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Environmental science is an applied discipline, which therefore requires interacting with actors outside
of the scientific community. Visualisations are increasingly seen as powerful tools to engage users with
unfamiliar and complex subject matter. Despite recent research advances, scientists are yet to fully
harness the potential of visualisation when interacting with non-scientists. To address this issue, we
review the main principles of visualisation, discuss specific graphical challenges for environmental sci-
ence and highlight some best practice from non-professional contexts. We provide a design framework
to enhance the communication and application of scientific information within professional contexts.
These guidelines can help scientists incorporate effective visualisations within improved dissemination
and knowledge exchange platforms. We conclude that the uptake of science within environmental
decision-making requires a highly iterative and collaborative design approach towards the development
of tailored visualisations. This enables users to not only generate actionable understanding but also
explore information on their own terms.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. The environmental science-society interface

Environmental science is an applied discipline so inevitably
environmental scientists are confronted, directly or indirectly, with
the need to interact with non-scientific professionals (RCUK, 2013;
Rhoads et al., 1999). As environmental managers are under
increasing scrutiny to make decisions based on highly complex and
uncertain evidence (Fischhoff, 2011; Liu et al., 2008), they require a
thorough and up-to-date understanding of current scientific
thinking to inform their working process (Bishop et al., 2013). In
response to this challenge, applied environmental sciences are
becoming increasingly concerned with finding ways to enhance the
flow and use of relevant scientific information within evidence-
based, professional contexts (Sutherland et al., 2012). However,
despite these advancements in research and the growing avail-
ability of scientific information, there remains a gap between sci-
entific knowledge generation and non-scientific, societal
application (Kirchhoff et al., 2013; Mikulak, 2011; von Winterfeldt,
2013).

Currently, scientists that interact with non-scientists often feel
that their contributions are ignored, while the latter complain that
available scientific information is not tailored to their specific needs
(Liu et al., 2008; McNie, 2007). Improved uptake and application of
scientific knowledge within environmental decision-making re-
quires further consideration for, and investment in, the communi-
cation and dissemination process (Lorenz et al., 2015). Within the
interface between science and society, indifference towards
communication prevents comprehension, creates mis-
understandings and inconsistent or bias messages (Demeritt and
Nobert, 2014; McInerny et al., 2014), and will ultimately result in
ill informed decisions and maladaptation in the future (Kirchhoff
et al., 2013).

Choices surrounding the communication of scientific knowl-
edge to potentially interested non-scientific communities may also
raise issues of a more ethical nature (Keohane et al., 2014). While
some audiences will be able to deal with complexity and ambiguity,
others may respond with confusion, suspicion or even a skewed
perception of risk (Han et al., 2011; Politi et al., 2007; Spiegelhalter
et al., 2011). Ineffective communication can result in audiences
experiencing a distorted sense of certainty, leading to poorly
informed decisions and diminished trust in science (Pidgeon and
Fischhoff, 2011; Taylor et al., 2015). Scientists need to find ways
to convey only relevant information and associated uncertainties in
a format that serves the audience's own best interests (Fischhoff
and Davis, 2014). Such choices are currently underrepresented
within environmental scientific training. The ability to convey not
only accurate and useful information to audiences, but also an
honest picture of current knowledge continues to elude most
scientists.
1.2. The role of visualisation

Traditionally, the scientific community has used explanatory
graphics and images to support scientific communication such as
publications or conference talks; however, these figures are typi-
cally designed for audiences that are, to some extent, familiar with
the underlying data or graphical form. Default design software can
be crude and unhelpful but scientists are rarely given training in
how to develop visualisations, particularly for non-scientific con-
texts (McInerny et al., 2014). Until very recently, print was the only
platform to visually present and analyse information, limiting our
ability to interact with data and make sense of complex subject
matter (Few, 2009). The advent of computer graphics, democrat-
isation of data and advances in information and communications
technology (ICT) have combined to shape modern visualisation
(Few, 2009; Spiegelhalter et al., 2011).

Today, data visualisations are ubiquitous, appearing in various
technical (e.g., information visualisation, scientific visualisation and
geographic visualisation) and functional (e.g., statistical graphics,
information graphics and data journalism) orientations (Bishop
et al., 2013). Analytical visual tools are increasingly being devel-
oped for scientific communities to analyse data and support cross-
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disciplinary work (Keim et al., 2008). Graphic designers and
cognitive psychologists have gained a better understanding of how
we encode (represent information with graphical features) and
decode (contextualise and interpret) visual information, respec-
tively (Cairo, 2013). Human computer interaction, user-centred
design and problem-driven visualisation research are offering
increasingly effective methods to develop and evaluate visual-
isation systems that explicitly consider real-world user re-
quirements (Sedlmair et al., 2012).

These research and technological developments in computing,
psychology and design have fed into an increased valuation of
visualisation that has, to a large extent, emerged as a response to
the influx of accessible information. Notwithstanding recent ad-
vances, this information explosion is likely to widen information
gaps as non-scientists try to understand very large amounts of data
(McInerny et al., 2014). Consequently, an informed visualisation
design process that integrates these expertise is a pivotal compo-
nent within the application of scientific knowledge in society, and
should therefore be regarded as an essential part of the science-
society interface (Lorenz et al., 2015; McInerny et al., 2014).

1.3. Aim and structure of the paper

Visual design considerations have received limited attention
within environmental science literature. This paper reviews the
state-of the art of visualising environmental information, focusing
on collaborative design approaches within non-scientific, profes-
sional contexts. Non-scientific contexts or audiences range from
professional (non-scientific domain experts, policy makers, agri-
cultural communities and other decision-makers) to non-
professional (interested citizens and general audiences). We
define a non-scientist or non-scientific audience as any end user
unfamiliar with general scientific theory, methods or communica-
tion approaches. Although this article is explicitly framed around a
subset of non-scientists that have an interest in applying scientific
information in an occupational environment (non-scientific pro-
fessionals), related research into visualisation for general (non-
scientific, non-professional) audiences also informs the discussion.

The following section provides an overview of the current
conceptual thinking and approaches within the emerging and
multidisciplinary field of visualisation. We review perceptual and
design principles that we use later as a foundation for discussing
visualisation applications within non-scientific contexts. While this
information retains global relevance, we argue it is essential to
consider not only visual perception, data type and graphical tech-
nique but also user characteristics and context during the whole
design process. Section 3 outlines inherent challenges of visualising
environmental data and the main contributions from environ-
mental visualisation disciplines. In Section 4, we then summarise a
range of visualisation approaches designed for general audiences
since many of these principles can be adapted to non-scientific,
professional contexts. Based on these discussions, Section 5
bridges visual encoding, decoding and contextual considerations
within an informed design framework, particularly relevant for
environmental scientists intending to develop visualisation tools in
collaboration with non-scientific, professional end users.

2. Visual representations of data: a concise overview

2.1. Different goals, contexts and practices

Broadly, ‘visualisation’ applies to the process of making some-
thing seeable to the eye, and the subsequent output of that process.
In this article, the terms ‘data visualisation’ and ‘visualisation’ are
used interchangeably as umbrella terms to encompass all visual
representations of data that primarily aim to facilitate the
communication of information; aid understanding through pre-
sentation, exploration or analysis; and, in some non-professional
contexts, raise awareness and elicit affective responses (Bishop
et al., 2013; Cairo, 2013; Few, 2009; Kosara, 2013a; Ziemkiewicz
and Kosara, 2009). From a user or audience perspective, visual-
isations should increase understanding; and ultimately, enhance
their ability to complete a task ormake an informed decision (Cairo,
2013; Few, 2009; McInerny et al., 2014). Secondary aims may relate
to creating something aesthetically appealing. However, visual-
isations should not be considered as artworks but instead as care-
fully engineered tools (Cairo, 2013). These visual interfaces can be
static displays of quantitative information, illustrations, maps or
interactive technologies; accessed through a variety of print or
digital medium (McInerny et al., 2014).

As a subset of visualisation research, information visualisation
(InfoVis) uses computer-based systems to provide interactive “vi-
sual representations of datasets designed to help people carry out
tasks more effectively” (Munzner, 2014; p1). InfoVis scientists tend
to focus on developing innovative techniques for exploratory vis-
ualisations that inherently require greater interaction and discov-
ery by the user (Kosara, 2013a). These systems are usually designed
for users with little prior knowledge that hope to gain a fresh
perspective, discover interesting relationships or incrementally
gain a better understanding of how their data are structured
(Kosara, 2013a). In contrast, interactive visualisations developed
explicitly for analytical reasoning (a field known as Visual Analytics,
see Thomas and Cook, 2005) usually require users to have some
prior understanding and to spend longer examining the data
(Kosara, 2013a).

Statistical graphics (such as line charts, bar charts, scatter plots,
histograms, box plots and pie charts) focus primarily on commu-
nicating quantitative information in the clearest way possible
(Tufte, 2001). Commonly found in scientific or business contexts,
this highly influential approach to visualisation prioritises accuracy
and efficiency over aesthetics (Few, 2012). In contrast to the goals of
statistical graphics, information graphics (infographics) often target
general audiences by integrating decorative elements or narrative
within designs. These visual displays, usually found in journalistic
or public contexts, can include a combination of graphics (e.g.,
symbols, illustrations, maps, diagrams and charts), text and
numbers. The most effective examples tend to be easy to read and
visually appealing (Kosara, 2013a). Unlike InfoVis, that ask the user
to interact with fluid information, infographics and statistical
graphics are visual representations that communicate known or
fixed data (Ziemkiewicz and Kosara, 2009). Similarly embedded
within visualisation, scientific visualisation aids understanding of
scientific data using figurative and pictorial visual representations,
ranging from tornados to human bones (Few, 2009). Unlike other
forms of visualisation, scientific visualisations try to ‘take a picture’
of a physical form, rather than getting audiences to decode a visual
language (Ziemkiewicz and Kosara, 2009).

Every visualisation, to varying degrees, conveys data and allows
users to play with and scrutinise underlying information. Although
some academics have tried to embed different definitions within
visualisation, it is perhaps more helpful to imagine a continuum
with presentation and provision of answers at one end, and
exploration and the raising of questions at the other (Cairo, 2013;
Samsel, 2013). In some contexts, the communication process
takes precedence; in other more analytical contexts, user inter-
activity and experience is critical to the production of an effective
tool (Bishop et al., 2013). Ultimately, the criterion for judging a
visualisation should not be determined by any one disciplinary
approach but by considering the specific user characteristics,
communication context and visualisation goals.



S. Grainger et al. / Environmental Modelling & Software 85 (2016) 299e318302
2.2. Fundamental principles of visual perception and graphic design

Visual perception theory supposes that nothing in graphic
design should be considered arbitrary (Williams, 2008). Ideally,
data presentations should guide a user's attention through the
most salient information quickly, without the need for text-based
explanations or additional elements to direct the reader. Origi-
nating at the Berlin School of Experimental Psychology in the early
twentieth century, Gestalt psychological theory and associated
grouping principles (i.e. proximity, similarity, enclosure, continuity
and connection) determine some of the ways in which the human
brain aggregates objects. Inspired by Gestalt theory, C.R.A.P. (an
abbreviation for Contrast, Repetition, Alignment and Proximity)
principles can draw the reader's attention to salient information,
help organise information quickly and give readers a clear structure
to follow (Williams, 2008).

Gestalt grouping and C.R.A.P. design principles take advantage of
the visual brain's ability to detect basic differences without effort
(referred to as preattentive processing) (Treisman, 1985; Ware,
2013). By creating salience (a contrasting quality or state relative
to its surroundings) through such preattentive graphical features
(such as Colour/Hue, Size, Orientation, Shape), certain aspects of a
visual display can appear to ‘pop out’ from the screen or page
(Wong, 2010). These mechanisms are used by designers to lower
cognitive load, enhance pattern detection and perceptual inference,
and ultimately solve problems more efficiently (Meirelles, 2013;
Wertheimer, 1959; Wong, 2010). (For a more detailed summary of
these fundamental principles, concepts and some practical graphic
design advice, see Kelleher and Wagener, 2011; Meirelles, 2013;
Williams, 2008 and a series of ‘Points of View’ columns written
by visualisation experts in Nature Methods1).
3. Visualising environmental data

3.1. Environmental visualisation science and application

The potential for visualisation in assisting environmental sci-
entists and promoting interdisciplinary communication is a distinct
and emerging field of research (Rink et al., 2014), supported by
visualisation science.2 Within environmental visualisation, the
advanced fields of geographic visualisation (geovisualisation) and
geovisual analytics emerged partly as a response to static con-
straints, but also to support the increasing need to communicate
complex environmental processes to a wider audience (Bohman
et al., 2015; MacEachren, 1994; MacEachren and Monmonier,
1992). This multidisciplinary field integrates techniques from
InfoVis, scientific visualisation, exploratory data analysis, visual
analytics and cartography, with an emphasis on supporting geo-
spatial analytical needs through the use of interactive tools (Dykes
et al., 2005). Perhaps one of the differences between geographic
and environmental visualisation is the need to incorporate more
strongly the temporal domain. However, it is now possible for
instance to use interactive spatial maps with sliders as a useful way
to show seasonality of environmental processes, such as stream-
flow. As a result of these advances, visualisation applications within
applied environmental research are beginning to emerge particu-
larly within geological, climate change, sustainability and land-
scape planning contexts (Ballantyne et al., 2015; Bohman et al.,
2015; Sheppard, 2012; Wibeck et al., 2013), and to support
1 http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.
html (last accessed 15.05.16).

2 http://www.informatik.uni-leipzig.de/bsv/envirvis2016/(last accessed
15.06.16).
environmental decision-making and management (Arciniegas
et al., 2013; Bishop et al., 2013; Eide and Stølen, 2012;
MacEachren et al., 2011).

While environmental visualisation science has created oppor-
tunities for more intuitive applications of environmental research,
usability and contextual challenges still remain. These type of
systems often display redundant information which may reduce
cognitive efficiency (van Lammeren et al., 2010). Although some
studies are beginning to integrate stakeholder-oriented approaches
(see Arciniegas et al., 2013; Eide and Stølen, 2012; Lorenz et al.,
2015; Michener et al., 2012; Robinson et al., 2012), many fail to
fully engagewith the user perspective, preferring to rather focus on
the technical aspects (McIntosh et al., 2011).

3.2. Environmental data types

Arguably, environmental data are as diverse as any other sci-
entific discipline, and may share visualisation challenges from
related disciplines such as chemistry, physics, and mathematics.
However, the representation or ‘mapping’ of geographical or spatial
information is fundamental to numerous environmental disci-
plines. 2D representations of 3D surfaces (commonly known as
maps) require consideration of projection, scale and symbolisation
(Meirelles, 2013). Unlike displays of quantitative or abstract infor-
mation, static spatial representations traditionally attempt to
accurately represent physical characteristics of the Earth (e.g. rivers
and mountains). Maps are often assumed to be the best way to
display geospatial data, even when other design approaches offer
more clarity. In fact, poorly considered maps can create biased
scientific messages and restrict a user's ability to scrutinise the
underlying data and processing (McInerny et al., 2014).

In terms of temporal data, the time series graph is commonly
used to visualise chronological change (Aigner et al., 2007; Muller
and Schumann, 2003). It is particularly useful in communicating
climate information such as precipitation and temperature to sci-
entists as well as non-scientific audiences. However, data that
combine spatial and temporal dimensions (i.e. spatiotemporal
datasets) are very common in environmental sciences and appli-
cations. Because of their high-dimensionality, these pose unique
visual communication challenges particularly when both space and
time dimensions change simultaneously, such is the case within
hydrological sciences (e.g. soil moisture and precipitation). Repre-
senting changes in both time and space using a conventional 2D
map therefore requires reducing one or more dimensions, e.g. by
slicing or averaging (Meirelles, 2013). Deciding on which di-
mension(s) to reduce requires careful consideration of the nature of
the pattern (e.g. a sequence of maps vs. a space-averaged time
series).

3.3. Visualising environmental uncertainty

The importance of uncertainty in environmental data and the
need to communicate those uncertainties effectively has received
considerable attention in recent literature (Beven, 2009; Beven
et al., 2012; among many others). Traditionally, mapping or
encoding techniques assume that all data is free from uncertainty
(Brodlie et al., 2012). In fact, without an explanation of the reli-
ability of data, maps are solely dependent on designer intuition and
decision-making (e.g., projection, coordinate system, references
and datum) (McInerny et al., 2014).

Visualisation of spatial uncertainty has attracted attention in the
geovisualisation community (Kinkeldey et al., 2014; MacEachren
et al., 2005), and is especially useful for decision-makers con-
ducting spatial analyses. Within flood risk management for
instance, mapping of inundation model outputs and knowledge

http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html
http://blogs.nature.com/methagora/2013/07/data-visualization-points-of-view.html
http://www.informatik.uni-leipzig.de/bsv/envirvis2016/


Fig. 1. The National Oceanic and Atmospheric Administration's (NOAA) 2016 temperature outlook representing the probability (percent chance) of an abnormally warm or cool
summer (NOAA, 2016).
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deficiencies can help decision-makers understand any potential
spatial planning implications and associated uncertainties (Beven
et al., 2014). There are numerous graphical techniques available
for visualising spatial uncertainty, such as colour schema, fuzziness
and transparency (Benke et al., 2011). However, the existing data-
driven approach to uncertainty visualisation fails to consider spe-
cific user needs and task requirements (MacEachren et al., 2005). In
fact, Kinkeldey et al. (2014) argues for the development of
empirically-based typologies and guidelines applied within
different task-based visualisation contexts (e.g., communicative,
analytical and exploratory).

While graphical statisticians and computer scientists have
developed multiple ways to incorporate uncertainty within 2D
visualisations (see Pang et al., 1997; Shrestha, 2014; Spiegelhalter
et al., 2011), perceptual challenges remain when a third dimen-
sion is added (Brodlie et al., 2012). For example, primary axes
within conventional maps are solely determined by the spatial
dimensions of primary data, limiting capacity to integrate effec-
tively additional variables (Kaye et al., 2012; McInerny et al.,
2014). Furthermore, crisp contour maps or 3D isosurfaces run
the risk of conveying a misleading impression of reality (a process
known as Cartohypnosis) (Boggs, 1947, 1949; Buttenfield and
Beard, 1994).

Assessments of temporal uncertainty are often associated with
forecasting and probabilities (Brown, 2010). Visualising forecast
uncertainties and associated probabilities is thought to increase
user trust (Joslyn and LeClerc, 2012; Roulston et al., 2006), although
increased visual representation of uncertainty does not automati-
cally lead to better decisions (Greis et al., 2015). Professional users
have been found to prefer receiving probabilistic information from
familiar formats such as ‘likelihood’maps (Fig.1) or representations
of forecast ‘spread’ (e.g. fan charts and error bars), as opposed to
displaying discrete categories (Taylor et al., 2015). By providing
alternative future conditions, choices and possibilities, scenario
planning and analysis are useful tools to deal with uncertainty
(Pereira et al., 2010; Reilly andWillenbockel, 2010), especially in an
era of uncertain trajectories of global change (Polasky et al., 2011).
Presenting a range of possible outcomes and no-regret options can
help decision-makers understand the inherent uncertainty of sce-
nario projections (van Soesbergen and Mulligan, 2014). These
scenario-based visualisation techniques have been developed
around a wide range of environmental issues, such as water quality
(Brouwer and De Blois, 2008), flooding (Chang et al., 2007), land-
use (Dockerty et al., 2006), socio-ecological systems (Reed et al.,
2013), and even environmental problems at multiple scales (Pettit
et al., 2012).

While uncertainty visualisation for trained audiences is well
studied (Ibrekk and Morgan, 1987), empirical evidence exploring



Fig. 2. ‘Giant Waves’, an infographic created for Brazilian news magazine Epoca, illustrates how structural devices can be used by data journalists to guide readers (Cairo, 2013).
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how visually displayed uncertainty information is interpreted and
used by non-scientists has only recently gained attention (Greis
et al., 2015). For interpretation of more sophisticated displays of
uncertain statistical information (e.g. survival curves); users or
audiences require instruction that may not be feasible in some
communication contexts (Lipkus, 2007; Spiegelhalter et al., 2011).
Recent experimental studies found that user performance varied
depending on glyph type and that users often ignored uncertain-
based information when making decisions (Padilla et al., 2015). In
addition, factors such as numeracy, user comprehension, visual
appeal and familiarity may be more significant than visualisation
type or the degree of uncertainty presented (Greis et al., 2015; Tak
et al., 2014).

4. Lessons from general, non-professional contexts

Scientists can learn from designers that professionally
communicate environmental information in a range of contexts. To
this end, this section explores visual design techniques used within
journalistic, cultural and residential contexts, highlighting some
innovative examples that have successfully informed or affected
general audiences. All three contexts share casual (as opposed to
highly analytic, work-based) characteristics that, although diverge
from this article's focus on professional tasks and uses, offer up
insights into the importance of understanding user needs and
context of use throughout the design process.

4.1. Journalistic contexts

The advent of the internet has revolutionised the way in which
news is accessed and consumed. As a result, media outlets are
increasingly employing data journalists to communicate important
stories either through static infographics or interactive tools that
can be read and scrutinised (Cairo, 2013). These visual ‘articles’ aim
to primarily inform readers, and so, data journalists do not strive to
create something aesthetically pleasing as an end in itself (Few,
2011). In the same way that written news articles aim to facilitate
maximum comprehension, journalistic visualisations achieve
beauty through the ease with which information is communicated.
As is the case with all visualisations, understanding brain mecha-
nisms and presenting information in a way that complements vi-
sual system functionality is fundamental to good data journalism
(Cairo, 2013).

Building on general Gestalt theory, graphical journalists will
often draw a reader's attention to the most salient aspect of a data
story by presenting or arranging graphical elements in a percep-
tually advantageous manner, a concept referred to as visual hier-
archy. Structural devices such as narrative, titles, typography,
annotation, repetition and grid-based layouts are tools that can be
used to effortlessly guide the reader through a visualisation (Fig. 2).
Unlike exploratory visual tools that might suit scientific policy
advisors, some non-scientific users need to be provided with
explicit directions to help them navigate visualisations (Gough
et al., 2014b; Heer et al., 2012), and because of this, data journal-
ists focus on optimising form and structure before considering
colour or style (Cairo, 2013). This approach is closely related to vi-
sual storytelling techniques that help to guide users through an
infographic or interactive tool.

Studies suggest that general audiences find stories more
engaging and easier to comprehend than traditional rationale-
based approaches to science communication (Bruner, 1986;
Dahlstrom, 2014; Green, 2006). As a result, media practitioners
regularly rely on narrative formats to gain the attention of their
audiences and provide context for the news (Cairo, 2013).
Narrative-based and interactive graphics have arisen from the need
to help information-hungry audiences make sense of increasingly
available, yet highly complex information (Cairo, 2013; Figueiras,
2014; Segel and Heer, 2010). A recent interactive article about
Hurricane Patricia in the New York Times demonstrates the power
of concise visual storytelling (Fig. 3). Given that the general public
receive most scientific information through mass media, they are
likely to have already come into contact, and be predisposed to



Fig. 3. Visual storytelling within a journalistic context. This map screenshot of Mexico's Pacific coast is from a New York Times interactive graphical article titled “Visualising the
Size and Strength of Hurricane Patricia” (Aisch et al., 2015).

Fig. 4. Narrative-based visualisation genres (adapted from Segel and Heer, 2010). Fig. 5. ‘Wind Map’ (March 21st, 2012) by Fernanda Vi�egas and Martin Wattenberg.
This artistic map represents a historical snapshot of wind flowing over the contiguous
United States (Vi�egas and Wattenberg, 2012).
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engage, with such journalistic approaches (Dahlstrom, 2014). Segel
and Heer (2010) introduced three genres of narrative-based visu-
alisation commonly used by data journalists, which balance ele-
ments of author-driven (relying heavily on linear structures and
author messaging) and reader-driven (giving readers complete
freedom to explore) visualisation (Fig. 4). However, there is
currently limited empirical evidence to indicate how best to inte-
grate elements of visual storytelling, let alone where, when, why
and for whom techniques are most effective (Figueiras, 2014; Lee
et al., 2015).

4.2. Cultural contexts

Visualisation art or artistic visualisation involves mapping data
to an image but unlike other types of visualisation, aims to create
novel art and in some cases, interest in a subject (Gough, 2014;
Kosara, 2013a; Vi�egas and Wattenberg, 2007). The artwork's aes-
thetics have the power to facilitate meaningful experiences and
allow audiences to personally engage with the underlying data
(Gough, 2014). Artists, environmental scientists and InfoVis scien-
tists are beginning to collaborate on art-based visualisations that
aim to communicate scientific data to broader audiences; helping
in the long term to raise questions, elicit emotions, or promote
behavioural change around a scientifically-related societal chal-
lenge (Gough et al., 2014a; Samsel, 2013). Art/science collaboration
is mutually beneficial as both parties are able to discover new ap-
proaches to design and offer up contrasting interpretations of the
world. This should also ensure that the design is visually novel and
the scientific message is conveyed accurately. One particularly
elegant example is ‘Wind Map’ by two co-leaders of Google's data
visualisation group, designer Fernarda Vi�egas and mathematician
Martin Wattenberg. This rich data-driven artwork uses visual mo-
tion to show hourly surface wind forecasts over the US, either as a
real time interactive tool (Vi�egas and Wattenberg, 2016), or as
snapshot images in time (Fig. 5). Designed for non-scientists, this
playful visual tool has been adopted by enthusiasts to assist with



Fig. 6. The Ambient Canvas is an LED-based prototype embedded within a kitchen backsplash to inform residents of their household water use (photographed here on the left). On
the right, morning (top), afternoon (middle) and evening (bottom) snapshots show how the display changes or ‘fills’ over time as more water is used (Rodgers and Bartram, 2010).

3 ”A design study is a project in which visualisation researchers analyse a specific
real-world problem faced by domain experts, design a visualisation system that
supports solving this problem, validate the design, and reflect about lessons learned
in order to refine visualisation design guidelines.“(Sedlmair et al., 2012; p2432).
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numerous leisure activities and exhibited inworld-leading galleries
(Gough, 2014).

4.3. Consumptive contexts

Innovative visualisation systems are now being developed to
inform everyday decision-making (Pousman et al., 2007). Providing
effective feedback on residential resource use may contribute to a
more environmentally sustainable society (Rodgers and Bartram,
2011). Advances in sensing and pervasive computing technologies
enable the integration of such information within the home.
However, screen-based interfaces traditionally used in work envi-
ronments require significant effort and attention, and therefore are
not appropriate to support everyday activities (Rodgers and
Bartram, 2011). Artistic and ambient visualisations provide an
alternative way to communicate this information to resource users
in a personally meaningful manner. By sensitively integrating
aesthetically pleasing and usable point-of consumption feedback
devices throughout the home, residents subconsciously become
aware of real-time changes in their consumption, informing future
behaviour (Fig. 6). User studies suggest that aesthetically pleasing,
abstract designs induce positive emotions in participants, unlike
representations of the environment that often produce feelings of
guilt (Rodgers and Bartram, 2011). However, this study's findings
indicate that no one approach works for everyone, and that some
users may still prefer traditional numerical representations
(Rodgers and Bartram, 2011).

5. A design framework for visualisation in non-scientific
professional contexts

This section synthesises best practice from multiple disciplines
that have the potential to improve visual communication and
application of scientific information within a variety of non-
scientific, professional contexts. These guiding principles are
intended to address common misconceptions and provide a foun-
dational framework that attempts to bridge visual encoding,
decoding and contextual considerations for applied environmental
researchers. Although presented in a linear fashion with some
stages relying on outcomes from previous actions, thewhole design
process should be highly iterative (Sedlmair et al., 2012). We have
organised the guidelines into four distinct phases presented here
chronologically. However, revisiting and gradually refining earlier
ideas and understanding is encouraged (Sedlmair et al., 2012). New
opportunities are also highlighted, although we are not suggesting
that these approaches will work in all contexts, but merely that
they are tools to consider when constructing tailored visual stra-
tegies. This set of guidelines assumes that a preliminary commu-
nication context and problem has already been identified, and that
the visualisation designer intends to inform or encourage under-
standing, rather than persuade users.

5.1. Preparation phase

The following considerations focus on the integration of end
users and experts within the design process, and are adapted from a
problem-driven visualisation framework devised by Sedlmair et al.
(2012). Their methodology draws on lessons from their own or
other real-world design studies to provide practical guidance on
this topic from the fields of human computer interaction (HCI),
social science and software engineering. It is important that these
preliminary steps are taken before any task characterisation or
encoding begins.

5.1.1. An iterative, user-centred design approach
User-centred design (UCD) is a framework, originating from

product and software development, whereby user characteristics
(needs, wants and limitations) are given explicit consideration
throughout the whole design process (Beyer and Holtzblatt, 1998).
When defining, developing and testing a visualisation system, end
user consultation helps the designer learn about the domain ex-
pert's background, expertise, behaviour, goals, as well as their work
environment and familiarity with technology (potential context of
use) (McInerny et al., 2014).

To establish user requirements within a UCD approach, a com-
bination of interview and observational methods are often used.
Visualisation design studies3 are particularly successful when re-
searchers try to become familiar with the end user's real-world
environment by observing them in their workplace and occasion-
ally interrupting them to gain clarification (an approach known as
contextual inquiry (Holtzblatt and Jones, 1993)) (Sedlmair et al.,
2012). Just talking to users is not enough because what they say
they do or need fails to generate a complete picture of the user's
real-world situation (Sedlmair et al., 2012). Fully implementing a
UCD approach requires an iterative design process involving pro-
totype usability testing and an evaluation of tool efficacy from the
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user's perspective. If this approach is taken, visualisation designers
must strive to achieve a balance between too few, lengthy iterations
and too many, rapid ones. Otherwise, this can lead to fatigue, un-
reliable feedback and ultimately, indifference towards the process.
Furthermore, it is essential that researchers learn just enough to
characterise the visualisation problem and user; rather than
adopting a full ethnographic approach, that takes so long, the need
for the visualisation elapses.

Apart from these general guidelines and potential pitfalls, there
is currently limited empirically-based practical guidance for con-
ducting problem-driven visualisation research. Within HCI and
social science there has been a conspicuous absence of general-
isable, off-the-shelf methodologies, yielded from design study ex-
periences. Therefore, further experimentation, within real-world
decision-making contexts, is needed to help identify near-optimal
design study frameworks (Sedlmair et al., 2012).

5.1.2. A participatory co-design process
Participatory Design is an extension of UCD and requires active

involvement of end users and other stakeholders within a co-
design process (McIntosh et al., 2011; Robertson and Simonsen,
2012). To improve the likelihood of long-term adoption, visual-
isation designers should attempt to collaborate with potential end
users throughout the whole design process (Karpouzoglou et al.,
2016; Lorenz et al., 2015). Insights from a truly collaborative
design process also have the potential to strengthen and shorten
information exchange and pathways between domain experts and
information providers in the long term (McInerny et al., 2014).
However, it is important to consider that not all collaborations are
beneficial and care should be taken not to commit to the process
prematurely (Sedlmair et al., 2012).

5.1.3. Collaboration with other scientific disciplines and designers
Gathering and processing environmental data is central to

environmental science, but creating visual representations of data
may require additional expertise. Advances in communication
technology make it possible for researchers from various disci-
plines to collaborate on projects (Buytaert et al., 2014). Just in the
same way that creating music requires experts in composing,
playing and instrument making, visually communicating data
effectively could benefit from collaboration between scientific and
creative expertise (Gough et al., 2014b).

As environmental scientists, we should look outside of our
disciplinary boundaries, by consulting experts not only in visual-
isation systems but also the visual arts, social science, computer
science, HCI, user experience design and interface design
(McInerny et al., 2014; Vervoort et al., 2014). Real-world experi-
ences and principles from practitioners familiar with targeting and
working with non-scientific audiences could inform collaborative
attempts by environmental scientists (e.g. citizen science activ-
ities). By combining different techniques from different disciplines,
solutions can be found that would have otherwise been unreach-
able (Kosara, 2013a).

5.2. Development phase

A successful development of visualisation systems requires
continuous problem characterisation and a continuously evolving
understanding of how the intended audience thinks and their
contextual requirements (Gough, 2014; Ziemkiewicz et al., 2012).
We suggest conducting the following actions before the encoding
phase, although not necessarily in the order presented below.

5.2.1. Identification of potential user group
From the outset, it is important to make contact with and select
a realistic target user or user group. This might comprise of specific
policy makers, civil servants, decision-makers from multiple levels
of society, as well as private stakeholders or farmers. It is worth
remembering, however, that prematurely committing to a target
user or user group and their requirements is a common mistake
made by design studies, often resulting in wasted time and effort
(Sedlmair et al., 2012).

5.2.2. Identification of a real-world visualisation need
Designers should attempt where feasible to become familiar

with the target user's context of use and professional challenges
(see also following step ‘definition of user characteristics’) in order
to ascertain whether and how visualisation can enable sufficient
and relevant insight. Existing information sources and successful
decision-making tools should be identified early on, as target users
are unlikely to try something new if they already have something
that works well or displays similar capabilities (Sedlmair et al.,
2012). Furthermore, the potential added value of a visualisation-
based solution should be determined from the start. In many
cases, a well-structured sentence or numerical representation can
more concisely convey the intended message. When aiming to
continuously support decision-making processes, clarification of a
long-term user requirement will need to be identified to fully
validate the operational tool.

5.2.3. Definition of user characteristics
Within visualisation research, the significance of user charac-

teristics (i.e. user cognitive abilities, personality traits and domain
expertise) on visualisation effectiveness is becoming increasingly
understood; and, as a result, tailored approaches within decision-
making environments are increasingly acknowledged as advanta-
geous (Conati et al., 2014). Design features and forms need to be
sensitive to the diversity of user expertise and reasoning processes
even within user groups (MacEachren et al., 2005; McInerny et al.,
2014). Large user groups or audiences in particular, will have
different cultural, institutional and disciplinary backgrounds and
this must be considered throughout the design process. Scientists
might be able to make certain assumptions when creating graphics
for a scientific audience. If, however, the audience is new to the
subject matter or unfamiliar with the graphical form or medium of
the device, they may feel overwhelmed. In this case, including
graphical explainers or legends within a tool could make compre-
hension easier. At the same time, it is important not to patronise an
audience by underestimating their ability. When creating
visualisation-based systems for a group of ‘policy-makers’ or ‘de-
cision-makers’, environmental scientists should resist the tempta-
tion to assume or generalise user expertise without prior
investigation. For example, policy makers do not all share the same
understanding of statistical or scientific methods (Mastrandrea
et al., 2010). In such a situation, it might be appropriate to intro-
duce a switch option, allowing users to select scales, locations and
scenarios that best match their expertise and context (Buytaert
et al., 2014).

5.2.4. Definition of a culturally and functionally appropriate
graphical and collaborative medium

When trying to connect and communicate a complex dataset or
uncertain model outputs, a computer-based system offers a lot of
options with regard to user-computer interaction and immersion
(Karpouzoglou et al., 2016). Environmental scientists should find out
early on whether a computerised tool is the most suitable means of
interaction. Some non-scientists are unfamiliar with computer in-
terfaces andmay require substantial training and time to familiarise
themselveswith the systembefore they obtain equal benefit. A hand
drawn sketch might, in some setting such as outdoors, be the most
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practical and cost-effective means of communication. Some visual
forms suit a private user environment whereby users can interact
with data in a tailored environment such as aweb application, while
other approaches work better when presenting to small or large
audiences. Despite the clear benefits and the speed of technological
change, environmental scientists should remain cautious and
humble about the potential to develop computer-based visual-
isations, particularly in remote developing contexts. This is an area
of research that needs a lot more methodological experimentation
(see Karpouzoglou et al., 2016).

5.2.5. Development of visualisation objectives and functionality
It is essential to not only encode data in an appropriate manner

but also to ensure that intermediate visualisation goals and ulti-
mate outcomes are considered from the start (Spiegelhalter et al.,
2011). Successful design also requires sensible estimation of what
success constitutes and entails (Lipkus and Hollands, 1999;
McInerny et al., 2014). Adopting a UCD approach is central to
these activities because communicating information that serves no
purpose for the intended audience is a fruitless endeavour. Unlike
other visual forms, visualisation is primarily “an expression of
purpose”.4 Understanding what you intend to achieve should help
to parametrise the design approach and features (Gough et al.,
2014b). For example, clarifying tool functionality helps to deter-
mine the extent to which a visualisation system should be
explanatory or exploratory which, in turn, is essential before
elaborating on the graphical form, structure or style. Broadly, vis-
ualisation systems assist completion of a specific task or generate
useful insight towards solving a longer-term problem. From an
environmental science perspective, visualisation functions range
from descriptions of a physical process to gaining insights that can
be applied to potential decision-making scenarios. When designing
static graphics that primarily intend to inform readers, visualisation
designers could, for example, validate early ideas by asking ques-
tions such as:

- Does function require presentation of several data variables?
- Does function require the reader to compare?
- Does function require the reader to quantify?
- Does function require the reader to detect correlations or
relationships?
5.2.6. Potential for interactive and web-based technologies
It is believed that information-processing can be improved

through greater interaction (Parsons and Sedig, 2011), and web
technologies provide considerable potential in this field (Sundar,
2004). Due to the advent of smartphones and tablets, non-
scientists are becoming increasingly familiar with web-based,
interactive devices and interfaces. This popularity could be lever-
aged by scientists as a way to reach multiple audiences and enable
them to dissect and scrutinise science in an accessible and
appealing format (McInerny et al., 2014). Interactive andweb-based
technologies can be understood in at least two ways.

The first category relates to interaction between end users and
the visualisation system. Recent advances in data science and
interactive web technology enable the users to not only passively
receive the information, but also acquire information in a reactive
or proactive way (Heller et al., 2001; Spiegelhalter et al., 2011). The
emergence of visual analytic techniques has created opportunities
for intuitive user exploration and highly dynamic and adaptable
4 Charles Eames quoted in an interview with Digby Diehl “What is Design?”
published in Progressive Architecture vol. 71 n. 2 (February 1990), 122.
displays. Interactive elements and tools such as select, zoom, sort
and filters in the interactive visualisation system make it easier to
view and manipulate very large environmental databases (Heer
et al., 2012). The emergence of visual analytic techniques has
created opportunities for intuitive user exploration and highly
dynamic and adaptable displays.

By allowing personal or collaborative exploration, interactive
visualisations generate insight, and aid formation and testing of
hypotheses that were previously unknown (Buytaert et al., 2014).
Interactivity allows users to ‘learn by doing’, developing a person-
alisedmental model of whatmay have originally been a diverse and
highly complex dataset (Beddington, 2011; Karpouzoglou et al.,
2016). These tools enable users to explore particular aspects and
put relevant information into their own world view (Beddington,
2011; McInerny et al., 2014; Segel and Heer, 2010). They also have
the capacity to incorporate multi-dimensional data that would
have previously been challenging to integrate.

When targeting diverse audiences, interactive tools can include
optional explanations and hyperlinks, and help users explore
multiple representations (Spiegelhalter et al., 2011). They are not
just fixed products but a means by which users can gradually and
intuitively undergo transformations (Woodward et al., 2015). In
contrast, traditional static approaches can create a disconnect be-
tween the information provided and the end user's decision envi-
ronment. While graphics frame data stories, interactive visual tools
let users drive stories for themselves.

Secondly, it is important to consider interactions between a
diverse range of information providers and users. Visual commu-
nication is not always a one-way process, from information pro-
vider to user. A visualisation system with high levels of social
interactivity may allow end users to re-create the visual repre-
sentation based on existing work or their own data, and interact
with colleagues and collaborators (Heller et al., 2001). Information
provider and user sometimes have a blurred boundary, and the
communication process is usually two-way or even multidirec-
tional among a number of players (McMillan and Hwang, 2002),
especially if the visualisation system is incorporated into social
network or online collaboration platforms (Ariel and Avidar, 2015).
For example, web-based systems with chat capabilities provide
shared visual spaces for multiple collaborators to exchange im-
mediate feedback and co-design in real-time (Buytaert et al., 2014;
Karpouzoglou et al., 2016). Constructive interactions between
providers and individual users will improve the process of
dissemination, knowledge production and real-world application
(Kirchhoff et al., 2013). These developments can be leveraged by
applied environmental scientists as a way to target non-scientific
stakeholders. However, understanding when and how to inte-
grate interactivity requires careful consideration of user re-
quirements and tool functionality.

5.2.7. Embedding visualisation in a narrative context
While using anecdotal evidence within empirical research is

often viewed as unscientific or even manipulative (Katz, 2013),
considering less formal, narrative principles when designing visu-
alisations can make complex, scientific information more
comprehensible, memorable and credible to unfamiliar audiences
(Dahlstrom, 2014; Ma et al., 2012). This is exemplified by the gap-
minder project (Rosling, 2016), an interactive visualisation tool that
allows users to explore socio-economic statistics through time,
creating a tailored data story (Fig. 7).

When targeting non-scientific audiences, scientists could
consider creating digestible and relatable visual stories that focus
on a particularly salient subset of scenarios and data sources, rather
than every aspect of the scientific story (Krzywinski and Cairo,
2013; Ma et al., 2012; McInerny et al., 2014). Fig. 8 illustrates how



Fig. 7. Interactive bubble chart from the gapminder project, showing the relationship between how long people live and much money they earn. Each circle (bubble) represents a
country. The bigger the circle the higher the population. The circle colours correspond with the four main world regions. The play button and subsequent animation allows users to
view changes in the data since 1800 up until 2015 (Rosling, 2016). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. Narrative-based infographic from the Los Angeles Times, using small multiples to show weekly changes in Californian drought in 2016. This periodically updated web article
contains 231 maps dating back to the beginning of the drought (Kim and Lauder, 2016).
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a narrative-based approach can be particularly effective at
communicating environmental stories over time. These type of
visualisations (commonly referred to as ‘small multiples’) comprise
a series of graphics, laid out in gridded plots, displaying data slices
or categories with the same basic design structure (Tufte, 2001).
Plotting some data together can result in unclear, or worse still,
misleading representations. Combining graphs in this way takes
advantage of the brain's ability to immediately compare and see
changes, patterns or differences in information (Heer et al., 2012).
Readers can easily see differences, rather than having to retain a
picture in their mind and rely on their working memory.
Visualisationsmay need to guide users or audiences through the
data and instruct them on how the image should be read, helping to
build and ideally retain an understanding of the underlying data
structure (Gough et al., 2014b). Emphasising narrative within a
visualisation allows users to create linkages with new knowledge
and in many cases, build emotional connectivity within the
communication process (Karpouzoglou et al., 2016). Nevertheless,
when adopting techniques that ordinarily target general audiences
(e.g., embellishments, storytelling and metaphor), scientists within
professional contexts should take into consideration the potential
emotional response of the user and the perceived legitimacy and
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credibility of the tool. Moreover, without careful consideration of
data framing or disproportionate affective responses, non-scientific
users can potentially interpret ‘data stories’ in a plethora of ways
(Katz, 2013; Kosara and Mackinlay, 2013).

5.3. Visual encoding phase

After establishing an understanding of visualisation aims and
user needs, the encoding and presentation process can begin. From
the outset, it is important to be aware of the potential impact
encoding choices can have on the user or audience. Every graphical
feature affects the readability of data. For static visualisations that
are primarily aiming to present data, it is especially important to try
to optimise the encoding process as much as possible. In contrast,
interactive encoding needs to withstand a more adaptable design
space.

5.3.1. Abstraction of relevant data to encode
Understanding the audience, context of use and visualisation

goals, will help determine what data are most relevant for visual
encoding. For example, how comprehensive and precise the sci-
entific understanding needs to be. Available data and information
that could be particularly relevant or helpful, should be determined
in consultation with end users. Scientists should also aim to select
accurate and easily updatable datasets.

5.3.2. Pre-agreed success criteria when deciding on visual form
Evenwith a good understanding of perceptual design principles,

deciding on an effective graphical form for a given task is not al-
ways straightforward. Common sense, familiarity and experience
may suggest that times series charts are the clearest way to convey
change over time. Similarly, one might expect bar charts to be very
effective at comparing quantities and scatter charts at displaying
correlation. However, given the range of visualisation functions,
there are inevitably exemptions. Graphics that improve compre-
hension are different from those that induce behavioural change, or
equally, users find attractive (Ancker et al., 2006; Spiegelhalter
et al., 2011). There might be various ways to clarify data but pre-
defining and revisiting the purpose of the tool or representation
will help to narrow the possibilities. Hence, visualisation form de-
pends on the task it is intending to help with (Cairo, 2013). Ulti-
mately, when deciding on the type of visualisation, designers
should always consider their objectives and audience needs (i.e.
overall functionality) (Cairo, 2013).

5.3.3. Appropriate selection of form and colour
Despite its importance within environment-related graphical

communication (Sherman-Morris et al., 2015) and the emergence
of tools such as colorbrewer (Brewer and Harrower, 2016), colour
continues to be used inappropriately. Default or arbitrary colour
schemes are often selected based on intuition, rather than
perceptual principles. For example, rainbow colour schemes are
very popular within environmental science, despite being highly
problematic and misleading (Borland and Taylor, 2007; Light and
Bartlein, 2004; Silva et al., 2011) (Fig. 9). For a detailed explana-
tion of rainbowcolour schememisuse, refer to a blog post by Robert
Kosara (Kosara, 2013b).

Fig. 10 exemplifies the perceptual benefit of monochrome bar
charts particularly when accurate comparisons of numerical data
are the reader's primary goal (Cairo, 2013). To reduce the risk of
inappropriate colour use, use form attributes, such as position and
shape, before changing colour hue or intensity. Intensity is a gen-
eral term that applies to two separate colour attributes: brightness
and saturation (Few, 2012) (Fig. 11). When trying to present spatial
differences in sequential data, a single hue with low intensity
corresponding with low values, and the same hue with high in-
tensity representing high values is recommended (Harrower and
Brewer, 2003; Kelleher and Wagener, 2011) (Fig. 12). To convey
contrasting high and low values relative to an average value,
consider diverging colours with intense hues at both ends of the
colour scheme (Harrower and Brewer, 2003; Kelleher andWagener,
2011) (Fig. 9B; Fig. 13).

Categories are best represented using contrasting colour hues at
equal intensity (Harrower and Brewer, 2003; Kelleher and
Wagener, 2011). It is also important to consider, and if possible
follow, cultural or natural connotations of specific colours based on
the target audience. For example, western audiences may link the
colour red with danger while for chinese audiences this may imply
good fortune. Representing high temperatures in red and low
temperatures in blue is a typical example of natural connotation
use (Silva et al., 2011). When representing data that relates to a
visible object, selecting the corresponding colour is likely to
quicken user recognition. For example, data corresponding with
blueberries should be encoded in blue (Lin et al., 2013) (Fig. 14).

5.3.4. Visual clarity and beauty in functionality
Design solutions are often most effective when a lot is

communicated with little, focusing on beauty in terms of clarity
and functionality (e.g. the ‘Keep It Simple, Stupid’ (KISS) design
principle). Similarly, beauty should be seen as an indicator of
functionality and truth rather than purely aesthetics (Cairo, 2013).

Technique-driven projects often fall back on familiar ‘novel’
approaches at the expense of usability (McIntosh et al., 2011;
Sedlmair et al., 2012). Overloading the user with elaborate graph-
ical cues, or requiring them to decode complex visual puzzles limits
understanding, heightens the risk of perceptual stress, and can
inadvertently distract them from the core data messages (McInerny
et al., 2014; Tufte, 2001). Users unfamiliar with certain domain-
specific graphical conventions or those ordinarily put-off by tech-
nical content, are likely to engage better with a well-crafted,
sympathetic graphics than figures with excessive shapes, colours
and textures (Krzywinski, 2013). Although recent advances in user
interface design and computer graphics has brought many possi-
bilities, too many animations or flashy components can obscure
data meaning.

Visualisation designers should aim to recreate the structure and
meaning of the data in an engaging and memorable way
(Manovich, 2011). Information or data should be visually conveyed
in a clear and intuitive manner, without over-simplifying or
dumbing-down the overall message (Bishop et al., 2013). If the
underlying information is sufficiently novel, designers should avoid
sensationalising the data, focusing on UCD choices instead (Gough
et al., 2014a,b).

Within science, embellished graphics can be perceived as being
detached from the underlying data (Kosara, 2013a), giving promi-
nence and, therefore, advocating particular information (Pidgeon
and Fischhoff, 2011); or as a diversionary tactic away from the
‘hard’ science. Nevertheless, engagement and accuracy should not
necessarily been seen as mutually exclusive outcomes. In a pure
science communication context, for example, aesthetics might be
worth considering if striving to create something memorable that
will help to spread awareness about a specific scientific challenge
(Borkin et al., 2013). However, an attractive image cannot qualify as
an effective visualisation if it does not accurately convey anything
meaningful or credible (Holmes, 1984; Kosara, 2013a).

Cairo (2013) describes how to achieve visual clarity by graphi-
cally highlighting particularly relevant aspects of the data, while
keeping secondary information in the background to see the overall
trend (Fig. 15). While it is important to exclude data that is irrele-
vant to the user's professional culture or decision scenarios,



Fig. 9. An identical equivalent potential temperature (�C) analysis at 700 hPa from the European Centre for Medium-Range Weather Forecasts (ECMWF). The primary task for the
reader would be to identify frontal zones. Two meteorological products: A rainbow-type map with colour gradients that could actively mislead users, particularly those unfamiliar
with the subject or task (A). A redesigned map using a diverging colour scheme and a sensible colour scheme, resulting in more efficient pattern recognition and user understanding
(B) (Stauffer et al., 2015). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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presenting tailored relationships and comparisons in context with
other less relevant data, may deepen overall meaning for the user
(Cairo, 2013; Heer et al., 2012).

5.3.5. Tailoring to target audience needs and context
Tailoring adheres to user heterogeneity, and accepts that visu-

alisation comprehension and interpretation are highly dependent
on user perceptions and capabilities (Lorenz et al., 2015). Para-
chuting default or familiar techniques into displays or tools
irrespective of the intended target, encourages complacency and
heightens the risk of misinterpretation. As we have argued for
earlier in this article, effective (e.g., usable, useful and relevant)
visual communication tools within professional contexts should be
customised, based on an understanding of user characteristics, as
well as the potential context of use (Fig. 16) (Hawkins et al., 2008;
Lorenz et al., 2015). Such an approach enhances an audience's or
user's ability to contextualise what could otherwise be interpreted
as highly abstract and inactionable scientific information



Fig. 10. Encoding the same data using three graphical forms: bars (top), areas (middle)
and colour saturation (bottom) (Cairo, 2013).

Fig. 11. Three attributes of colour: Hue (top), saturation (middle) and brightness
(bottom). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 12. Using one colour hue and a sequential scheme is recommended when map-
ping quantitative data (Kelleher and Wagener, 2011). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 13. Using contrasting colour hues and a diverging scheme is recommended when
mapping data with average or important midway values (e.g. 0 �C) (Kelleher and
Wagener, 2011). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 14. Take advantage of existing colour recognition when encoding categorical data
(Lin et al., 2013). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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(Karpouzoglou et al., 2016; Lorenz et al., 2015; Spiegelhalter et al.,
2011).

5.3.6. Development of a broad range of throw away mockups,
sketches and prototypes

User-centred visualisation designers should find inspiration
from wireframing and rapid software prototyping (from the fields
of HCI and software engineering, respectively); and focus on
developing a large quantity of simple ideas with a broad
consideration space, rather than trying to generate an optimal so-
lution within a small space (Sedlmair et al., 2012) (Fig. 17). They
should continually reflect and challenge whether the tool is likely
to fulfil its intended purpose. Keeping an ‘agile’ approach to pro-
totype development allows designers to adapt outputs as user
needs change (Sedlmair et al., 2012).

5.3.7. Incorporation of uncertainty-based information
Inherent uncertainty and associated assumptions within envi-

ronmental data are challenging to communicate with conventional
graphics (see Section 3), and are therefore often overlooked when
communicating to non-scientific audiences (Beven et al., 2012;
Buytaert et al., 2014; Olsson and Andersson, 2007). While there
are many design solutions that may appeal to non-scientists, it is
essential that visualisation systems within professional contexts
retain scientific integrity (McInerny et al., 2014). For example,
omitting uncertainty and traceable links to data and models may
improve the overall aesthetic, but such oversimplification is likely
to undermine the tool's credibility as a decision support system.
This is particularly relevant when the derivation process of
knowledge is not fully understood or if it becomes perceived as
non-trustworthy (Benke et al., 2011).

When visually communicating uncertainty to a broad audi-
ence, graphics need to be sufficiently attractive to gain and hold
attention (Spiegelhalter et al., 2011). Designers often integrate
elements of narrative or metaphor within presentations to ach-
ieve this (Spiegelhalter et al., 2011). However, an overemphasis on
aesthetics may emotionally ‘affect’ or appeal to audiences to the
extent that they are left with a false impression of truth, rather
than interpreting the display as a function of expert judgement
and incomplete knowledge (Gough et al., 2014a; Nicholson-Cole,



Fig. 15. The difference between displaying a complete dataset (left) and highlighting only the relevant (right).

Fig. 16. Two bar charts, visualising an identical precipitation time-series, tailored for a farmer (top) and a scientist (bottom). The lack of a Y axis label on the top graph is deliberate:
For farmers, displaying the relative values and general trends are often more useful; for a scientist the actual values are the priority.
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2005; Spiegelhalter et al., 2011). Extra dimensionality can also be
incorporated within more complex glyphs that are designed using
a variety of perceptual features (McInerny et al., 2014). By
combining numbers, words and visual elements, data journalism
and infographic design offer novel approaches to conveying un-
certainty; for example, leveraging perceptual principles within
word clouds or tree maps to represent probabilities for discrete
events with multiple outcomes (Spiegelhalter et al., 2011). More
general best practices include: acknowledging known ignorance
and limited data quality; assuming users or audiences have low
scientific literacy; avoiding designer cognitive bias (Pappenberger
et al., 2013); reducing the risk of user-induced inferences by
making explicit comparisons; and providing an option for audi-
ences to access an additional, more detailed acknowledgement of



Fig. 17. An example of a wireframe sketch often used within a UCD approach to develop a large quantity of conceptual ideas.
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information limitations and uncertainty (Spiegelhalter et al.,
2011).

5.4. Analysis and evaluation phase

Conventional, technique-driven visualisation systems end with
the production of a final artifact or tool seemingly ready for use.
However, we argue that reflexivity and analysis are essential steps
within an iterative, UCD approach.

5.4.1. Reflection on whether data is being communicated accurately
and honestly

Graphical excellence must truthfully and accurately reflect the
information attempting to be conveyed (Kelleher and Wagener,
2011; Tufte, 2001). Consequently, how a user interprets visual in-
formation should to be taken into account during the whole design
process. Non-persuasive visualisations need to convey ignorance,
together with knowledge, to provide the most truthful represen-
tation of current scientific understanding (Fischhoff, 2013; Kelleher
and Wagener, 2011; Keohane et al., 2014; van Soesbergen and
Mulligan, 2014). It is critical within customisable interactives, for
example, that user-driven selections of scale, location and scenarios
match their expertise and context without losing the overall sci-
entific message of the dataset (Katz, 2013; Krzywinski and Cairo,
2013; McInerny et al., 2014). That is to say, users should always
be able to trace the visual patterns back to the data to be considered
an effective visualisation (Kosara, 2013a). Unlike scientists that in
theory exclusively rely on logic, real-world decisions are inevitably
emotional (Gough et al., 2014b; Pfister and Bohm, 2008). As a
consequence, visualisation designers must acknowledge the affec-
tive response their visualisation could stir up in end users andmake
the necessary adjustments. Persuading users, or introducing bias by
overstating the value of certain information conveyed should also
be avoided within a professional environment (Bishop et al., 2013).
For example, misleading maps can potentially generate bias in
audiences’ perceptions. Potential bias or misinterpretation created
along a chain of (re)users will also need to be considered (McInerny
et al., 2014). If communicating results or interacting with non-
scientists is done without sufficient care, initial impressions can
potentially become permanent misunderstandings (Buytaert et al.,
2014). It is therefore important to understand these inaccuracies
and make allowances throughout the design process.
5.4.2. Consideration of how the target user perceives the tool and
whole intervention

To ensure the visualisation is read and scientific knowledge
generated is ‘put into action’, visualisation designers should also
consider how the end user perceives the tool and design process.
The interface between environmental science and society is
enhanced when visualisation-based systems (White et al., 2010),
data sources (Cash et al., 2003) and the whole development, design
and implementation process (Jones et al., 2014; Liu et al., 2008) are
perceived as:

- Credible: dependable, unbiased, accurate and of high quality.
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- Legitimate: conforms to user's professional norms, useable,
transparent.

- Salient: relevant to the professional context.

A reflexive, iterative and inclusive design process that allows
users and other stakeholder to continuously critique progress is
vital to enhance the likelihood of such attributes. Agreeing-upon
and following a work plan and communication goals, from the
outset, can also enhance the legitimacy of the process (Jones et al.,
2014). However, in reality, when dealing with a diverse range of
professionals, tradeoffs in achieving these three attributes are
highly probable given political and institutional pressures common
in such contexts (Liu et al., 2008; White et al., 2010).

5.4.3. Evaluation of whether the tool and whole intervention has
been effective

Visualisation systems within professional environments should
be understandable, usable, efficient and useful (i.e. achieve their
purpose and aims) (Bishop et al., 2013). That is to say, effective
visualisations are effortlessly understandable, while remaining
sensitive to user characteristics and context of use. Within field-
based design studies, these criteria could be used to evaluate
tools and representations, out of which should emerge common
principles of visualisation design to apply within similar commu-
nication contexts. Unfortunately, within environmental science,
visualisation effectiveness is rarely assessed by target users or au-
diences; either during an iterative design process or after the whole
intervention. The few empirical studies that do exist suggest that
even identifying the most effective representation for a given task,
not to mention justifying this judgement, is extremely challenging
(Bishop et al., 2013; Lorenz et al., 2015). For example, decision-
makers tend to favour graphics and interaction techniques that
they have experience of and believe they understand, rather than
representations they can more effectively decode (Lorenz et al.,
2015). Even within what might appear to be homogeneous
groups, comprehension and preferences vary (Lorenz et al., 2015).

6. Concluding remarks and future research directions

Effective visualisations are vital when trying to synthesise and
communicate intangible (multi-dimensional, multi-scale, complex
or abstract) information to audiences unfamiliar with the subject
matter (McInerny et al., 2014; Meirelles, 2013). However, the risk is
real in many professional contexts that visualisation systems fail to
engage end users, by focusing on model and data integration at the
expense of knowledge exchange and the provision of usable tools.
This paper draws attention to a broad range of visualisation tech-
niques and approaches, and develops a design framework that has
the potential to enhance the flow and use of scientific information
within professional contexts. Ideally, an informed design process
should balance the integration of salient and credible scientific
information with explicit consideration of:

- Data encoding (how to best visualise the data?),
- User decoding (how to enhance end user understanding?)
- Tool usability (how to ensure ease-of-use?)
- Tool efficacy (how to ensure credibility, legitimacy, relevance
and useful?).

When targeting diverse professional audiences, or users with
limited scientific expertise and experience, adopting a highly iter-
ative, UCD approach could better ensure the creation of tailored
visualisations (Lorenz et al., 2015; McInerny et al., 2014;
Spiegelhalter et al., 2011). First and foremost, information pro-
viders and tool designers should collaborate more with end users,
as well as multi-disciplinary expertise throughout thewhole design
process (Lorenz et al., 2015; McInerny et al., 2014). Extensive
experimentation of co-designed tools and empirical user testing of
visualisation systems may help to identify visualisation design
principles applicable to tools for environmental decision-making.

Such a comprehensive approach has the potential to provide
wider benefits. From the scientist's perspective, involving non-
scientific end users within the design process help us to better
understand the analytical scales and trade-offs within environ-
mental policy decisions (White et al., 2014). In contrast, participa-
tory design can help to demystify data, improving transparency and
increasing confidence in scientific methods and outcomes
(Karpouzoglou et al., 2016). Ultimately, simultaneous exchange and
integration of knowledge within an iterative and collaborative
design process will help to legitimise both scientist and user out-
comes (Buytaert et al., 2014). Expanding the applied science
toolbox towards the user provides huge opportunities for envi-
ronmental researchers to step out of their comfort zone and chal-
lenge their assumptions when it comes to their role in science
dissemination and application. However, greater understanding of
different techniques and consideration of how, when and why to
use these tools is vital to ultimately enhance the scientific com-
munity's ability to engage non-scientific audiences.
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