins, stretch activated ion channels and the primary cilia.  
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Figure 1.2: The major mechano-signalling pathways identified in chondrocytes. Modified from 
Lee and Salter (2015). 

 

These mechanoreceptors are stimulated by the mechanical forces transduced via the 

ECM. One of the most well characterised is the integral membrane complex proteins or 

“integrins” which are transmembrane receptors that bind ligands such as collagen and 

fibronectin fragments, the critical mechanoreceptor being α5β1 integrin in 

chondrocytes (Lee and Salter, 2015). They transmit mechanical signals directly to the 

cytoskeleton and ligand-integrin complexes increase intracellular calcium and tyrosine 

phosphorylation. β1 integrins, found predominantly in the chondrocyte membrane, 

have been strongly implicated in the disease process associated with osteoarthritis 

(OA). Fibronectin-integrin and collagen-integrin complexes reduce chondrocyte 

apoptosis and are down regulated in OA. TGF-integrin reduces cellular adhesion and 

prevents retention at cartilage defects, while IL-1 binds to integrins and down 

regulates ECM production (Gao et al., 2014). Downstream signal transduction 

pathways involve the cytoskeleton and signalling molecules, including FAK, PKC, PI3K, 

PKB, NF-kB, and MAPK, which act to regulate gene expression, cell function and 

survival/apoptosis (Lee and Salter, 2015).  

 



9 

 

 

Chondrocytes are also influenced by autocrine, paracrine and endocrine systems 

(although the endocrine system is relatively ineffective due to the avascular nature of 

cartilage and requirement for any hormone to diffuse through the dense ECM before 

reaching the cells). The majority of these autocrine and paracrine factors are integrin 

mediated or released in response to cell membrane deformity via stretch-activated 

channels. Growth factors and anabolic cytokines have been shown to increase matrix 

production and antagonise their catabolic counterparts. Prostaglandins, particularly 

PGE2, and nitric oxide (NO) production are inhibited in response to beneficial cyclical 

load and increased with detrimental static load or offload. Interleukins can be both 

beneficial and destructive; for example, IL-4 is considered beneficial as it can 

upregulate aggrecan and MMP3 mRNA (Lee and Salter, 2015). However, IL-1β has 

been shown to be detrimental as it increases the release of sulphated 

glycosaminoglycans from bovine cartilage tissue (Stabellini et al., 2003) and in human 

cartilage, inhibits sGAG production, increasing matrix metalloproteinase (MMP) 

activation and suppressing type II collagen production (van der Kraan and van den 

Berg, 2000). Catabolic cytokines such as IL-1 may also have a secondary effect of 

producing NO, which leads to chondrocyte apoptosis. TNFα and IL-1 are both known to 

activate aggrecanases – the principal enzymes involved in aggrecan degradation, 

however it seems that Oncostatin M (OSM), one of the IL-6 family, acts synergistically 

to increase aggrecan and hyaluronic acid degeneration (Durigova et al., 2008) and 

reduce collagen synthesis (Cawston et al., 1998).  

 

 

 Articular Cartilage Morphological Zones 
 

Articular cartilage, comprising chondrocytes dispersed within an extensive ECM, 

receives nutrition via diffusion from the adjacent synovial fluid. Within mammalian 

cartilage there are distinct morphological zones: superficial, middle and the deep zone, 

before the cartilage is calcified and becomes subchondral bone (Figure 1.3). Each of 

these zones contains: a pericellular region around the chondrocyte, a territorial region 

surrounding this with a basket like weave of collagen fibrils and an interterritorial 
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region containing the majority of the proteoglycans with well organised collagen fibrils. 

Each zone varies in its ECM composition, collagen orientation, chondrocyte shape and 

distribution. These zone specific adaptations are thought to confer zone specific 

biomechanical properties through the tissue depth (Sophia Fox et al., 2009). 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 1.3: Diagram A – Chondrocyte orientation and shape in zones of articular cartilage, 
Diagram B – Collagen orientation in different zones of articular cartilage. Modified from 
(Buckwalter et al., 1994). 

 

 

  The Superficial “tangential” Zone 
 

The superficial zone has relatively low proteoglycan content and the predominantly 

type II and IX collagen is orientated parallel to the joint surface. The disc shaped 

chondrocyte are orientated in chondrons that contain multiple cells in the ankle but 

only single cells in the knee and all secrete superficial zone protein (SZP). This protein 

is made only by chondrocytes in this superficial zone and does not incorporate into the 

ECM (Schumacher et al., 1994). It is believed that SZP is  “a multifunctional protein 

with potential growth-promoting, cytoprotective and lubricating properties” (Flannery 

et al., 1999). The Superficial zone normally comprises only 10-20% of the total depth of 

the cartilage but protects the deeper layers from the majority of the “sheer and tensile 

forces” (Sophia Fox et al., 2009).  
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 The Middle “transitional” Zone 
 

The middle zone makes up between 40% and 60% of the total thickness of the 

cartilage depending on whether the tissue is isolated from the ankle or knee (Oegema 

et al., 2003). The type II collagen is obliquely orientated and rotates through 90 

degrees from a parallel to perpendicular orientation. The spherical chondrocytes are 

more sparsely orientated and the ECM has a much higher concentration of 

proteoglycans (Sophia Fox et al., 2009).  

 

 The Deep “radial” Zone 
 

The deep zone comprises about 30% of the total cartilage thickness. It has the highest 

concentration of proteoglycans, lowest water content and large diameter 

perpendicularly orientated collagen fibrils. This zone is responsible for resisting the 

majority of the compressive force imparted upon it during axial loading.  

 

 

 The Zone of Calcified Cartilage  
 

The main function of this zone is to anchor the cartilage to the bone and is found deep 

to the tidemark with chondrocytes becoming hypertrophic.  
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 Extracellular Matrix 
 

 

 

Figure 1.4: Schematic diagram of cartilage components and their interactions. Its major 
components are: proteoglycans (e.g. aggrecan), smaller proteoglycans (e.g. biglycan, decorin, 
fibromodulin) collagens (mainly Type II) and non-proteoglycans (e.g.cartilage oligomeric matrix 
protein (COMP) and link proteins). The territorial region surrounding the pericellular region of 
the chondrocyte is proteoglycan-rich compared to the interterritorial region which is located 
between the territorial matrices. (Dudhia, 2005) 

 

 

The extracellular matrix comprises roughly 80% of the weight of cartilage with the vast 

majority of that weight being water retained by the strong negative charge of the 

proteoglycans. The remaining organic contents are made of proteoglycans such as 

aggrecan, collagen fibrils, particularly type II collagen but also Type IX and XI, small 

proteoglycans such as biglycan and fibronectin and non-proteoglycan molecules, such 

as Cartilage Oligomeric Matrix Protein (COMP).  
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 Proteoglycans 
 

 Glycosaminoglycans (GAG) 
 

Initially named mucopolysaccharides, glycosaminoglycans have been studied for 

around 50 years. As our understanding of their involvement in specific disease 

processes improves more attention has been paid to congenital “glycosylation” 

disorders, biosynthesis and degeneration of the extracellular matrix. The main role of 

these highly negatively charged structures is to attract and bind water to produce 

cartilages’ compressive and lubricating properties.  

 

More recently, improved scientific procedures, such as density-gradient 

ultracentrifugation, has enabled the structure of hyaluronan and the sulphated 

glycosaminoglycans (Keratin Sulphate, Chondroitin Sulphate, Dermatan Sulphate and 

Heparan Sulphate) to be identified (Esko JD, 2009). These polysaccharide chains are 

made of a repeated disaccharide unit containing a uronic sugar or galactose in addition 

to an amino sugar (N-acetylglucosamine or N-acetylgalactosamine). Huge 

heterogeneity is seen between glycosaminoglycans as they are enzymatically modified, 

not produced by templating like proteins. However, it is still possible to classify the 

molecules according to gross disaccharide structure and sulphation. Chondroitin 

sulphate (CS) is the most abundant, heparan sulphate (HS) closely resembles heparin, 

the most negatively charged molecule known to man, keratan sulphate (KS) is 

fucosylated and doesn’t contain an amino sugar, while hyaluronic acid (HA) is not 

sulphated.  

 

Glycosaminoglycans covalently bind to core proteins to produce proteoglycans. There 

can be anywhere between one GAG bound to the core protein, as is the case with 

decorin, or over a hundred GAGs bound to a single core protein, as is the case with 

aggrecan (Figure 1.5). The function of proteoglycans is determined by the number and 

type of these highly charged GAG chains, the structure of the core protein (Roughley, 

2006) and the subsequent aggregates that are formed.  
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Figure 1.5: Proteoglycans consist of a core protein (Brown) covalently bound to 
glycosaminoglycan chains (Yellow). Proteoglycans can have as few as one side chain such as 
Decorin or more than 100 such as Aggrecan (Modified from Esko JD, 2009).  

 

 Proteoglycan core protein 
 

 

Figure 1.6: The core protein of aggrecan. This core protein contains 3 Globular zones (G1, G2, 
G3), an interglobular domain (IGD) and GAG Attachment Region that is subdivided into Keratin 
Sulphate (KS), Chondroitin Sulphate 1 (CS1) and Chondroitin Sulphate 2 (CS2) binding sites 
(Modified from Roughley 2006).  
 

 

 

 

 

The structure of the proteoglycan core protein is highly variable but relatively well 

preserved across mammalian species. Figure 6 depicts the basic structure of the 

aggrecan core protein. It contains 3 Globular zones (G1, G2, G3) made of cysteine 

residues that permit disulphate binding (Sandy et al., 1990). Each globular zone 
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contains specific subdomain regions that allow aggregation and further binding. 

Globular zone 1 is located at the amino terminus (NH2) and has 3 subdomain regions: 

region A allows bonding with link proteins (LP), B1 and B2 are responsible for 

Hyaluronic acid binding. Between G1 and G2 lies the interglobular domain a 150 

residue section that is one of the five metalloproteinases cleavage sites (Tortorella et 

al., 1998). The second globular zone contains B subdomain regions but these are not 

known to bind hyaluronic acid or link proteins. This globular zone is unique to aggrecan 

and is strongly conserved during degradation (Aspberg, 2012) The GAG attachment 

region between G2 and G3 is subdivided into keratan sulphate binding (KS) and two 

distinct chondroitin sulphate (CS1 and CS2) binding zones. The CS2 region contains 

four matrix metalloproteinases cleavage sites and the length and density of GAG in this 

section is hypothesised to influence an individual’s risk of developing osteoarthritis 

(Roughley and White, 1980). The third globular zone is at the carboxyl terminus and 

has four subunits: 2 Epidermal-like Growth Factors (EGF), a C type domain and a 

Complement Regulating Protein repeat (CRP). The C type domain binds carbohydrate, 

including GAGs, in the extracellular matrix and is responsible for facilitating GAG chain 

attachment and enhancing secretion. The roles of the remaining domains are unclear 

(Kiani et al., 2002).  

 

The core protein of versican (Figure 1.7) is very similar to that of aggrecan but does not 

contain the G2 domain. It also has significantly less GAG binding sites with between 12-

15 chondroitin sulphate molecules attached to each core protein depending on which 

isoform is examined. Both Aggrecan and Versican are “Hyalectins” as the G1 

attachment stabilised by the link protein binds hyaluronic acid allowing large 

aggregates to form. The much smaller GAG binding zone can be single or split into two 

but contains far fewer GAGs than aggrecan. While the G3 or carboxyl end of the core 

protein is almost identical to that of aggrecan with 2 Epidermal-like Growth Factors 

(EGF), a C type domain and a Complement Regulating Protein repeat (CRP) it seems to 

have additional properties that enhance cell proliferation and inhibit differentiation. 

Experimental deletion of the EGF regions at the G3 domain in extra-articular Versican 

has been shown to inhibit cell proliferation in astrocytes (Wu et al., 2001) and the 
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carboxyl end has been shown to modulate cellular apoptosis by binding to beta-1-

integrin in glial cells (Wu et al., 2002).  

 

 

Figure 1.7: The core protein of versican. This core protein contains 2 Globular zones (G1, G3) 
and a GAG Attachment Region for between 12 and 15 Chondroitin Sulphate GAGs. The GAG 
attachment region can be single, split into two or (Modified from Roughley 2006).  

 

 

The small leucine-rich repeat proteoglycans share a common core protein structure 

which is very different to the larger aggrecan and versican core proteins (Figure 1.8). 

Between each of the ten leucine rich repeats is a cysteine cluster that forms a 

disulphide bonding domain capable of attaching to GAGs. There is a type B subdomain 

located near the NH3
- terminus and a type A subdomain at the carboxyl end.  The 

dermatan sulphate proteoglycans, decorin and biglycan, have one or two DS GAGs 

attached between the amino terminus and the type B subdomain. Keratan sulphate 

proteoglycans, fibromodulin and lumican, have between one and four KS GAGs 

attached to the disulphide bond domains between the leucine rich repeats.  

 

 

Figure 1.8: Common core protein of the small leucine-rich repeat proteoglycans (decorin, 
biglycan, fibromodulin and lumican). Square boxes depict leucine-rich repeats between 
cysteine clusters that form disulphide bonding domains for GAGs (Modified from Roughley 
2006).  

 



17 

 

 Hyaluronic Acid 
 

Hyaluronic acid is a non-sulphanated glycosaminoglycan made by the hyaluronan 

synthase enzyme in the cell membrane (Weigel et al., 1997). The long polysaccharide 

structure consists of glucuronic acid and N-acetyl Glucosamine disaccharide repeats 

made from cytoplasmic monosaccharides. The hyaluronic acid molecule exits the cell 

via pores in the cell membrane and forms large aggregates with the hyalectans, 

aggrecan and versican, in the pericellular region. It remains unclear, however, how this 

large aggregate moves to the territorial and interterritorial zones.  

 

 

 Proteoglycans of Articular Cartilage 
 

Proteoglycans of articular cartilage can be classified as large aggregating proteoglycans 

such as aggrecan and versican, which bind to hyaluronic acid via a link protein, and 

non-aggregating proteoglycans. Non-aggregating proteoglycans can be either small 

leucine rich repeat proteoglycans (SLRP) or other non-specific proteoglycans, such as 

perlecan or lubricin (Table 1.1).  

 

 

 

 

 

Aggregating Non Aggregating 

   Small Leucine-rich repeat Other 

 Aggrecan  Biglycan  Perlecan 

 Versican  Decorin  Surface Zone Protein or Lubricin 

   Epiphycan*   

   Fibromodulin   

   Lumican   

Table 1.1: Classification of Proteoglycans 
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 Aggregating Proteoglycans 
 

 Aggrecan  
 
Aggrecan is the most abundant proteoglycan in articular cartilage comprising almost 

10% of the overall weight of the tissue. Aggrecan forms huge aggregates with 

hyaluronic acid by attaching via non-covalent bonds, and is stabilised by link proteins 

at the N terminus (Kiani et al., 2002). This large aggregating proteoglycan produces the 

typical viscoelastic properties of cartilage by creating an osmotic potential and through 

its interactions with collagen. The osmotic action occurs due to the high concentration 

of negatively charged glycosaminoglycans in the GAG attachment region. This negative 

charge attracts positively charged sodium ions and thus water follows, causing 

aggrecan to swell and expand. The hydrated aggregate produces the biomechanical 

resistance to compression and resilience to deformation that is typical of healthy 

cartilage. The tensile strength of cartilage is a result of the close association of these 

aggregating proteoglycans to collagen. It was initially believed that there was no direct 

bond between aggrecan and collagen itself but it is now felt that the junction of the G2 

region and the Keratan sulphate section of the proteoglycan creates multiple weak 

molecular bonds directly with type II collagen (Hedlund et al., 1999).  

 Versican 
 
Versican is present in a large variety of different connective tissues and is far less 

abundant in cartilage than aggrecan. Versican is a member of the hyalectin family, 

binding to hyaluronic acid via the G1 region and stabilised by a link protein in a similar 

manner to aggrecan. In addition to attracting water and producing cartilage resistant 

to compressive load, versican has a role in cell adhesion, proliferation and ECM 

assembly. Versican is believed to modulate the inflammatory process by binding 

directly to the CD44 cell surface receptor of inflammatory leukocytes via the 

chondroitin sulphate chains and link protein on the protein core. It may also indirectly 

influence proliferation of chondrocytes by creating a more rigid environment 

immediately around the cells, thus maintaining a proliferative phenotype (Wight, 

2002).  
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 Non-aggregating Proteoglycans 
 
Non- aggregating proteoglycans can be classified as either SLRPs or other non-

aggregating proteoglycans depending on the structure of their core proteins. The 

SLRPs share a common ten leucine repeat core protein, while the other non-

aggregating proteoglycans do not have a common core protein structure. Although 

these non-aggregating molecules do not exert the same osmotic forces as that of 

aggrecan and versican they remain essential to the normal development of connective 

tissue and bone.  

 

 Small Leucine Rich Repeat Proteoglycans 
 
The SLRPs can be divided into dermatan sulphate or keratan sulphate proteoglycans. 

Dermatan sulphate proteoglycans such as decorin and biglycan contain either one 

(decorin) or two (biglycan) dermatan sulphate glycosaminoglycans near the amino 

terminus. Keratan sulphate proteoglycans such as lumican and fibromodulin have 

between one and four keratan sulphate glycosaminoglycans attached to the disulphide 

bonds between leucine rich repeats. Epiphycan is a third class of SLRP that has a core 

protein containing between 6 and 8 LRRs and are glycosylated with chondroitin or 

dermatan sulphate. Epiphycan is however unique to epiphysial cartilage and present 

only in immature cartilage. The SLRPs play a key role in collagen fibrillogenesis and are 

believed to regulate collagen fibril diameter (Kalamajski and Oldberg, 2010). They are 

also able to block access of collagenases to specific collagen cleavage site preventing 

proteolysis, and store growth factors such as EGF, TGFβ and TNF before releasing them 

to chondrocytes (Ni et al.). SLRPs are essential to the development of normal 

connective tissue and bony development. Decorin and lumican knockout mice exhibit 

skin laxity secondary to irregular or excessively large collagen fibrils (Chakravarti et al., 

1998) biglycan knockouts display an osteoporotic phenotype (Xu et al., 1998) and 

fibromodulin knockouts produce abnormal tendon collagens (Chakravarti, 2002) 

 

 



20 

 

 Others 
 
Perlecan is a non-aggregating proteoglycan with a core protein that does not contain 

multiple leucine rich repeats. The core protein contains 5 major domains and allows 

binding of 3 glycosaminoglycan chains of predominantly heparin sulphate near the 

amino terminus. Perlecan is seen in greatest concentration in the pericellular ECM and 

is believed to act as a reservoir regulating the exposure of chondrocytes to growth 

factors (R. Gomes, 2002) and is essential to the normal development of cartilage and 

the hypertrophic zone of the physis. Proteoglycan 4, previously known as Surface Zone 

Protein (SZP) or Lubricin, is produced by superficial articular side chondrocytes and 

synovial tissue. It helps to maintain boundary lubrication of articulating joints (Reesink 

et al., 2016) and has a role in synovial fluid homeostasis. Controversially however, 

proteoglycan 4 may not in fact be a true proteoglycan as not all isoforms are 

substituted with a glycosaminoglycan chain (Lord et al., 2012). 

 

 Collagens 
 

The word “collagen” is derived from two Greek words meaning “Glue Producing” after 

the practice of boiling down animal bones to make glue. Collagen when denatured will 

produce a gelatinous substance but forms a fibrillar and microfibrillar scaffold in native 

form. The ECM is built around this network of fibrils and is the most abundant protein 

in all connective tissues.  

 

The biomechanical properties of connective tissues is determined by the “arrangement of 

fibrillar element, microfibrillar network as well as soluble proteins [and] glycoproteins” (Gelse 

et al., 2003) . The components of the ECM are determined by the “resident” cell expression and 

synthesis. Reciprocally, extracellular matrix feeds back to the cell via a number of different 

mechanisms.  Collagen fibrils bind to cell-surface receptors and mediate cellular attachment, 

migration, differentiation and gene expression. The amount and orientation of collagen fibrils in 

the pericellular matrix also plays a role in protecting or exposing the cell to mechanical stimuli 

which alters cellular phenotype and subsequent function. Certain pericellular collagens are also 

known to act as a reservoir for growth factors which, when released, alters cellular 

“morphogenesis and metabolism” (Gelse et al., 2003).  
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Collagen is a heterogenous group of proteins, but all members form a triple helix structure of 

proline rich tripeptides (Gly-X-Y). Each super-molecule contains three alpha chains which can be 

either identical (homotrimers) such as type II collagen, or different (heterotrimers) such a type 

I collagen. The three chains form a right-handed helix that passes through 360 degrees every 18 

amino acids. The small glycine residue is central within the spiral, with the larger residues, such 

as lycine and proline, arranged peripherally to allow close packing of the spirals. These 

peripheral proline residues confer additional stability to the helical structure as they form 

interstrand hydrogen bonds after hydroxylation.  

 

So far 26 different collagens have been identified and grouped according to structure and 

organisation. The main groups are: 

 

• Fibril-forming (Type I, II, III, IV and XI) 

• Fibril-associated collagens (Type IX, XII, XIV) 

• Microfibrillar (Type VI) 

• Short Chain (Type VIII, X) 

• Basement membrane (Type IV) 

 

Fibril forming collagen is by far the most abundant and represents around 90% of all 

collagens. The fibrillar structure of type 1 collagen is shown (Figure 1.9). 

 

 

Figure 1.9: Fibrillar structure of type 1 collagen. Triple helix central with subdomains bound to 
this. Non-helical telopeptides followed by terminal propeptides. procollagenases cleavage sites 
are at the terminal end of the telopeptides. (Modified from Gelse et al., 2003) 
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 Synthesis 
 

Collagen synthesis is a complex process involving intracellular post-transcriptional 

processing and extracellular enzymatic modifications. Following transcription of one of 

the 34 known “COL” genes, mRNA enters the cell cytoplasm from the nucleus. 

Ribosomal subunits link to the mRNA strand producing a peptide called the signal 

sequence at the amino terminus of the molecule. This specific sequence on the newly 

formed pre-pro-peptide correlates with a signal recognition particle within the 

endoplasmic reticulum. The pre-pro-collagen then undergoes three modifications to 

become pro-collagen. First, the signal sequence is removed to form a pro-peptide, 

then vitamin C-mediated enzymatic hydroxylation of lysine and proline occurs 

producing cross-linking of alpha peptides. The hydroxylysine molecules are then 

glycosylated with either glucose or galactose monomers. The pro-peptides then twist 

together in a left-handed spiral to form pro-collagen. The final post translational 

modification then occurs in the golgi apparatus when oligosaccharides are added to 

the pro-collagen before they are secreted out of the cell. Once in the extracellular 

space, membrane bound collagen peptidases remove the unwound ends of the pro-

collagen producing tropocollagen. Collagen fibrils are produced when the 

tropocollagens are covalently bound to each other as the lysine and hydroxylysine 

residues are enzymatically oxidised to aldehyde groups.  

 

 

 Collagens of Articular Cartilage 
 

Collagen comprises 2/3 of the dry weight of articular cartilage with the predominant 

type being type II collagen. The tensile strength produced by the collagen-rich tissue is 

related to the degree of crosslinking between collagen chains and the orientation of 

the collagen fibres. In developing cartilage, type II collagen is found in close proximity 

to type IX and XI collagen in a heteropolymer at a ratio of 80:10:10, but as the tissue 

matures the relative quantities of type IX and XI reduce as more type II is produced. It 

has also been noted that finer fibres closer to the chondron of the chondrocyte have 

higher proportions of Type IX and XI while courser fibres found in the territorial and 
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interterritorial regions have less type IX and XI collagen (Eyre, 2002) . It is hypothesised 

that this microstructure of collagens traps proteoglycans, which produce an osmotic 

potential drawing more water into the cartilage and altering the biomechanical 

properties of the tissue.  

 

Type III collagen is co-localised to type II collagen in the superficial and middle zones 

and may be produced by chondrocytes as a response to injury. There is some evidence 

to support the theory that it may act as a “covalent modifier that may add cohesion to 

a weakened existing collagen” (Wu et al., 2010). Other much less abundant collagens 

such as short chain type X collagen are found predominantly at the tidemark as it plays 

a role in calcifying cartilage. The function of microfibrillar type VI and fibril-associated 

type XII and XIV collagens remain to be determined.  

 Collagen degeneration 
 

Very little collagen synthesis occurs in mature articular cartilage, with the estimated 

turnover time of femoral head cartilage being over 400 years (Maroudas, 1979). The 

majority of collagen turnover occurs in the pericellular region, while the collagen fibres 

in the territorial and interterritorial region undergo almost no remodelling under 

normal conditions. The limited ability of collagen to be remodelled following acute 

injury and chronic degeneration is one of the factors contributing to the development 

of osteoarthritis.  

 

 

 Osteoarthritis 
 

Osteoarthritis (OA) is a chronic musculoskeletal disorder that affects all parts of 

diarthrodial joints including the synovial membrane, ligaments, tendons, cartilage and 

bone. Contrary to the initial theory that this is a disorder of “wear and tear”, initial 

manifestation are in fact secondary to abnormal joint tissue metabolism which results 

in anatomical and physiological changes including cartilage degradation, subchondral 

bone remodelling, osteophyte formation and joint inflammation (Kraus et al., 2015). It 

typically presents with insidious onset of joint pain, swelling, stiffness and progressive 
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loss of function. Primary osteoarthritis clearly has a multifactorial aetiology with a 

combination of genetic predisposition and lifestyle factors such as obesity, manual work 

and sporting participation (Hoaglund and Steinbach, 2001). Secondary osteoarthritis 

occurs due to anatomic abnormalities, osteonecrosis, trauma, sepsis, rheumatoid 

arthritis or any other specific causative insult. Osteoarthritis has a huge health and 

financial burden to society with 8.5 million people suffering with osteoarthritis at a cost 

to the economy of £3 Billion a year and over 36 million working days lost annually in the 

UK (NICE, 2015).  

 

 Pathophysiology of OA 
 

The pathophysiology of osteoarthritis is complex and multifactorial but is now generally 

accepted to be an inflammatory and biomechanical process. Abnormal joint anatomies, 

such as congenital dysplasia, are well known to predispose to early degenerative 

changes in the hip. Malalignment around the knee, whether post traumatic or 

constitutional, result in point loading on cartilage with predictable patterns of wear. 

Some of the strongest evidence for biomechanical predisposition can be seen when 

cartilage regenerates following offloading osteotomies or distraction bracing. 

Measurable increases in cartilage depth and collagen synthesis have been shown 

following corrective periarticular osteotomies in patients with symptomatic knee 

osteoarthritis (Wiegant et al., 2013). Inflammation can be either locally produced by 

macrophages in the synovium, osteoblasts or chondrocytes themselves, or secondary to 

a systemic inflammatory state. Obesity and metabolic syndrome may produce a double 

hit, predisposing patients to osteoarthritis by increasing the joint reaction forces and by 

altering the inflammatory environment. Adipokines such as adiponectin, resistin and 

leptin produce systemic and intra-articular release of pro-inflammatory cytokines such 

as IL-1, IL-6 and TNFα (Urban and Little, 2018). This adipose tissue-mediated 

inflammation may go some way in explaining why obesity is an independent risk factor 

for osteoarthritis in both weight bearing and non-weight bearing joints (Yusuf et al., 

2010).  
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Figure 1.10. Healthy versus Osteoarthritic joint demonstrating sites of cytokine action and effect 
on target tissues (Glyn-Jones et al., 2015) 

 

The theory that OA is an inflammatory process has gained popularity since it was first 

proposed over 40 years ago (Ehrlich, 1975). Certain subgroups of patients, such as post-

menopausal women with hand OA, were noted to share very similar characteristics with 

rheumatoid patients. Recent studies, however, have not linked systemic inflammation 

as measured with C reactive protein with progression of a osteoarthritic joint 

degeneration but it does seem to correlate with patient reported pain scores (Jin et al., 

2015). Intra-articular inflammation is however strongly associated with disease 

progression (Berenbaum, 2013).  

 

The process by which intra-articular inflammation leads to the cardinal macroscopic 

osteoarthritic features of cartilage fissuring, joint space narrowing, subchondral cysts, 

sclerosis and osteophyte formation is complex. Synovial tissue, subchondral bone and 

cartilage are sites of both pro-inflammatory cytokine production and pathological 

damage. Osteoblasts and chondrocytes respond to a hostile mechanical environment 

such as excessive load or prolonged offload by producing proinflammatory cytokines, 

nitric oxide and prostaglandin E2. Cytokines such as Interleuken-1β, TNF and IL-6 are felt 
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to upregulate cartilage degrading enzymes; matrix metalloproteases (MMPs) and a 

disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTs).  Unlike 

rheumatoid arthritis, the synovium is not the primary driver of inflammation but 

becomes inflamed secondary to cartilage breakdown fragments in a macrophage-

mediated reaction similar to a foreign body reaction. Cytokine-mediated cartilage 

breakdown continues which produces more matrix fragments and the inflammatory-

breakdown cycle continues (Kapoor et al., 2010).  

 

Inflammation occurs even during the very early stages of osteoarthritis in the 

tibiofemoral joint. The degree of intra-articular inflammation has also been directly 

linked to disease progression and pain levels. The pro-inflammatory cytokines that have 

attracted most interest from researchers include TNFα and the IL-1 and IL-6 families. IL-

1, both alpha and beta, are directly linked with cartilage degeneration with IL-1α 

elevated in early disease and IL-1β levels increasing later as disease become more 

clinically apparent (McNulty et al., 2013). TNFα is a promoter of the inflammatory 

cascade, although it is likely that it acts synergistically with IL-1, as injection of both 

cytokines in an animal knee model results in an exponential increase in cartilage 

degeneration. Both TNFα and IL-1 inhibit anabolic activity of the chondrocyte resulting 

in reduced synthesis of type 2 collagen, proteoglycans and link proteins. The cytokines 

also upregulate cartilage degenerative enzymes; MMP-1, 3, 13 and ADAMTS-4 and 

stimulate other inflammatory mediators via the inducible nitric oxide synthase (iNOS) 

and soluble phospholipase A2 enzymes. This results in an increase in Prostaglandin E2 

(PGE2) and Nitric Oxide (NO) production which further activates matrix 

metalloproteases, inhibits matrix component synthesis, down regulates IL-1 receptor 

antagonists and ultimately promotes chondrocyte apoptosis (Kapoor et al., 2010). The 

pathways by which TNFα and IL-1 upregulate catabolic and anti-anabolic pathways seem 

to be predominantly via the nuclear factor κB (NF-κB) signalling pathway with some 

involvement of the c-jun n-terminal kinase (jnk) and the p38 mitogen activated pathway. 

IL-1β-mediated catabolism is further amplified by the wnt-β-catenin signalling pathway, 

producing further cartilage degeneration.  
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IL-6 is produced in response to the activation of the NF-κB intracellular pathway by 

either IL-1 or TNFα. Although present at low levels under normal physiological load, IL-

6 has been shown to significantly increase in concentration via a PGE2 mediated 

response following application of shear stress to cartilage. The role of IL-6 in the 

development of osteoarthritis is less straightforward than that of IL-1 or TNFα. In order 

to produce upregulation of IL-6- specific genes, the IL-6 receptor requires additional 

soluble receptors (sIL-6R) to be present in the cytoplasm. It would also seem that IL-6 is 

not an initiator of inflammation, but part of the inflammatory cascade downstream from 

IL-1, TNFα and oncostatin. Once the IL-6R-sIL-6R complex forms, there is an increase in 

MMP-1 and 13 activity and decrease in type 2 collagen production, however the effect 

on extracellular proteoglycans is unclear, with IL-6R knockout mice continuing to show 

a decrease in proteoglycan production (Kapoor et al., 2010).  

 

Oncostatin M (OSM) belongs to the IL-6 superfamily of cytokines and has a function and 

structure very similar to leukaemia Inhibitory factor (LIF). OSM is so similar to LIF that it 

is able to activate both gp130/LIFR receptors (type 1 OSM receptors) and gp130/OSMR 

(type 2 OSM receptors) allowing it to act on a “wide variety of cells and elicit diverse 

overlapping biological responses” (Tanaka M., 2003). OSM is able to initiate both an anti-

inflammatory cascade via the activation of the type 1 OSM receptor, or a pro-

inflammatory reaction via the type 2 receptor (Zarling et al., 1986). Both receptors have 

been identified in high levels in osteoarthritic cartilage and have been heavily implicated 

in the pro-inflammatory pathogenesis of osteoarthritis. LIFR is seen throughout both 

healthy and osteoarthritic cartilage, while OSMR is seen throughout osteoarthritic 

cartilage, but only in the superficial zone in healthy individuals. Directly blocking OSM 

activity with activated inhibitory antibodies has been shown to have a protective and 

anabolic effect on extracellular GAG. However, adding recombinant OSM at 5 and 

50pg/ml to harvested explants did not inhibit GAG production, suggesting “factors 

present in synovial fluid act in concert with OSM” (Beekhuizen et al., 2013) to produce 

a catabolic environment. Although blocking OSM seems to improve the chondrocytes 

reparative efficiency in some explants, it is important to remember that this cytokine is 

only detectable in 30% of osteoarthritic synovial samples and therefore may not be an 

ideal therapeutic target (Beekhuizen et al., 2013).  
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Individual cytokines rarely work in isolation and are often part of a general pro or anti -

inflammatory environment. The combination of OSM and IL-1 has been shown to 

synergistically increase upregulation of degenerative enzymes such as MMP 1, 8 and 13 

in addition to ADAMTs 4 and other cytokines such as IL-8 found further down the 

inflammatory cascade. The combination of 20pg/ml of IL-1 and 10ng/ml OSM to 

monolayers of chondrocytes from 4 different osteoarthritis patients produced a 

synergistic upregulation of the MMP1 gene. This response consistently exceeded the 

same individuals response to IL-1 alone by between 1.85 to 3.55 times (Barksby et al., 

2006). The authors did, however, note a heterogenous response of individual patients 

to pro-inflammatory cytokines with some patients having minimal MMP1 gene 

upregulation following stimulation with either cytokine alone or in combination. It 

would seem that cytokine-mediated inflammation and subsequent cartilage 

degeneration is bespoke to the individual patient but the relative gene upregulation 

between IL-1 in isolation and IL-1 with OSM is more consistent.  

 

 Ankle vs Knee 

 Prevalence of symptomatic osteoarthritis in the knee and ankle  
 

During 2017 the UK National Joint registry recorded 734 total ankle replacements 

compared to in excess of 100,000 knee arthroplasty procedures (Report, 2018). The 

dramatically different number of procedures is in part down to the relative infancy of 

total ankle replacement compared to total knee replacement. Ankle arthrodesis is an 

acceptable option for many patients while knee arthrodesis is now performed almost 

solely as a salvage procedure following failed arthroplasty.  Despite this, there remains 

a significant difference in the prevalence of symptomatic OA of the knee and ankle with 

one study suggesting that this may be as high as 41% in the knee and only 4.4% in the 

ankle (Cushnaghan and Dieppe, 1991). More conservative estimates based on UK 

symptomatic populations quote prevalence of knee OA as 11-19% (Peat et al., 2001) and 

ankle osteoarthritis as 3.4% (Murray et al., 2018)  Cadaveric studies have also shown the 

presence of joint degeneration in 66% of knees compared to only 21% of ankles  
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(Muehleman et al., 1997). Knee arthritis is therefore at least 3 times more prevalent 

than ankle arthritis but it is unclear why this is the case. Further research by the same 

group compared paired knee and ankle cartilage in 545 organ donors in a bid to 

investigate the relationship between knee and ankle OA. They found that of the donors 

in their 6th decade or older, only 4% of knee joints showed no evidence of arthritis, while 

50% of ankle joints demonstrated no cartilage degeneration (Muehleman et al., 2010). 

Interestingly, knee arthritis was present in all patients with ankle OA and the severity 

exceeded that of the ankle 98.9% of the time. Severe ankle degeneration (3 and 4 

modified Collins scale) never occurred in the absence of knee OA, suggesting ankle 

arthritis occurs only when preceded by abnormal knee biomechanics or alignment. It is 

important to note, however, that this study did exclude patients who had previously 

undergone arthroplasty or arthrodesis procedures and could not identify symptomatic 

joints.  

 

The underlying aetiology of ankle and knee osteoarthritis is also very different with the 

vast majority of ankle arthritis being post traumatic (Saltzman et al., 2005) whilst knee 

OA is most often primary in nature with no known underlying cause. One study of over 

400 ankles with end stage OA identified a traumatic cause in 78% of patients and primary 

OA was felt to be the cause in only 9% of cases (Valderrabano et al., 2009). Of the 78% 

of post-traumatic OA cases, 62% occurred following fractures and 16% following 

ligamentous injuries making ankle fractures the leading cause of symptomatic ankle OA. 

As would be expected, any fracture extending into the joint can result in chondral 

damage (Thomas and Daniels, 2003) and lead to OA but malalignment from extra-

articular tibial fractures can also lead to degenerate changes as ankle biomechanics is 

altered. Fracture personality has a significant correlation with the likelihood of 

developing post traumatic OA, with comminution fractures, fracture-dislocations and 

malunions having the greatest association with long term degenerate changes 

(Horisberger et al., 2009). Although less common, multi-ligament instability around the 

ankle can also cause talar shift, reducing joint contact area and increasing peak stress 

on the ankle cartilage (Harrington, 1979). This acute alteration in biomechanics, or 

subsequent chronic instability, has been shown to lead to predictable patterns of wear 

in the ankle. Chronic lateral ligament injuries have been shown to develop anteromedial 
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osteoarthritis as a consequence of ongoing anterior subluxation around an intact deltoid 

ligament (Taga et al., 1993). Although ankle OA is relatively rare it still remains a 

significant physical, emotional and functional problem and pain scores may exceed that 

of patients with primary OA of the knee (Brown et al., 2006, Saltzman et al., 2006). 

 

Primary osteoarthritis is far more common than secondary arthritis in the knee. Recent 

data from the National Joint registry in 2017 reported that 98% of the 103, 983 knee 

arthroplasty procedures were performed for idiopathic arthritis (Report, 2018). This 

high proportion of primary osteoarthritics may represent a degree of surgical over-

reporting, however large epidemiological studies of the same patient group confirmed 

idiopathic arthritis accounts for around 82% of symptomatic knee arthritis in the UK 

(Peat et al., 2001). Primary or idiopathic arthritis is multifactorial in origin, with factors 

such as genetic predisposition, obesity, occupation and sex influencing its development.  

 

What remains unclear is why the prevalence of ankle osteoarthritis is significantly less 

than that of knee arthritis, and why the two have such different underlying aetiologies.  

 

 Joint Biomechanics 
 

Although weight bearing activities can increase joint reaction forces to ten times patient 

weight (Ratcliffe and van Mow, 1996) normal repetitive physiological loading of a joint 

is considered beneficial. Repetitive physiological load is transmitted through the 

chondrocytes cytoskeleton and creates physicochemical signals that maintain 

extracellular homeostasis. Repetitive dynamic compression within physiological 

tolerances has been shown to increase type 2 collagen and proteoglycan production 

(Grodzinsky et al., 2000). The converse is also true as constant offload or sustained 

compression may adversly effect biosynthesis of extra cellular components (Palmoski 

and Brandt, 1984). An adverse biomechanical environment undoubtably influences 

contact stresses contributing to cartilage degeneration (Rao et al., 2010).  

 

The ankle is biomechanically more complex than a simple hinge joint. The ankle or 

tibiocrural joint is comprised of the tibiotalar, the fibulotalar and inferior tibiofibular or 
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ankle syndesmosis (Leardini et al., 2014). The ankle mortice opens between two- and 

three-millimetres during dorsiflexion as the talar body is wider anteriorly than it is 

posteriorly, which requires a degree of play within the ankle syndesmosis. The talus itself 

is similar to a frustrum of a cone with a smaller radius of curvature medially than laterally 

that is orientated 24 degrees (+/- 6 degrees) from the coronal plane. The tibiotalar joint 

remains highly congruent during all phases of gait and even at high loads. It has a large 

surface contact area of between 11 and 13cm2 which allows reduced point contact 

stressed in comparison the knee (Mauffrey, 2009). Minor alterations in axis or alignment 

do lead to a significant alteration in biomechanical environment. One sentinel study 

suggested that 1mm of talar shift within the mortice results in a reduction in joint 

contact area by 42% resulting in a significant increase in joint contact stress (Ramsey 

and Hamilton, 1976).  

 

In contrast to the ankle, the knee is comprised of the medial and lateral tibiofemoral 

compartments and the patellofemoral joint. The knee is a more unstable hinge which is 

much less constraint, with six degrees of motion (including a rotational screw home 

mechanism) that places significant sheer stresses on the tibiofemoral compartments. 

Femoral roll back occurs to prevent posterior impingement of the femur on the tibia in 

deep flexion. As knee flexion progresses past 100 degrees, the mismatch in radius of 

curvature between the medial and lateral femoral condyle produces relative internal 

rotation of the tibia as the lateral condyle rolls off the back of the tibia. The 

fibrocartilaginous menisci have developed as compensatory mechanisms to improve 

stability and dissipate load within the tibiofemoral joint. Further restraints to excessive 

translation or rotation include the cruciate ligaments, collaterals and capsular 

ligamentous structures (Ramachandran, 2007). The knee has a significantly larger 

articular contact when compared to the ankle, however due to the semi-constraint 

nature of the joint, a degree of point loading does occur as not all chondral surfaces 

remain in contact at all times during the gait cycle. MRI based studies assessing heathy 

individuals have estimated the total knee articular area as 102cm2 (+/- 13.6) and the 

distal femur as 64cm2 (+/- 8.7); ten times and six times larger than the total contact area 

of the ankle. In fact the medial tibial surface, which is in constant contact with the femur, 

has a surface area roughly equal to that of a normal ankle joint (Hohe et al., 2002). Given 
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that the same weight passes through the knee and ankle and the ankle has a significantly 

smaller contact area, the load per unit (stress) on the tibiocrural joint is expected to be 

higher. The higher peak stresses at the articular cartilage create a detrimental 

biomechanical local environment, altering hydrostatic lubrication, increasing the shear 

stress, damaging the proteoglycan–collagen structure and promoting matrix failure 

(Ateshian et al., 1994). Logically, therefore, the ankle should be more susceptible to 

osteoarthritis, yet this is not the case. One explanation for this is that the nature of the 

cartilage or the chondrocyte within the two joints must be intrinsically different. 
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 Histological differences  
 

 

 

Figure 1.11: Histological sections stained with with Safranin O and fast green  femur (A) and 
talus (B) at 4x magnification (Kuettner and Cole, 2005) 

 

 

 

Knee cartilage is, on average, twice the thickness of ankle cartilage (Juras et al., 2016) 

with ankle cartilage uniformly around 1 to 1.5mm throughout the joint while the depth 

of knee cartilage varies from 6mm in the trochlear to 2mm on the tibial plateau. Tissue 

from both joint shares the same general features of avascularity, lack of nerve and 

lymphatic supply. They are both histologically divided into superficial, middle and deep 

zones. The superficial zone contains horizontally orientated type 2 collagen fibres and 

flattened chondrocytes that produce lubricin. Clusters of chondrocytes in the ankle are 
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contained in chondrons while the knee chondrons contain only single chondrocytes. The 

middle zone is relatively large in the ankle compared to the knee and both tissues 

contain similar quantities of rounded chondrocytes with more vertically orientated 

collagen. The deep zones are again microscopically similar but occupy a larger 

proportion of the overall collagen in the knee than the ankle.  

 

 Biochemical differences 
 

Although histologically very similar the two cartilages have very different proportions of 

extracellular matrix components. Several studies have demonstrated lower water 

content and higher sulphated-glycosaminoglycan content in ankle cartilage (Treppo et 

al., 2000, Huch, 2001, Eger et al., 2002). This change in proportion of one of the most 

crucial components of cartilage leads to a higher Young’s Modulus and stiffer, more 

resilient cartilage. In order to achieve 65% strain of both cartilages, significantly more 

stress was required (11GPA vs 16 GPA) in the ankle tissue and this only produced 

macroscopic signs of degeneration in 17% of ankle samples compared to 81% of knee 

samples. This increase in stiffness may account for the finding that “knee cartilage 

degeneration leads to the development of OA with clinical symptoms, whereas the ankle 

cartilage develops fissures that do not appear to progress to later stages of OA” (Huch, 

2001).  

 

Interestingly, chondrocytes derived from ankle cartilage are metabolically different, 

producing significantly more glycoaminoglycans and type 2 collagen than knee 

chondrocytes (Kuettner and Cole, 2005). The ankle chondrocytes are metabolically more 

active, reducing the half life of proteoglycans and producing twice as much sGAGs mRNA 

as knee chondrocytes. The ankle chondrocyte also seems to be hardier, being resistant 

to both a hostile mechanical and a pro-inflammatory environment (Cole and Kuettner, 

2002). Detrimental static compression of ankle cartilage produces a reduction in 

collagen, GAG and protein synthesis of 15% compared to 25-50% in knee cartilage. Ankle 

tissue is also less susceptible to the catabolic effects of pro-inflammatory cytokines and 

matrix fragments. In order to reduce the synthesis of proteoglycans by half, the presence 
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of significantly more IL-1 is required (IC50 6 pg/ml vs 35 pg/ml) and the same is true for 

fibronectin fragments (Cole and Kuettner, 2002, Joseph, 2009). The ankle cells also less 

readily express mRNA for key degenerative enzymes like matrix metalloproteinase-8 

(MMP-8) (Chubinskaya et al., 1999) and return to normal function much sooner 

following removal of noxious stimuli. The ankle chondrocytes resistance to IL-1 is 

maintained when it is removed from its native matrix, suggesting the chondrocyte itself 

must play an important role in preventing inflammatory-mediated cartilage 

degeneration.  

 

Differences in the response of knee and ankle cartilage to pro-inflammatory mediates 

commonly found in OA may help to identify therapeutic targets for the prevention of 

joint degeneration in the future.    

 

 Aims 
 

The aim of the following thesis is to  

1. Assess the differential response in proteoglycan loss and cell viability of ankle 

and knee articular cartilage following stimulation with pro-inflammatory 

cytokine  

2. Assess if this differential cartilage degeneration observed between the ankle 

and the knee due to differences in the expression and/or activity of molecules 

involved in catabolism?  
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Chapter 2 

 

Methods 
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  General Methods and Materials  
All reagents were of analytical grade or above and obtained from Sigma-Aldrich (Poole, 

UK) unless otherwise stated.  

 

 Sample Collection 

 Ethical Approval 
Ethical approval was granted to collect articular cartilage from the knee and ankle 

joints of patients undergoing lower limb amputations due to vascular complications 

(Newcastle & North Tyneside 1 Research Ethics Committee Reference: 15/NE/0337 

IRAS project ID: 184005). Patients were recruited through the Department of Vascular 

and General Surgery in collaboration with Mr Ian Williams (Consultant Vascular 

Surgeon, University Hospital of Wales, Heath Park, Cardiff).   

 

 Patient Recruitment 
Patients who presented to the University Hospital of Wales with any pathology or injury 

that required non-emergent lower limb amputation were provided with a "permission 

to determine suitability" form (Appendix 7.1). A database of patient details including 

hospital numbers, dates of birth and names was retained on a password protected 

computer within the Trauma and Orthopaedic Department of the University Hospital of 

Wales in order to maintain patient confidentiality and meet data protection 

requirements.  

 

Patient suitability for this study was assessed according to the following criteria:  

 

Inclusion Criteria 

• Patients attending appropriate Foot and Ankle, Knee or Hip orthopaedic clinics 

• Patients attending Vascular Clinic 

• Inpatients awaiting non-emergent lower limb amputations 

 

Exclusion Criteria 

• Inability to provide written informed consent 
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• Patients that have any previous problem to the joint under investigation 

that may affect the results such as a septic joint 

• Certain medication that may affect the research results such as disease 

modifying rheumatoid drugs like anti-TNF  

• Emergency Procedures where the patient may not have adequate time to 

consider their inclusion in the study 

 

A total of 10 ankles and 5 knees were collected for this study as indicated (Table 3.1). 

 

 Tissue preparation, transport and storage 
Following the surgical procedure, the limb was removed under sterile conditions and 

the distal femur (Figure 2.2) and/or talus (Figure 2.3) dissected out using separate sterile 

instruments and surgical table within the same theatre but outside the lamina flow 

ventilation system.  

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Surgical excision of distal femur (K1). Post amputation image with medial to the left 
side and lateral towards the right.  
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Figure 2.3: Surgical excision of talus (A1). Left image – Talar dome. Right Image – Lateral view 

 
 

Samples were transferred from the University Hospital of Wales to the Cardiff University 

Biosciences department by the responsible principle investigator in a sealed specimen 

pot containing Hanks’ Balanced Salt Solution (Thermo Fisher, Loughborough, UK) at 

room temperature.  

 

Full thickness cartilage explants (3mm or 4mm diameter) were taken from the weight 

bearing surface of the talar dome, and the medial and lateral femoral condyles. Explants 

were produced by pushing a dermal punch (Miltex, York, PA, USA) through the articular 

cartilage and detaching from the subchondral bone with a scalpel blade.   

 

 Tissue Culture 
Explants were immediately placed in 50ml Hanks’ Balanced Salt Solution supplemented 

with 400U/ml Streptomycin and 400μg/ml Penicillin (Thermo Fisher, Loughborough, UK) 

and subjected to three washes, with a change of high strength antibiotic media every 

ten minutes for thirty minutes, to reduce the likelihood of infection during the culture 

period.  
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Following extraction and washes, explants were placed in single wells of a 48 well culture 

plate (Corning, Wisbaden, Germany) and cultured in 500μl of Dulbeccos Modified 

Eagle's Medium/Hams F12-glutamax (DMEM/F12-glutamax (1∶1) (Thermo Fisher, 

Loughborough, UK) supplemented with 100U/ml Streptomycin  and 100μl/ml Penicillin, 

50μg/ml Ascorbate–2–Phosphate and 1x Insulin-transferrin-sodium selenite (Thermo 

Fisher, Loughborough, UK); herein referred to as culture media unless indicated 

otherwise. Ascorbic acid acts as cofactor of collagen prolyl hydroxylases in the 

endoplasmic reticulum maintaining normal collagen homeostasis (D'Aniello et al., 2017). 

Insulin-transferrin-sodium selenite aids the culture of chondrocytes in multiple way; the 

insulin enables glucose and amino acid uptake, transferrin acts as an iron carrier and 

helps to reduce free radicles and the  selenite is a co-factor for glutathione peroxidase 

which also acts as an anti-oxidant (Mesalam et al., 2019). Explants were rested overnight 

in an incubator set at 37°C and 5% CO2. Media was removed and then discarded the 

following day before the explants were subjected to cytokine treatment.  

 

 Cytokine Treatment 
To assess the effect of cytokine treatment on cartilage metabolism, explants were 

stimulated with either high or low concentrations of pro-inflammatory cytokines (Table 

1) by adding the appropriate cytokines to 500μl of culture media per well; untreated 

explants served as controls. Explants were either stimulated with cytokines for 7 (short-

term) or 28 days (long-term). Media was removed and replenished at day 3 for the short-

term culture (knee n=1, ankle n=3) or collected and replenished at day 3, 7, 10, 14, 17, 

21 and 24 for long-term culture (knee n=3, ankle n=4); resulting media was stored at -

20oC prior to analysis.  Cultures were subsequently terminated at day 7 or 28 with media 
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collected and stored at -20oC and explants blotted dry and weighed to provide a wet 

weight (mg). Explants were then immediately frozen in liquid nitrogen and stored at -

80°C.  
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Table 2.1: Experimental cytokines treatments and control used (Recombinant Human TNFα, 

Recombinant Human Oncostatin M and Recombinant Human IL-1α from E.Coli sourced from 

PeproTech, USA). 

 

 

 

 

 

Treatment concentrations      

Cytokines IL-1α TNFα Oncostatin M 

Untreated n/a n/a n/a 

TNFα Low n/a 2ng/ml n/a 

TNFα High n/a 100ng/ml n/a 

IL-1α & OSM Low 100pg/ml n/a 200pg/ml 

IL-1α & OSM High 5ng/ml n/a 10ng/ml 

IL-1α & TNFα Low 100pg/ml 2ng/ml n/a 

IL-1α & TNFα High 5ng/ml 100ng/ml n/a 
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 Biochemical Assays  

 

 Dimethylmethylene Blue Assay  
Concentrations of sulphated glycosaminoglycans (sGAG) were calculated using a 1,9 -

dimethylmethylene blue assay as previously described (Little et al., 1990).  Sulphated 

glycosaminoglycan content in the experimental media and explants was determined by 

comparison to a standard curve that was created by preparing solutions containing O, 

10, 20, 30, 40 and 50µg/ml of chondroitin-4-sulphate from purified shark cartilage.  Forty 

microliters of each media sample and standards were applied to a 96 well flat bottom 

(Corning, Wisbaden, Germany), followed by 200µl of 1,9 dimethylmethylene blue 

reagent (32mg 1,9 DMMB, 20ml ethanol, 59ml 1M sodium hydroxide, 7ml 98% formic 

acid and made up to 2L with water). Absorbance measurements were measured 

immediately at a wavelength of 525nm using the Labsystem Multiscan MS 

Spectrophotometer (Optima, Japan). Where results did not fall within the standard 

curve, samples were appropriately diluted and re-analysed. Standards prepared for the 

assay were used to produce a calibration curve and sGAG amounts released into the 

media were calculated and then normalised to the wet weight of each explant.  

 

 Papain Digest of explants 
The concentration of sGAG within the explant was measured in order to determine the 

percentage loss of sGAG from the tissue into the media. Explants were weighed, placed 

in 200μl papain buffer (0.05M sodium-acetate, 25mM EDTA pH 5.6, 5mM cysteine) and 

digested in 1mg/ml papain enzyme (papaya latex extract) for 18 hours at 60°C. Upon 

digestion of the tissue, supernatants were diluted appropriately and analysed using the 

DMMB assay as above. Results were normalised to wet weight of the explant section. 
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Percentage loss of sGAG from the explant to the media was then calculated using the 

formula:  

 

Percentage loss sGAG =                    Media Concentration  

(Papain concentration + Media Concentration)  

 

 Griess Nitrite Assay – Nitrite 
Indirect measurement of NO content within the experimental media was calculated 

using a Griess Nitrite Assay (Promega, Southampton, UK) as previously described (Chae 

et al., 2004). Nitrite content was determined based on a standard reference curve 

created by a serial twofold dilution of a NaNO2 standard (from 100μM to 1.56μM). Fifty 

microliters of the culture medium and standards were applied to a 96 well flat bottom 

plate (Corning, Wisbaden, Germany) before being incubated with 50μl of 1% (w/v) 

sulfanilamide (in 5% (w/v) phosphoric acid) for 10 minutes at room temperature while 

protected from light. This process was then repeated with 50μl of 0.1% (w/v) N-1-

napthylethylenediamine dihydrochloride before absorbances were measured at a 

wavelength of 540 nm using the Labsystem Multiscan MS Spectrophotometer (Optima, 

Japan). Standards prepared for the assay were used to produce a calibration curve, and 

nitrite concentrations determined prior to normalisation to the wet weight of each 

explant. 

 

 CytoTox 96® Non-Radioactive Cytotoxicity Assay- Lactate 
dehydrogenase  

Measurement of lactate dehydrogenase (LDH) release into the culture medium, which 

occurs as a result of cell death (Koh and Choi, 1987), was used as a marker of cell lysis. 
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The CytoTox 96® non-radioactive cytotoxicity assay (Promega, Southampton, UK ) as 

previously described (Riss et al., 2004) was used to determine relative LDH release 

across cytokine treatments. Fifty microliters of culture media was added to wells with 

50μl of the CytoTox 96® Reagent in a 96 well flat bottom plate (Corning, Wisbaden, 

Germany); samples were incubated at room temperature and protected from light for 

30 minutes. Fifty microliters of stop solution was then added, absorbance measured at 

a wavelength of 490nm using the Labsystem Multiscan MS Spectrophotometer (Optima, 

Japan) and relative LDH levels compared to untreated explants that had not been 

stimulated with cytokines.  

 

 Prostaglandin E2 ELISA 
Prostaglandin E2 (PGE2) released into the media from explants stimulated with cytokines 

was measured using a Prostaglandin E2 high sensitivity ELISA (Enzo Life Sciences, 

Switzerland). Following a test analysis, all media samples derived from explants treated 

with cytokines were diluted with distilled water (1:2) to ensure an appropriate fit on the 

standard curve; media derived from untreated explants was left undiluted. Following 

manufacturer instructions (PGE2 high sensitivity ELISA kit), a PGE2 standard curve was 

produced to generate standards ranging from 1000pg/ml to 7.81pg/ml. Plate wells were 

filled according to manufacturer’s instructions (Enzolifesciences, 2017) providing both 

positive and negative controls for the assay. Standards (100μl) and experimental 

samples (100μl) were pipetted into the remaining wells, followed by 50μl of blue 

conjugate and 50μl of yellow antibody pipetted into the respective wells. The plate was 

then sealed and incubated overnight at 4°C before each well was washed 3 times with 

400μl of wash solution.  pNpp solution (200μl) was added to all wells prior to the plate 
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being covered and incubated at 37°C for a further hour. Fifty microliters of stop solution 

was added to all wells and the plate was read at a wavelength of 405nm using the 

Labsystem Multiscan MS Spectrophotometer (Optima, Japan). Results were calculated 

by first producing a standard curve of percentage bound versus concentration of PGE2 

and unknowns determined by linear interpolation (Microsoft Excel, Microsoft, USA). 

Mean net Optical Density (OD) was calculated by subtracting mean non-specific binding 

OD (NSB) from mean bound OD. Binding of each pair of standards is calculated as a 

percentage of the maximum binding wells (B0).  

 

Mean Net OD = Mean Bound OD – Mean NSB OD 

 

Percentage Bound = (Net OD/Net B0 OD) x 100 

 

Dilutions were then accounted for and results normalised by dividing through by the wet 

weight of the corresponding explant.  

 

 Gelatin Zymography 
Gelatin zymography was used to determine the amount of pro- to active- enzyme and 

the ratio of matrix metalloproteinase 9 and 2 released into the culture media at 

various time points post cytokine stimulation (Woessner, 1995). Experimental media 

samples (50µl) were denatured in 2x sample buffer (0.125M tris pH 6.8, 20% (v/v) 

glycerol, 4% (w/v) SDS and 10mg Bromophenol Blue) at 60°C for 30 minutes. 

Equivalent amounts of samples (normalised to explant wet weight) and 5µl MMP-2/-9 

standard (used for identification and gel to gel comparison) were resolved on 7.5% SDS 
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polyacrylamide gels containing 1mg/ml gelatin (Table 2.2) using 1x Laemmli 

electrophoresis buffer (10x Laemmli buffer contained 30.0g Tris base (pH 8.3), 1440.0g 

glycine, 10.0g SDS dissolved in 1000ml of water)(Laemmli, 1970). Proteins were 

separated at 150V for 45 minutes or until the dye front reached the bottom of the gel.  

 

Table 2.2: Composition and Reagents used to produce gels for zymography 

 

 

 

 

 

 

 

 

 

 

Following electrophoresis, gels were washed three times in 2.5% (v/v) Triton X-100 on 

a rotary shaker in order to renature the MMPs followed by incubation overnight at 

37°C in MMP Buffer (50mM tris (pH 7.8), 50mM CaCl2, 0.5M NaCl). Gels were then 

rinsed with distilled water and placed in stain for 60 minutes (45% (v/v) methanol, 20% 

(v/v) acetic acid and 5g brilliant blue made up to 2 litres) followed by destain (10% 

(v/v) glacial acetic acid, 20% (v/v) Methanol) until lysis bands appeared. Gels were 

scanned for presentation. 

 

Reagents Resolving Gel (7.5%) Stacking Gel (4%) 

40% Bis/Acrylamide 2.72ml 575μl 

1M tris/HCl pH 8.8 3.63ml --- 

1M tris/HCl pH 6.8 --- 1.3ml 

10% (w/v) SDS 100μl 50μl 

10% (w/v) APS 75μl 37μl 

dH20 6.16ml 4.075ml 

TEMED 15μl 7.5μl 

Gelatin (15mg/ml) 1ml --- 
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 Statistical Analysis   
All statistical analysis was undertaken using statistical software Prism 7 (GraphPad 

Software, California, USA). All data is plotted as the mean, max-min (whiskers) + 

standard deviation. Prior to analysis, data was checked for Gaussian distribution using 

D’Agostino and Pearson’s normality test. Where two groups were compared; normal 

data was analysed using students t-test and non-parametric data was analysed using 

Wilcoxon matched-pairs signed rank test (paired) or Mann-Whitney test (unpaired). 

Where multiple groups were compared, ANOVA was used for all parametric data and 

Kruskal-Wallis used for non-parametric data. All multiple comparisons are displayed 

with an adjusted p value where appropriate, and results considered statistically 

significant at p<0.05.  
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Chapter 3  

 

 

Differential response of ankle and knee 

articular cartilage to pro-

inflammatory cytokine stimulation: 

effect on proteoglycan loss. 
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 Introduction 
 

Intra-articular inflammation has been proven to be part of the pathogenesis of 

osteoarthritis (OA) and is present even before the onset of macroscopic degeneration 

(Ehrlich, 1975). As previously described (Section 1.7.1) the incidence of primary ankle 

OA is much lower compared to knee OA, and studies have previously been conducted 

to ascertain whether this is primarily due to biomechanical differences or whether there 

are inherent differences in matrix composition and/or chondrocyte behaviour. It is 

known that ankle cartilage has higher GAG content and lower water content making it 

stiffer and more resilient to wear than knee cartilage. Interestingly, ankle chondrocytes 

have been shown to be more resistant to IL-1 and fibronectin fragment mediated 

catabolism than knee explants (Kuettner and Cole, 2005). Eger et al (2002) investigated 

the rate of [35S]-sulphate incorporation into the glycosaminoglycans within ankle and 

knee cartilage at ascending IL-1 levels from 1-250pg/ml and found a significant 

difference between the joints between 5-250pg/ml. The concentration at which sGAG 

production (as measured by radioactive counts per minute of DNA) was reduced by 50% 

(IC50) in the knee was 11.8pg/ml compared to 56.1pg/ml in the ankle. This suggests that 

the ankle chondrocytes required significantly higher concentrations of IL-1 to halve 

production of sGAGs. These results were however performed on ex vivo chondrocytes 

in alginate not in their native extracellular matrix making direct correlation with 

concentrations found in the native arthritic joints difficult (Eger et al., 2002).  

Pro-inflammatory cytokines can have an autocrine effect when produced by the 

chondrocyte themselves or a paracrine effect when they are produced by the joint 

synovium and act on the chondrocytes. In OA, both autocrine and paracrine effects 

occur and pro-inflammatory cytokines such as TNFα, IL-1 and OSM inhibit anabolic 

activity of the chondrocyte resulting in reduced synthesis of type II collagen, 

proteoglycans and link protein (Kapoor et al., 2010). These cytokines also upregulate 

proteolytic enzyme synthesis and activation (MMPs), stimulate prostaglandin E2 (PGE2) 

and nitric oxide (NO) production as an inflammatory response culminating in the 
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eventual degradation of the cartilage itself if the cytokine insult is a chronic feature. This 

inflammatory environment causes the breakdown of essential extracellular matrix 

components into the synovial fluid and cartilage degeneration occurs. To date, no study 

has examined the differential effect of TNFα or IL-1 in conjunction with OSM on the 

metabolic behaviours of ankle and knee cartilage.  

 

 Aim  
 

This chapter aimed to quantify the effect of combination treatments of pro-

inflammatory cytokines, i.e.  IL-1, TNFα and OSM at physiological and pathophysiological 

concentrations on cell viability in ankle and knee articular cartilage stimulated for 28 

days. Furthermore, the loss of proteoglycan from the cartilage tissue was measured as 

an indicator of cartilage breakdown to evidence whether there is a differential response 

to cytokine stimulation in these anatomically distinct cartilage tissues.  

1. Donor patient demographics, co-morbidities and joint degeneration scores were 

collected in order to identify any baseline variables between the ankle and knee 

patients that may affect results.  

2. Lactate dehydrogenase (LDH) levels were measured in order to determine if 

there was a difference in cell viability between joints in response to different 

cytokine treatments. 

3. The percentage loss of sGAGs from cartilage explants into the media was used 

to determine if there was a difference in ECM proteoglycan breakdown between 

joints in response to different cytokine treatments.  
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 Results 
 

 

 Donor population patient consent 
 
Twenty-two patients who presented to the University Hospital of Wales, Cardiff 

requiring non-emergent lower limb amputation were provided with a "permission to 

determine suitability" form (Appendix 2).  Patient suitability for this study who met 

inclusion criteria (Section 2.1.2) were provided with a patient information sheet (PIS 

version 1.0 September 2016) and asked to donate surgical waste and to complete a 

consent form (Consent form Version 1.0 September 2016). Seventeen patients were 

excluded prior to sample retrieval of which: six patients were unable to consent for the 

study because of lack of capacity (4) or insufficient time to consider donation (2), four 

had previous surgical procedures involving the joints which included a total knee 

replacement (1), ankle fusion (2) and a previous open ankle fracture (1). One patient 

had rheumatoid arthritis and was on disease modifying rheumatoid drugs (1) and a 

significant proportion were found to be infected (6). Of the retrieved samples, 11 

joints from 9 patients (Ankle 4-10 and Knee 2-5) were included for study in this thesis 

(Figure 3.1).  

 

 Classification of joint cartilage gross morphology 
 
Following retrieval, all joints were washed and articular cartilage visually assessed to 

produce a ‘joint score’ using the Modified Collins classification for knees (Collins, 1949) 

and modified ankle degeneration score (Muehleman et al., 1997). All joints included 

scores between 0 - 1 and were not damaged during retrieval. Of the 10 ankles, 7 were 

grade 0 and 3 were grade 1; of the 5 knees, 2 were found to be grade 0 and 3 found to 

be grade 1 (Table 3.1). Chi Squared statistical test did not find any significant difference 

between the knee and ankle ‘joint cartilage morphology score’ at baseline (p=0.2635).  
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Figure 3.1 Donor patient inclusion flow chart demonstrating number of patients 
identified as eligible, reason for exclusion, final numbers retrieved and patients 
providing donor tissue used for experimental work in thesis.   
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Table 3.1 Donor population demographics, co-morbidities, indication for amputation, 
visual joint degeneration score using the Modified Collins classification for knees 
(Collins, 1949) and modified ankle degeneration score (Muehleman et al., 1997) and 
duration of culture for each sample.  
 
 
 

Patient 
Code 

Joint 
Code 

Age Sex Co-Morbidities Indication 
for 

Amputation 

Outerbridge 
Classification 

(0-4)  

Culture 
Period 
(Days) 

Patient 
A 

Ankle 1 70 M Type 2 Diabetes, Angina Critical 
Ischaemia 

0 7 

Patient 
B 

Ankle 2 
  

Type 2 Diabetes, Stroke, 
COPD 

Critical 
Ischaemia 

0 7 

Patient 
B 

Knee 1 67 M 
 

Critical 
Ischaemia 

1 7 

Patient 
C 

Ankle 3 68 M Type 2 Diabetic, Heart 
Failure, Renal Failure, 

Asthma 

Critical 
Ischaemia 

0 7 

Patient 
D 

Ankle 4 62 M Type 2 Diabetic, Asthma, 
Renal Failure 

Critical 
Ischaemia 

1 7 

Patient 
E 

Ankle 5 78 M Type 2 Diabetic, Renal 
Failure, Diabetic 

Retinopathy 

Critical 
Ischaemia 

1 7 

Patient 
F 

Ankle 6 57 M Type 2 Diabetes, 
Previous Common 

femoral artery stent 

Critical 
Ischaemia 

0 7 

Patient 
G 

Knees 2 60 F Type 2 Diabetic, 
Myocardial Infarction, 

Below knee amputation 

Critical 
Ischaemia 

0 7 

Patient 
H 

Ankle 7 92 M Type 2 Diabetic, 
Myocardial Infarction, 

heart failure, stroke 

Critical 
Ischaemia 

1 28 

Patient I Ankle 8 66 F Type 1 Diabetes, Stroke, 
Myocardial Infarction 

Critical 
Ischaemia 

0 28 

Patient J Ankle 9 
  

Type 2 Diabetes, Heart 
failure, Contralateral 

Below Knee amputation 

Critical 
Ischaemia 

0 28 

Patient J Knee 3 84 F 
 

Critical 
Ischaemia 

1 28 

Patient 
K 

Ankle 10 
 

  
Type 2 diabetes, 

Myocardial Infarction 
Critical 

Ischaemia 
0 28 

Patient 
K 

Knee 4 
73  M  

  
Critical 

Ischaemia 1 28 

Patient 
L Knee 5 

79  M 
Myocardial Infarction, 

Malignant Myosarcoma Malignancy 0 28 
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 Donor patient demographics and co-morbidities 
 
Inpatient notes were reviewed for patient demographics and all co-morbidities listed 

(Table 3.1). As would be expected for a study of non-emergent amputations, the 

majority of patients suffered with diabetic induced peripheral vascular disease; critical 

ischaemia was the indication for all amputations except one (Knee 5) and the majority 

of diabetics were type 2. The single non-vasculopath was a patient having an above 

knee amputation for a myosarcoma of the calf in which the unaffected knee sample 

was retrieved (knee 5).  

Baseline demographics such as age and proportion of male/female patients was 

assessed statistically using the non-parametric Mann-Whitney test for patient age 

(data was not normally distributed) and chi squared test for proportion of 

male/female. Median age in the ankle group was 69 (mean 71.7) compared to median 

age of 73 (mean 72.6) in the knee group, however this was not found to be statistically 

significant (p=0.7909). Two patients in each group were female and again this had no 

significant impact (p=0.4090).  

 

 
 

 Differential effect of pro-inflammatory cytokines on chondrocyte 
survival in the ankle and knee  

 

Following sample retrieval, multiple explants were taken from the tali or femoral 

condyles of recruited patients (Section 2.1.3); each donor had at least 21 explants 

removed with three explants cultured in either physiological, denoted ‘low’ or 

pathological cytokine concentrations, denoted ‘high’ or left untreated as a control 

(Section 2.2). Short-term culture was performed on 4 joints (knee n=1, ankle n=3) with 

removal of media and replenishment at 3 days and termination at 7 days. Long-term 

culture was performed on 7 joints (knee n=3, ankle n=4) with removal and 

replenishment of media containing cytokines at day 3, 7, 10, 14, 17, 21 and 24 and 

experiments terminated at day 28. 



56 

 

 

 

  Lactate Dehydrogenase levels 
 

Lactate dehydrogenase (LDH) was measured for all time points, up to and including day 

28, to assess chondrocyte viability in order to investigate differences in chondrotoxicity 

of different cytokines and to ascertain if there was any difference in cell death observed 

in the ankle compared to the knee. A CytoTox 96® Non-Radioactive Cytotoxicity Assay 

(Section 2.3.4) was used to measure LDH released into the media as a marker of cell lysis 

(Koh and Choi, 1987), as LDH is an intracellular enzyme and would only be detected in 

the media due to cell death.  LDH levels are presented as absorbance units normalised 

to tissue explant wet weight. 

 

 Ankle cartilage chondrocyte viability was not significantly affected by 
cytokine treatment  

 
Analysis of LDH release from ankle cartilage, assessed using a one way ANOVA, 

demonstrated no significant difference in mean cumulative LDH levels between cytokine 

treatments (day 3 p=0.881, week 1 p=0.769, week 2 p=0.971, week 3 p=0.949, week 4 

p=0.926; Figure 3.1a-e). Tukey multiple comparator testing using adjusted p values was 

performed at all time points in order to compare LDH release from untreated cartilage 

against tissue treated with physiological and pathological cytokine concentrations. No 

significant difference was observed at any time point between either the untreated or 

cytokine stimulated ankle cartilage suggesting that there was little cytotoxicity in 

response to treatment (p > 0.915).  
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Figure 3.2 Levels of lactate dehydrogenase released from ankle cartilage into the media 

following cytokine stimulation, assessed as a marker of cell viability. Ankle cartilage was either 

cultured ‘short term’ for 7 days (n = 7) or ‘long term’ extending out to 28 days (n = 4) in the 

presence or absence of a combination of physiological (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml 

TNFα) or pathological concentrations of cytokines (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml 

TNFα); LDH levels were measured at [a] day 3, [b] day 7, [c] 14, [d] day 21 and [e] day 28. Data 

is calculated as the mean cumulative absorbance units per mg of wet weight tissue for each 

treatment group and is plotted as the mean, max-min (whiskers) + standard deviation (box). 
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 Knee cartilage chondrocyte viability was not significantly affected by 
cytokine treatments 

 

Analysis of LDH from knee cartilage, assessed using a one way ANOVA (Figure 3.3a-e) 

demonstrated no significant differences in mean cumulative LDH levels between 

cytokine treatments (day 3 p=0.985, week 1 p=0.939, week 2 p=0.959, week 3 p=0.949, 

week 4 p=0.963). Tukey multiple comparator testing using adjusted p values was again 

performed at all time points in order to compare LDH release from untreated knee 

cartilage against tissue treated with physiological and pathological cytokine 

concentrations. No significant difference was observed at any time point between either 

the untreated or cytokine stimulated knee cartilage suggesting that there was little 

cytotoxicity in response to treatment (p > 0.969).  
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Figure 3.3 Levels of lactate dehydrogenase released from knee cartilage into the media following 

cytokine stimulation, assessed as a marker of cell viability. Knee cartilage was either cultured 

‘short term’ for 7 days (n = 4) or ‘long term’ extending out to 28 days (n=3) in the presence or 

absence of a combination of physiological (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or 

pathological concentrations of cytokines (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα); LDH 

levels were measured at [a] day 3, [b] day 7, [c] 14, [d] day 21 and [e] day 28. Data is calculated 

as the mean cumulative optical density per mg of wet tissue for each treatment group and is 

plotted as the mean, max-min (whiskers) + standard deviation (box). 
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 Significantly more LDH was produced by the ankle than the knee at all 
timepoints 

 
Mean cumulative LDH release from ankle and knee cartilage explants were compared at 

each time point using a Two-way ANOVA (Figure 3.4). This statistical test allowed for 

assessment of the percentage variance and significance that the joint of origin and 

cytokine treatment had on cell viability. Multiple comparison analysis with an adjusted 

p value was also undertaken using the Sidak’s multiple comparator method to identify 

any trends between different joints exposed to the same cytokine treatment (Table 3.2).  

 

As observed during analysis of individual joint tissues, overall the mean LDH levels were 

not affected by cytokine treatments at any time point (day 3 p=0.955, week 1 p=0.702, 

week 2 p=0.888, week 3 p<0.812, week 4 p=0.819; Figure 3.4)).  However, mean LDH 

levels were significantly higher in the ankle compared to the knee at all time points with 

ankle tissue producing almost twice as much LDH compared to the same wet weight of 

knee cartilage  (day 3: 0.021 vs 0.013 p<0.0001 (Figure 3.4a); week 1: 0.042 vs 0.023 

p<0.0001 (Figure 3.4b); week 2: 0.063 vs 0.037 p<0.0001 (Figure 3.4c); week 3: 0.091 vs 

0.052 p<0.0001 (Figure 3.4d); week 4: 0.114 vs 0.066 p<0.0001 (Figure 3.4e). Multiple 

comparison analysis demonstrated significant differences in LDH production between 

the two untreated joint cartilage tissues and for almost all cytokine treatments from 1 

week onwards (Table 3.2), suggesting that the joint of origin, as opposed to the cytokine 

treatment, influenced LDH levels. 
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Figure 3.4 Levels of lactate dehydrogenase released from ankle and knee cartilage into the 

media following cytokine stimulation, assessed as a marker of cell viability. Ankle cartilage (n=4) 

and knee cartilage (n=3) was either cultured ‘short term’ for 7 days or ‘long term’ extending out 

to 28 days (ankle n=3, knee n=4) in the presence or absence of a combination of physiological 

(100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological concentrations of cytokines 

(5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα); LDH levels were measured at [a] day 3, [b] day 

7, [c] 14, [d] day 21 and [e] day 28. Data is calculated as the mean cumulative optical density 

per mg of wet tissue for each treatment group and is plotted as the mean, max-min (whiskers) 

+ standard deviation (box). 
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Table 3.2: Sudak’s Multiple comparator test results with adjusted p values comparing LDH 
release from the different joints after ‘short term’ culture for 7 days (n = 7) or ‘long term’ 
culture extending out to 28 days (n = 4) in the presence or absence of a combination of 
physiological, denoted ‘low’ (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological 
concentrations of cytokines, denoted ‘high’ (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα). 

 

Day 3 Ankle Knee Adjusted P Value Significant 

Untreated 0.0205 0.0148 0.4205 No

TNFαLow 0.0216 0.0134 0.1008 No

TNFαHigh 0.0182 0.0134 0.6753 No

IL-1 and OSM Low 0.0198 0.0127 0.1796 No

IL-1 and OSM High 0.0235 0.0124 0.0057 Yes

IL-1 and TNFαLow 0.0220 0.0131 0.0418 Yes

IL-1 and TNFαHigh 0.0217 0.0134 0.0945 No

Day 7 Ankle Knee Adjusted P Value Significant 

Untreated 0.0417 0.0231 0.0128 Yes

TNFαLow 0.0432 0.0255 0.0198 Yes

TNFαHigh 0.0389 0.0234 0.0768 No

IL-1 and OSM Low 0.0362 0.0198 0.0384 Yes

IL-1 and OSM High 0.0460 0.0232 0.0012 Yes

IL-1 and TNFαLow 0.0436 0.0215 0.0018 Yes

IL-1 and TNFαHigh 0.0429 0.0248 0.0166 Yes

Day 14 Ankle Knee Adjusted P Value Significant 

Untreated 0.0587 0.0361 0.0505 No

TNFαLow 0.0654 0.0401 0.0203 Yes

TNFαHigh 0.0637 0.0366 0.0249 Yes

IL-1 and OSM Low 0.0599 0.0333 0.0129 Yes

IL-1 and OSM High 0.0641 0.0385 0.0181 Yes

IL-1 and TNFαLow 0.0640 0.0351 0.0053 Yes

IL-1 and TNFαHigh 0.0662 0.0400 0.0145 Yes

Day 21 Ankle Knee Adjusted P Value Significant 

Untreated 0.0865 0.0510 0.0482 Yes

TNFαLow 0.0953 0.0569 0.0259 Yes

TNFαHigh 0.0875 0.0511 0.0761 No

IL-1 and OSM Low 0.0848 0.0466 0.0270 Yes

IL-1 and OSM High 0.0937 0.0553 0.0262 Yes

IL-1 and TNFαLow 0.0931 0.0504 0.0096 Yes

IL-1 and TNFαHigh 0.0981 0.0583 0.0187 Yes

Day 28 Ankle Knee Adjusted P Value Significant 

Untreated 0.1096 0.06373 0.0501 No

TNFαLow 0.1199 0.07143 0.0332 Yes

TNFαHigh 0.1035 0.0646 0.2236 No

IL-1 and OSM Low 0.1059 0.05792 0.0355 Yes

IL-1 and OSM High 0.1175 0.06958 0.0359 Yes

IL-1 and TNFαLow 0.1182 0.06262 0.0095 Yes

IL-1 and TNFαHigh 0.1225 0.07102 0.0198 Yes
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  Differential effect of pro-inflammatory cytokines on proteoglycan loss 
in the ankle and knee  

 

Percentage loss of sGAG from the explant into the media was measured and used as a 

marker to quantify cartilage proteoglycan degeneration. All media was analysed for 

sGAG content using the 1,9 -dimethylmethylene blue assay as previously described 

(Little et al., 1990). The remaining explant was then digested with papain to allow the 

remaining sGAG in the tissue to be measured. All results were normalised to original 

explant wet weight. sGAG amounts are presented below as normalised to wet weight 

and percentage of the total sGAG lost from explants.  

 

 Total sulphated glycosaminoglycan content was significantly higher in 
the ankle than the knee cartilage explants 

 

Following papain digestion, significantly higher amounts of sGAG were detected within 

the untreated ankle cartilage explants (148 ± 75µg/mg) compared to the knee (74 ±18 

µg/mg: p<0.001; Figure 3.5). Significantly more sGAG was released, into the media, from 

the untreated ankle (37 ± 7.4µg/mg) compared to the untreated knee cartilage explants 

(27 ± 7.6µg/mg) over the 28 days culture period (p<0.0001; Figure 3.6).  Hence, total 

sGAG levels (determined as the summation of amount released into media plus amount 

retained in the tissue) in the ankle cartilage explants exceeded that of the knee explants, 

irrespective of cytokine treatment (p<0.0001; Figure 3.7). However, cytokine treatment 

did not significantly affect total sGAG content when comparing response of ankle and 

knee (p=0.8897).  
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Figure 3.5:  Total sulphated glycosaminoglycan (sGAG) content in untreated ankle (n=7) and 

knee articular cartilage (n=6), as assessed using the Dimethylmethylene Blue assay. Total sGAG 

is equal to sGAG released into the media and sGAG released from the tissue following papain 

digest. Data is presented as mean sGAG content per mg of wet weight tissue and is plotted as 

the mean, max-min (whiskers) + standard deviation (box). An unpaired t-test was performed to 

determine statistical significance (p<0.0001).  
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Figure 3.6:  Mean total sulphated glycosaminoglycan (sGAG) lost to media in untreated ankle 

(n=7) and knee articular cartilage (n=6), as assessed using the Dimethylmethylene Blue assay. 

Data is presented as mean sGAG content per mg of wet weight tissue and is plotted as the mean, 

max-min (whiskers) + standard deviation (box). An unpaired t-test was performed to determine 

statistical significance (p<0.0001).  
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Figure 3.7: Total amount of sulphated glycosaminoglycans (sGAG) in ankle (n=4) and knee 

articular cartilage (n=3), as assessed using the Dimethylmethylene Blue assay. Total content is 

the summation of sGAG lost to the media plus sGAG content in the explants following papain 

digestion. Cartilage tissue was cultured in the presence or absence of a combination of 

physiological, denoted ‘low’ (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological 

concentrations of cytokines, denoted ‘high’ (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα) for 

28 days. Data is presented as mean sGAG content per mg of wet weight tissue + standard 

deviation. A two-way ANOVA was performed to compare differences between cytokine 

treatment (p=0.8897) and joint of origin (p<0.0001).  
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 Significantly less proteoglycan degeneration occurred in ankle 
cartilage explants treated with 100ng/ml TNFα compared to the 
untreated samples at 28 days 

 

The effect of cytokine treatments on sGAG loss from ankle cartilage was quantified as a 

mean cumulative percentage sGAG loss as a proportion of total sGAG content over the 

culture duration. Data from matched samples was analysed using a one-way ANOVA at 

each specific time point (Figure 3.8); surprisingly, there was no significant difference 

between cytokine treatments in the cumulative percentage loss of sGAG to media  (day 

3: p=0.097 Figure 3.8a; week 1: p=0.073 Figure 3.8b; week 2: p=0.307 Figure 3.8c; week 

3: p=0.467 Figure 3.8d; week 4: p=0.459 Figure 3.8e).  

However, there was a significant difference between patients receiving the same 

treatments over the culture duration suggesting heterogeneity between patients (day 3 

p<0.001, week 1 p<0.001, week 2 p=0.002, week 3 p<0.001, week 4 p<0.001). Tukey 

multiple comparator testing using adjusted p values was performed at all time points in 

order to compare untreated samples against cytokine treated samples and to compare 

high concentration treatments against low concentration treatments. Interestingly, 

following 4 weeks of culture in high dose TNFα, a significantly lower percentage sGAG 

loss was seen compared to the untreated samples (20.88% vs 25.03%, p=0.036) 

suggesting the ankle cartilage was not responsive to this cytokine treatment. There was 

no evidence of increased percentage loss of sGAG to media following high concentration 

stimulation compared to low concentration stimulation at any time point for any 

cytokine concentration (p= 0.123 to p=0.999).  
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Figure 3.8:  Mean cumulative percentage loss of sulphated glycosaminoglycans (sGAG) from 

ankle cartilage cultured in the presence or absence of a combination of physiological, denoted 

‘low’ (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological concentrations of 

cytokines, denoted ‘high’ (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα) for 28 days; sGAG levels 

were measured at [a] day 3, [b] day 7, [c] 14, [d] day 21 and [e] day 28. Data is calculated as 

mean percentage sGAG loss to media for each treatment group and is plotted as the mean, max-

min (whiskers) + standard deviation (box) (n = 4 – 7 donor explants) [* p < 0.05]. 
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 Proteoglycan loss was not significantly affected by cytokine 
treatments in knee cartilage.  

 

The effect of cytokine treatments on sGAG loss from knee cartilage (combined medial 

and lateral femoral condyle tissue) was quantified as a mean cumulative percentage 

sGAG loss as a proportion of total sGAG content over the culture duration. Data from 

matched samples was analysed using a one-way ANOVA at each specific time point 

(Figure 3.9); however, there were no significant differences in the cumulative 

percentage sGAG loss to media in response to the different combinations of pro-

inflammatory cytokines (day 3: p=0.424 Figure 3.9a; week 1: p=0.555 Figure 3.9b; week 

2: p=0.744 Figure 3.9c; week 3: p=0.632 Figure 3.9d; week 4: p=0.625 Figure 3.9e). Tukey 

multiple comparator testing using adjusted p values was performed at all time points in 

order to compare untreated cartilage against tissue exposed to the various physiological 

and pathological concentrations of cytokine combinations. Surprisingly, cytokine 

treatment did not significantly influence sGAG loss at any time point relative to 

untreated tissue (p > 0.423). Furthermore, there was also no evidence of increased 

percentage sGAG loss following stimulation with pathological cytokine ‘high’ 

concentration compared to physiological cytokine ‘low’ concentration (p > 0.593).  
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Figure 3.9:  Mean cumulative percentage loss of sulphated glycosaminoglycans (sGAG) from 

knee cartilage cultured in the presence or absence of a combination of physiological, denoted 

‘low’ (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological concentrations of 

cytokines, denoted ‘high’ (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα) for 28 days; sGAG levels 

were measured at [a] day 3, [b] day 7, [c] 14, [d] day 21 and [e] day 28. Data is calculated as 

mean percentage sGAG loss to media for each treatment group and is plotted as the mean, max-

min (whiskers) + standard deviation (box) (n = 3 – 4 donor explants). 
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 Significantly more proteoglycan degeneration occurred in knee 
cartilage compared to ankle cartilage following treatment with 
100ng/ml TNFα 

 
Mean percentage sGAG loss (cumulative) from ankle and knee cartilage explants 

exposed to differing cytokine combinations/concentrations was then compared at each 

time point using a Two-way ANOVA (Figure 3.10). This statistical analysis allowed 

assessment of the percentage variance and significance that the joint of origin, cytokine 

treatment and interaction between these two factors had on sGAG loss during the 

culture period. Multiple comparison analysis with an adjusted p value was also 

undertaken using the Sidak’s multiple comparator method to identify any trends 

between different joints exposed to the same cytokine treatment.  

 

Overall variance between groups was significantly associated with the joint of origin at 

all time points analysed (day 3: p<0.0001 Figure 3.10a; week 1: p=0.0007 Figure 3.10b; 

week 2: p=0.001 Figure 3.10c; week 3: p<0.0001 Figure 3.10d; week 4: p<0.0001 Figure 

3.10e). Surprisingly, when analysed together, cytokine treatments were not found to be 

a significant cause of variation of the mean between groups at any time point (day 3 

3.7% p=0.549, week 1 6.4% p=0.300, week 2 3.6% p=0.766, week 3 2.5% p= 0.886 and 

week 4 2.0% p=0.929). Multiple comparison analysis did however demonstrate a 

significant increase in percentage sGAG loss from knee cartilage explants treated with 

high dose TNFα compared to ankle tissue (Figure 3.9). This significance was consistently 

observed at all time points analysed including day 3 (3.1% vs 9.3% p=0.043, Figure 

3.10a), week 1 (8.0% vs 18.9% p=0.042, Figure 3.10b), week 2 (11.0% vs 22.5% p=0.023, 

Figure 3.10c), week 3 (15.0% vs 31.2% p=0.031, Figure 3.10d) and week 4 (18.8% vs 

38.4% p=0.039, Figure 3.10e). Over time, it was evident that pathological ‘high’ TNFα 

concentration significantly induced sGAG loss from the knee cartilage relative to levels 

measured in the ankle tissue (Figure 3.11).  
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Figure 3.10 Mean cumulative percentage sulphated glycosaminoglycans (sGAG) loss from ankle 

and knee cartilage into the media following cytokine stimulation. Ankle cartilage (n=4) and knee 

cartilage (n=3) was either cultured ‘short term’ for 7 days or ‘long term’ extending out to 28 days 

(ankle n=3, knee n=4) in the presence or absence of a combination of physiological (100pg/ml 

IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological concentrations of cytokines (5ng/ml IL-1α, 

10ng/ml OSM, 100ng/ml TNFα); sGAG levels were measured at [a] day 3, [b] day 7, [c] 14, [d] 

day 21 and [e] day 28. Data is calculated as the mean cumulative percentage of total sGAG for 

each treatment group and is plotted as the mean, max-min (whiskers) + standard deviation (box) 

[* p < 0.05]. 
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Figure 3.11:  Effect of 100ng/ml TNFα, considered a pathological concentration, on percentage 

cumulative sulphated glycosaminoglycan loss from ankle (n = 4) and knee cartilage explants (n 

= 3) over a 28-day period. Data is presented as mean +/- standard deviation and significance 

assessed using a Two-way ANOVA [* p < 0.05]. 

 

 

 

 

 

 Importance of heterogeneity in articular cartilage response to 
cytokines: proteoglycan loss relative to individual patient analysis 

 
Due to the heterogenous response of patient tissue to cytokine treatments, data was 

further analysed as individual responses to determine whether a trend could be 

identified.  Individual ankle explants and individual knee explants cultured in each 

different combination of cytokine are displayed at all time points (Figure 3.12 – 3.13) 

to elicit whether there was a consistent individual patient response.  In order to 

demonstrate individual patient susceptibility to cytokine mediated degeneration, data 

from matched pairs of ankle and knee tissue from the same patient donor was further 

analysed (Figure 3.14). 
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 Response of donor-specific ankle cartilage to cytokine treatment 
 

Very little variation was observed between patients following culture of ankle cartilage 

explants in the absence of cytokines i.e. untreated (Figure 3.12a), while a consistent 

pattern was identified for all cytokine treatments (Figure 3.12b-g). Irrespective of the 

cytokine treatment, donor ankle 10 released the least sGAG to media during the 28 days 

of culture. Furthermore, donor ankle 10, 9 and 7 consistently released the least sGAG 

across all treatments, whilst sGAG loss was most evident in donor ankles 4, 5 and 8, 

indicating enhanced degradation of the cartilage matrix. The untreated cartilage 

explants demonstrated very little difference (4.22%) in sGAG loss between the different 

donor tissues after 28 days of culture (A10 - 26.20% and A8 - 30.42%; Figure 3.12a). In 

contrast, there was a greater variation in sGAG loss in response to specific cytokine 

treatments; for example, a difference of 16.58% was observed in ankle tissue subjected 

to pathophysiological ‘high’ concentration of IL-1α in combination with TNFα (ITH: A10 

- 14.85% and A8 - 31.43%; Figure 3.12g). In addition, a difference of 29.57% sGAG loss 

was detected in donor-specific ankle cartilage tissue in response to physiological ‘low’ 

concentrations of IL-1α in combination with TNFα (ITL: A10 - 17.2% and A8 - 46.77%; 

Figure 3.12e). Even greater differences between patient tissues may have been 

observed if longer-term culture i.e. extending the period to 28 days had been 

implemented for donor ankle A4, A5 and A6, as at day 7 there was already evidence of 

20% sGAG loss i.e. degradation, in response to the majority of cytokine treatments. For 

example, donor ankle 4 had already reached 40.65% loss of GAG when cultured in a 

pathophysiological ‘high’ concentration of IL-1α in combination with OSM (Figure 

3.12e), clearly demonstrating heterogeneity in the behaviour of the tissue towards 

cytokine stimulation.  
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Figure 3.12:  Mean cumulative percentage loss of sulphated glycosamingoglycans (sGAG) from 

individual donor-specific ankle cartilage explants cultured in the [a] absence (untreated) or 

presence of [b] 2ng/ml TNFα (TL), [c] 100ng/ml TNFα (TH), [d] 100pg/ml IL-1α & 200pg/ml OSM 

(IOL), [e] 5ng/ml IL-1α & 10ng/ml OSM (IOH), [f] 100pg/ml IL-1α & 2ng/ml TNFα (ITL), and [g]  

5ng/ml IL-1α & 100ng/ml TNFα (ITH) for < 28 days. sGAG levels were measured at day 3, day 7, 

day 14, day 21 and day 28. Data is calculated as mean percentage sGAG loss to media for each 

treatment group.  Data is representative of the mean of 3 explants for each donor.  
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 Response of donor-specific knee cartilage to cytokine treatment 
 
Less patient heterogeneity was observed across the individual knee samples, however, 

there remained little variation in mean sGAG loss for untreated explants (Figure 3.13a). 

Following 28 days of culture in the absence of cytokines the difference between the 

most catabolic specimen and least was only 14.9% (K3M 44.2% and K5M 29.3%). Once 

again, a consistent but less pronounced pattern was identified for all cytokine 

treatments (Figure 3.13b-g). For all cytokine treatments, Knee sample 4 and 5 released 

the lowest percentage sGAG to media during the 28 days of culture while Knee samples 

2 and 3 released the most. This pattern was most noticeable for explants cultured in 

high concentration of IL-1α and TNFα. Following 28 days of culture the difference in 

percentage sGAG loss between the least and most catabolic sample was 43.1% (K5M 

10.5% and K4M 53.6%).  
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Figure 3.13:  Mean cumulative percentage loss of sulphated glycosamingoglycans (sGAG) from 

individual donor-specific knee cartilage explants cultured in the [a] absence (untreated) or 

presence of [b] 2ng/ml TNFα (TL), [c] 100ng/ml TNFα (TH), [d] 100pg/ml IL-1α & 200pg/ml OSM 

(IOL), [e] 5ng/ml IL-1α & 10ng/ml OSM (IOH), [f] 100pg/ml IL-1α & 2ng/ml TNFα (ITL), and [g]  

5ng/ml IL-1α & 100ng/ml TNFα (ITH) for < 28 days. sGAG levels were measured at day 3, day 7, 

day 14, day 21 and day 28. Data is calculated as mean percentage sGAG loss to media for each 

treatment group.  Data is representative of the mean of 3 explants for each donor.  
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 Comparison of cytokine-mediated response of donor-specific matched 
ankle and knee cartilage  

 
Matched paired ankle and knee cartilage were collected from 3 donors: Patient B 

(Ankle 2 and Knee 1), Patient J (Ankle 9 and Knee 3), Patient K (Ankle 10 and Knee 4). 

Cartilage explants from Patient B were cultured for 7 days and explants from Patient J 

and Patient K underwent extended culture to 28 days. A Two-way ANOVA was used to 

identify any significant difference between the total percentage sGAG loss at 28 days 

from knee and ankle tissue from patients J and K (Figure 3.14).  

 

A Two-way ANOVA of the ankle samples (A9 and A10) demonstrated an overall 

significant difference in percentage loss of sGAG to media between donors (21.55% vs 

12.17%; p=0.027) indicative of patient heterogeneity but this difference is not 

significantly affected by cytokine treatments (p=0.931). Identical comparison 

performed on the knee cartilage explants (K4 and K5) also demonstrated a significance 

between donors (40.24% vs 31.75% p=0.001) and in this case also between cytokine 

treatment (p=0.005). In the knee, significant differences in proteoglycan loss are seen 

between the untreated tissue and the pathological ‘high’ dose cytokine treatments 

(Table 3.3).  Hence, what can clearly be observed is that more sGAG is lost from knee 

compared with ankle in response to increasing cytokine concentration and relative to 

untreated explants (untreated < physiological ‘low’ < pathological ‘high’.) Also, there is 

clear heterogeneity in donor cartilage behaviour with more overall sGAG lost from the 

explants by patient J for all cytokine treatments suggesting patient J is significantly 

more susceptible to the catabolic effect of pro-inflammatory cytokines (Figure 3.14). 
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Table 3.3: Sudak’s Multiple comparator test results with adjusted p values comparing 
percentage sGAG loss from the different joints after ‘short term’ culture for 7 days (n = 7) or 
‘long term’ culture extending out to 28 days (n = 4) in the presence or absence of a 
combination of physiological, denoted ‘low’ (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or 
pathological concentrations of cytokines, denoted ‘high’ (5ng/ml IL-1α, 10ng/ml OSM, 
100ng/ml TNFα). 
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Figure 3.14:  Total mean cumulative percentage loss of sulphated glycosaminoglycans (sGAG) 
from donor-specific matched paired ankle and knee cartilage explants cultured in the absence 
(untreated) or presence of 2ng/ml TNFα (TNFα low), 100ng/ml TNFα (TNFα High), 100pg/ml IL-
1α & 200pg/ml OSM (IL-1 and OSM Low), 5ng/ml IL-1α & 10ng/ml OSM (IL-1 and OSM High), 
100pg/ml IL-1α & 2ng/ml TNFα (IL-1 and TNFα Low), and 5ng/ml IL-1α & 100ng/ml TNFα (IL-1 
and TNFα High) for 28 days. sGAG levels were measured at day 3, day 7, day 14, day 21 and 
day 28, and data is calculated as a total mean percentage sGAG loss to media for each 
treatment group over the 28 days of culture. Data is representative of the mean of 3 explants 
for each donor [Samples A9 and K3 were donated by patient J (black) and samples A10 and K4 
were donated by patient K (grey)].  

Sidak's multiple comparisons test Untreated (%) Cytokine (%)  Adjusted P Value Significant? 

Untreated vs. TNFα Low 24.19 34.37 0.1095 No 

Untreated vs. TNFα High 24.19 40.99 0.0038 Yes 

Untreated vs. IL-1α and OSM Low 24.19 35.55 0.0610 No 

Untreated vs. IL-1α and OSM High 24.19 39.71 0.0073 Yes 

Untreated vs. IL-1α and TNFα Low 24.19 34.1 0.1244 No 

Untreated vs. IL-1α and TNFα High 24.19 43.06 0.0014 Yes 
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 Discussion  
 
The viscoelastic properties i.e. biomechanical functionality of articular cartilage is 

determined by the sGAG, type II collagen and water content. Ankle cartilage 

demonstrates improved wear characteristics due to the high level of sGAG and 

relatively low water content. The data presented in this Chapter confirms the 

conclusions of previous work by Keuttner et al (2005) that ankle cartilage has 

significantly higher sGAG levels when compared to the knee. The presented findings 

also demonstrated that in untreated cartilage i.e. in the absence of pro-inflammatory 

cytokines, that more sGAG was lost from the ankle tissue into the culture media than 

in the knee respectively; however, as a percentage sGAG loss to represent degree of 

degeneration, the loss of sGAG from the cartilage into media was greater in the knee 

than ankle. Interestingly, when LDH levels were analysed, almost twice as much LDH 

was produced by the ankle than the knee explants, although overall, levels were low 

indicating cell viability over the culture period. 

Surprisingly, when individual joints (either ankle or knee) were investigated 

independently, cytokine treatment did not significantly affect the percentage sGAG 

loss from the explants to the media relative to the untreated tissue. Furthermore, 

exposure to physiological ‘low’ or pathological ‘high’ concentrations of the respective 

cytokines also did not affect overall sGAG loss, compared to untreated tissue. This 

cannot have been attributed to cell death as LDH levels in ankle and knee explants 

showed no significant difference between the untreated and cytokine treated 

explants, or in response to increasing cytokine concentration over the culture period. 

This lack of perceived effect may be due to the sizeable loss of sGAG into the media of 

untreated cartilage which was unexpected; this result could be attributed to the fact 

that it is not experiencing any load over the 28-day culture period, as it is well reported 

that articular cartilage relies on a mechanical stimulus to maintain tissue homeostasis 

(Sophia Fox et al., 2009) . However, what is evident is the differential response 

according to joint of origin in how the tissue behaves.  
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Previous studies have reported that pro-inflammatory cytokines increase tissue 

degradation i.e. via breakdown of proteoglycan extracellular matrix (Fernandes et al., 

2002); however, in this study, when the data is averaged biological effects are lost due 

to donor heterogeneity. However, what is interesting is when knee and ankle cartilage 

explants are directly compared following pathological ‘high’ TNFα treatment there 

seems to be a degree of ‘chondroprotection’ in the ankle, in that the tissue does not 

respond to the cytokine stimulus, while there is increased sGAG loss from the knee 

tissue. This differential response to TNFα results in a significant difference in 

proteoglycan loss/matrix degeneration between the ankle and knee cartilage which 

remains significant at all individual time points analysed hence diverging over time. It 

may be that the set point at which ankle and knee cartilage produces a catabolic 

response to TNFα is very different and therefore at the concentrations assessed in this 

thesis, the ankle is less responsive i.e. limited proteoglycan degradation and is thus 

resistant to this pro-inflammatory insult. This would confirm the study of Keuttner and 

Cole (2005) who demonstrated that there was a differential response between these 

joint tissues in how they react to pro-inflammatory IL-1 and demonstrated tissues can 

shift between anabolic and catabolic states depending on the cytokine concentration 

they are exposed to. 

As previously mentioned, there was a high degree of heterogeneity in the catabolic 

response observed between patients, hence data was presented as individual donors 

to more finely analyse the extent of sGAG loss. The extent of sGAG lost to media from 

the untreated ankle cartilage was very similar with only an approximate 4% difference 

between the range of responses. Much greater differences were observed for the 

cytokine treated explants with an almost 30% difference in sGAG loss across the donor 

responses. These was a consistent pattern whereby several donors were less 

responsive to cytokines, with others releasing more sGAG loss over the culture period. 

A similar but slightly less pronounced pattern of heterogeneity was observed across 

the knee cartilage with a differential degree of sGAG loss i.e. proteoglycan 

degradation. This donor-specific inflammatory response was further demonstrated 

when examining the matched pairs of knee and ankle tissue that had been collected 

from the same patient donors (above knee amputation). For both these patients the 
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overall percentage loss of sGAG was very similar but there was a differential 

susceptibility to inflammation which was found to be significant for all cytokine 

treatments, as well as a joint dependent susceptibility i.e. knee cartilage released 

consistently more sGAG than its matched ankle.  

The findings presented in this Chapter would concur with previous studies 

demonstrating a resistance to pro-inflammatory stimulus in the ankle compared to the 

knee (Eger et al., 2002). Future studies would require increasing the sample size and 

ideally acquiring more matched knee and ankle specimens to more fully investigate 

inherent differences in cartilage response to cytokines. Furthermore, the data 

demonstrated a considerable variability in the extent to which the cartilage reacted to 

an inflammatory insult. It is possible that differences observed between patient 

responses is related to their underlying medical conditions; however, significant 

patient specific proteoglycan loss was seen between patient J and K both of which 

were vasculopaths undergoing amputations for critical ischaemia ,with similar 

comorbidities, of similar age with identical joint degeneration scores (Table 3.1). If the 

patient’s medical condition was the main driver of resistance or susceptibility to 

cytokine induced degeneration, then one would have expected a non-vasculopath 

(patient L) to have been relatively cytokine naïve and undergone the most 

inflammation driven degeneration which was not observed. When individual joint 

degeneration was plotted for each cytokine treatment, explants from the lateral and 

medial side of the knee donated by patient L (Knee 5) underwent the least cytokine 

mediated degeneration. Both these findings would support the hypothesis that 

cytokine mediated degeneration is due to innate patient specific differences and not 

attributable to their underlying medical conditions.  

Patient Innate susceptibility to inflammation has previously been investigated in the 

context of polytrauma. Systemic Inflammatory Response Syndrome (SIRS) is an 

immune response following trauma or severe infections that results in excessive 

vascular permeability, extracellular fluid shift and in some patients acute lung and vital 

organ failure (Bone et al., 1992). SIRS is also associated with persistently elevated 

levels of serum cytokines including TNFα, IL-1, IL-6 and IL-8 (Jaffer et al., 2010). It is 

unclear why some patients develop life threatening complications from an 
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exaggerated and elongated inflammatory phase while others with the same injury 

burden or infectious load fully recover. It is theorised that individual patients may have 

an innate susceptibility or immunity to cytokine-mediated inflammation and tissue 

death. Differential regulation of proinflammatory genes such as TNFα and 

inflammatory pro-resolution genes encoding lipoxin and secretory leukocyte protease 

inhibitor (SLPI) have been heavily implicated (Barton, 2008). It is also felt that “genetic 

polymorphisms may influences the natural history of SIRS” (Jaffer et al., 2010) in 

particular those involving anti-inflammatory cytokines. The heterogenous patient 

response to cytokines, that were identified in this Chapter - particularly for knee 

articular cartilage, has also been noted in clinical trials of disease modifying 

osteoarthritis drugs such as anti-TNF adalimumab. Although preclinical work would 

suggest blocking TNFα in hand OA would prevent cartilage degeneration and pain this 

has not been demonstrated in large clinical trials, however subgroups within the 

patient cohort have had an excellent response (Verbruggen et al., 2012).  

In conclusion, it was found that both LDH and absolute amount of sGAG lost from the 

tissue were significantly elevated in the ankle compared to the knee. This is not 

surprising given it has previously been demonstrated that ankle proteoglycans (sGAGs) 

undergoes 2.1 times more turnover than knee tissue and ankle cartilage is significantly 

more metabolically active than knee cartilage (Kuettner and Cole, 2005).  To confirm 

this higher level of sGAG synthesis and more accurately assess metabolic status, [35S]-

sulphate radiolabelling could be performed to measure both synthesis and 

degradation of sGAGs in these joint cartilages. As a percentage of total sGAG, the ankle 

lost less and therefore could be described as undergoing less inflammation-induced 

degeneration.  

In the in vitro model of cytokine-induced cartilage degeneration, the loss of sGAG and 

LDH levels were all found to be cytokine independent with the notable exception of 

pathological ‘high’ concentration TNFα which induced significantly more sGAG loss in 

the knee compared to the ankle; this is suggestive of an innate ‘chondroprotection’ in 

the ankle, in contrast to the observed catabolic effect in the knee. Further 

investigation of pro-inflammatory mediators (nitric oxide and prostaglandin E2) within 

the cartilage may help to explain this behaviour further. Chapter findings have also 
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demonstrated a significant patient-specific susceptibility to inflammation. This 

heterogeneity may explain why cytokine-dependent degeneration was not 

conclusively demonstrated. It may also explain the surprisingly poor outcomes 

reported in clinical studies of anti-cytokine medications that may in fact be related to 

patient selection as opposed to a failure of the trial drug (Verbruggen et al., 2012).   

 

 

  Summary of Chapter Findings 
 
➢ Ankle cartilage has significantly higher sGAG levels when compared to the knee; 

furthermore, in the absence of pro-inflammatory cytokines, more sGAG was lost 

from the ankle tissue than in the knee respectively 

➢ As a percentage sGAG loss to represent degree of proteoglycan degeneration, 

more sGAG was lost from the knee relative to ankle cartilage  

➢ Following pathological ‘high’ TNFα treatment, there was increased sGAG loss from 

knee cartilage whereas ankle cartilage was less responsive, suggestive of a degree 

of ‘chondroprotection’ 

➢ Findings would support the hypothesis that cytokine mediated degeneration is due 

to innate patient specific differences and not attributable to their underlying 

medical conditions 
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Chapter 4  
 
 

Is the differential cartilage degeneration observed 

between the ankle and the knee due to 

differences in the expression and/or activity of 

molecules involved in catabolism?  
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 Introduction 
 

The data presented in Chapter 3 demonstrated that there is significantly more cartilage 

degeneration (determined by percentage sGAG loss) in the knee when compared to the 

ankle, despite a comparatively higher rate of cell death in the ankle tissue (raised LDH 

levels). This degeneration was observed to be cytokine independent apart from 

treatment with pathological ‘high’ TNFα (100ng/ml). Therefore, it has been 

hypothesised that the differential response of knee and ankle tissue to this high dose 

TNFα stimulation may be related to subtle, but inherent, chondroprotective 

mechanisms in the ankle and a more pronounced catabolic response in the knee. What 

remains to be determined is the mechanism by which this differential response could 

occur. It is known that cytokines induce ECM degeneration through a plethora of 

signalling pathways including stimulation of prostaglandin E2 (PGE2) and nitric oxide 

(NO) production, and upregulation of degenerative enzymes including the MMPs and 

aggrecanases (Kapoor et al., 2010).  

Nitric oxide (NO) has a complex role in the catabolic processes following an 

inflammatory insult(s) that leads to OA development and progression. NO upregulates 

the production of pro-inflammatory cytokines and is itself induced by IL-1 and TNFα via 

induction of the inducible nitric oxide synthase (iNOS) isoform in chondrocytes 

(Abramson, 2008). NO inhibits collagen type II synthesis, proteoglycan production, 

activates matrix metalloproteinases (MMPs) and induces chondrocyte apoptosis 

(Abramson, 2008). Chondrocytes in the superficial zone of articular cartilage have been 

shown to upregulate iNOS expression in response to pro-inflammatory cytokines such 

as IL-1 and TNFα; furthermore, iNOS knockout mice have been shown to be relatively 

resistant to OA (Melchiorri et al., 1998). Interestingly, NO in conjunction with elevated 

levels of IL-1 or TNFα acts synergistically to induce MMP-9 synthesis and activation in a 

dose dependant manner up to concentrations of 1mM NO. However, at higher 

concentrations, the combination of cytokine and NO inhibits MMP-9 activation via a 

cGMP dependent process. Following chondral damage ECM repair is mediated by NO 

produced by macrophages in a “biphasic and flux-dependent manner” (Ridnour et al., 

2007). It would make sense that as macrophages accumulate and release NO, 

inflammation occurs and ECM enzymatic debridement can occur however there must 
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be some limit to this to allow cell proliferation and ECM regeneration. Once a critical 

number of macrophages arrive NO exceeds a set cellular limit, in this case 1mM.  This 

inhibits the proteolytic enzymes and allows ECM production and cellular proliferation to 

occur. NO is also known to modulate PGE2 mediated inhibition of proteoglycan synthesis 

in cartilage chondrocytes, adding further complexity to this inflammatory cascade 

(Abramson, 2008).  There is however, increasing evidence that NO itself may be a less 

potent driver of degeneration than first believed. It may, be that NO is beneficial in the 

very early stages of OA (Hsu. et al., 2017) and that the balance between its degenerative 

and chondroprotective downstream redox derivatives are far more important (Clancy et 

al., 2004).  

PGE2 is a product of the breakdown of arachidonic acid via the cyclooxygenase 2 

pathway (COX-2) (Kojima et al., 2004). Normal human chondrocytes express COX-2 and 

produce PGE2 at low levels, however in the presence of IL-1 or TNFα this is significantly 

upregulated (Masuko-Hongo et al., 2004). PGE2 (0.1 - 10µM) stimulation of OA cartilage 

dose-dependently inhibited proteoglycan production and promoted collagen 

degeneration (Attur et al., 2008). This response was mediated via PGE2 induced 

activation of MMP-13 and ADAMTS-5, whilst MMP-1 expression was inhibited in a dose-

dependent manner. Therefore, PGE2, like NO, is able to exert either a catabolic or 

anabolic response on cartilage chondrocytes depending on its concentration (Attur et 

al., 2008).  

An important downstream target of these pro-inflammatory cascades is the MMPs, zinc 

dependant endopeptidases that digest the cartilage ECM. They are involved in 

homeostatic remodelling of articular cartilage, but, have also been heavily implicated in 

the pathogenesis of OA. Particular interest has been paid to MMP-1 (interstitial 

collagenase), MMP-2 (gelatinase A), MMP-9 (gelatinase B) and MMP-13 (collagenase 3) 

which have all been extensively implicated in degeneration of articular cartilage and 

onset/progression of OA pathology (Rose and Kooyman, 2016). MMP-13 is critical in 

initiating the degradation of cartilage collagen fibrils (Dahlberg et al., 2000) Following 

MMP-13 mediated cleavage of type II collagen, the gelatinases, namely MMP-2 and 

MMP-9 denature the collagen, contributing to its degradation and loss from the tissue. 

Interestingly, MMP-2 and MMP-9 cleave other targets, including growth factors, 

chemokines and cytokines, which results in the release of these ligands, which then have 
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the potential to activate other major signalling pathways, for example, those involved in 

inflammation and angiogenesis (Bauvois, 2012). A recent meta-analysis has confirmed 

that MMP-9 is significantly upregulated compared to MMP-2 in Caucasian patients with 

OA (Zeng et al., 2015), therefore cartilage with the highest ratio of MMP-9 to MMP-2 

synthesis/activation are likely to be undergoing the most degeneration.  

 

 Chapter Aims  
 

To address whether differences in the production of cytokine-induced pro-inflammatory 

molecules may, in part, explain the relative resistance of ankle cartilage to degeneration, 

this chapter aimed to investigate whether there was differential de novo synthesis of: 

• Downstream pro-inflammatory molecules including prostaglandin E2 and nitric 

oxide  

• Specific catabolic enzymes, namely, MMP-2 and MMP-9 expression and/or 

activation 

in human ankle and knee explants after stimulation in the presence or absence of 

physiological ‘low’ or pathological ‘high’ concentrations of IL-1, OSM and TNFα. 
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 Results 
 

 What effect do pro-inflammatory cytokines have on chondrocyte nitric 
oxide production and are these effects different in the ankle and knee?  

 

Levels of NO released from cytokine-treated cartilage explants into the media was 

measured using the Griess Assay, which indirectly measures NO as the stable end 

product nitrite; NO levels were compared between ankle and knee tissue at all time 

points during explant culture in order to investigate if there was a difference in the 

production of inflammatory mediators downstream from cytokine stimulation. Short-

term culture was performed on 4 joints (knee n=1, ankle n=3) with media extraction and 

replenishment at 3 days and termination at 7 days. Long-term culture was performed 

on 7 joints (knee n=3, ankle n=4) with removal and replenishment of treatments at day 

3, 7, 10, 14, 17, 21, 24 and termination at 28 days. All results were normalised to explant 

wet weight and NO levels are presented as µM/mg wet weight tissue.  

 

 

 Nitric Oxide production was not significantly induced by cytokine 
treatment in ankle  

 
The effect of cytokine treatment on NO production and release from ankle cartilage was 

analysed using a One-way ANOVA at each individual time point (Figure 4.1 a-e). Minimal 

amounts of NO were released by the ankle cartilage over the culture period. 

Approximately 1 – 2.5µM NO was detected in the media during the early phase at day 3 

(Figure 4.1a) increasing to approximately 5 - 7µM by day 28 (Figure 4.1e); however, 

there was no significant difference between cytokine treatment groups in cumulative 

mean NO production from the ankle cartilage (day 3 p=0.626, week 1 p=0.902, week 2 

p=0.993, week 3 p=0.898, week 4 p=0.877). Tukey multiple comparator testing using 

adjusted p values was performed at all time points in order to compare untreated 

against cytokine treated ankle tissue, and to also compare high concentration against 

low concentration cytokine treatments. However, cytokine treatment, irrespective of 

concentration, had no significant effect on NO production at any of the time points 

measured (p≥0.678).  



89 

 

 

Untre
ate

d

TNF
Low

TNF
Hig

h

IL
-1

 a
nd O

SM
 L

ow

IL
-1

 a
nd O

SM
 H

ig
h

IL
-1

 a
nd T

NF
Low

IL
-1

 a
nd T

NF
Hig

h

0

5

10

15

20

Ankle Day 3

Cytokine Treatment

N
O

 r
el

ea
se

d

(u
M

/m
g

 w
et

 w
ei

g
h

t 
ti

ss
u

e)

Untre
ate

d

TNF
Low

TNF
Hig

h

IL
-1

 a
nd O

SM
 L

ow

IL
-1

 a
nd O

SM
 H

ig
h

IL
-1

 a
nd T

NF
Low

IL
-1

 a
nd T

NF
Hig

h

0

5

10

15

20

Ankle Day 7

Cytokine Treatment

N
O

 r
el

ea
se

d

(u
M

/m
g

 w
et

 w
ei

g
h

t 
ti

ss
u

e)

Untre
ate

d

TNF
Low

TNF
Hig

h

IL
-1

 a
nd O

SM
 L

ow

IL
-1

 a
nd O

SM
 H

ig
h

IL
-1

 a
nd T

NF
Low

IL
-1

 a
nd T

NF
Hig

h

0

5

10

15

20

Ankle Day 14

Cytokine Treatment

N
O

 r
el

ea
se

d

(u
M

/m
g

 w
et

 w
ei

g
h

t 
ti

ss
u

e)

Untre
ate

d

TNF
Low

TNF
Hig

h

IL
-1

 a
nd O

SM
 L

ow

IL
-1

 a
nd O

SM
 H

ig
h

IL
-1

 a
nd T

NF
Low

IL
-1

 a
nd T

NF
Hig

h

0

5

10

15

20

Ankle Day 21

Cytokine Treatment

N
O

 r
el

ea
se

d

(u
M

/m
g

 w
et

 w
ei

g
h

t 
ti

ss
u

e)

Untre
ate

d

TNF
Low

TNF
Hig

h

IL
-1

 a
nd O

SM
 L

ow

IL
-1

 a
nd O

SM
 H

ig
h

IL
-1

 a
nd T

NF
Low

IL
-1

 a
nd T

NF
Hig

h

0

5

10

15

20

Ankle Day 28

Cytokine Treatment

N
O

 r
el

ea
se

d

(u
M

/m
g

 w
et

 w
ei

g
h

t 
ti

ss
u

e)

a b

c d

e

 
 
Figure 4.1. Levels of Nitric Oxide released from ankle cartilage into the media following cytokine stimulation, assessed 

as a marker of inflammation. Ankle cartilage was either cultured ‘short term’ for 7 days (n = 7) or ‘long term’ extending 

out to 28 days (n = 4) in the presence or absence of a combination of physiological (100pg/ml IL-1α, 200pg/ml OSM, 

2ng/ml TNFα) or pathological concentrations of cytokines (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα); NO levels 

were measured at [a] day 3, [b] day 7, [c] 14, [d] day 21 and [e] day 28. Data is calculated as mean cumulative NO 

(µM) per mg of wet weight tissue for each treatment group and is plotted as the mean, max-min (whiskers) + standard 

deviation (box). 
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 Nitric Oxide production was not significantly induced by cytokine 
treatment in knee cartilage 

 

Comparable analyses were performed to measure NO release from knee cartilage using 

a One-way ANOVA to determine the effect of cytokine treatment at each specific time 

point (Figure 4.2a-e). As observed for the ankle (Figure 4.1), minimal amounts of NO 

were measured during the culture period, however, unlike the ankle, there was 

generally a much greater level of variability in NO produced by chondrocytes exposed 

to cytokine stimulation (Figure 4.2a-e). Due to this greater variability, no significant 

differences were observed between cytokine treatment groups in cumulative mean NO 

levels (day 3 p=0.317, week 1 p=0.202, week 2 p=0.402, week 3 p=0.386, week 4 

p=0.302). Tukey multiple comparator testing using adjusted p values was again 

performed at each time point in order to compare untreated against cytokine treated 

knee tissue and to compare high against low cytokine concentrations. However, 

cytokine treatment, irrespective of concentration, had no significant effect on NO 

production at any of the time points measured (p=0.256 to >0.999).  
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Figure 4.2 Levels of Nitric Oxide released from knee cartilage into the media following cytokine 

stimulation, assessed as a marker of inflammation. Knee cartilage was either cultured ‘short 

term’ for 7 days (n = 4) or ‘long term’ extending out to 28 days (n = 3) in the presence or absence 

of a combination of physiological (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological 

concentrations of cytokines (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα); NO levels were 

measured at [a] day 3, [b] day 7, [c] 14, [d] day 21 and [e] day 28. Data is calculated as NO 

released uM/mg wet weight tissue for each treatment group and is plotted as the mean, max-

min (whiskers) + standard deviation (box). 
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 Nitric Oxide production was significantly higher in the ankle 
compared to the knee during the first week of culture  

 
Mean cumulative NO produced and released from the ankle and knee explants were 

compared at each specific time point using a Two-way ANOVA (Figure 4.3). This 

statistical test allowed assessment of the effect that the joint of origin and cytokine 

treatment had on NO levels produced by the respective tissues. Multiple comparison 

analysis with an adjusted p value was also undertaken using the Sidak’s multiple 

comparator method to see if individual cytokine treatments, particularly 100ng/ml 

TNFα, had affected the concentration of NO produced.  

 

Overall mean NO levels were not affected by cytokine treatments at any time point (day 

3 p=0.105, week 1 p=0.232, week 2 p=0.686, week 3 p=0.549, week 4 p=0.427).  

However, mean NO levels for all samples were significantly higher in the ankle 

(2.61µM/mg wet weight tissue) than the knee (1.40µM/mg wet weight tissue) at day 3 

(Figure 4.3a; p=0.003) and again at day 7 (Figure 4.3b: ankle - 5.12µM/mg wet weight 

tissue and 3.48µM/mg wet weight tissue; p=0.0447); after this point, no significant 

differences were seen during the remaining culture period (week 2 p=0.441, week 3 

p=0.820, week 4 p=0.979). Multiple comparison analysis failed to identify any significant 

differences in NO production between joints for any cytokine treatment (Day 3 p=0.938, 

Day 7 p=0.993, Week 2 p>0.999, Week 3 p>0.999, Week 4 p>0.999). Furthermore, NO 

production was not significantly altered in response to 100ng/ml TNFα across the 

different joint cartilages. 
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Figure 4.3 Levels of NO released from ankle and knee cartilage into the media following cytokine 

stimulation, assessed as a marker of inflammation. Ankle cartilage (n=4) and knee cartilage (n=3) 

was either cultured ‘short term’ for 7 days or ‘long term’ extending out to 28 days (ankle n=3, 

knee n=4) in the presence or absence of a combination of physiological (100pg/ml IL-1α, 

200pg/ml OSM, 2ng/ml TNFα) or pathological concentrations of cytokines (5ng/ml IL-1α, 

10ng/ml OSM, 100ng/ml TNFα); NO levels were measured at [a] day 3, [b] day 7, [c] 14, [d] day 

21 and [e] day 28. Data is calculated as the mean NO released µM/mg wet weight tissue for each 

treatment group and is plotted as the mean, max-min (whiskers) + standard deviation (box). 



94 

 

 

 Individual patient analysis 
Due to the not unsurprising heterogenous responses noted between different 

patients, which had previously been observed in Chapter 3, data was displayed as 

individual patient responses to see if a pattern could be identified (Figure 4.4 – 4.5). In 

order to ascertain individual patient susceptibility to cytokine induced NO production, 

data from matched donor pairs of ankle and knee tissue were also further analysed 

(Figure 4.6). 

 

 Individual analysis demonstrates a consistent pattern of patient 
specific Nitric Oxide production following cytokine stimulation in 
ankle tissue    

 

Very little variation in mean NO levels was observed between donors following culture 

in the absence of cytokines with approximately 5µM/mg wet weight tissue released by 

day 28 (Figure 4.4a). In contrast, the ankle tissue did produce more NO in response to 

cytokine treatment; typically, 8 – 10µM NO/mg wet weight tissue was observed after 

cytokine stimulation for 28 days. However, heterogeneity was again observed between 

donor tissues (Figure 4.4b-g) although a consistent pattern could be identified.  

Irrespective of cytokine treatment, donor ankle 10 produced the least NO during the 28 

days of culture; furthermore, donor ankles 9 and 8 also consistently produced the least 

NO per mg wet weight tissue reacting minimally to the cytokine insult. Interestingly, 

those donor ankles (ankles 7 and 4) that were only exposed to short-term culture 

released substantial amounts of NO in response to all cytokine treatments, typically 

increasing 4 – 5-fold by day 7; it would have been interesting to observe whether these 

increases were further perpetuated or would have plateaued over time. Donor ankle 6 

also consistently increased NO production increasing by approximately 2.5-fold by day 

28 in response to cytokine stimulus, although the concentration of cytokine did not 

appear to influence response. Overall, there was clear heterogeneity in the ankle tissue 

response to cytokines; for example, 100ng/ml TNFα elicited only 3.8µM NO/mg wet 

weight tissue from ankle 10 whilst inducing 10.28µM NO/mg wet weight tissue from 

ankle 4 (Figure 4.4c), and 5.45µM NO/mg wet weight tissue from ankle 10 compared 
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with 14.2µM NO/mg wet weight tissue in ankle 6 after stimulation with 5ng/ml IL-1α 

and 100ng/ml TNFα (Figure 4.4g). It is also apparent that the speed in which the ankle 

cartilage responds to the cytokines also differs between donor patients; for example, 

several react within 7 days by producing increased levels of NO, whereas others, which 

are less receptive, only appear to elicit a sizeable response 14 days after stimulation 

(particularly evident in Figure 4.4b - c). 
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Figure 4.4:  Mean cumulative NO production from individual donor-specific ankle cartilage 

explants cultured in the [a] absence (untreated) or presence of [b] 2ng/ml TNFα, [c] 100ng/ml 

TNFα), [d] 100pg/ml IL-1α & 200pg/ml OSM, [e] 5ng/ml IL-1α & 10ng/ml OSM, [f] 100pg/ml IL-

1α & 2ng/ml TNFα, and [g]  5ng/ml IL-1α & 100ng/ml TNFα for < 28 days. NO levels were 

measured at day 3, day 7, day 14, day 21 and day 28. Data is calculated as the mean NO released 

µM/mg wet weight tissue for each treatment group and is plotted as the mean of the 3 explants.  
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 Individual analysis demonstrates a consistent pattern of patient 
specific Nitric Oxide production following cytokine stimulation in 
knee tissue    

 

Again, there was very little variation in NO released from untreated donor knee cartilage 

ranging from, on average, 1.83 to 4.87µM/mg wet weight tissue (Figure 4.5a). However, 

there were much clearer patterns of behaviour in the knee cartilage in response to 

specific cytokines (Figure 4.5b-g). Irrespective of cytokine treatment, donor knees 4 and 

5 produced the least NO over the 28 days of culture whereas donor knees 2 and 3 

released the most. Due to the low numbers of non-diseased knees that were accessible 

during the study, explants were harvested from both the medial and lateral components 

of the femoral condyle and cultured separately. Interestingly, of the major responder 

i.e. donor patient 3, the lateral condylar cartilage reacted more to the cytokine insult 

with increased NO levels detected indicating ‘within joint’ heterogeneity also (Figure 

4.5b-g). Furthermore, of those responders, an apparent difference was observed 

between the physiological ‘low’ and pathological ‘high’ cytokine concentrations. For 

donor knee 3, an approximate 2-fold increase in NO release was observed in response 

to 100ng/ml TNFα (Figure 4.5c) compared to 2ng/ml TNFα (Figure 4.5b). Likewise, a 

concentration response was evident for donor knee 3 with a 2-fold increase in NO levels 

after exposure to 5ng/ml IL-1α & 100ng/ml TNFα (Figure 4.5g) relative to the lower 

concentration (Figure 4.5f). A comparison of NO levels in a non/low responder (donor 5, 

3.52 µM NO/mg wet weight tissue) relative to a strong responder (donor 3, 21.95 µM 

NO/mg wet weight tissue) indicated a 6-fold difference after 28 days of exposure to 

5ng/ml IL-1α & 100ng/ml TNFα (Figure 4.5g) demonstrating the marked heterogeneity 

within the population. Again, the major responders reacted quickly to cytokine insult 

within 7 days with levels plateauing thereafter, whereas the less responsive tissues 

slowly accumulated NO over a sustained period, akin to the observations for ankle 

cartilage (Figure 4.4). However, the magnitude of response was more pronounced in 

knee cartilage relative to the ankle tissue. 
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Figure 4.5:  Mean cumulative NO production from individual donor-specific knee cartilage 
explants (M – medial and L – lateral component) cultured in the [a] absence (untreated) or 
presence of [b] 2ng/ml TNFα, [c] 100ng/ml TNFα , [d] 100pg/ml IL-1α & 200pg/ml OSM, [e] 
5ng/ml IL-1α & 10ng/ml OSM, [f] 100pg/ml IL-1α & 2ng/ml TNFα, and [g]  5ng/ml IL-1α & 
100ng/ml TNFα for < 28 days. sGAG levels were measured at day 3, day 7, day 14, day 21 and 
day 28. Data is calculated as the mean NO released uM/mg wet weight tissue for each 
treatment group and is plotted as the mean of the 3 explants.  
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 Matched pairs of ankle and knee tissue demonstrate a consistent 
patient specific production of Nitric Oxide in response to cytokine 
stimulation 

 
Matched paired ankle and knee cartilage explants were harvested from 2 donors: 

Patient J (Ankle 9 and Knee 3) and Patient K (Ankle 10 and Knee 4) which underwent 

extended culture to 28 days. A Two-way ANOVA was used to identify any significant 

joint of origin and/or cytokine dependent differences in the total NO concentration 

measured over 28 days (Figure 4.6).  Surprisingly, there was a similar amount of NO 

released from both the untreated ankle and knee across the 2 donor tissues, however 

the heterogeneity was observed in response to cytokine treatment. Donor ankles (A9 

and A10) demonstrated an overall significant difference in NO production between 

patients (p=0.0009) as well as between cytokine treatments (p=0.0062) (table 4.1).  

Identical comparison performed on the knee cartilage (K4 and K5) also demonstrated a 

significance between patients (p<0.0001) and between cytokine treatments (p=0.008) 

(Table 4.1). When patient J (A9 and K3) was compared with patient K (A10 and K4) less 

NO was produced by patient K (p<0.0001) for all cytokine treatments and there was 

also a significant difference in response to cytokines (p=0.0017). However, multiple 

comparison analysis demonstrated no significant difference between high and low 

concentration treatments for either patient (p≥0.5393). Clearly, the data confirms a 

significant heterogenous response of donor cartilages to all cytokines.  
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Table 4.1: Sudak’s Multiple comparator test results with adjusted p values comparing mean 
NO production from the Ankle 9 and 10 or from Knee 3 and 4 in the presence or absence of a 
combination of physiological, denoted ‘low’ ((100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or 
pathological concentrations of cytokines, denoted ‘high’ (5ng/ml IL-1α, 10ng/ml OSM, 
100ng/ml TNFα). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sidak's multiple  
comparisons test 

Untreated 
 (Mean NO uM/mg) 

Cytokine  
(Mean NO uM/mg) Significant? 

Adjusted  
P Value 

Ankle 9 and Ankle 10         

Untreated vs. TNFα Low 3.50 7.20 Yes 0.0328 

Untreated vs. TNFα High 3.50 6.66 No 0.0707 

Untreated vs. IL-1α and 
OSM Low 3.50 7.89 Yes 0.0135 

Untreated vs. IL-1α and 
OSM High 3.50 8.14 Yes 0.0101 

Untreated vs. IL-1α and 
TNFα Low 3.50 7.06 Yes 0.0398 

Untreated vs. IL-1α and 
TNFα High 3.50 6.81 No 0.0563 

Knee 3 and Knee 4         

Untreated vs. TNFα Low 3.38 6.02 No 0.3038 

Untreated vs. TNFα High 3.38 7.65 Yes 0.0131 

Untreated vs. IL-1α and 
OSM Low 3.38 6.61 No 0.1020 

Untreated vs. IL-1α and 
OSM High 3.38 6.65 No 0.0939 

Untreated vs. IL-1α and 
TNFα Low 3.38 7.08 Yes 0.0406 

Untreated vs. IL-1α and 
TNFα High 3.38 9.84 Yes 0.0002 



101 

 

 
 
 

U
ntr

ea
te

d

TN
Fa 

Low

TN
Fa 

H
ig

h

IL
-1

 a
nd O

SM
 L

ow

IL
-1

 a
nd O

SM
 H

ig
h

IL
-1

 a
nd T

N
Fa 

Low

IL
-1

 a
nd T

N
Fa 

H
ig

h

0

5

10

15

20

Cytokine Treatment

N
O

 r
e
le

a
s
e
d

(u
M

/m
g

 w
e

t 
w

e
ig

h
t 

ti
s
s

u
e
)

A10

K3

A9

K4

  
 

 
 
Figure 4.6:  Total mean cumulative NO production from donor-specific matched pair ankle and 
knee cartilage explants cultured in the absence (untreated) or presence of 2ng/ml TNFα (TNFα 
low), 100ng/ml TNFα (TNFα High), 100pg/ml IL-1α & 200pg/ml OSM (IL-1 and OSM Low), 
5ng/ml IL-1α & 10ng/ml OSM (IL-1 and OSM High), 100pg/ml IL-1α & 2ng/ml TNFα (IL-1 and 
TNFα Low), and 5ng/ml IL-1α & 100ng/ml TNFα (IL-1 and TNFα High) for 28 days. NO levels 
were measured at day 3, day 7, day 14, day 21 and day 28, for each treatment group over the 
28 days of culture. Data is representative of the mean (±SD) of 3 explants for each donor 
[Samples A9 and K3 were donated by patient J (black) and samples A10 and K4 were donated 
by patient K (grey)].  
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 What effect do pro-inflammatory cytokines have on chondrocyte 
prostaglandin E2 production and are these effects different in the 
ankle and knee?  

 

Levels of PGE2 released from ankle and knee articular cartilage explants in the absence 

or presence of a combination of cytokines was measured using a PGE2 high sensitivity 

ELISA. Mean cumulative PGE2 levels were compared between the matched donor pairs 

of ankle and knee tissue (from patient J [ankle 9 and medial condyle from Knee 3] and 

patient K [ankle 10 and medial condyle Knee 4]) during the early phases of cytokine 

insult, namely at days 3 and day 7 and during the later stage of exposure at day 28 in 

order to investigate if there was a difference in the production of inflammatory 

mediators downstream from cytokine stimulation. All results were normalised to 

explant wet weight and mean cumulative PGE2 levels are presented as pg/mg wet 

weight tissue.  

 

 Prostaglandin E2 production was not significantly induced by cytokine 
treatment in ankle cartilage 

 

To assess the effect of cytokine treatment on PGE2 release from ankle cartilage, data 

was analysed with a One-way ANOVA at the three specific time points (Figure 4.7a-c); 

however, no significant difference in cumulative mean PGE2 production was observed 

between cytokine treatment groups at either the early (Figure 4.7a – b; day 3 p=0.250, 

week 1 p=0.323) or late stage (Figure 4.7c - week 4 p=0.344). Tukey multiple comparator 

testing using adjusted p values was performed at all three time points in order to 

compare response of untreated cartilage explants against cytokine treated tissue, in 

addition to comparing high versus low concentration treatments. No significant 

difference was seen at any time point between the untreated and any cytokine stimulus, 

or between high and low concentration treatments (p≥0.188).  
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Figure 4.7 Levels of PGE2 released from ankle cartilage into the media following cytokine 

stimulation, assessed as a marker of inflammation. Ankle (n=2) and knee cartilage (n=2) were 

cultured in the presence or absence of a combination of physiological (100pg/ml IL-1α, 200pg/ml 

OSM, 2ng/ml TNFα) or pathological concentrations of cytokines (5ng/ml IL-1α, 10ng/ml OSM, 

100ng/ml TNFα); PGE2 levels were measured at [a] day 3, [b] day 7, and [c] day 28. Data is 

calculated as the mean cumulative PGE2 pg/mg wet weight tissue for each treatment group and 

is plotted as the mean, max-min (whiskers) + standard deviation (box). 
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 Prostaglandin E2 production was significantly induced by cytokine 
treatment in knee cartilage 

 
To assess the effect of cytokine treatment on PGE2 release from the donor matched knee 

cartilage, data was analysed using a One-way ANOVA at the three specific time points 

representative of either an early or late phase of cytokine insult (Figure 4.8a-c); in 

contrast to the ankle (Figure 4.7), significant differences were observed in mean 

cumulative PGE2 production between cytokine treatment groups at day 3 (Figure 4.8a, 

p=0.005), day 7 (Figure 4.8b, p=0.013) and day 28 (Figure 4.8a, p=0.033). Tukey multiple 

comparator testing using adjusted p values was performed at all three time points in 

order to compare untreated versus cytokine treated explants, and to further compare 

high versus low cytokine concentrations. A cytokine dose-dependent effect on PGE2 

synthesis was not observed at any time point (p≥0.236). However, when compared to 

untreated explants, significantly more PGE2 was produced by knee tissue treated with 

pathological ‘high’ concentration of IL-1α and TNFα at day 3 (29.75pg/mg vs 101.4pg/mg 

wet weight tissue; p=0.005), day 7 (52.13pg/mg vs 108.7pg/mg wet weight tissue; 

p=0.0145) and day 28 (68.88pg/mg vs 220.90pg/mg wet weight tissue; p=0.0165). 

Interestingly, significantly more PGE2 was also released after 28 days from knee cartilage 

treated solely with pathologically ‘high’ (100ng/ml) TNFα (68.88pg/mg vs 183.4pg/mg 

wet weight tissue; p=0.0471).  
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Figure 4.8 Levels of PGE2 released from knee cartilage into the media following cytokine 

stimulation, assessed as a marker of inflammation. Knee samples (n=2) were cultured in the 

presence or absence of a combination of physiological (100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml 

TNFα) or pathological concentrations of cytokines (5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml 

TNFα); PGE2 levels were measured at [a] day 3, [b] day 7 and [c] day 28. Data is calculated as 

the mean cumulative PGE2 pg/mg of wet tissue for each treatment group and is plotted as the 

mean, max-min (whiskers) + standard deviation (box). 
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 Significantly more PGE2 was produced by the knee than the ankle 
tissue following treatment with 100ng/ml TNFα 

 
Mean cumulative PGE2 synthesised and released from the cytokine-stimulated ankle and 

knee cartilage explants were compared at each time point using a Two-way ANOVA, 

allowing assessment of the effect that the joint of origin and cytokine treatment had on 

cartilage-specific PGE2 production (Figure 4.9). Multiple comparison analysis with an 

adjusted p value was also undertaken using the Sidak’s multiple comparator method to 

see if individual cytokine treatments, particularly 100ng/ml TNFα, affected the 

concentration of PGE2 produced.  

What was evident was the increased amounts of PGE2 produced by the knee cartilage 

when compared to the ankle. Significantly more PGE2 was produced by the knee 

cartilage compared to ankle cartilage at day 3 (Figure 4.9a, 32.79pg/mg vs 64.90pg/mg 

wet weight tissue; p<0.0001), day 7 (Figure 4.9b, 59.91pg/mg vs 111.20pg/mg wet 

weight tissue; p<0.0001) and day 28 (Figure 4.9c, 82.62pg/mg vs 149.20pg/mg wet 

weight tissue; p<0.0001).  

Overall, mean PGE2 levels were significantly influenced by cytokine treatments at all 

time points (day 3 p=0.0207, Day 7 p=0.0391 and day 28 p=0.0461). Specifically, multiple 

comparison analysis demonstrated a significant difference in mean cumulative PGE2 

production between joints with increased synthesis in knee cartilage in response to 

100ng/ml TNFα at day 3 (Figure 4.9a, 7.03pg/mg vs 67.38pg/mg; p=0.0387), day 7 

(Figure 4.9b, 37.14pg/mg vs 127.90pg/mg; p=0.0476) and day 28 (Figure 4.9c, 

51.35pg/mg vs 178.40pg/mg; p=0.0461).  
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Figure 4.9 Levels of PGE2 released from knee and ankle cartilage into the media following 

cytokine stimulation, assessed as a marker of inflammation. Ankle cartilage (n=2) and Knee 

samples (n=2) were cultured in the presence or absence of a combination of physiological 

(100pg/ml IL-1α, 200pg/ml OSM, 2ng/ml TNFα) or pathological concentrations of cytokines 

(5ng/ml IL-1α, 10ng/ml OSM, 100ng/ml TNFα); PGE2 levels were measured at [a] day 3, [b] day 

7 and [c] day 28. Data is calculated as the mean cumulative PGE2 pg/mg of wet tissue for each 

treatment group and is plotted as the mean, max-min (whiskers) + standard deviation (box). 
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 Matched donor pairs of ankle and knee tissue demonstrate a 
consistent patient specific production of PGE2 in response to cytokine 
stimulation 

 
To determine whether the response of the joint of origin was comparable across donor 

tissues, cartilage explants harvested from patient J (A9 and K3M) were compared to 

explants from patient K (A10 and K4M) and PGE2 levels measured (Figure 4.10a, c, e). 

Analysis of ankle tissue (A9 and A10) demonstrated a significant difference between 

patients; donor ankle 9 produced significantly more PGE2 compared to donor ankle 10 

at day 3 (Figure 4.10a, 50.40pg/mg vs 16.94pg/mg wet weight tissue; p<0.0001), day 7 

(Figure 4.10c, 70.56pg/mg vs 42.54pg/mg wet weight tissue; p=0.0016) and day 28 

(Figure 4.10e, 101.40pg/mg vs 67.44pg/mg wet weight tissue; p=0.0282). However, 

cytokine treatment did not account for the difference in PGE2 production between 

ankle cartilages (day 3 p=0.401, day 7 p=0.125 and day 28 p=0.286). 

In contrast, comparison of PGE2 levels in knee cartilage between K3M and K4M 

demonstrated no difference between patients at day 3 (Figure 4.10a, 68.08pg/mg vs 

56.98pg/mg wet weight tissue; p=0.2421), day 7 (Figure 4.10c, 102.30pg/mg vs 105.60 

pg/mg wet weight tissue; p=0.8458) or day 28 (Figure 4.10e, 133.70pg/mg vs 

139.50pg/mg wet weight tissue; p=0.8108). However, overall, there was a significant 

cytokine effect on PGE2 synthesis at day 3 (p=0.0059), day 7 (p=0.0395) and day 28 

(p=0.0447) (Table 4.2). These results would suggest that the production of PGE2 by 

knee cartilage is cytokine dependent while the ankle tissue is comparatively resistant 

to cytokines with respect to PGE2 induction.  
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Table 4.2: Dunnett’s Multiple comparator test results with adjusted p values comparing 
cumulative mean PGE2 production from Knee 3 and 4 at day 3, 7 and 28 in the presence or 
absence of a combination of physiological, denoted ‘low’ ((100pg/ml IL-1α, 200pg/ml OSM, 
2ng/ml TNFα) or pathological concentrations of cytokines, denoted ‘high’ (5ng/ml IL-1α, 
10ng/ml OSM, 100ng/ml TNFα).  

 

 

 

 

 

 

Culture 
Dunnett's multiple 
comparisons test 

Untreated 
(Cumulative Mean 
PGE2 pg/mg) 

Cytokine 
(Cumulative Mean 
PGE2 pg/mg) Significant? 

Adjusted P 
Value 

  
Untreated vs. TNFα 
Low 29.75 44.34 No 0.9031 

  
Untreated vs. TNFα 
High 29.75 67.38 No 0.1661 

Day 3 
Untreated vs. IL-1α 
and OSM Low 29.75 57.28 No 0.4324 

  
Untreated vs. IL-1α 
and OSM High 29.75 68.61 No 0.1453 

  
Untreated vs. IL-1α 
and TNFα Low 29.75 85.6 Yes 0.0170 

  
Untreated vs. IL-1α 
and TNFα High 29.75 101.4 Yes 0.0016 

  
Untreated vs. TNFα 
Low 52.13 68.82 No 0.9814 

  
Untreated vs. TNFα 
High 52.13 111.3 No 0.2100 

Day 7 
Untreated vs. IL-1α 
and OSM Low 52.13 106.1 No 0.2845 

  
Untreated vs. IL-1α 
and OSM High 52.13 108.7 No 0.2455 

  
Untreated vs. IL-1α 
and TNFα Low 52.13 137.6 Yes 0.0324 

  
Untreated vs. IL-1α 
and TNFα High 52.13 160.3 Yes 0.0047 

  
Untreated vs. TNFα 
Low 68.88 117.3 No 0.7059 

  
Untreated vs. TNFα 
High 68.88 183.4 Yes 0.0471 

Day 28 
Untreated vs. IL-1α 
and OSM Low 68.88 145.8 No 0.2818 

  
Untreated vs. IL-1α 
and OSM High 68.88 141.8 No 0.3282 

  
Untreated vs. IL-1α 
and TNFα Low 68.88 171.5 No 0.0879 

  
Untreated vs. IL-1α 
and TNFα High 68.88 220.9 Yes 0.0052 
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PGE2 production between the two patients was also compared by combining data from 

the ankle and knee donors (Figure 4.10b, d, f). Mean cumulative data was analysed at 

day 3, day 7 and day 28 using a Two-way ANOVA and multiple comparisons performed 

using the Sidak’s multiple comparator method with adjusted p values. More PGE2 was 

consistently produced by patient J compared to patient K demonstrating similar trends 

to those observed for sGAG loss (Figure3.14) and NO production (Figure4.6). The 

difference in total PGE2 production was found to be significant between donors at day 

3 (Figure 4.10b, 60.48pg/mg vs 37.86pg/mg; p=0.025) but failed to reach statistical 

significance at day 7 (Figure 4.10d, 91.70pg/mg vs 75.00pg/mg; p=0.1601) and day 28 

(Figure 4.10f, 117.70pg/mg vs 104.70pg/mg; p=0.4075). Although there was a 

significant cytokine effect at all time points (day 3 p=0.0319, day 7 p=0.0247 and day 

28 p=0.0253), following multiple comparator analysis no individual cytokine treatment 

produced a significant effect on PGE2 synthesis between patients.   
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Figure 4.10 Mean cumulative PGE2 (pg/mg wet weight tissue) production by individual 
patients. Interleaved symbol graphs [a], [c] and [e] represent mean cumulative PGE2 + SD 
(whiskers) from Patient J (Black, A9 or K3M) and Patient K (Grey, A10 or K4) presented as 
separate joints. Box Plot graphs [b], [d] and [f] represents combined ankle and knee results 
and are displayed as either patient. Patient J (Black A9 combined with K3M) and Patient K 
(Grey A10 combined with K4M).  [a] and [b] mean PGE2 at Day 3, [c] and [d] mean cumulative 
PGE2 at day 7, [e] and [f] mean cumulative PGE2 at day 28. [Individual patients results were 
plotted with ankle and knee data separated [a,c,e] and with ankle and knee data combined 
[b,d,f] in order to identify trends between matched pairs or joints and between patients].  
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 What effect do pro-inflammatory cytokines have on chondrocyte 
gelatinase matrix metalloproteinase (MMP-2 and 9) 
expression/activation and is there a differential response in the ankle 
and knee?  

 

Expression and activation status of the gelatinases, MMP-2 and MMP-9 in cytokine-

treated ankle and knee cartilage explants was measured using gelatin substrate 

zymography (Figure 4.11). Qualitative assessment comparing ankle and knee tissue from 

patient K (Ankle 10 and Knee 4 medial femoral condyle) was undertaken at day 3, 7, 14, 

21 and 28 of culture in order to investigate the relative ratio of MMP-9 to MMP-2, as it 

has previously been reported that a high ratio of MMP-9 to MMP-2 is suggestive of 

ongoing extracellular matrix degeneration as observed in OA (Zeng et al., 2015). 

Furthermore, the ratio of inactive proMMP-9 compared to the active form of MMP-9 

was also assessed. MMP-9 is activated in vivo by MMP-3 which cleaves the pro-peptide 

from the heavier 92kDa pro MMP-9 molecule producing active MMP-9 enzyme with a 

molecular weight of 82kDa. All media samples were normalised to the explant wet 

weights prior to electrophoresis in order that direct visual comparison could be made 

between treatments.  

 

 MMP-9 is induced in knee and not ankle cartilage in response to 
100ng/ml TNFα and 5ng/ml IL-1α with 100ng/ml TNFα 

 
Analysis of the zymograms containing media samples collected from cytokine exposure 

of the matched pair ankle and knee (patient K) illustrated that there was little to no 

active MMP-9 or pro-MMP-9 released from any of the ankle samples during the 28 

days of culture (Figure 4.11). An MMP-9 standard loaded onto the gels was detected 

indicating the lack of MMP-9 in the samples reflected the tissue’s activity. Although 

initially at very low levels, pro- and active MMP-2 was observed in the ankle samples 

throughout, consistent with its known constitutive expression. This is in stark 

comparison to the knee samples where substantially more MMP-9 in both the inactive 

proenzyme and active enzyme forms was detected on all gels from knee cartilage 

explants stimulated with either pathologically ‘high’ 100ng/ml TNFα in isolation or in 

conjunction with 5ng/ml IL-1α (with 100ng/ml TNFα). This upregulation of pro- and 

active MMP-9 can be seen from day 3 and continues all the way to termination of the 
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culture period at day 28. Interestingly, as culture time progressed the pro-MMP-9 band 

intensity reduced concomitant with an increased intensity in the active MMP-9 band 

(Figure 4.11), suggesting a potential increase in degeneration over the culture period.  

   

 
 
 
Figure 4.11 Gel zymography of matched ankle and knee tissue from patient K (A10 and K4M). 
Images presented for quantitative assessment of the ratio of MMP-2 to MMP-9 as a marker of 
enzyme induced degeneration. Talar dome and knee medial femoral condyle were cultured in 
the absence (U) or presence of 2ng/ml TNFα (TL), 100ng/ml TNFα (TH), 100pg/ml IL-1α & 
200pg/ml OSM (IOL),  5ng/ml IL-1α & 10ng/ml OSM (IOH), 100pg/ml IL-1α & 2ng/ml TNFα 
(ITL), and 5ng/ml IL-1α & 100ng/ml TNFα (ITH) for 28 days with media extracted and tested at 
day 3, 7, 14, 21, and 28 (n = 4). All samples were compared to 5µl of MMP-2 and MMP-9 
standard (STD) (section 2.4).  
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 Discussion  
 
The balance of anabolic and catabolic responses in cartilage is complex, involving 

autocrine and paracrine responses of chondrocytes to cytokines, NO, prostaglandins 

and proteolytic enzymes including the MMPs and ADAMTSs. In this Chapter, the 

production of NO, PGE2 and the gelatinases (MMP-2 and MMP-9) were investigated. 

When the mean cumulative data of each joint were independently examined (either 

ankle or knee) NO production did not appear to be significantly influenced by cytokine 

treatment compared to the untreated control. However, when the mean cumulative 

data between the ankle and the knee were compared, there was a small but significant 

increase in NO production in the ankle compared to the knee for the first 7 days of 

culture. This small difference was however lost after day 7. Ankle chondrocytes are 

more metabolically active with higher turnover of ECM compared to knee 

chondrocytes (Kuettner and Cole, 2005) which may partly explain this short term 

significant difference. However, research into the role of NO in cartilage degeneration 

has suggested that NO itself may not be an ideal marker of pro-inflammatory 

degeneration. Adramson (2008) and Clancy et al (2004) suggested that NO was less 

important than the balance of anabolic and catabolic downstream redox derivatives 

that it produced. NO mediates upregulation of IL-1 and TNFα, MMPs and iNOS via the 

NK-ĸB pathway.  Previous evidence would suggest that NO redox derivatives may in 

fact antagonise one another in order to maintain cartilage homeostasis. The 

peroxynitrite derivative aids translocation of NK-ĸB into the nucleus of chondrocytes 

resulting in the upregulation of genes encoding cytokines, MMPs and pro-apoptotic 

molecules (Clancy et al., 2004).  In contrast, S-nitrocysteine  ethyl  ester  (SNCEE) 

another NO redox derivative does exactly the opposite by blocking NF-ĸB from 

entering the cell nucleus (Clancy et al., 2004). Therefore, to more clearly understand 

the reported importance of cytokine-induced NO production in cartilage degeneration, 

the relative levels of SNCEE and peroxynitrite would be useful to measure to 

determine whether the composition of these NO derivatives differ in the ankle and 

knee. This would provide further mechanistic insight into how the tissues might 

deviate in their responses. As seen with sGAG loss and LDH production, there is a 

consistent patient specific heterogeneity observed with NO production. The donor 
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ankles and knees that consistently produced the most NO in response to cytokines 

almost perfectly mirrored the patient specific pattern observed with sGAG loss and 

LDH production (Chapter 3).  

Levels of cytokine-induced PGE2 synthesis adds further weight to the hypothesis that 

differential degeneration between ankle and knee cartilage, reflecting the relative 

incidence of primary OA, may be mediated by pathologically ‘high’ levels of TNFα. 

Analysis of ankle cartilage exposed to cytokines revealed no significant overall effect 

on PGE2 production; however, it was interesting to note that in the 100ng/ml TNFα 

treated explants there was a trend towards less PGE2 being produced by the ‘high’ 

dose TNFα treatment when compared to untreated tissue. In contrast, overall 

production of PGE2 from the knee explants was significantly increased by stimulation 

with pathological ‘high’ levels of TNFα, both alone and in combination with IL-1α. 

When PGE2 production was directly compared between joints, half as much PGE2 was 

produced by the ankle than the knee concomitant with a significant increase in knee 

cartilage treated with ‘high’ TNFα. These data exactly mirror the results observed 

when assessing the other outcome measurements i.e. sGAG loss and NO production. In 

addition to this the patient specific response to inflammation reported in Chapter 3 

remained consistent with patient J producing significantly more PGE2 than patient K.  

Lopez-Armada and colleagues investigated the effect of TNFα and IL-1 on human 

femoral head chondrocytes in monolayer (Lopez-Armada et al., 2006). They found a 

differential response in chondrocyte death and NF-ĸB mediated degeneration between 

pro-apoptotic TNFα and the significantly less chondrotoxic IL-1. Interestingly, these 

differences were accentuated in the presence of PGE2 with significantly more pro-

apoptotic caspase enzymes being produced following TNFα stimulation at 100ng/ml 

(Lopez-Armada et al., 2006). Both IL-1 and TNFα have themselves been reported to 

increase PGE2 production (Kuhn et al., 2000), supporting the data presented in this 

Chapter identifying that pathologically ‘high’ TNFα induces PGE2 production in knee 

cartilage and that this synergistic relationship seems to result in an increase in 

degeneration; however, one of the novel findings in this Chapter is that the ankle 

cartilage is less susceptible to cytokine insult and does not respond by inducing PGE2 

synthesis, unlike that observed in the knee.  
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Matrix metalloproteinases in particular MMP 1, 2, 9 and 13 play an important role in 

OA by degrading cartilage extracellular matrix (Rose and Kooyman, 2016). In this 

Chapter, two gelatinases MMP-2 and MMP-9 were investigated to determine if ankle 

and knee exert differential MMP responses to pro-inflammatory cytokines, as evidence 

would suggest that an increased MMP-9 to MMP-2 ratio (Ben David et al., 2008) and 

increased activation of pro-MMP-9 are both markers of degeneration (Zeng et al., 

2015). The results suggested that there is little to no MMP-9 expression in the ankle 

tissue exposed to pro-inflammatory cytokine insult over the 28 days culture period; 

furthermore, activation of the zymogen was not observed in the ankle. This is not the 

case for the more prolific cytokine-responding knee tissue which demonstrated 

substantial increases in both pro and active MMP-9 in the media of all knee explants 

treated with pathological ‘high’ levels of TNFα. What is also evident is that as time 

progressed more pro MMP-9 was converted to the active MMP-9. Previous criticisms 

of this technique have highlighted the change in MMP-2 and MMP-9 levels with age 

(Takahashi et al., 2005), however given that both the knee and ankle cartilage was 

harvested from the same donor patient at the same time (during above knee surgical 

amputation) this is unlikely to affect the results obtained. Further quantification of the 

MMP levels by measuring band intensity by densitometry, or analysing samples using 

specific MMP-9 ELISAs (which can measure pro and active enzyme levels) along with 

increased sample size would however undoubtably be beneficial. Furthermore, 

quantification of pro and active MMP-13 levels would also be a valuable addition to 

better understand whether ankle cartilage is also more resistant to cytokine-induced 

collagenase expression. This could be conducted in parallel with measuring the extent 

of collagen degradation, using the hydroxyproline assay, to correlate collagen loss with 

MMP activity – a feature known to be critical in perpetuating OA progression (Wang et 

al., 2013). 

What is also remarkable is the consistent patient specific responses observed across all 

outcome measurements investigated. The same donor tissues that have been shown 

to undergo the most degeneration (Chapter 3 sGAG loss) also induced the greatest 

PGE2 synthesis making a link between these two processes highly likely, concurring 

with previous reports that PGE2 dose-dependently inhibited proteoglycan production 
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in OA cartilage (Attur et al., 2008). What remains unclear is why certain donor 

tissues/patients possess an innate resistance or susceptibility to pro-inflammatory 

cytokines and whether this difference is at a transcriptome, protein or structural level.    

In conclusion, this experimental chapter has validated earlier studies that indicated 

that the chondrocyte response to pro-inflammatory cytokines differed between knee 

and cartilage (Eger et al., 2002, Kuettner and Cole, 2005) by further extending the pro-

inflammatory molecules being assessed.  To the best of our knowledge, this is the first 

report demonstrating a significant differential response of knee and ankle cartilage to 

cytokine insult in the induction of pro-inflammatory mediators (NO and PGE2), in 

addition to the enhanced synthesis and activation of MMP-9 observed in knee 

cartilage only. This phenomenon was particularly pronounced when the cartilage was 

cultured with 100ng/ml TNFα alone or in combination with IL-1. It provides novel data 

on the largely resistant phenotype of the ankle cartilage in withstanding these cytokine 

insults, and might, in part, explain why primary ankle OA has a much lower incidence 

than knee OA.  

 
 

 Summary of Chapter Findings 

➢ This is the first report demonstrating a significant cytokine mediated induction 

of pro-inflammatory mediators NO and PGE2 in knee relative to ankle cartilage 

➢ Cytokine mediated induction of MMP-9 synthesis and activation was observed 

in knee cartilage only 

➢ Effects were particularly pronounced when the cartilage was cultured with 

100ng/ml TNFα alone or in combination with IL-1α 
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Chapter 5 
 
 
 

General Discussion 
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 Research Question 
 

Osteoarthritis (OA) is a debilitating disease that causes considerable pain and suffering 

to patients and has huge financial and socioeconomic costs to society. The National 

Institute of Health Care and Economics estimated that OA cost the UK £8.5 billion per 

year (NICE, 2015). A disease that was once felt to be inevitable ‘wear and tear’ of the 

joints that occurred with age is now understood to be a disorder of chronic inflammation 

and mechanical malalignment with multiple genetic and environmental influences 

(Sokolove and Lepus, 2013).  Treatment of a different musculoskeletal disorder, namely 

rheumatoid arthritis has been revolutionised over the last few decades with the advent 

of biological disease modifying anti-rheumatoid drugs (bDMARDs) such as Anakinra (IL-

1 receptor antagonist), Infliximab (anti-TNF) and Tocilizumab (IL-6 receptor blocker). 

These biological DMARDs have been so effective that observing severe rheumatoid 

affecting large joints has become a rarity in clinical practice (Kahlenberg and Fox, 2011). 

Sadly, despite extensive research and multiple promising targets, the same cannot be 

said for disease modifying osteoarthritis drugs (DMOADs).  

However, not all joints are affected by OA to the same extent; interestingly, the lifetime 

prevalence of knee OA is as high as 41% compared to only 4.4% in the ankle (Cushnaghan 

and Dieppe, 1991). Understanding why the ankle joint is largely protected from primary 

OA might provide mechanism(s) and/or therapeutic targets for alleviating the 

degeneration observed in the knee. Previous studies comparing ankle to knee articular 

cartilage found not only histological differences between the two joints but also 

differences in the biochemical composition, metabolic activity and dynamic stiffness 

(Eger et al., 2002, Kuettner and Cole, 2005) It is still largely unknown whether this 

inherent difference in biochemical composition or difference in biomechanical 

properties confers a level of protection to the ankle cartilage. However, what was most 

intriguing was the differing catabolic response of cartilage to pro-inflammatory IL-1 and 

fibronectin fragments. [35S]-sulphate was incorporated into sGAGs as a marker of 

proteoglycan synthesis following culture with IL-1 (Eger et al., 2002).  At pathologically 

‘high’ levels, suppression of proteoglycan production by 50% (IC50) occurred in the knee 

at a concentration 5 times lower than that observed in the ankle (11.8pg/ml compared 

to 56.1pg/ml) (Eger et al., 2002). The relative resistance of ankle tissue to pro-
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inflammatory mediated degeneration was even more prominent after an artificial 

cartilage injury was produced (Patwari et al., 2003). Patwari and colleagues (2003) 

compressed human donor ankle or knee cartilage in order to produce an injurious 

stimulus and cultured the explants in either 1ng/ml IL-1 or 100ng/ml TNFα. In the knee 

tissue they noted that the combination of injury and cytokine significantly increased 

proteoglycan loss by 35% (IL-1) and 54% (TNFα) compared to injury alone. When the 

same experiment was performed on ankle cartilage there was no increase in 

proteoglycan loss. These finding certainly go some way towards explaining the huge 

difference in prevalence between knee and ankle OA; furthermore unlike the knee, the 

vast majority of ankle OA only occurs after a significant injury resulting in mechanical 

malalignment (Saltzman et al., 2006).  

Hence, in this thesis, the ankle has been utilised as a ‘model of perfection’ against which 

to compare knee cartilage proteoglycan degeneration, chondrocyte death, generation 

of secondary inflammatory mediators and upregulation of matrix degrading proteases 

following stimulation with pro-inflammatory cytokines. Characterising the differing 

responses between the two joints will aid identification of potential therapeutic targets 

to prevent knee cartilage degeneration and may identify existing biological anti-cytokine 

treatments that can be used to treat knee OA.   

 

 Biochemical implications of data findings  
 

The results presented in this thesis are consistent with previous findings demonstrating 

that the ankle contains significantly more sGAGs per milligram of tissue than knee 

cartilage (Kuettner and Coles, 2005). There is also higher turnover of sGAG in the ankle 

than the knee resulting in more sGAG being lost to media during culture. Ankle aggrecan 

transcript levels are reported to be expressed at twice the level of that expressed in knee 

cartilage and may account for the increased sGAG content detected (Kuettner and Coles, 

2005). However, as a proportion of total sGAG, the ankle loses significantly less than the 

knee, meaning ankle cartilage undergoes less cytokine-mediated proteoglycan 

degeneration, in line with the observation that the ankle is more resistant to OA onset.  

An overall comparison suggested that sGAG loss was more pronounced in the knee i.e. 

more significant proteoglycan degradation, indicating that the joint of origin was central 
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to affecting the rate of degeneration. This lack of response in the ankle cartilage, 

irrespective of cytokine treatment, would suggest that the tissue has some degree of 

innate resistance to degeneration that is independent of cytokines; again, this finding 

supports the pre-existing idea that there are inherent differences between the two 

cartilages that confers protection in the ankle. In addition to this, there was an 

independent effect of pathologically ‘high’ TNFα which induced proteoglycan loss in the 

knee only; this is the first report of the chondroprotective behaviour of the ankle to 

TNFα insult, which has only previously been reported for IL-1 (Eger et al., 2002) and 

fibronectin fragments (Kang et al., 1998). The data would suggest that the ankle cartilage 

is much more refractory to damage than the knee cartilage. However, articular cartilage 

does not only comprise proteoglycans - both collagen composition and architecture are 

equally as critical for tissue functionality. Evidence suggests that collagen content does 

not alter between ankle and knee cartilage (Kuettner and Coles, 2005), hence it was not 

analysed in this thesis. However, the relative amounts and the types of collagen 

crosslinks found in these tissues would be interesting to compare, as these too can 

influence tissue functionality and could provide resistance to overt tissue degeneration. 

Cytokine-mediated downstream pro-inflammatory molecules i.e. NO and prostaglandin 

E2 synthesis followed an almost identical pattern as that detected for sGAG loss from 

the tissue as a cumulative response over 28 days in culture. Surprisingly, in the first 7 

days of stimulation, ankle cartilage produced significantly more NO than the knee, with 

no difference observed between joints thereafter. The evidence presented for the other 

outcome measurements would lead to the expectation that the ankle joint would 

produce less NO than the knee; however, this finding could be accounted for by the fact 

that NO has an important role in normal joint homeostasis and is not necessarily a 

marker of inflammation (Abramson, 2008). The interaction between nitric oxides’ redox 

derivatives: anabolic S-nitrocysteine  ethyl  ester  (SNCEE) and the catabolic peroxynitrite 

determines how NO levels affect degeneration (Clancy et al., 2004). Recent animal 

studies using a post meniscectomy rat model to reproduce early OA have also suggested 

that high NO levels may be chondroprotective in the first 2 weeks (Hsu. et al., 2017). Hsu 

and colleagues performed meniscectomies or sham procedures on rats and measured 

IL-1, TNFα and IL-6 in addition to NO levels for 14 days. They found significantly higher 
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levels of NO in the post meniscectomy rats than in the sham group, correlating with a 

reduction in IL-1, TNFα and IL-6 levels in the early OA group. They concluded that “nitric 

oxide plays a protective role in OA in the early stages” (Hsu. et al., 2017). This may 

therefore explain the initial observation of higher NO levels in the ankle joint, which may 

be mechanistically relevant in conferring resistance to cytokines. Thus, sustained 

elevation of NO levels, as observed in the knee, might then predispose the tissue to a 

more catabolic phenotype and tissue degeneration. 

Both NO and PGE2 production were significantly induced in knee cartilage exposed to 

100ng/ml TNFα, both alone and in combination with 5ng/ml IL-1 at each time point over 

the 28 days period. These findings are consistent with that of a previous study examining 

the response of monolayer OA knee chondrocytes exposed to 10ng/ml IL-1, in which a 

significant increase in PGE2 production was observed following only 24 hours of cytokine 

exposure (Masuko-Hongo et al., 2004). It is likely that this early increase in PGE2 

synthesis may be because the cells lacked an extensive ECM that may have slowed 

diffusion of the cytokines to the chondrocytes as observed in the ex vivo cartilage 

explants. Again, a comparison of knee versus ankle cartilage demonstrated a significant 

difference between the joint of origin and a TNFα-dependent induction of NO and PGE2 

synthesis – an effect that was noticeably absent in ankle cartilage. Patient-specific 

responses were also observed suggesting a donor cohort was more sensitive to cytokine 

insult and produced more downstream inflammatory mediators. Increased synthesis of 

these downstream molecules can then modify the catabolic and anabolic responses in 

chondrocytes, predisposing the tissue to degeneration, as evidenced in OA (Goldring 

and Berenbaum, 2004).  

Up-regulation of MMP-9 synthesis and activation observed in this study is also 

consistent with the other cytokine-mediated pro-inflammatory responses of the knee 

cartilage, as described above. Cytokine-induced expression and activation of MMP-9 in 

knee cartilage corroborates previous studies demonstrating its increased activity in 

human OA cartilage (Lipari and Gerbino, 2013) Activation of de novo synthesised pro-

MMP-9 was most markedly released from knee cartilage stimulated with pathologically 

‘high’ dose 100ng/ml TNFα, alone and in combination with 5ng/ml IL-1α over the culture 

period. TNFα-mediated induction of MMP-9 synthesis/activation has been previously 
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described as part of the mechanism that produces hypertrophic OA (extensive 

osteophyte formation). Subchondral bone has been shown to produce TNFα that acts 

on the chondrocyte to upregulate MMP-9 expression/activation and has a role in 

chondral dedifferentiation at the tidemark between bone and cartilage (Prasadam et al., 

2010, Chubinskaya et al., 1999), again suggesting a mechanism by which TNFα can elicit 

degenerative changes in the cartilage tissue. 

In contrast, pro and/or active MMP-9 enzymes were below the limit of detection in the 

ankle tissue at all time points analysed, once again suggesting the ankle is more resistant 

to degeneration. Reported analysis of MMP transcript expression profiles indicated that 

MMPs 1, -2, -13 and -14 were comparable between knee and ankle cartilage, however 

MMP-8 was below the limit of detection in ankle cartilage (Chubinskaya et al., 1999). 

However, this study did not investigate the expression of MMP-9 levels in these tissues, 

and there are no other published reports of MMP-9 expression in ankle cartilage. Hence, 

induction of MMP-9 activity in knee chondrocytes can result in extensive enzymatic 

damage to the matrix that the cells may not be able to repair, while the weaker response 

of the ankle chondrocytes may allow the cells to repair their matrix damage supporting 

a differential incidence in OA between these two joints. Other MMPs including MMP-13 

are critical for collagen degradation as observed in OA, so studies further characterising 

the transcriptional profile and enzyme activity status would be beneficial. To date, 

analysis of the ADAMTS ‘aggrecanase’ enzymes has not been compared between these 

tissues, and again this would be highly informative on elucidating potential mechanistic 

differences in tissue response. 

Experiments to assess cell viability by testing LDH levels demonstrated no specific 

cytokine effect which is contrary to the results of previous studies investigating caspase 

induced apoptosis (Lopez-Armada et al., 2006). Although low levels were detected 

overall, there was more LDH produced by the ankle than the knee explants. It was 

expected that the knee tissue would release more LDH reflecting a more degenerative 

phenotype, although it is recognised that degeneration is not reliant on cell death. There 

is some evidence to support the use of synovial fluid LDH levels as a marker for OA 

changes however this is now felt to be “non-specific and insensitive in early disease” 

(Hurter et al., 2005). This subtle increase in LDH release may have arisen as a result of 
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the unloaded nature of the cartilage tissue. Healthy cartilage requires cyclical loading to 

maintain normal homeostasis (Grodzinsky et al., 2000) and it is speculated that the 

denser packed ECM of the ankle tissue inhibited the diffusion of oxygen to the centre of 

the explants resulting in slightly more anaerobic metabolism. LDH levels also represent 

quite a crude assessment of cell dead. Further investigation with non-radioactive 

microscopic staining such as live/dead staining with ethidium homodimer 1, Thiazolyl 

blue tetrazolium bromide (MTT) or even LDH staining, have all been shown to be 

significantly more accurate and reproducible than Cytotox96 assays (Stoddart et al., 

2006)  and may help to clarify this in future studies.  

Identification of trends in the tissues’ responses was difficult to discern due to the overt 

heterogeneity in the behaviour of the human tissue. Several patient donors were much 

more ‘receptive’ to cytokine stimulation than others; furthermore, assessment of two 

sets of matched pairs of ankles and knees demonstrated that this susceptibility to 

degeneration was patient specific and not solely caused by differences in individual 

samples, further adding weight to the theory that patients have an innate susceptibility 

to inflammation driven degeneration. Individual patient analysis allowed heterogeneity 

to be accounted for but reduced statistical power. Despite this, a more predictable 

response to cytokines, that may have been lost when averaged across the knee samples, 

was observed e.g. untreated < physiological ‘low’ concentration < pathological ‘high’ 

concentration with a synergistic effect of IL-1 in combination with either TNFα or 

Oncostatin M. These findings are consistent with those reported by Barksby et al (2006) 

who demonstrated that human monolayer chondrocytes stimulated with 20pg/ml IL-1 

and 10ng/ml OSM increased MMP-1 mRNA expression (1.85 to 3.55 times increase) 

when cytokines were used in combination compared to individual cytokine treatments. 

Interestingly, they also noted a similar pattern of heterogeneity between their 4 

osteoarthritic patients (Barksby et al., 2006). Importantly, this pattern of degeneration 

(untreated < physiological ‘low’ concentration < pathological ‘high’ concentration) was 

not observed in the ankle cartilage, which was equally resistant to all cytokines, 

irrespective of concentration, even when patient heterogeneity was accounted for.  
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 Clinical implications of study findings 
 

The data presented in this thesis has demonstrated that (i) ankle cartilage is significantly 

less prone to cytokine-mediated degenerative effects than knee cartilage and (ii) knee 

cartilage is significantly affected by pathologically ‘high’ 100ng/ml TNFα. This differential 

response to high dose TNFα likely reflects the inherent chondroprotective behaviour of 

the ankle cartilage, whilst inducing degenerative effects in the knee. Furthermore, 

bimodal responses have been previously reported in other cell types following 

treatment with TNFα (van Kralingen et al., 2013) and there is also evidence to support 

the presence of both pro-inflammatory and anti-inflammatory cytokine receptors on the 

chondrocyte cell membrane (Tanaka M., 2003).  Interestingly, this significant differential 

response following 100ng/ml TNFα is reflected in several of the outcome 

measurements: increased PGE2 release concomitant with de novo MMP-9 synthesis and 

activation. It is currently unclear whether TNFα induced degeneration of knee cartilage 

may be mediated by or synergised by PGE2 resulting in MMP-9 activation, and further 

studies are warranted to investigate this as a potential mechanistic pathway.  

The findings presented in this thesis that knee cartilage is highly susceptible to 

pathologically ‘high’ TNFα and that this cytokine is heavily implicated in the initiation of 

OA is no surprise when the proposed mechanism of novel intra-articular orthobiological 

treatments such as platelet rich plasma (PRP) and Mesenchymal Stem Cell (MSC) 

injections is considered. Interestingly, at the start of 2019 the National Institute for 

Health and Care Excellence have, for the first time, recommended intra-articular 

injections of PRP as a treatment for knee OA.  The mechanism of action of this platelet 

rich serum is poorly understood but is speculated to combine the anti-inflammatory and 

anti-catabolic effect of a combination of vascular endothelial growth factor (VEGF), 

platelet-derived growth factor (PDGF), insulin-like growth factor (IGF)-1 and 

transforming growth factor (TGF)-β (Tong et al., 2017). Pre-clinical evidence has 

suggested that in chondrocytes primed with TNFα, concentrations of platelet derived 

growth factors in excess of 10% will actually inhibit ongoing production of TNFα, IL-1 and 

the downstream production of IL-6 (Tohidnezhad et al., 2017). It is therefore likely that 

the active component of PRP is PDGF, and that it acts by suppressing the autocrine effect 
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of TNFα on chondrocytes (Tohidnezhad et al., 2017). This is consistent with the findings 

presented in this thesis that TNFα plays a key role in proteoglycan degeneration.  

Also consistent with the thesis findings presented is the relative failure of PRP to 

improve pain and prevent disease progression in the ankle. Importantly, a recent 

systematic review of injectable treatments for ankle OA failed to demonstrate any 

benefit of PRP over corticosteroid or hyaluronic acid (Vannabouathong et al., 2018), 

suggestive that the mechanism(s) involved in ankle OA cartilage differs to the knee 

supporting the divergence in ankle cartilage behaviour observed in this thesis.  

Mesenchymal stem cells (MSCs) are also attracting much clinical interest for the 

treatment of OA. It was initially believed that these multipotent cells would be able to 

‘regrow’ cartilage. There is, however, limited evidence supporting MSCs’ capability to 

regenerate hyaline cartilage but there is evidence to suggest that they are able to 

modulate the inflammatory environment, protecting chondrocytes and down-

regulating inflammation in the synovium (van Buul et al., 2012). My hypothesis that 

TNFα is a significant driver of cartilage degeneration in the knee is supported by the 

study of Van Buul and colleagues (2012). The femoral canal of patients undergoing total 

hip replacement was aspirated to obtain bone marrow derived MSCs, while 

chondrocytes and synovial cells was obtained from clinical waste during total knee 

replacement and cultured. In the presence of TNFα stimulation, the MSCs showed 

reduced expression of IL-1, MMP-1, MMP-13 and COL2A1 transcripts while upregulating 

IL-1 antagonists in the cartilage and synovium. A beneficial reduction in NO and PGE2 

production via NF-ĸB inhibition was observed following MSC treatment, but only in the 

presence of TNFα. Mesenchymal stem cells migrate towards injured tissue in order to 

proliferate and aid tissue repair. They will produce anti-inflammatory effects in order to 

facilitate proliferation and repair but only in the presence of an inflammatory 

environment (Regmi et al., 2019). Currently no studies assessing the benefit of MSCs in 

ankle OA have been undertaken but the thesis findings would support the hypothesis 

that there might be limited benefit in this joint.   

The thesis findings demonstrated a huge amount of heterogeneity between patients’ 

responses to cytokines, over the 28 days culture period, where one donor patient’s knee 

cartilage specimens underwent 40% more proteoglycan loss than another donor patient 
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harvested from the same joint of origin. Most interesting, however, is the fact that this 

relative resistance or susceptibility to degeneration (percentage sGAG loss, MMP-9 

activation) and induction of downstream inflammatory mediators (NO and PGE2) was 

specific to that individual patient. This significant and consistent patient specific 

susceptibility to pro-inflammatory cytokines was observed across all experimental 

outcome measurements. The data presented would support the concept that there is a 

specific ‘inflammatory OA’ phenotype and that this phenotype is not directly related to 

the patients underlying medical conditions, age or sex.  

Patient innate susceptibility to inflammatory stimuli following trauma has been heavily 

investigated. Systemic inflammatory response syndrome (SIRS) is a life-threatening 

cascade of inflammatory mediators that occurs in some trauma patients following a 

major injury. The difficulty for trauma surgeons is identifying patients who can safely be 

operated on without initiation of a ‘second hit’ phenomenon and those that will 

deteriorate post-operatively. The second physiological hit of surgery causes some 

patients to initiate a “cytokine storm” which results in increased endovascular 

permeability, pyrexia and loss of fluid into the interstitial spaces (Bone et al., 1992). 

Clinically, this manifests as an acute lung injury followed by multi-organ failure and 

death. Despite extensive investigation into biomarkers like IL-6 and appropriate 

physiological parameters, to date, orthopaedic surgeons are still unable to reliably 

predict which patients will develop this propagated inflammatory response and which 

will not (Jaffer et al., 2010). Certainly, the same would seem to be true in OA 

pathogenesis. In clinical practice, often because of financial constraints associated with 

the National Health Service, the majority of patients attending clinics are those with end 

stage OA requiring joint replacement. However, there is increasing attention being paid 

to early intervention, reconstruction and regeneration as a method of reducing health 

spending and the burden for patients. This has led clinicians to postulate that there are 

separate osteoarthritic phenotypes that progress towards end stage OA or “joint failure” 

(Figure 5.1).  
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Figure 5.1 Osteoarthritic phenotypes and proposed treatments or therapeutic targets. Modified 
from a lecture and paper by Barr and Conaghan (Conaghan, 2013). 

 

These OA phenotypes (Figure 5.1) are often quite apparent to clinicians on a day to day 

basis. Bone-driven OA tends to occur in elderly male patients who rapidly develop 

deformities with joints that undergo extensive osteophytosis, traditionally referred to 

as hypertrophic OA. Cartilage driven arthritis often manifests early with a slowly 

progressive varus deformity at the knee in younger male patients. On arthroscopy, wear 

is often confined to a single knee compartment and resembles a polished concrete 

surface. These patients often do well if high tibial osteotomies or uni-compartmental 

knee replacements are performed. Post-traumatic OA follows a significant intra-

articular fracture or ligamentous injury in the knee. Inflammatory OA is often noted in 

female patients with raised body mass indices and is associated with extensive intra-

articular synovitis and recurrent effusions. These patients initially have a good response 

to intra-articular corticosteroid injections but tend to progress and require total joint 

replacements.  

Studies have confirmed that “inflammatory OA” has many similar features to 

rheumatoid OA, in particular extensive synovial inflammation associated with IL-17 

expression and a similar pattern of inflammatory cytokines to that detected in 
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autoimmune disease (Pasquali Ronchetti et al., 2001). It would therefore fit that certain 

biological anti-rheumatoid drugs, such as anti-TNF Adalimumab, may be beneficial in 

this group of patients. To date, no clinical study has assessed anti-TNF use in knee or 

ankle OA however, there has been a pilot study undertaken using this biologic agent in 

finger joint OA (Verbruggen et al., 2012). This study however failed to show a significant 

difference in pain but was extremely effective at reducing swelling in a subgroup of 

patients with the worst inflammatory symptoms. This thesis would support the ongoing 

investigation of anti-TNF drugs for treatments of knee OA, however patient 

heterogeneity should be considered. In order to demonstrate the maximum benefit, 

participants should be profiled to identify patients who are most susceptible to cytokine-

induced inflammation. I would agree that “OA trials would be more useful if they 

targeted a specific phenotype [as] any disease-modifying ability of an intervention in 

subgroups of trial populations might be diluted by the lack of efficacy in others”  (Van 

Spil et al., 2019).    

 

 Study limitations  
 

The main limitation of the study was the patient population from which the knee and 

ankle cartilage was harvested; most donors were vascular patients who were 

undergoing amputation for critical ischaemia. These patients, by the nature of their 

disease, will have elevated IL-1, IL-6 and TNFα levels (Fiotti et al., 1999). In a study 

looking to assess the response of cartilage to pro-inflammatory cytokines, the ideal 

sample population would be healthy patients with no established arthritis, however for 

obvious ethical reasons, this was not possible. Alternative sources were considered 

including use of intra-operative waste from knee and ankle replacements or arthrodesis 

procedures, however the cartilage samples retrieved were extremely worn and poor 

quality. In addition to this, ankle joint replacements are rarely performed, and 

arthrodesis is done arthroscopically making cartilage retrieval impossible. One knee 

joint was obtained from a patient undergoing an oncological amputation and the 

biochemical outcomes measured demonstrated that, despite being relatively cytokine 

naïve, this donor patient tissue was less responsive to cytokine-mediated effects. This 
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would fit with my hypothesis that susceptibility to inflammation driven degeneration is 

specific to that patient and not any underlying disease or co-morbidity. A direct 

comparison of vasculopaths with matched joints from the same patients was performed 

which should have eliminated any further unknown variables.  

A further limitation of the study was the relatively low number of knee cartilage 

specimens (5) versus ankle samples (10) and the relative low number of samples overall. 

All 29 patients (32 joints) that attended the University of Wales Hospital, Cardiff for non-

emergent amputations over a 2-year period were considered for enrolment in my study. 

The relatively low number of amputations is likely to represent the improved glycaemic 

control and effect of statins on peripheral vascular disease (Hsu et al., 2017). Further 

enrolment would have required a multicentre study or longer recruitment period which 

was not feasible over this project duration.   

Mechanical stimulation of the explants was absent in this cytokine-induced model of 

cartilage degeneration which may have artificially increased rates of proteoglycan loss, 

as it is well established that physiological levels of cyclical compression are required for 

normal cartilage homeostasis (Grodzinsky et al., 2000). This may have increased the 

percentage sGAG loss observed in the untreated explants making it higher than would 

be seen in vivo but as samples were being directly compared, it is unlikely to have made 

any difference to the overall conclusions drawn in this thesis. Lack of mechanical load 

may also have led to artificially elevated LDH levels as chondrocytes in the centre of the 

explant receive less oxygen due to lack of diffusion. Future experiments would ideally 

stimulate the ankle and knee cartilage with pro-inflammatory cytokines in the presence 

of a physiological and/or pathophysiological loading regimen to recapitulate the in vivo 

environment; this would allow further interrogation of the interplay of different OA 

causal factors in development of knee cartilage degeneration to enable comparison 

against the phenotypic behaviour of ankle cartilage.     
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 Future Directions 
 

This thesis has strongly implicated TNFα as a significant cause of proteoglycan loss and 

inducer of downstream molecules known to be involved in cartilage degeneration – a 

phenomena that was largely only observed in the knee compared to the ankle. Further 

work could focus on assessing dose dependant effects of TNFα in promoting knee 

cartilage degeneration and comparing to the response of ankle tissue to more clearly 

delineate differences in biochemical outcomes. This would help to confirm the 

hypothesised bimodal response of the knee cartilage to this cytokine, at what 

concentration a switch from an anabolic to catabolic effect is established, and whether 

this occurs in ankle cartilage. Also, a more accurate identification of a specific 

inflammatory OA phenotype would help to better define patient cohorts for future 

studies, thus establishing treatment populations for whom targeted biological agents 

are most likely to yield beneficial results. Elucidating differentially expressed genes in 

the knee and ankle of inflammatory OA patients may also unravel the pathophysiological 

mechanisms distinct to each joint, and new therapeutic target(s) established for the 

prevention of inflammatory OA. 

Future work would also aim to utilise next generation sequencing (RNAseq) to 

investigate transcriptome profiles of ankle and knee articular cartilage (Top 50 genes 

expressed Appendix 7.2). This series of experiments was performed as part of my thesis, 

however unfortunately the sequencing data obtained was of poor quality (for reasons 

outside of my control and related directly to the downstream processing and running of 

the RNA samples), therefore the differential expression of joint-specific genes could not 

be identified. To the best of my knowledge, transcript profiling of ankle versus knee 

cartilage has still not been performed, but would enable comparison of genes that are 

differentially expressed in one joint of origin over the other, to inform on how the ankle 

cartilage is largely resistant to primary OA. This information could then be utilised to 

determine whether any differences might translate to possible therapeutic targets for 

treatment of knee OA. 
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 Concluding remarks 
 
In conclusion, the data presented in this thesis has demonstrated that there are inherent 

differences in how ankle articular cartilage responds to pro-inflammatory cytokine insult 

when compared to knee cartilage. The work has further extended original studies 

indicating a level of protection conferred by ankle cartilage that is not observed in knee. 

Novel findings have identified that in the presence of cytokines, ankle cartilage 

chondrocytes do not synthesise significant levels of NO, PGE2 or MMP-9, unlike that 

observed in the knee. Further characterisation is necessary to elucidate the 

mechanism(s) that protect the ankle cartilage from cytokine insult; utilisation of this 

knowledge will undoubtedly inform on therapeutic approaches for consideration in 

treatment strategies for primary knee OA. 
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PERMISSION TO DETERMINE SUITABILITY FORM 
 

 

Why do joint cells differ in the ankle compared to the knee? 

 

 

Cardiff University and the department of Orthopaedics/Vascular at Cardiff and Vale 

University Health Board are working in collaboration to research into ankle tissue.  The 

research team is looking into why the ankle joint isn’t prone to some primary joint 

diseases (such as arthritis) compared to other joints including the knee and hip.   

 

For this research we need patients who have suffered ankle weakness, disease, and trauma 

and are undergoing surgery to take part or people who are undergoing hip or knee surgery. 

This may involve allowing us to have the tissue removed during your surgery that would 

normally be disposed of after surgery so that we can undertake basic biomedical research.  

 

We are asking you to fill in and sign this form if you are interested in taking part in our 

research.  Filling in this form does not mean that you have to take part, and you are free 

to withdraw from the research at any time, and this will not affect your standard of care 

and you do not have to give a reason for your withdrawal from the study.  Filling in this 

form simply gives permission for a member of your clinical team to determine whether 

you are suitable to take part in this study.  You may also be given a patient information 

sheet about this study to take home to read.  This sheet will give you more detailed 

information about the study. 

 

If you are deemed suitable to take part in this study you will be approached again by a 

member of your clinical team.  If you do take part in the research, we will ask you to sign 

a consent form.   

 

Dr Helen Hodgson 

Research Manager for Orthopaedics 

Cardiff and Vale Orthopaedic Centre  

Llandough Hospital 

CF642XX 

02920716370 
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Permission to Contact Form 

 

If you are interested in taking part in this research study, please fill in the form below and 

give it to a member of your clinical team or a researcher who may be present at clinic.  If 

you would prefer to take the form home and think about it, please send it to the Research 

Manager at the address above if you decide to take part in the research.   

 

Full Name:   ________________________ 

 

Date of Birth:   ________________________ 

 

Hospital number (if known): ________________________ 

 

Address:   ________________________ 

 

    ________________________ 

 

    ________________________ 

 

    ________________________ 

 

    ________________________ 

 

________________________ 

 

Telephone number:  ________________________ 

 

Email address:               ________________________ 

 

Patient NHS no (if known):               

 

Consultant name (if known): ________________________ 

 

 

I give permission for a member of clinical team to look at my medical records to 

determine if I am suitable to take part in the above research study.  I understand this does 

not mean I have to take part and that I am free to withdraw at any time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signature                                               Date 
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 Top 50 genes expressed across both joints detected using RNA-seq  
 

Gene 
Symbol Name 

Total Reads both 
joints 

 CLU  clusterin 7270785 

 DCN  decorin 3908191 

 GPX3  glutathione peroxidase 3 3147521 

 MMP3  matrix metallopeptidase 3 2175364 

 APOD  apolipoprotein D 2105799 

 ACAN  aggrecan 2005371 

 EEF1A1  eukaryotic translation elongation factor 1 alpha 1 1948911 

 CHI3L1  chitinase 3 like 1 1650333 

 MT-CO1  cytochrome c oxidase subunit I 1643486 

 FN1  fibronectin 1 1568732 

 MGP  matrix Gla protein 1325745 

 TPT1  tumor protein, translationally-controlled 1 1322496 

 CFH  complement factor H 1263517 

 CYTL1  cytokine like 1 1224396 

 MT-CO3  cytochrome c oxidase III 1217825 

 MT-ND4  NADH dehydrogenase, subunit 4 (complex I) 1216283 

 FTH1  ferritin heavy chain 1 1214685 

 BEST1  bestrophin 1 1163529 

 COMP  cartilage oligomeric matrix protein 1161340 

 MT2A  metallothionein 2A 1037799 

 EGR1  early growth response 1 933542 

 FTL  ferritin light chain 930951 

 SERPINA3  serpin family A member 3 761244 

 RPL13A  ribosomal protein L13a 754566 
 SOD2 
SOD2  superoxide dismutase 2 748985 

 PRELP 
 proline and arginine rich end leucine rich repeat 
protein 744813 

 MT-ATP6  ATP synthase F0 subunit 6 737786 

 MT-ND2 Mitochondrial encoded NADH dehydrogenase 2 716412 

 CTGF  connective tissue growth factor 706839 

 RPS6  ribosomal protein S6 699462 

 MT-CYB  cytochrome b 699315 

 MT-CO2  cytochrome c oxidase subunit II 692740 

 MT-ND1  NADH dehydrogenase, subunit 1 (complex I) 688443 

 VIM  vimentin 657579 

 RPL4  ribosomal protein L4 628502 

 RPL3  ribosomal protein L3 619597 

 RPS27  ribosomal protein S27 599225 

 RPL10  ribosomal protein L10 586746 

 RPL13  ribosomal protein L13 585102 

 RPS4X  ribosomal protein S4, X-linked 566634 

 RPS11  ribosomal protein S11 547278 

 C2orf40  chromosome 2 open reading frame 40 536251 

 RPS18  ribosomal protein S18 521850 

 SERPINA1  serpin family A member 1 518622 

 RPLP0  ribosomal protein lateral stalk subunit P0 503300 

 RPL19  ribosomal protein L19 489013 

 MT-ND5 
Mitochondrial NADH dehydrogenase, subunit 5 
(complex I) 478760 

 RPL8  ribosomal protein L8 459115 

 EEF2  eukaryotic translation elongation factor 2 458497 

 RPS3A  ribosomal protein S3A 455132 
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