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Stable Automatic Envelope Estimation for Noisy

Doppler Ultrasound
J. Latham, Y. A. Hicks, Senior Member, IEEE, X. Yang, R. Setchi, Senior Member, IEEE, and T. Rainer

Abstract—Doppler ultrasound technology is widespread in
clinical applications and is principally used for blood flow
measurements in the heart, arteries and veins. A commonly
extracted parameter is the maximum velocity envelope. However,
current methods of extracting it cannot produce stable envelopes
in high noise conditions. This can limit clinical and research
applications using the technology. In this article, a new method
of automatic envelope estimation is presented. The method
can handle challenging signals with high levels of noise and
variable envelope shapes. Envelopes are extracted from a Doppler
spectrogram image generated directly from the Doppler audio
signal, making it less device-dependent than existing image-
processing methods. The method’s performance is assessed using
simulated pulsatile flow, a flow phantom and in-vivo ascending
aortic flow measurements and is compared with three state-of-
the-art methods. The proposed method is the most accurate in
noisy conditions, achieving on average for phantom data with
SNRs below 10 dB, a bias and standard deviation 0.7% and 3.3%
lower than the next-best performing method. In addition, a new
method for beat segmentation is proposed. When combined, the
two proposed methods exhibited the best performance using in-
vivo data, producing the least number of incorrectly segmented
beats and 8.2% more correctly segmented beats than the next
best performing method. The ability of the proposed methods to
reliably extract timing indices for cardiac cycles across a range
of signal quality is of particular significance for research and
monitoring applications.

Index Terms—Maximum velocity estimation, Doppler spec-
trum, spectral envelope estimation, blood flow, echocardiography.

I. INTRODUCTION

Doppler ultrasound provides an accurate and noninvasive

means of haemodynamic monitoring, accommodating wide

diagnostic capabilities [1]. These measurements contain a

wealth of information; a commonly extracted parameter is the

maximum velocity envelope. The maximum velocity envelope

is of particular interest in clinical applications. For example,

it can be used to identify stenosis, assess its degree [2] and

determine the need for a carotid endarterectomy [3]. The

envelope can also be used to assess cardiac health [4] or to

measure a person’s cardiac output [5], providing a fast and

less invasive alternative to more traditional methods [6], [7].

The maximum velocity envelope is usually estimated from a

Doppler ultrasound measurement by first converting it into the

time-frequency domain. The highest frequency bin containing

signal at each time point can then be estimated. This gives the
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maximum frequency envelope (MFE). The MFE can then be

converted to a maximum velocity envelope using the classic

Doppler equation [1]. In the remaining document, references

to envelopes will be limited to MFEs.

Obtaining clinically useful information from an MFE ne-

cessitates a skilled operator. This is both for acquiring mea-

surements and for tracing or interpreting envelopes. A number

of indices can be estimated from independent cardiac cycles

within an envelope, for example, the Pulsatility index (PI) or

Pourcelot’s resistance index (RI) [1]. However, time restraints

inherent to this currently manual process can render Doppler

ultrasound monitoring impractical and prevent real-time appli-

cations. Furthermore, the process of obtaining measurements is

subject to inter- and intra-observer variations [8]. These time

restraints, as well as clinical benefits of averaging measure-

ments [9]–[11] make automatic envelope estimation and beat

segmentation methods highly desirable.

An automatic method for envelope estimation needs to

be stable in response to variable envelope shapes, erroneous

signals (such as tissue movement) and signal noise. In addi-

tion, intrinsic factors such as spectral broadening and external

factors such as acquisition errors and systematic quantification

make the process more challenging [12].

The majority of existing MFE estimation methods belong

to two groups: integrated power spectrum (IPS) methods and

image-processing methods. The former can use the Doppler

audio signal directly to calculate the IPS. The maximum

frequency at a time point is found by estimating the frequency

bin at which signal transitions to noise. The way this point is

estimated differs across the methods [12]–[17].

A recent IPS method was demonstrated to perform well

[17]. This method used steps which account for spectral

broadening and reject time points with poor signal quality.

This method is an adapted version of the signal noise slope

intersection method [12]. This modified signal noise slope

intersection (MSNSI) method incorporates steps from the

geometric method [16].

Image-processing methods estimate the MFE using a

Doppler spectrogram image. Spectrogram images are obtained

directly from the ultrasound machine [18]–[24], for example,

by using video recordings. These methods extract an envelope

from binary images, which are acquired by thresholding the

Doppler spectrogram image and generally undergo further

processing before envelope extraction. The process of thresh-

olding differs between the image-processing methods. The

selected threshold determines the amount of noise present in

the resulting binary image and the difficulty of proceeding

envelope extraction. The performance of these methods is
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device-specific due to the images used being dependent on

both user display settings and the unknown parameters used by

the machine to calculate the spectrogram and show the image.

In addition, they are not designed to accommodate signals with

high variability in signal-to-noise ratio (SNR).

The starting positions of individual cardiac cycles are re-

quired when calculating indices such as PI or RI. Cardiac

timing is generally found using an electrocardiogram (ECG),

however, alternative methods which do not use ECG have

been developed, for example, by applying manifold learning

to ultrasound images [25], or using a tissue Doppler signal to

acquire a gating signal [26]. Zolgharni et al. recently proposed

an image-processing method for MFE estimation. Zolgharni’s

image-processing method (ZIPM) was shown to perform well.

This method also includes a process of beat segmentation that

does not require an ECG signal [24]. It operates by detecting

local minima immediately before and after systolic peaks.

However, this assumption regarding MFE shape may not hold

true in cases of poor signal quality and low SNRs.

The present lack of an automatic method capable of extract-

ing stable envelopes over extended periods of time, especially

when used with low SNR measurements, is the principal

motivation for the presented work. This work introduces a

new fully automatic MFE estimation method and a new beat

segmentation method. The proposed method for beat segmen-

tation has been developed to function using solely the extracted

MFE, removing the need for additional hardware such as ECG.

Furthermore, it relaxes the assumptions concerning the shape

of the extracted MFE in comparison to [24], which improves

its reliability in cases of irregularly shaped MFEs.

The proposed MFE estimation method, the Otsu morpholog-

ical method (OMM), is based on image-processing techniques.

However, it uses Doppler spectrogram images generated di-

rectly from the Doppler audio signal, rather than using the

Doppler spectrogram images displayed by the machine. Such

an approach enables processed images to be explicitly defined

within the OMM method, thus ensuring image consistency

and removing uncertainty regarding their design. The novelty

of the proposed method is twofold. First, its ability to define

and vary Doppler spectrogram image parameters enable iden-

tification of effective threshold values, as explained in detail in

Section II-C. Second, OMM operates dynamically with respect

to SNR by applying morphological operations in a hierarchical

manner. As a result, the OMM method can extract highly

stable envelopes from a wide range of signal qualities.

The accuracy of the proposed MFE estimation method is

compared to three other methods: two IPS methods (MSNSI

and the modified geometric method (MGM) [15]) and one

image-processing method (ZIPM). In the case of simulated and

phantom data, the true MFE is known. This enables evaluation

of the proposed method using standard deviation (STD), bias

and correlation statistics. Through the addition of noise to

these data sets, the MFE estimation methods are evaluated

across a range of SNR values. The OMM method is shown to

be the most stable in noisy measurements.

The ability of each MFE estimation method to produce

envelopes suitable for monitoring applications is also eval-

uated. Each MFE method is used to extract envelopes from

in-vivo data. The proposed method of beat segmentation is

then applied to each envelope, and the percentage of beats

correctly segmented in each case is found. The combination of

the proposed MFE estimation and beat segmentation methods

resulted in 8.2% more beats correctly segmented than the next

best performing method.

To conclude, the main contributions of this work include:

• a method for extracting stable MFEs from low quality

Doppler audio signals (Section II);

• a method of beat segmentation using only the MFE

(Section III); and

• a comparison between the performance of the proposed

MFE estimation method with the MSNSI, MGM and

ZIPM methods. Comparisons are facilitated using sim-

ulated pulsatile Doppler data, phantom data and over 2

hours of in-vivo data (Section IV).

II. PROPOSED MFE ESTIMATION METHOD

This section describes the proposed MFE estimation

method. The method consists of three main parts: signal

preparation, binary image generation, and hierarchical mor-

phological filtering (Fig. 1). The proposed method uses the

Otsu algorithm [27] to generate binary images, followed by

morphological filtering. OMM uses directional Doppler audio

signals; Fig. 2 provides a simple example of how these are

generated within a Doppler device [1].

Fig. 1. OMM envelope extraction and beat segmentation stages.

A. Signal Preparation

The Doppler audio signal is first processed to remove

unwanted signals and make the following operations more

time-efficient.

A high-pass filter (or ‘wall-thump filter’) is used to remove

extrinsic low-frequency components arising, for example, from

vessel walls [28]. A typical cut-off frequency of 200 Hz is

used [29]–[31], which preserves the frequencies of interest. A

low-pass filter is applied to remove high frequencies greater

than those of interest. A cut-off frequency of 8kHz is used

for recorded data in the presented work. The filtered audio is

finally downsampled to 16 kHz (allowing the full frequency
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Fig. 2. Block-diagram of simple continuous wave Doppler system.

range of the filtered audio to be analysed), which removes

noise and speeds up the remaining operations. The above

procedures should be implemented with consideration of the

velocities being measured and the hardware used.

B. Image Generation and Enhancement

The proposed method uses an image created from a spectro-

gram calculated using the Doppler audio signal. This means

that parameters values can be explicitly defined, giving full

control over characteristics of the images generated and used.

Such an approach contrasts favourably with capturing an

image from a machine, where the image generation process

and parameter values used are unknown.

The spectrogram is calculated using the short-term Fourier

transform (STFT) of the recorded Doppler audio signal. A 10

ms Hamming window (, = 10 ms) is used, with 50% overlap.

Using zero padding, a 512-point FFT is calculated. The chosen

values ensure that changes in blood velocity are captured [1]

and facilitate the application of fine morphological operations

to the binary image in the following stage. This process

produces pixels with 5 ms and 31.5 Hz time and frequency

resolution respectively in the Doppler spectrogram images.

Further processing of spectrogram images are affected by this

time-frequency pixel resolution; to reflect this, this resolution

should be replicated when implementing the proposed method.

The resulting matrix of STFT values is converted into

decibels with a dynamic range of 60 dB, set with respect to

the maximum value in the matrix. This wide range ensures the

signal, which can change in intensity, is captured each time.

The matrix is converted into a grayscale image. To aid

envelope estimation, high-frequency noise can now be re-

moved using a Gaussian filter [32]. This has been implemented

using a 5 x 5 Gaussian kernel in line with previous research

[21], [33]. Whilst the previous works do not disclose pixel

resolution, in this article a 5 x 5 Gaussian kernel is equivalent

to 25 ms by 158 Hz. With respect to these previous works, a

smaller standard deviation of 1 has been used to preserve more

rapid fluctuations in blood flow. Fig. 4a and Fig. 4b provides

an example of the spectrogram and final image.

C. Dynamic Threshold Identification

In this stage, the grayscale image is converted to a binary

image by applying a threshold. The purpose of this operation

is to separate signal from noise, with the aim of setting all

image pixels corresponding to noise to the value of zero and

setting all image pixels corresponding to signal to the value

of one.

A suitable threshold is identified using the Otsu method

[27], which assumes a histogram with bimodal distribution

(i.e., signal and noise), and calculates the value which best

divides these distributions. This process identifies an optimal

threshold using a sequential search, during which the success

of each threshold is quantified using Otsu’s objective criterion

([). The threshold with the maximum [ value is selected. This

maximum [ value is referred to as the effectiveness metric

(�").

However, the transition point between signal and noise can

be masked in low SNR conditions. To detect this point effec-

tively, a range of images is generated for a variety of window

lengths (,). In each case, a threshold and corresponding �"

value is calculated using the Otsu method. The values of

�" indicate how well an image has been separated into two

classes. The , that is most effective at separating the signal

from the noise is determined by both SNR and Doppler profile.

Consequently, the best threshold is identified as that which

corresponds to the largest �" value. This threshold is then

applied to the image generated using the standard , = 10 ms.

This gives a well thresholded binary image with the specific

time and frequency resolution defined in the previous section.

This binary image is cropped to remove frequency bins below

200 Hz in response to the high-pass filter described in Section

II-A.

In the presented work, 10 window lengths varying linearly

from , = 1 ms to , = 0.1 s were used. This range was chosen

empirically, as the best window was found to very rarely

exceed it. �" is calculated using the following equation:

�"8 =

<0G(f2

�8
)

f2

) 8

(1)

where 8 varies between 1 and 10 and corresponds to index

of window length, f2

�
and f2

)
are the between-class and total

variance within the image [27].

Fig. 3. Dynamic threshold selection, using variable window lengths (,8).

D. Hierarchical Morphological Filtering

The binary image can now be processed and used to

estimate the MFE.
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(a) Spectrogram (b) Grayscale Image

(c) Binary Image (d) Level One Output

(e) Level Two Output (f) Cleaned Output

Fig. 4. Image stages within OMM, using a simulated common carotid Doppler signal with estimated SNR of -3 dB. Equivalent row velocity is displayed
for images 4b to 4f. Extracted OMM envelope and reference true velocity is displayed in 4f. Pixels have a time and frequency resolution of 5ms and 31 Hz,
respectively.

An example of the binary image at this stage is displayed in

Fig. 4c. This example illustrates how in low SNR conditions,

the threshold is unable to fully isolate the signal. Noise, which

has been incorrectly identified as signal, will be referred to as

noise. In higher SNR conditions, the threshold is better able

to isolate the signal producing images more similar to those

displayed in Fig. 4d to 4f. To account for the variability in

SNR, morphological operations are applied in a hierarchical

manner. This prevents images with high SNRs being subject

to unnecessary processing. This algorithm is illustrated using

pseudocode in Fig. 5.

The binary image is passed to level 1 and possibly level

2 of the algorithm if more than one object is present in the

image, i.e., the SNR of the image is low. Objects are defined as

clusters of multiple pixels with non-zero values (white pixels)

connected either vertically, horizontally or diagonally. Lower

SNRs result in more objects and so corresponding binary

images undergo further processing. Fig. 5 illustrates that a

number of operations are repeated. These will now be briefly

discussed.

Initially, the number of objects is reduced to prevent un-

necessary further processing. This is done by setting pixels
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Fig. 5. Pseudocode of the proposed algorithm for hierarchical morphological
filtering to extract MFE from binary image.

contained in the lowest frequency row to 1. This is done on

line [01] and repeated if necessary on lines [07] and [15]. This

is effective at retaining small low-frequency objects, which

otherwise would be removed in proceeding steps, for example,

within the diastolic portion of Fig. 11. This condition, however,

does assume that flow is present in the first frequency bin.

Next, the signal regions are strengthened using a flood-fill

operation. Objects attributed to noise tend to be smaller, and

less homogeneous than those reflective of signal. However, the

signal portions can contain “holes” (as illustrated in Fig. 4c).

This operation is performed on lines [03] and if necessary on

line [08] and on line [12].

After strengthening the signal, any object with an area

smaller than 300 pixels is considered to be noise and is

removed in level 1 (line [04]), as illustrated in Fig. 4d. If the

image is passed to level 2, the operation is repeated on line

[09]. Remaining noise at this stage is often contained in larger

objects, due to the lower SNR of the images reaching this level,

and so an area of 500 is used in level 2 (comparison between

Fig. 4d and Fig. 4e illustrates this). The final area used in the

cleaning stage is 100 on line [16]. This assumes little noise

and removes small isolated objects, which appeared as a result

of opening operations. The choices of these area sizes were

guided by previous works and determined through empirical

investigation, previous works have used clusters ranging from

50 [23] to 500 [24], however, the pixel resolutions in these

cases are not explicitly defined.

Additionally, in level 1 and in the cleaning stage, opening

operations are used to break small horizontal and vertical

connections respectively. This is done prior to the removal

of objects, on lines [13], [14] and [06]. This isolates weakly

connected objects or small protrusions (as illustrated in Fig.

4e), reduces noise and smoothes the image prior to envelope

estimation.

The resulting image can now be used to extract the MFE.

The MFE is found for each time point separately, using

the column of pixels associated with that time point. The

maximum frequency within each column is taken as the white

pixel (pixel representative of signal) which is next to the

largest number of consecutive black pixels. This is similar

to the biggest-gap method, which includes weightings applied

to each group of noise pixels based on frequency [21]. The

envelope is then smoothed using a 10-point moving average

filter. The unsmoothed envelope is also retained for further

steps described in Section III. The extracted OMM envelope

and reference true velocity is displayed in Fig. 4f.

In cases where both forward and reverse flow is of interest,

the steps described to extract the MFE are repeated for the

positive and negative Doppler shifts respectively. This gives

an MFE for forward and reverse flow, and an overall MFE

can then be found by taking the absolute maximum of each

MFE at each time point.

III. BEAT SEGMENTATION METHOD

A number of clinically valuable blood-flow variables can be

extracted from the MFE; these usually require the envelope

to be segmented into individual cardiac cycles. Such variables

are discussed further in Section IV-F. Averaging or monitoring

these variables requires a number of beats to be segmented.

In other scenarios, such as research applications, thousands of

cardiac cycles may need to be segmented. This can be very

challenging without an automatic means of beat segmentation.

In this section, an automatic method of segmenting the MFE

into individual cardiac cycles is presented. This is achieved by

finding the approximate starting locations of systole. Systole

is the phase of the cardiac cycle whereby the heart contracts,

resulting in blood being pumped out of the heart. The peak of

systole is the maximum blood velocity during this phase and

is assumed to be the maximum frequency of the MFE during

a cardiac cycle.

The two main steps in the proposed beat segmentation

method is the identification of peak systole positions, and

subsequently, identification of the systole start positions. The

method uses a similar approach to a previously described

method of beat segmentation [34]; specifically using a low-

pass filtered MFE to find temporal indices and using the rising

slope of systole to estimate the start of systole. However, the

original method could not be implemented as the relevant

document was limited to high-level details.

The proposed approach allows the start of systole to be

identified, even for MFEs which exhibit unusual behaviour

either side of peak systole. This overcomes limitations of

assuming that a minima occurs prior to the start of systole

[24]. The method requires only the MFE as an input, in the

given work segmented envelopes are 4s long.

A. Peak Systole Identification

Peak systole positions are first approximated using the

unsmoothed MFE (described in Section II-D). The mean of

this envelope is first set to zero, and then it is low-pass filtered

(LPF), which removes frequencies above 3.7 Hz, and results in

a signal which is more sinusoidal in appearance. This assumes

a heart rate of less than 220 BPM, which is well within the

normal range for adolescents and adults [35].

The approximate peak systole positions are then found by

identifying peaks in the sinusoidal signal. A "minimum peak

distance" condition is used to make this more reliable (i.e.,

time between consecutive peaks). A minimum peak distance
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Fig. 6. Peak systole identification using approximate peaks found from the
LPF MFE, illustrated for scenario where MFE contains numerous peaks, for
example, due to low SNR conditions.

of 0.8/ 5�' is used, where 5�' is the estimated heart rate

frequency. This condition assumes that heart rate reduces no

more than 20% within a processed envelope.

The heart rate frequency is estimated from the power

spectral density (PSD) of the sinusoidal signal, calculated

using the Welch method. The frequency corresponding to the

maximum value in the PSD is taken as 5�'. Final peak systole

positions are taken as the peaks in the (smoothed) MFE closest

in time to the approximate positions. Fig. 6 illustrates how

peaks found in the LPF MFE are used to identify peak systole

in the MFE.

B. Start of Systole Identification

The next step is to estimate the start of systole. Low-

frequency content in the Doppler audio signal can obscure

the transition between diastolic and systolic blood flow (Fig.

7) and thus prevent the start of systole positions from being

easily identified.

To overcome this, the rising slope of systole is used. This

occurs immediately prior to peak systole. The gradient of this

slope is used to plot a line that intersects 0 Hz. This point

is taken as the approximate start of systole. Two points are

selected on the rising slope to calculate the gradient and to

plot the intersection line. The two points correspond to 50%

and 80% of peak systole (the locations of which were found in

Section III-A). These percentages were empirically chosen as

this region of the envelope typically exhibits a strong signal.

Fig. 7 also illustrates how this approach can be implemented

Fig. 7. Method of estimating start of systole, illustrated for scenario where
start of systole and peak systole are obscured, for example, due to low SNR
conditions.

in scenarios where the peak of systole is not clearly defined,

for example, in poor SNR conditions.

IV. EVALUATION METHODS

The performance of the proposed method has been quan-

titatively assessed using simulation data, phantom data and

in-vivo data; these datasets are described in Sections IV-D,

IV-E and IV-F, respectively. The performance of OMM is

compared to that of three other MFE estimation methods.

The MFE methods chosen to provide comparison are two IPS

methods and one image-processing method; the implementa-

tion of these methods is described in Sections IV-B and IV-C

respectively.

The IPS methods chosen to offer comparison are the MSNSI

and MGM methods. MSNSI has been selected as it is focused

on envelope estimation as opposed to maximum frequency

estimation at specific time points and was shown to perform

well [17]. MGM is an older IPS method [15], which has

been shown to be reasonably stable in varying SNR. This is

used to provide a further comparison with IPS methods. The

image-processing method chosen to offer comparison is ZIPM

[24]. ZIPM was selected due to it being a recent method,

which demonstrated good correlation with expert tracings.

Furthermore, ZIPM is designed for fully automatic tracing (as

OMM is) and for aortic Doppler measurements, which are

used for in-vivo testing in this study.

The performance of IPS methods has typically been vali-

dated using a combination of simulated data, phantom data,

and in-vivo data. Popular simulation approaches model simple

constant flow conditions using Gaussian processes to represent

Doppler signals [36]–[38]. For this study, pulsatile flow has

been simulated. In the case of phantom and simulated data,

the true maximum velocity is known. This allows MFE esti-

mation methods to be quantitatively assessed using statistical

measurements; bias and standard deviation are commonly

used [12]–[17] and have been implemented in this study.

Correlation statistics have also been calculated for these data

sets; they provide a measure of the similarity between the

extracted MFEs and the true envelope shape. This is included

as good correlation is essential for reliable beat segmentation

and provides further evaluation with regards to the stability of

extracted envelopes.

Image-processing methods have been previously assessed

using in-vivo data and thus have not included evaluation

with respect to different levels of SNR. Instead, such assess-

ments are based on comparisons made with expertly traced

envelopes. Here, we assess an image-processing method using

simulated and phantom images; this allows for a quantitative

evaluation. The addition of Gaussian noise to signals enable

different SNR values to be investigated. This technique has

been used with the phantom and simulated datasets, allow-

ing the performance of each MFE estimation method to be

assessed with respect to diminishing signal quality.

In-vivo data has been used in the current study to investigate

the ability of each MFE estimation method to produce MFEs

suitable for beat segmentation. MFEs are extracted using

each evaluated method and processed using the proposed
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means of beat segmentation. The percentage of beats correctly

segmented for each of these traces is then analysed. In the

case of long continuous measurements, such as the in-vivo

data (Section IV-F), audio has been processed in 4-second

segments.

All processing has been performed using MATLAB R2018a

(The Mathworks, Inc., Natick, MA, USA).

A. OMM Method Implementation

The OMM method has been implemented as described in

Section II. Threshold and associated �"s have been calcu-

lated using the image-processing toolbox in Matlab.

In cases where both forward and reverse flow is of interest

(such as the simulated data displayed in Fig. 11), the envelopes

for the positive and negative flow are calculated separately.

These two envelopes are used to generate the final MFE. At

each time point, the positive and negative maximum frequen-

cies are compared, and the maximum absolute frequency is

used for the final MFE.

B. IPS Method Implementation

The performance of the MGM [15] and MSNSI [17] meth-

ods has been assessed and compared to that of the OMM

method. These have been implemented as described in their

publications.

C. ZIPM Implementation

The ZIPM method uses images acquired from an ultrasound

machine by a frame grabber. In the presented study, the images

used were generated using an approach similar to generating

images within OMM, as described in Section II. The method

differed from OMM by using a dynamic range of 20 dB for

the phantom and simulation data, and 40 dB for the in-vivo

data.

It was found that varying the dynamic range in this way was

necessary to achieve good results across the datasets. These

dynamic ranges were chosen by testing values from 15 to 60

dB, and choosing the best value in terms of STD and bias for

the simulation and phantom data (with no added noise), and

visually inspecting envelopes produced for in-vivo data. The

images were then resized to be more representative of those

described in the article [24].

In cases where both positive and negative flow is of interest,

the approach implemented by OMM is used (Section IV-A).

An example of an image generated using this approach is

displayed in Fig. 8.

D. Simulation Data

The performance of MFE estimation methods has previously

been investigated using simulated data [14]–[17], [37] and

[38]. The advantage of using simulations is that the true

maximum frequency associated with the modelled scatterers

is known. These models have predominantly simulated simple

flow conditions, representing steady flow. Such models allow

the process to be simplified; however, they limit how realistic

resulting data is, for example, they do not take into account

Fig. 8. Image with dynamic range of 20 dB, generated for ZIPM implemen-
tation using Phantom data.

ultrasound device parameters such as sample volume (SV)

and do not represent realistic pulsatile blood flows. The

simulated data used within this study represents pulsatile flow

and is generated using numeric ultrasound simulation. This

approach results in raw data similar to that measured by an

ultrasound machine, allowing MFE estimation performance to

be rigorously tested on very realistic data.

The software Field II, developed by Jensen [39], [40],

has been used to simulate realistic flow data. It has been

well validated and used extensively for ultrasound research,

including the use of simulations to accurately obtain velocity

estimates [41]–[43].

In this study, the software was used to generate raw data

for pulsed-wave ultrasound interrogating pulsatile flow using

insonation angles of 30◦ and 60◦. In pulsatile flow, the

velocity profile changes as a function of time. A waveform

representative of flow from a given artery can be synthesised

using its Fourier components [1]. Using the Womersley model

[44], realistic flow profiles can be generated.

These time-dependent profiles allow the position of the

modelled scatterers to change between ultrasound pulses, thus

simulating pulsatile flow. The contributions from all scatterers

traversing the SV allow the Doppler spectrum to be formed.

A range-gate was used to simulate a SV, which is positioned

at the centre of the lumen and spans its width. An online

example was used as a reference to generate a model using a

linear array transducer [45].

The settings used to generate the model are displayed in

Table I. These were used to generate simulated data for one

complete cardiac cycle, for femoral and common carotid artery

flows. An example of simulated data for the femoral artery is

presented in Fig. 11.

Bias and STD statistics are calculated for the simulated data.

These statistics are used to contrast the performance of the

tested MFE estimation methods and are calculated using the

estimation error at each time point within the MFE [17]. The

correlation coefficient of an estimated envelope and the true

velocity envelope can also be calculated, providing a numerical

measure of the similarity between the two waveforms. These

statistics are calculated for the simulated femoral artery data.

In addition to the above performance metrics, waveform
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indices can be calculated from extracted envelopes and com-

pared to their true values. These indices use minimum and

end-diastolic velocity values. Due to the end-diastolic value

for the femoral artery being very close to 0 and some MFE

methods tending towards 0 in poor noise conditions, simulated

data of the carotid artery is used to compare the estimation of

these indices.

TABLE I
PARAMETERS USED WITHIN FIELD II TO SIMULATE FLOW

Parameter Value

Scatterer Settings

Heart Rate 90 bpm (Femoral)
80 bpm (Carotid)

Lumen Radius 4 mm
Lumen Centre Depth 40 mm
X-range 40 mm
Y-range 8.8 mm
Z-range 8.8 mm
Number of Scatterers 67,851
Peak Velocity 1 m/s (Femoral)

1.2 m/s (Carotid)
Insonation Angle 30

◦, 60◦

Linear Array Transducer Settings

Speed of Sound 1540 m/s
Centre Frequency 2 MHz
Sampling Frequency 100 MHz
Element Lateral Width 0.39 mm
Element Elevation Height 5 mm
Kerf 0.05 mm
Element Pitch 0.44 mm
Pulse Repetition Frequency 8 kHz
Excitation Pulse Sinusoid
Number of Elements 64
Cycles in Emitted Pulse 10
Focus vector (Transmit and Return) [0 0 40] mm

E. Phantom Data

Phantom data was collected using a Gammex optimiser

1425A (Gammex Inc., USA). This is a self-contained system,

which is capable of generating steady laminar flow rates from

1.7 to 12.5 ml/s. The system is designed for testing aspects

of ultrasound device performance, including the accuracy of

measured flow rates. The 1425A uses structures which are

ultrasonically similar to human tissue ensuring a realistic

platform for research. The embedded vessel can be scanned

using an insonation angle of 50◦, and has an inner diameter

of 4 mm. Data was collected from the phantom using a

Toshiba TUS-A500 diagnostic ultrasound system. A 3 MHz

probe was used to measure steady flow across the embedded

vessel through pulsed-wave ultrasound. An audio output on

the machine was employed to record the directional Doppler

audio on a laptop, using 44.1 kHz sample rate, and 16-bit

depth.

Typical peak blood velocities within the ascending aorta are

of the order of 0.7 m/s, but varies between patients [46]. To

reflect typical flowrates, data was measured using flowrates of

0.4, 0.8 and 1 m/s; 10 seconds of data was recorded for each

flow rate. As with the simulation data, bias and STD statistics

were calculated; these were calculated using 1s segments of

data and then averaged. An example of data measured using

the Phantom is displayed in Fig. 15.

F. In-Vivo Data

The MFE estimation methods were further evaluated using

in-vivo data, an example of in-vivo data is displayed in Fig.

16. Data was collected from 11 healthy adult volunteers using

an ultrasonic cardiac output monitor (USCOM) 1A ultrasound

device (USCOM, Sydney, Australia). This is a continuous-

wave ultrasound device, which operates at 2.2 MHz and is used

in clinical applications to measure and monitor cardiac health

indicators, including cardiac output. Positive-flow Doppler

audio was recorded on a laptop. The audio was sampled from

the device using a 44.1 kHz sample rate and 16-bit depth.

Proper ethical permission was attained from the School of

Engineering Ethics Committee (Cardiff University) and signed

consent was obtained from each volunteer. Data was collected

from the suprasternal notch, giving measurements of blood

flow across the aortic valve. The participants were in the

supine position. The data consists of 229 recordings, totalling

over 2 hours of audio. Using (2), the in-vivo SNR ranges from

approximately 10 dB to 30 dB.

The true MFEs under these conditions are unknown, mean-

ing performance cannot be investigated using STD, bias or

correlation statistics. Instead, in-vivo data has been used to

evaluate how well each MFE method produces envelopes

suitable for accurate beat segmentation. The proposed beat

segmentation method is used to segment envelopes, extracted

using each MFE method, into individual cardiac cycles. The

success of each MFE estimation method to produce MFEs

suitable for this purpose can then be evaluated. This is done

through comparing the percentage of total beats segmented

from all of the recordings with the number of false positives,

false negatives and true positives associated with a sample of

the in-vivo data. These data contain scans exhibiting a range of

quality allowing a more realistic investigation of performance

with respect to real-world measurements.

G. Evaluation of Performance in Varying SNR

The performance of estimated envelopes has been assessed

in response to varying SNR. This has been achieved by adding

noise to the simulated and phantom datasets. SNR is estimated

from the spectrogram using the following relationship [17]:

(#'(3�) = 10;>610

(

%̂( − %̂#

%̂#

)

(2)

where %̂B is the mean power contained in the entire

spectrogram, and %̂# is the mean power of a region of

the spectrogram which contains only noise. This region is

identified as a range of bins which exceed the estimated MFE

[17]. In the case of phantom and simulated data the true MFE

is known, this enables all bins reflective of noise to be used

when calculating %̂# .

V. RESULTS

The performance of the four MFE estimation methods has

been systematically evaluated using the datasets described in

Section IV. The results from this analysis are now presented.
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(a) 30◦

(b) 60◦

Fig. 9. Bias statistics for simulated femoral artery data using insonation angles
of 30◦ and 60

◦ across a range of SNR values.

A. Simulation Results

The performance of the MFE estimation methods has been

assessed using the simulated pulsatile flow data. An example

of this data is displayed in Fig. 11.

Statistics for the simulated data have been acquired at SNR

values from -6 dB to 26 dB in steps of 1 dB; this was repeated

three times and averaged. The calculated bias and STD of

normalised maximum velocity for each method is displayed

in Fig. 9 and Fig. 10, respectively. These have been calculated

using absolute envelope values, which prevents bias tending

towards zero when an MFE estimation method tends towards

zero in low SNR.

At SNRs greater than approximately 5 dB, ZIPM achieved

the lowest bias. At SNRs below this, OMM achieved the

lowest bias values. OMM achieved the most consistent STD

values across the SNR range and the lowest values below 10

dB. Above 10 dB, MSNSI achieved the lowest STD values of

approximately 2%.

The correlation coefficient between each method and the

true envelope across the investigated range of SNR values is

displayed in Fig. 12. This illustrates how similar the extracted

envelope is to the true velocity envelope and the effect SNR

and insonation angle has on this quality.

Fig. 12 demonstrates that overall OMM produces an MFE

very similar to the true MFE and remains stable for signals

(a) 30◦

(b) 60◦

Fig. 10. STD statistics for simulated femoral artery data using insonation
angles of 30◦ and 60

◦ across a range of SNR values.

with low SNR values. For both cases of insonation angle,

OMM achieved a correlation of greater than 95% at -6 dB. Fig.

12 is consistent with visual inspections of the extracted MFEs,

which demonstrate the OMM envelopes remaining highly

stable and consistent across the SNR range, with the envelopes

produced by the remaining methods becoming increasingly

Fig. 11. Simulated femoral artery using insonation angle of 30
◦, unfiltered

with added noise to give SNR of 10 dB. Displayed with corresponding
MSNSI, OMM and true velocity envelopes. Spectrogram image displayed
using 60 dB dynamic range.
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(a) 30◦

(b) 60◦

Fig. 12. Correlation statistics for simulated femoral artery data using
insonation angles of 30◦ and 60

◦ across a range of SNR values.

erratic at SNRs decreasing below approximately 6 dB. This

is particularly true for the IPS methods in the 60◦ simulation

data.

PI and RI indices were calculated for the simulated carotid

artery data using (3) and (4). PI describes the degree of

damping at different arterial sites, and RI is an indicator of

circulatory resistance beyond the measurement point [1].

%� =
( − �<8=

"
(3)

'� =
( − �4=3

(
(4)

where ( is the maximum velocity, �<8= is the minimum

velocity, �4=3 is the velocity at the end of diastole and "

is the average velocity; this is illustrated in Fig. 13. These

values are calculated from estimated MFEs using the true

cardiac timing indices, i.e., ( is the maximum velocity during

systole and �<8= and �4=3 is the minimum and end velocity

respectively during diastole.

Such indices are based on ratios attained from the MFE, and

so are less prone to certain errors such as incorrect insonation

angle measurement [1]. The calculated RI and PI indices are

displayed in Fig. 14.

OMM achieved the best overall RI percentage error. Above

approximately 5 dB, ZIPM and OMM achieved similar results.

Fig. 13. Values used to compute RI and PI indices.

At high SNRs, ZIPM achieved the lowest PI error of –3.7%,

with OMM and MSNSI achieving similar absolute errors for

the 30◦ data (OMM with -6.5%, and MSNSI with 6.3%).

Increasing the insonation angle to 60◦ resulted in OMM

decreasing to -10%, and MSNSI increasing to 18% at high

SNRs. ZIPM was less effected, reducing to -4.3%.

B. Phantom Results

The calculated bias and STD statistics are displayed in

Table II for the velocities and SNR ranges investigated using

the phantom data. The OMM method consistently resulted in

the lowest STD, illustrating the stability of extracted MFEs

using this method. No methods consistently performed best

with respect to bias measurements. However, with respect to

data with SNRs below 10 dB, OMM on average displayed

the best performance. Comparing OMMs bias and STD with

those from the best performing alternative method at each

SNR below 10 dB, on average OMM achieves a bias and

STD 0.7 % and 3.3 % lower, respectively. An example of the

recorded sample data and associated OMM and MSNSI MFEs

are illustrated in Fig. 15.

TABLE II
BIAS AND STANDARD DEVIATION STATISTICS FOR DIFFERENT ENVELOPE

ESTIMATION METHODS, USING PHANTOM DATA

SNR (dB)
Bias (%) STD (%)

O
M

M

M
S

N
S

I

M
G

M

Z
IP

M

O
M

M

M
S

N
S

I

M
G

M

Z
IP

M

Constant Flow Velocity of 0.4 m/s

0 -0.7 3.5 3.7 28.0 0.5 5.0 9.8 8.9
3 0.1 2.0 1.2 28.3 0.4 3.2 4.7 8.3
5 -0.3 1.4 0.5 31.3 0.3 2.1 3.1 8.2

10 0.6 0.9 0.1 2.8 0.3 1.4 1.8 1.3
14 1.3 0.9 0.2 2.2 0.3 1.1 1.7 0.8

Constant Flow Velocity of 0.8 m/s

0 0.3 3.3 1.1 17.1 0.6 4.9 8.0 10.4
3 0.8 2.5 -0.1 14.7 0.5 4.7 4.8 9.4
5 1.2 1.3 -0.4 21 0.6 4.0 3.1 7.4

10 1.7 1.0 -0.3 4.9 0.5 2.4 2.3 2.2
13 2.2 1.1 -0.3 3.3 0.5 1.9 2.3 0.9

Constant Flow Velocity of 1 m/s

0 -0.8 2.5 -0.7 8.5 1.0 5.4 7.4 11.1
3 0.1 1.2 -1.8 14.3 0.8 3.7 4.1 8.2
5 0.4 0.8 -1.8 18.4 0.6 2.9 3.3 6.6

10 1.3 0.5 -1.8 4.6 0.5 1.7 2.7 1.7
14 1.4 0.3 -1.7 3.2 0.4 1.2 2.4 0.8
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(a) 30◦ (b) 60◦

(c) 30◦ (d) 60◦

Fig. 14. PI and RI statistics for simulated carotid artery data using insonation angles of 30◦ and 60
◦ across a range of SNR values.

Fig. 15. Doppler spectrogram with estimated OMM and MSNSI MFEs using
data from phantom producing 0.4 m/s flowrate. Displayed using dynamic
range of 40 dB.

C. In-Vivo Data Results

The ability of the MFE estimation methods to perform under

challenging conditions is evaluated further using in-vivo data.

In addition to a variable SNR, in-vivo data includes erroneous

contributions from, for example, tissue movement or other

blood flows. The results presented here are for measurements

of the aortic valve, in which a number of different features

can be present [47]. Resulting envelopes, even in succeeding

beats, can display high variability in size and shape.

The results using in-vivo data are presented in Table III.

They demonstrate that, overall, the OMM method resulted in

the lowest percentage error in terms of the total number of

beats segmented; producing only 0.4% more beats than the

true number of beats. The true number of beats was found by

converting each recording into a spectrogram and counting the

total number of whole beats present; data in which the total

number of beats was hard to distinguish were removed. A

whole beat is identified using the start or end of the preceding

or proceeding beats, respectively. This allowed the number of

beats within each recording to be compared to the number of

beats extracted using each MFE method. The number of beats

extracted for each MFE estimation method was then summed

for all recordings giving a total number of overestimated and

underestimated beats; the results are given in Table III. These

values demonstrate that despite the OMM method percentage

error being positive, this method resulted in the least number

of overestimations. The OMM method also resulted in the least

number of underestimations missing 0.8% of beats, compared

to 5.8% missed by the next best-performing method, MSNSI.

The overestimation results in Table III illustrate that beat

segmentation can result in beats incorrectly being segmented
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TABLE III
NUMBER OF BEATS SEGMENTED USING EACH MFE METHOD

OMM MSNSI MGM ZIPM

Beats Segmented 7,908 7,613 7,677 7,491

Percentage Error1 (%) 0.4 -3.4 -2.5 -4.9

Total Overestimations2 100 181 322 117

Total Underestimations3 69 445 522 503

(1) Percentage error of number of beats segmented with respect to true number.
(2) Summation of overestimated number of beats segmented from each recording.
(3) Summation of underestimated number of beats segmented from each recording.

TABLE IV
SEGMENTATION PERFORMANCE USING EACH METHOD ON SAMPLE OF IN-VIVO DATA

OMM MSNSI MGM ZIPM

True Positives (%) 97.8 89.6 64.6 89.6
False Negatives (%) 2.2 10.4 35.4 10.4
False Positives (%) 0.4 1.4 4.2 1.2

from the data; this is in response to erroneous signals or noise.

The accuracies associated with performing beat segmentation

using each of the MFE methods were further investigated using

a sample of the in-vivo data.

A sample size of approximately 12% was used. The sample

was attained by using the first four seconds of each of the

229 recordings. The extracted envelope and associated beat

timing indices were generated for each audio sample and for

each MFE method. Fig. 16 provides an example of this for the

OMM and MGM envelope. This data allowed the number of

false positives (a beat incorrectly segmented, or detected in the

audio sample where there was no actual beat), false negatives

(a beat present in the audio sample but not detected) and true

positives (a beat existing in an audio sample was correctly

detected) to be found . In Fig. 16, the OMM MFE resulted in

four true positives, and the MGM MFE resulted in two false

positives, one true positive and one false negative. The false

positives occur due to the start of systole being incorrectly

estimated for the second beat. This is due to there being

(a) OMM

(b) MGM

Fig. 16. Example of in-vivo data containing four whole beats with OMM and
MGM MFEs and associated segmented beats, where the green dash indicates
the start or ends of identified beats. In this case, OMM segmented four true
positives, and MGM segmented two false positives, one true positive and one
false negative. Using the OMM MFE, SNR was measured to be 15 dB.

multiple narrow peaks in the systolic portion of this beat. The

false negative occurred due to the final systolic peak not being

preserved and therefore identified in the LPF MFE, resulting

in the end of the fourth beat not being found. The results from

the sample analysis are shown in Table IV.

Table IV illustrates that OMM resulted in the highest per-

centage of true positives, segmenting 97.8% of beats correctly;

comparatively MSNSI and ZIPM both resulted in 89.6% of

beats being correctly segmented. Use of the OMM method

also resulted in the lowest percentage of false negatives and

false positives, which is in line with the overestimations and

underestimations in beat numbers given in Table III.

To evaluate the applicability of the proposed MFE and beat

segmentation method for real-time applications, the time taken

to run both algorithms for the in-vivo data was recorded.

This was done using an Acer G9-592, with an i5-6300HQ

CPU 2.3 GHz processor and 8 GB ram. The total processing

time was 963 seconds, which corresponds to 0.12s per beat;

accommodating a hypothetical maximum heart rate of up to

490 bpm for real-time applications.

Finally, a series of paired t-tests were performed on the

results presented in Table III to confirm the differences in

performance. The beat segmentation performance of the OMM

method was compared to the remaining three MFE estimation

methods independently. The resulting p-values for this analysis

are very small (3 × 10−5, 1 × 10−3 and 4 × 10−14 for the

MSNSI, MGM and ZIPM methods respectively), confirming

the observed difference in performances was not random.

VI. DISCUSSION

A series of metrics and scenarios have been analysed to

provide an in-depth comparison of the investigated MFE

estimation methods. Metrics include STD, correlation and

waveform indices. These were used to analyse the ability of

the proposed method to extract representative Doppler profiles,

from which shape information can be found or further beat

segmentation performed.

The implementation of the methods remained constant for

each data set apart from the case of ZIPM, for which this was

not possible. This approach simulates real-world, automatic
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application where true maximum velocities are unknown, or

for research scenarios where datasets exhibit high variability

(e.g., SNR and flow rates) and thus it is impractical to adjust

the implementation of the methods. In certain other applica-

tions, for example, where maximum velocities of interest are

more restricted, the methods could be tuned to give better

performance (e.g., restricting image size for image-processing

methods, or adjusting cut-off frequencies to improve the

performance of IPS methods), however, this was beyond the

scope of the presented work.

A. Envelope extraction using the Doppler Audio Signal

In the proposed method, the Doppler audio is used to form

a spectrogram and from that an image. Thus the parameters

used for generation of the spectrogram images are explicitly

defined as discussed in Section IV. As described, the applied

morphological operations are designed with respect to the

resulting pixel resolution of these images. In contrast, the

values of the parameters used to generate the images collected

from an ultrasound machine are not known, and are device and

user-specific. Variations and limitations between machines in

this regard include screen refresh rates, spectrogram parame-

ters, contrast, pixel resolution, zoom and image thresholding.

The variations are in part due to the processing required

to provide spectrograms as a form of visual feedback. In

contrast, Doppler audio tends to naturally occur within a

person’s hearing range, allowing sonographers to use the audio

feedback to guide probe position during measurements. This

means that audio requires less processing prior to being used

as a form of feedback in comparison to spectrogram images.

The process of sampling audio is relatively straightforward

and can be performed using basic hardware (e.g., a laptop).

Considering this, implementing an image-processing MFE

approach using the Doppler audio signal presents a number

of advantages.

For this work, no specific standards with respect to stream-

ing audio from commercial ultrasound machines could be

found. The maximum Doppler frequencies, sample rate of any

captured audio and the number of channels should, therefore,

be considered prior to applying the proposed method. Fortu-

nately, in many applications, Doppler signals are limited to

relatively low frequencies and do not require high streaming

standards.

B. Envelope Estimation with Decreasing SNR

The performance of each MFE estimation method was eval-

uated across a range of SNR values using both simulated and

flow phantom data. In each case, SNR was estimated using (2),

which provides a consistent means of comparing each method.

This approach has been used in previous studies as it allows the

noise to be quantified in real-world measurements [17], how-

ever, can give negative estimates in low SNR conditions. This

is illustrated in Fig. 4, in which the Doppler profile is visually

discernible at an SNR of -3dB. Evaluations have included such

low SNRs to demonstrate the stability of the OMM method,

and its potential to be used in automatic research or monitoring

scenarios where noise conditions can vary. In terms of bias,

no MFE method consistently outperformed across the two data

sets. Nonetheless, OMM typically achieved the lowest bias at

lower SNRs (e.g., below 5 dB). It can be seen that unlike

the other MFE methods, OMM exhibits decreasing bias with

decreased SNR. This is due to the automatic thresholding

used by OMM, which does not take into account spectral

broadening. As more noise is introduced, the lower level

spectral broadening is masked and the estimated maximum

frequency is closer to the true value.

The OMM method produced very stable results across

the SNR range with respect to the simulation correlation

statistics (Fig. 12) and STD statistics for both the simulated

and phantom data (Fig. 10 and Table II respectively). This is

particularly evident in the correlation data, where the OMM

method achieves a correlation greater than 95% at -6dB for

both insonation angles.

The IPS methods typically exhibited more erratic behaviour

than the image-processing methods. This is due to the fact that

IPS methods require the IPS to exhibit its characteristic shape

in order to accurately estimate maximum frequency points.

This condition is met less consistently (for example, the IPS

knee becomes less defined, and the transition from signal to

noise more gradual) as SNR deteriorates and the measurements

exhibit signal loss and increased variance. The MSNSI method

compensates for this by employing only time points with

adequate signal strength and then using interpolation and

smoothing. If a portion greater than 0.1s with poor signal

strength is identified, that region is set to zero. This is useful

in measurements where flow discontinuities occur, in such

cases the IPS curve would divert far from its characteristic

shape and result in very poor maximum frequency estimations.

The OMM method does not include any equivalent conditions,

however, given that a global threshold is used to generate the

binary images, small discontinuities do not result in incorrectly

identified signal contributions. In such cases, the MFE is set

to the minimum frequency bin in which flow signal can be

detected. If no flow were present at all in a section of processed

audio, the OMM method would be unable to detect this, and

the resulting MFE would be erratic. The in-vivo data includes

a large variety of waveforms and signal qualities, however,

specific analysis of how each method performs in response to

flow discontinuities was not performed and was beyond the

scope of this investigation.

At a certain point, the MSNSI power threshold condition

becomes detrimental as more of the envelope is set to zero.

This begins to have an effect at SNRs below 10dB, this can be

seen in Fig. 11, where regions of slow diastolic flow with lower

spectral power have been set to 0. As SNR reduces further, the

stable performance of MSNSI begins to become more erratic.

Overall, the MSNSI method performed better despite MGM

producing lower bias values than MSNSI at very high SNRs.

This was found to be due to the MGM method performing

very poorly during the weaker, diastolic portion of the signal.

The ZIPM method produced stable results at SNRs greater

than 5dB but deteriorated quickly at lower SNRs. As described

in Section IV-C, a dynamic range is chosen for the images

processed using this method. This dynamic range dictates

how successful proceeding thresholding is; as this is fixed,
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at a certain SNR the signal can no longer be easily distin-

guished, and the method’s performance quickly deteriorates.

The dynamic range chosen to display the ZIPM images was

chosen based on its performance with respect to the calculated

statistics. Choosing the best dynamic range can be challenging

when implementing ZIPM for new data. This was found to be

the case using the in-vivo data, in which a dynamic range

much larger than that used for the simulated and phantom

data was required for good performance, and which is dis-

cussed further in Section VI-E. The dynamic range used for

the ZIPM images meant only the strongest portion of the

signal was visible (which occurs at the maximum velocity).

Consequently, this meant the addition of noise had no effect

on the binary image across a large range of the SNRs used.

Additionally, the diastolic portion of the simulated femoral

data could not be captured. The combination of this factor

and slight overestimations with respect to maximum velocity

during the systolic portion resulted in very low bias values,

but less accurate STD and correlation values. ZIPM was able

to produce good RI and PI results, this is partly due to the

simulated carotid artery being more consistent. These results

are discussed further in Section VI-D.

C. Envelope Estimation with Increasing Insonation Angle

The inherent properties of Doppler ultrasound systems give

rise to a phenomenon known as intrinsic spectral broadening,

which manifests as a blurring of the Doppler spectrum. A

moving target, when measured using Doppler ultrasound,

results in spectral content with a range of frequency shifts (and

not one singular value). Blood contains many moving targets

that contribute to the measured Doppler signal and result in

a smearing of the frequency spectrum [1]. The presence of

spectral broadening is attributed to two contributions referred

to as local geometric broadening and transit-time broadening

[48]. The degree of this effect increases with the insonation

angle.

Simulated data was generated for insonation angles of 30◦,

and 60◦. This allowed the effect of spectral broadening with

respect to MFE estimation performance to be investigated.

The bias, STD and correlation statistics show that typically

the 60◦ simulated data resulted in deteriorated performance

for all MFE methods. In the case of ZIPM, the increased

insonation angle resulted in a lower bias. This was due to the

combination of increased overestimation during systole, and

underestimation during diastole as discussed in Section VI-B.

The ZIPM envelope deviates further from the true envelope

within the 60◦ data, which is illustrated from the STD results.

As discussed in Section VI-B, OMM exhibits increased

bias at higher SNRs due to spectral broadening. This is more

evident in the 60◦ data as higher insonation angles result in

increased levels of spectral broadening. Use of metrics derived

from MFEs, such as peak systole, should keep such effects in

consideration.

The OMM method was able to generate highly correlated

envelopes at low SNR values for both insonation angles. This

means that despite spectral broadening, accurate MFE shape

can still be extracted allowing successful beat segmentation or

accurate waveform features to be obtained. This is illustrated

by the RI and PI statistics, which remain on average below

10% for the OMM method, for both angles and low SNRs.

OMM and MSNSI resulted in similar absolute PI error at

high SNRs for 30◦. Increasing the insonation angle resulted

in an absolute error increase of 47% and 185% for OMM and

MSNSI respectively. OMM achieved a PI error of -10% for

the 60◦ data, illustrating its potential use for such applications.

D. PI and RI Estimation

Features can be extracted from MFEs to provide additional

means of analysing blood flow. The ability to extract two

popular waveform indices, PI and RI, were investigated using

each MFE estimation method. These results, shown in Fig.

14, illustrate that typically PI error was greater than RI

error. Through inspecting the corresponding MFEs, it was

found that performance was similar to that exhibited in the

simulated femoral data. The OMM and MSNSI methods both

produced envelopes with low bias. As bias is estimated from

each time point, this corresponded to overall good estimates

of the envelope mean. However, it was found that MSNSI

overestimated peak systole, and increasingly so with SNRs

below approximately 5 dB. This results in an overestimation

of PI and RI values. Conversely, any inaccuracies in MFE

estimation are more consistent across the whole MFE for

image-processing methods. This results in more accurate PI

and RI estimation. MGM performed similarly to MSNSI,

however, underestimated peak systole resulting in negative PI

and RI error.

Considering (3) and (4) and the more consistent " values,

inaccurate ( values are more detrimental for PI estimates.

Furthermore, as discussed in Section VI-B, the MSNSI method

results in more erratic behaviour at lower SNRs and includes a

condition that can set portions of the MFE to 0. This increases

the likelihood of �<8= being smaller than �4=3 , and will

further detrimentally affect estimates of PI.

It can be seen from Fig 14, that ZIPM begins to deteriorate

below approximately 5 dB; this is consistent with the bias and

STD results in Section V-A. As indicated by the correlation

statistics in this Section, the ZIPM MFE rapidly deviates

from the true MFE shape. This results in �4=3 increasing

relative to (, and estimates of RI decreasing. The whole MFE

increases, and although becomes far from the true MFE, does

not result in huge RI and PI errors. Comparatively, the MSNSI

envelopes resulted in worse PI and RI errors at low SNR,

despite them overall being closer in shape to the true MFE.

These observations highlight the need to consider different

metrics when assessing MFE performance.

E. Beat Segmentation Performance

The ability to segment beats is essential for automatically

extracting and monitoring beat specific measurements, like

those discussed in the previous section. It allows for measure-

ment averaging, preventing the practice of calculating values

from representative beats, a process which may be a significant

factor in test-retest variability [49]. Robust averaging has been

shown to be clinically advantageous in certain applications, for
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example, resynchronising pacemakers [9]–[11]. Furthermore,

it makes analysis of larger datasets more feasible, which would

be clinically desirable [50], and could enable research ventures

that were previously deemed too time-consuming.

In this study, the ability to perform successful beat seg-

mentation was investigated using a large dataset of in-vivo

measurements. These measurements inevitably contain more

artefacts than the simulated and phantom data. The measured

signals include contributions from tissue movements and erro-

neous blood flow signals from nearby vessels. Other signals,

such as valve clicks, can be present as well as variations in

noise due to differences in transducer and tissue coupling and

signals due to the transducer moving.

The results demonstrate that combining OMM with the

described beat segmentation method can result in a high

percentage of beats being correctly segmented, with the OMM

method segmenting 8.2% more beats correctly than the next

best performing method, MSNSI. Crucially, the sample test

indicated that very few false positives were identified using

OMM. This is a significant result of this research, as this char-

acteristic is vital for applications which use processed beats to

identify abnormalities in measurements, identify certain traits

or perform classification tasks (such as classifying heart dis-

ease [51]). The difference in performance with respect to true

positive and true negatives could be of particular significance

when monitoring patients with challenging recordings such as

weak cardiac output. The design and testing of the beat seg-

mentation method has been limited to Doppler measurements

from the aortic valve. This included data with a wide range of

Doppler profiles, including ones far from their characteristic

shape (e.g., high-end diastolic velocities). Considering this,

the method is expected to also perform well using Doppler

measurements from other locations (for example, from the

carotid artery), however, this has not been confirmed.

In real-world applications, an automatic method needs to op-

erate at sufficient speeds to extract the envelope, perform beat

segmentation and extract information. The proposed method

was found to take on average 0.12s to extract a segmented beat

MFE, which provides 0.15s to extract additional information

for a heart rate of 220 bpm. This illustrates that the proposed

method could be implemented in real-world applications.

Furthermore, the method requires only the MFE to function.

This means no additional hardware is required and thus can

remain low cost, fast and highly portable. Combining OMM

and the proposed beat segmentation software allows real-time,

continuous monitoring of a person’s blood flow with live

cardiac cycle analysis.

It was found that despite the good performance exhibited

by ZIPM with respect to the simulation and phantom data,

a much higher dynamic range was required to generate the

images used in the in-vivo data. The low dynamic range used

for the simulated and phantom data allowed the signal to be

clearly defined (as shown in Fig. 8), however, the in-vivo data

contains erroneous signals and variable SNR, preventing such

a low dynamic range from being used. The need to select

an appropriate dynamic range value for particular datasets

stopped the ZIPM method from being truly automatic within

this study.

VII. CONCLUSION

A new MFE estimation method (OMM) and a new beat

segmentation method have been proposed in this work. The

methods are fully automatic, can be implemented in a real-

time manner and only require the Doppler audio signal as

an input. The performance of OMM has been systematically

evaluated for a wide range of signal qualities using simulated

data, phantom data and in-vivo data. The performance has been

compared with three other state of the art MFE estimation

methods.

It was demonstrated that the proposed OMM method re-

liably produced envelopes suitable for further beat segmenta-

tion. Across a wide SNR range, the OMM method consistently

produced the most stable envelopes with good correlation

to the true shape. This was further demonstrated using in-

vivo data, where it resulted in 8.2% more beats being cor-

rectly segmented in comparison to the next best performing

method. This is a significant characteristic of the method

and demonstrates its potential application for monitoring in

clinical scenarios, and automatic processing of large datasets

for research purposes.
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on support vector machines for diagnosis of the heart valve diseases,”
Computers in Biology and Medicine, vol. 37, no. 1, pp. 21–27, 2007.


