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Abstract: Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B
(PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate
cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent
discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple
interacting cell signaling cascades can further promote prostate cancer progression and influence the
sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic,
as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However,
the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive
progression and disease recurrence remains to be determined. In this review, we outline the emerging
diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer,
and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and
several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer
growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase
(MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader
PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR
pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that
improve patient outcome.

Keywords: AKT; AR; castration-resistant prostate cancer (CRPC); MAPK; mTOR; PI3K; prostate
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1. Introduction

Prostate cancer is the second leading cause of cancer-related deaths in men worldwide, despite
extensive efforts to raise awareness and significant advancements in detection, screening, and treatment
approaches [1–3]. Although patients with localized prostate cancer generally have a good prognosis,
the 5-year relative survival rate is significantly reduced for patients that present with metastatic
prostate cancer at diagnosis [4]. ADT and/or radiotherapy remains the mainstay treatment for patients
that relapse post-surgery. ADT involves blocking the production of androgen in the testes via the
hypothalamus-pituitary-gonadal axis with luteinizing hormone releasing hormone (LHRH) agonists
(e.g., Leuprolide) or antagonists (e.g., Degorelix). Although prostate tumors respond initially to
ADT, the emergence of androgen-independent, castration-resistant prostate cancer (CRPC) invariably
occurs and the outcome is poor [5–8]. Treatment options for CRPC and patients with metastatic
disease at diagnosis include chemotherapy, radium-223, second generation anti-androgens (e.g., the
Cytochrome P450 17A1 (CYP17A1) inhibitor abiraterone acetate that prevents androgen biosynthesis,
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or enzalutamide that targets AR directly), and clinical trials [5,6,8–10]. However, CRPC remains
incurable and new biomarkers and treatments for prostate cancer and CRPC are in high demand.

PI3K-AKT-mTOR signaling is elevated in a high proportion of prostate cancer patients, and
CRPC is associated with increased activation of the PI3K-AKT-mTOR pathway [11–13]. Accordingly,
PI3K-AKT-mTOR pathway inhibitors are currently being explored as therapeutic agents against
hormone-sensitive prostate cancer and CRPC [11–17]. PI3Ks are a large family of lipid kinase enzymes
divided into three classes termed Class I (subdivided into Class IA and IB), Class II, and Class III,
reflecting substrate specificity and subunit organization [18–20]. Class IA PI3Ks are heterodimers
containing a catalytic subunit (p110α, p110β, or p110δ, encoded by PIK3CA, PIK3CB and PIK3CD
respectively) and a regulatory subunit (p85α/p55α/p50α, p85β or p55γ, encoded by PIK3R1, PIK3R2
and PIK3R3 respectively) that controls protein localization, receptor binding, and activation [19–21].
Class IA isoforms are ubiquitously expressed, except for p110δ and p55γ that are primarily expressed
in the hematopoietic/central nervous systems and testes [19–22]. Receptor tyrosine kinases (RTKs) can
activate p110α, p110β, and p110δ catalytic isoforms, whereas the p110β isoform can be additionally
activated by G protein-coupled receptors (GPCRs) [19–22] (Figure 1). The small GTPase RAS can also
directly activate p110α and p110δ, while Rho-GTPases (e.g., RAC) are reported to activate p110β [20].
Once activated, Class IA PI3Ks initiate a wave of downstream signaling events by synthesizing the
lipid secondary messenger phosphatidylinositol 3, 4, 5 trisphosphate (PIP3) from phosphatidylinositol
4,5 bisphosphate (PIP2) to mediate cell growth, proliferation, autophagy, and apoptosis [19,21]. The
tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), negatively
regulates PI3K-AKT-mTOR signaling by converting PIP3 back to PIP2 [23] (Figure 1).
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Figure 1. PI3K-AKT-mTOR signaling interaction with the AR, MAPK, and WNT pathways. Image
displays a model of PI3K-AKT-mTOR signaling via Class IA PI3Ks, and crosstalk with AR, RAS/MAPK,
and WNT signaling cascades. 4EBP1, eukaryotic initiation factor 4E binding protein 1; AMP, adenosine
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monophosphate; AMPK, 5′ AMP-activated protein kinase; APC, adenomatous polyposis coli;
ARE, androgen responsive element; AXIN, axis inhibition protein; BAD, Bcl-2-associated death
promoter; c-JUN, transcription factor AP−1; CaMKKβ, Ca(2+)/calmodulin-dependent protein kinase
kinase β; CK1, casein kinase 1; DEPTOR, DEP domain-containing mTOR-interacting protein; DHT,
dihydrotestosterone; DVL, dishevelled; EIF4E, eukaryotic translation initiation factor 4E; ERBB2/3,
Erb-B2 receptor tyrosine kinase 2, that encodes human epidermal growth factor 2/3 (HER2/3); ERG1,
ETS-related gene 1; ERK, mitogen-activated protein kinase 1/3; EZH2, enhancer of zeste homolog
2; FKBP5, FK506 binding protein 5; FOXO, forkhead box protein O; FZD, frizzled family receptor;
GDP, guanosine diphosphate; GPCR, G-protein coupled receptor; GSK3β, glycogen synthase kinase
3 beta; GTP, guanosine triphosphate; HSP90, heat-shock protein 90; IRS, insulin receptor substrate;
KLK3, kallikrein related peptidase 3 (encoding prostate specific antigen, PSA); LKB1, liver kinase B1;
LRP5/6, low-density lipoprotein receptor-related proteins 5 and 6; LEF, lymphoid enhancer binding
factor 1; MAPK, mitogen-activated protein kinase; MDM2, mouse double minute 2 homolog; MEK,
mitogen-activated protein kinase kinase; mLST8, mTOR associated protein LST8 homolog; mSIN1,
mitogen-activated protein kinase associated protein 1 (MAPKAP1); mTOR, mammalian target of
rapamycin; mTORC1/2, mTOR complex 1/2; NF-κB, nuclear factor kappa light chain enhancer of
activated B cells; P, phosphorylation event; PDK1, phosphoinositide dependent kinase 1; PHLPP,
PH domain leucine-rich repeat protein phosphatase; PKCα, protein kinase C alpha; PP2A, protein
phosphatase 2A; PRAS40, proline-rich AKT substrate of 40 kDa; PROTOR1, protein observed with
Rictor-1; PROTOR2, protein observed with Rictor-2; RAF, rapidly accelerated fibrosarcoma; RAG,
recombination activating genes; RAPTOR, regulatory-associated protein of mTOR; RHEB, RAS homolog
enriched in brain; RICTOR, rapamycin-insensitive companion of mTOR; RPS6, ribosomal protein S6;
RSK, 90 kDa ribosomal S6 kinase; RTK, receptor tyrosine kinase; S6K, p70 ribosomal S6 kinase; SESN1,
sestrin 1; SGK1, serum/glucocorticoid-regulated kinase 1; SLC43A1, solute carrier family 43 member 1
(encoding l-type amino acid transporter 3, LAT3); T, testosterone; TBC1D7, Tre2-Bub2-Cdc16 domain
family member 7; TCF, T cell factor; TEL2, telomere length regulation protein (or telomere maintenance
2, TELO2); TSC1, Tuberous sclerosis complex 1; TCS2, tuberous sclerosis complex 2; TTI1, TELO2
interacting protein 1; ULK1, Unc-51 like autophagy activating kinase 1; WNT, WNT ligand. Figure
based on previous work [12,14,19–22,24,25].

Elevated PIP3 levels lead to the activation of multiple kinases, including PDK1, which
phosphorylates downstream targets such as AKT at residue Thr308 [19,21,26–28]. Activated AKT
phosphorylates numerous substrates to regulate vital cellular processes, including FOXOs, GSK3β,
NF-κB, and TSC2 [19,21,26–28]. For instance, TSC2 phosphorylation by AKT inactivates RHEB,
which potentiates mTORC1 signaling and results in the inhibition of autophagy and increases cell
growth, protein translation and ribosomal biogenesis via the subsequent phosphorylation of mTORC1
substrates such as ULK1, S6K, and 4EBP1 [27,29]. Phospho-S6K can also phosphorylate RICTOR to
regulate mTORC2 signaling [30]. mTORC2 phosphorylates multiple downstream targets to mediate
cell survival, cell cycle progression, and actin remodeling. These include AKT at residue Ser473, which
leads to AKT hyperactivation, serum/glucocorticoid-regulated kinase 1 (SGK1) and protein kinase Cα

(PKCα) [31,32].
In addition to mediating PI3K-dependent signaling, AKT, PTEN and mTORC1/2 have also

been shown to play a role in PI3K-independent signaling events (reviewed in [23,33–36]), and the
PI3K-AKT-mTOR cascade interacts with multiple cooperative signal transduction cascades via a series
of partially understood interactions and feedback loops to promote tumor growth (including MAPK,
AR and WNT signaling, Figure 1). Hence, establishing the scope of this complex signaling program is
fundamental for the identification of new and effective biomarkers and therapeutic approaches that
will benefit patients with prostate cancer.

2. Genetic Aberrations in the PI3K-AKT-mTOR Pathway in Prostate Cancer Are Diverse

Augmented phosphorylation/activation of key PI3K-AKT-mTOR pathway components (e.g.,
p-AKT and p-mTOR) has been shown to correlate with prostate cancer progression in the clinic [37–41].



Int. J. Mol. Sci. 2020, 21, 4507 4 of 47

Furthermore, genomic and transcriptomic profiling has revealed that genetic alterations and deregulated
gene expression of PI3K pathway components are common in patients with prostate cancer,
occurring in as many as 42% of primary and 100% of metastatic prostate cancer samples [42–46].
Deregulation of the PI3K-AKT-mTOR pathway reflects a variety of genetic alterations, primarily
PTEN loss-of-function [42–46]. To improve our understanding of the frequency and diversity of
PI3K-AKT-mTOR pathway genetic aberrations in prostate cancer, we used the cBioPortal platform
to survey three publicly available prostate cancer genomic datasets with primary and/or metastatic
patient samples for a panel of 68 genes that encode key PI3K cascade components/effectors [47,48].
OncoPrints displaying the percentage frequency of each type of genetic aberration assessed within
each dataset (i.e., gene mutation, amplification and deep deletion) highlight that PI3K-AKT-mTOR
pathway genetic alterations are commonplace in primary and metastatic prostate cancer, and illustrate
that the wide range of genetic events observed have a tendency to co-occur (Figures S1–S3 and Tables
S1–S3, summarized in Table 1).

Table 1. Frequency of common genetic alterations in PI3K-AKT-mTOR pathway genes in prostate cancer.

Common Types of Genetic Alterations in PI3K-AKT-mTOR Pathway Genes Frequency in Prostate Cancer 1

PTEN deletion/mutation 16.4–32.0%
DEPTOR amplification 5.1–21.4%
SGK mutation/amplification 5.6–20.5% (SGK3)

0.2–2.7% (SGK1)
FOXO deletion 0.0–15.2% (FOXO1)

4.5–13.4% (FOXO3)
MAP3K7 deletion 5.9–14.8%
RRAGD deletion 6.5–14.4%
SESN1 mutation/deletion 5.4–13.6%
PIK3CA mutation/amplification 5.5–11.5%
PIK3C2B mutation/amplification 1.4–11.5%
PDPK1 amplification 0–8.1%

1 Data sourced from the Memorial Sloan Kettering Cancer Centre/Dana-Farber Cancer Institute (MSKCC/DFCI) (n =
1013) [45] and The Cancer Genome Atlas (TCGA), Firehose Legacy (n = 492) prostate adenocarcinoma datasets, and
the metastatic prostate adenocarcinoma Stand Up To Cancer & Prostate Cancer Foundation International Dream
Team (SU2C-PCF IDT) dataset (n = 444) [46] using cBioPortal [47,48] (Tables S1–S3). Only samples with mutation
and copy number alteration (CNA) data were analyzed. The percentage frequency range for each genetic alteration
listed reflects the entire patient population across all the three datasets, irrespective of the disease stage or subtype.

Common genetic alterations within the three prostate cancer datasets analyzed were observed in
PTEN, DEPTOR, SGK3, FOXO1/3, MAP3K7, RRAGD, SESN1, PIK3CA, PIK3C2B, and PDPK1 (Table 1).
In addition, a vast range of less frequent aberrations were also detected, including genes encoding
AMPK subunits (e.g., amplification of PRKAB1 and PRKAB2) and AMPK regulators (e.g., CAMKK2
and LKB1 deletion) (Figures S1–S3, Tables S1–S3), as described below.

2.1. PI3K Gain of Function

2.1.1. Class IA PI3Ks

Gain-of-function mutations in PIK3CA (encoding p110α) that activate the PI3K cascade are
highly prevalent in a number of malignancies, including up to 40% of breast cancer patients [49]
and as many as 53% of endometrial cancer patients [50]. In the prostate cancer datasets analyzed,
PIK3CA mutation and high-level gene amplification occur in up to 4% and 9% of cases respectively
(Tables S1–S3), although high-level amplification has been observed previously in as many as 29% of
cases [13]. Our recent work identified that PIK3CA genetic alterations significantly correlate with poor
prostate cancer prognosis, and that Pik3ca oncogenic mutation at a clinically relevant hotspot (H1047R)
in mouse prostate epithelium can cause locally invasive prostate adenocarcinoma, demonstrating
Pik3ca activation is a genetic driver of prostate cancer in vivo [13]. Although less common, PIK3CB
mutation and amplification have also been detected in clinical prostate tumor specimens (0.6–1.8% and
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1.8–3.1% respectively, Tables S1–S3), and activation of p110β (encoded by PIK3CB) predisposes prostate
intra-epithelial neoplasia in mice [51]. Previous work has shown that p110α isoform-specific PI3K
inhibitors can suppress Pik3ca mutant prostate cancer, whereas a p110β/δ inhibitor, or combined p110α/β

blockade improves therapeutic outcome in Pten-deficient (p110β-dependent) prostate cancers [13,52,53].
Consequently, these findings have identified that selected p110 isoform-specific inhibitors may prove
to hold efficacy against PIK3CA mutant and PTEN-deleted prostate cancer in the clinic.

Unlike the ubiquitous p110α and p110β PI3K catalytic isoforms, p110δ is predominantly expressed
in cells of hematopoietic lineage and sensory neurons [54–56], and p110δ isoform-specific inhibitors
are currently being explored in the clinic for B-cell malignancies and some autoimmune diseases [57].
However, several epithelial malignancies have also been shown to express p110δ [58], and 3% of patients
with head and neck, germ cell, or colorectal cancer are reported to carry a PIK3CD mutation [59]. In
patients with prostate cancer, PIK3CD mutation and amplification are infrequent events (≤1.1%, Tables
S1–S3). However, a PIK3CD splice variant missing exon 20 (PIK3CD-S) has been identified in African
American prostate cancer patients that can promote proliferation and AKT-mTOR signaling [60], and
several CRPC cell lines have been shown to express p110δ at high levels, comparable to that detected
in leukocytes [58]. In this study, inactivation of p110δ in p110δ-high CRPC cells suppressed PI3K-AKT
signaling and inhibited cell proliferation, suggesting p110δ inhibitors may prove to hold therapeutic
efficacy against p110δ-high prostate cancer [58].

The p85 regulatory subunit of PI3K is often present in a monomeric free form, and at a higher ratio
relative to the p110 catalytic subunit, which suppresses p110 activity in the absence of stimuli [20,61,62].
Both free p85 monomers and p85–p110 heterodimers have been shown to bind to insulin receptor
substrate (IRS), a cytoplasmic adaptor protein for the RTK insulin growth factor 1 (IGF-1) receptor,
in addition to directly binding with activated RTKs [20,61]. Nonetheless PI3K-AKT-mTOR signaling
activation is considered to require p85–p110 heterodimerization [20,61]. Interestingly, constitutive
heterozygous deletion of PIK3R1 (that encodes p85α and splice variants p55α/p50α) has been shown
to lower blood glucose, enhance insulin sensitivity, potentiate insulin–stimulated glucose transport in
skeletal muscle and adipocytes, and can stimulate insulin-dependent AKT phosphorylation in mouse
liver [63,64]. Furthermore, liver-specific deletion of Pik3r1 in mice is reported to not only enhance
insulin and growth factor signaling, but causes development of aggressive hepatocellular carcinomas
with pulmonary metastases associated with AKT activation and decreased PTEN expression [65].
PIK3R1 shRNA-mediated knockdown in human breast cancer cell lines can also augment AKT signaling
and anchorage-independent growth, illustrating a tumor suppressive role for p85α in breast cancer [66].
While p85α is generally viewed as a tumor suppressor, evidence in the literature also points toward an
oncogenic role, similarly to p85β and p55γ [67–71].

In prostate cancer, PIK3R1 is rarely mutated (0.4–1.6% of cases) yet deep deletions occur in 1–6%
of patients (Tables S1–S3), which could potentially promote PI3K-AKT-mTOR signaling. Genetic
alterations in PIK3R2 (percentage incidence: mutation < 1.1%, amplification < 2.9%, deletion < 0.23%,
Tables S1–S3) and PIK3R3 (percentage incidence: mutation < 0.7%, amplification < 0.5%, deletion <

1%, Tables S1–S3) are also infrequent, yet the functional significance of these events remains unclear.
Interestingly, down-regulation of PIK3R1 in prostate cancer has been linked to reciprocal negative
feedback between the AR and PI3K signaling cascades [72], and PIK3R3 upregulation has been linked to
prostate hyperplasia [73]. Furthermore, PIK3R2 upregulation in prostate cancer specimens has recently
been shown to inversely correlate with miR-126 expression [74]. Song and colleagues identified PIK3R2
as a direct target of miR-126 in prostate cancer cell lines, and reported that enforced miR-126 expression
in prostate cancer cell lines reduces PIK3R2 mRNA expression and suppresses cell proliferation,
migration, and invasion [74].

2.1.2. Class IB PI3Ks

The smaller Class IB PI3K family is comprised of the catalytic subunit p110γ and two regulatory
subunits, p101 and p87 (also known as p84), which are encoded by PIK3CG, PIK3R5, and PIK3R6
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respectively. Like Class IA, Class IB PI3Ks generate PIP3 from PIP2 to stimulate downstream
effectors [19]. Class IB PI3Ks transmit Gβγ-GPCR and RAS signals to coordinate immune, inflammatory
and allergic responses, predominantly within hematopoietic cells [18–20,22]. However, Brazzatti and
colleagues have shown that knockdown of p110γ or p101 in 4t1.2 and MDA-MB-231 triple-negative
breast cancer cell lines reduces migration in vitro and metastatic potential in xenograft mouse models,
whereas p87/p84 knockdown had the opposite effect [75]. PIK3CG mutation and amplification are
frequent in multiple malignancies, including 9–11% of melanomas and uterine, stomach and squamous
cell lung cancers, while genetic alterations in PIK3R5 and PIK3R6 are prevalent in uterine cancer and
melanoma, occurring in 4–8% of cases [50,76–79]. In prostate cancer, Class IB PI3K genetic aberrations
are less common, and include PIK3CG mutation and amplification (1.4–1.8% and 0.6–3.6% incidence
respectively) as well as PIK3R5 and PIK3R6 deep deletions (0–3.3% incidence) that are indicative of a
homozygous deletion (Tables S1–S3).

2.1.3. Class II PI3Ks

In comparison to Class I PI3Ks, the Class II family of PI3Ks (PI3KC2α, β and γ, encoded
by PIK3C2A, PIK3C2B, and PIK3C2G respectively) is less well-characterized. Class II PI3Ks are
generally considered to catalyze the production of lipid secondary messengers phosphatidylinositol
3-phosphate (PtdIns3P or PI(3)P) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) to mediate
cell migration, channel regulation, endocytosis, and exocytosis [18,80]. The frequency of PIK3C2A,
PIK3C2B and PIK3C2G mutation is generally low (0.2–1.4% incidence, Tables S1–S3), however PIK3C2B
amplification has been observed in as many as 10% of cases (Table S3). Although the role of PIK3C2B
amplification in prostate cancer is not clear, a recent study identified that PI3KC2β is highly expressed
in PTEN-negative PC3 and LNCaP prostate cell lines compared to PTEN-positive DU145 prostate
cancer cells (PTEN+/−), and PNT2 immortalized “normal” prostate epithelial cells (PTEN+/+) [81]. This
study also reported that PI3KC2β regulates MAPK signaling to mediate prostate cancer cell invasion,
thus the PI3KC2β-MEK-ERK signaling axis may present a novel therapeutic target for invasive prostate
cancer [81].

2.1.4. Class III PI3Ks

The Class III PI3K subfamily is comprised of the catalytic subunit vacuolar protein sorting 34
(VPS34) encoded by PIK3C3, and the regulatory subunit vacuolar protein sorting 15 (VPS15, or p150)
encoded by PIK3R4. VPS34 catalyzes the phosphorylation of phosphatidylinositol (PI) to produce
PI(3)P, which plays a central role in the regulation of intracellular trafficking [82]. To regulate the fusion
and maturation of endosomes, VPS34 binds to VPS15 and Beclin-1 to form either VPS34 Complex I or
VPS34 Complex II that differ by binding to Autophagy Related 14 (ATG14) or UV radiation resistance
associated protein (UVRAG) respectively [83]. The Class III PI3K family has also been shown to
mediate autophagy, endosome–lysosome maturation, membrane trafficking, and AMPK-dependent
insulin sensitivity [82,84–89].

PIK3C3 mutations are most frequently observed in uterine and gastric cancer patients (7% and
3.5% respectively), and PIK3R4 gene mutation or amplification occur in up to 10% of squamous cell
lung cancer and uterine cancer patients [50,76,77]. Although PIK3C3/PIK3R4 mutation and PIK3C3
gene amplification are infrequent events in prostate cancer (<1% of cases), PIK3R4 high-level gene
amplification is observed in up to 6.5% of cases and could potentially facilitate prostate cancer growth
(Tables S1–S3).

Taken together, these data highlight the emerging diversity of genetic alterations within the
PI3K family in prostate cancer, and emphasize the need for future work to gain further insight into
the functional importance of these different genetic alterations during prostate cancer formation,
progression, and recurrence. This is particularly important, as determining their non-redundant roles
may present novel therapeutic targets and could aid patient stratification for future clinical trials.
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2.2. Loss of Function of Phosphoinositide Phosphatases

Phosphoinositide phosphatases are a family of enzymes that dephosphorylate phosphoinositides
to diminish phosphoinositide signals and regulate cellular functions [90]. The PI3K-AKT-mTOR
pathway is regulated by multiple phosphoinositide phosphatases, including the tumor suppressor
PTEN that dephosphorylates PIP3 into PIP2 to reduce PI3K-AKT-mTOR pathway activity (Figure 1).
Genetic alterations in phosphoinositide phosphatases are strongly associated with human malignancies,
and PTEN is one of the most frequently deleted genes in prostate cancer [91–95]. Here we review
the frequency of genetic alterations in prostate cancer for genes encoding key phosphoinisitide
phosphatases known to regulate the PI3K-AKT-mTOR cascade.

2.2.1. Loss or Inactivation of PTEN

PTEN is a lipid/protein phosphatase that has been shown to negatively regulate the
PI3K-AKT-mTOR pathway by dephosphorylating phosphatidylinositol (3,4,5)-trisphosphates (PIP3)
back to phosphatidylinositol 4,5-bisphosphates (PIP2) (Figure 1) [23,96,97]. PTEN genetic alterations,
primarily homozygous deletion, are common in advanced prostate cancer and significantly correlate
with poor outcome and elevated PI3K-AKT-mTOR signaling [13,14,37,39,98,99]. The functional
consequence of PTEN loss has been studied in vivo using a number of genetically engineered mice,
which have demonstrated PTEN loss is a genetic driver of invasive prostate cancer [24,100–104].
Homozygous Pten deletion within the murine prostate epithelium leads to aggressive, locally invasive
prostate carcinoma that has an inherent ability to acquire castration-resistant disease [13,24,100–102,105].
However, metastatic disease is rare in these models, possibly owing to the primary tumor reaching
ethical limits before disseminated cells can colonize distant sites, differences in genetic background,
and/or PTEN loss-induced p21/p53-dependent senescence [102–104,106,107].

In primary prostate adenocarcinoma, PTEN mutation and deep deletion occur in 2% and 18%
of cases respectively (Table S1), and the frequency appears to increase in metastatic disease (6% and
26% respectively, Table S3). Although the majority of PTEN mutations identified in prostate cancer are
truncating mutations, missense mutations are also observed, which could differentially impact PTEN
lipid and/or protein phosphatase function [108]. Thus, determining how each PTEN genetic alteration
impacts PTEN function may inform clinical trial design.

PTEN heterozygous deletion and epigenetic silencing can also deplete PTEN
expression/function [92,98,106,109]. Importantly, mono-allelic deletion of PTEN has been reported
in up to 68% of prostate cancer surgical specimens and PTEN immunohistochemistry (IHC) and/or
fluorescent in situ hybridization analysis has revealed PTEN loss may occur in as many as 60%
of advanced/CRPC cases [92]. A subset of patients with prostate cancer have also been found to
harbor intratumoral heterogeneous PTEN loss [92], which could have significant implications for
therapeutic strategies.

2.2.2. Deregulation of Phosphoinositide Phosphatase Enzymes (other than PTEN)

In addition to PTEN, several other phosphatidylinositol phosphate phosphatase enzymes are
also deregulated in human cancers that have the potential to facilitate malignant growth [90,91,110].
These phosphatases include; (a) proline-rich inositol polyphosphate 5-phosphatase (PIPP) encoded
by polyphosphate-5-phosphatase J (INPP5J), (b) Src homology 2 (SH2) domain-containing inositol
5′-phosphatase 1 (SHIP1) encoded by inositol polyphosphate-5-phosphatase D (INPP5D), (c) Src
homology 2 (SH2) domain-containing inositol 5′-phosphatase 2 (SHIP2) encoded by inositol
polyphosphate phosphatase like 1 (INPPL1), and (d) inositol polyphosphate 4-phosphatase type II
(INPP4B) encoded by INPP4B. While PTEN converts PIP3 to PIP2, PIPP and SHIP1/2 dephosphorylate
PIP3 to phosphatidylinositol (3,4)-bisphosphate PI(3,4)P2, which is further hydrolyzed by INPP4B
to form PI(3)P [90,111]. INPP5D deep deletion is observed in as many as 3.8% of patients with
prostate cancer whereas INPPL1 and INPP4B are amplified in up to 2.9% of cases (Tables S1–S3).
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INPP5D/INPPL1/INPP5J/INPP4B mutation, INPP5J amplification and INPPL1/INPP4B/INPP5J deep
deletion events are rare (≤1.2%, Tables S1–S3). Relative to PTEN, the frequency of genetic alterations in
these phosphoinositide phosphatases is much lower, however they are gaining increasing attention in
the literature [111]. Interestingly, PIPP deletion is reported to increase tumor growth in the mouse
mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) breast cancer model, and is
accompanied with elevated proliferation, plasma membrane PIP3 levels, and AKT activation [110].
However, PIPP deletion also significantly reduced the incidence of lung metastasis in this setting,
suggesting PIPP mediates a critical metastatic process [110,112]. Furthermore, INPP4B can compensate
for PTEN loss by acting as a “back-up” phosphatase, and is regarded as a tumor suppressor in several
epithelial tissues including the prostate, breast, ovary, and thyroid [112–116]. Notably, Inpp4B loss and
Pten heterozygous deletion can cooperate in mice to facilitate metastatic thyroid cancer by increasing
PIP3 levels and AKT signaling relative to single mutants [115], and enforced INPP4B overexpression in
PC3 (PTEN−/−) and DU145 (PTEN+/−) prostate cancer cells can suppress prostate cancer cell migration
and invasion, both in vitro and in vivo [117]. Immunostaining to detect INPP4B in prostate carcinoma
clinical samples has also identified INPP4B loss as an independent prognostic marker, correlating
with reduced biochemical (PSA) relapse-free survival [118]. In contrast, SHIP2 is reported to play an
oncogenic role. Unlike PTEN that catalyzes PIP3 into PIP2, SHIP2 converts PIP3 into PI(3,4)P2 to
further potentiate AKT activity [119,120]. Moreover, increased SHIP2 expression directly correlates
with poor survival in patients with colorectal cancer [120]. Consequently, genetic aberrations in
phosphoinositide phosphatase enzymes could prove to differentially influence therapeutic responses
to PI3K pathway-directed therapies.

2.3. AKT Gain of Function

AKT isoforms 1, 2, and 3 (encoded by AKT1, AKT2, and AKT3 respectively) form a subfamily of
serine/threonine protein kinases that possess both overlapping and distinct cellular functions to regulate
a variety of cellular processes during normal tissue homeostasis and cell transformation [121,122]. PI3K
activity elevates PIP3 levels to recruit AKT to the plasma membrane where is it activated (Figure 1).
AKT is activated by multiple kinases, including PDK1 and mTORC2 that phosphorylate AKT at residues
Thr308 and Ser473 respectively, triggering a wave of phosphorylation through multiple downstream
targets that stimulate cell survival, proliferation, metabolism and differentiation to promote tumor
growth [19,20,32,123,124]. AKT downstream targets include PRAS40 (a component of mTORC1), BAD,
FOXOs, and MDM2 (reviewed in [31]). AKT signaling is negatively regulated by several protein
phosphatases that dephosphorylate and inactivate AKT, including protein phosphatase 2 (PP2A), and
PH domain and leucine-rich repeat protein phosphatase-1 and -2 (PHLPP1 and PHLPP2) [125,126].
Below, we outline the various genetic alterations within the AKT isoforms and their regulators that have
been detected in prostate cancer, and discuss their potential to activate AKT signaling and promote
prostate tumor growth.

2.3.1. AKT Mutation and Amplification

AKT genetic aberrations that increase AKT activity have been detected in multiple malignancies
and are especially common in breast cancer, where AKT3 amplification and AKT1 E17K oncogenic
mutation have been reported in up to 24% and 1–8% of cases respectively [127–129]. AKT1, AKT2,
and AKT3 activating mutations are rare in prostate cancer (≤0.9%, predominantly in AKT1 at E17K),
whereas AKT1, AKT2, and AKT3 high-level gene amplification that can increase AKT activity is more
common, particularly in advanced disease (up to 4.5%, 2%, and 4.7% incidence respectively, Tables
S1–S3). Moreover, AKT activation in prostate cancer has been shown to positively correlate with
Gleason score and invasive progression [37,130], and over-expression of myristoylated AKT (which
causes constitutive AKT activation) causes prostate neoplasia in mice [131]. In support of an oncogenic
role in prostate cancer and therapeutic resistance, conditional activation of AKT in either the LNCaP
human prostate cancer cells or a transgenic mouse results in increased cell proliferation and inhibits cell
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death to promote tumor growth and castration-resistance in vivo [132]. Chen and colleagues have also
demonstrated a requirement for AKT in PTEN-deficient prostate cancer, as Akt1 haplodeficiency was
found to suppress high-grade prostate intraepithelial neoplasia development within Pten heterozygous
mice [133]. AKT inhibitors are being widely explored in the clinic to treat prostate cancer and have
shown promise in PTEN-deficient patients [16,134].

2.3.2. Genetic Alteration of AKT Regulators

A number of genetic alterations in genes that encode AKT regulators have been linked to prostate
cancer, including kinases (e.g., PDK1), binding proteins (e.g., FKBP5), and phosphatases (e.g., PHLPP1,
PHLPP2, and PP2A) [42–46]. PDK1 (encoded by PDPK1) is recruited to the membrane by PIP3
to phosphorylate and activate multiple targets, including AKT at residue T308 (Figure 1). PDPK1
amplification and PDK1 over-expression are observed in several human cancers, including breast
cancer [135]. In prostate cancer, PDPK1 mutations are rare (≤0.2%), yet PDPK1 amplification occurs
in up to 8.1% of patients (Tables S1–S3). Interestingly, PDK1 RNAi-mediated knockdown does not
impair Pten-deleted prostate cancer growth in mice, possibly reflecting mTORC2-mediated activation
of AKT, and/or compensatory augmentation of the MAPK cascade [136]. These findings suggest that
PDK1 inhibitors are not likely to be efficacious against PTEN-deficient prostate cancer in the clinic as a
single agent.

FKBP5 (also known as FKBP51) is an AR target gene that plays a key role in mediating the
cellular distribution of steroid hormone receptors and has been shown to negatively regulate AKT
signaling by stabilizing PHLPP1/2 (Figure 1) [11,24,137]. During androgen/AR-directed therapy,
FKBP5-PHLPP1/2-AKT signaling forms a negative feedback loop between the AR and PI3K-AKT-mTOR
pathways to facilitate ADT resistance [11,24,137], discussed in Section 3.2. Mutation and deep deletion of
FKBP5 are fairly infrequent in prostate cancer (≤1.22%, Tables S1–S3), however FKBP5 down-regulation
has been linked to CRPC and increased AKT signaling [11].

PHLPP1 and PHLLP2 (encoded by PHLPP1 and PHLPP2) are protein phosphatases that
dephosphorylate and inactivate AKT. PHLPP1 and PHLPP2 deep deletion occurs in up to 3.9%
and 6.5% of patients with prostate cancer respectively (Tables S1–S3), which could potentially sustain
AKT-signaling. Interestingly, Chen and colleagues reported a strong tendency for PTEN, PHLPP1,
PHLPP2, and TP53 co-deletion in metastatic prostate cancer and that low PHLPP1 expression correlates
with reduced patient survival and relapse after surgery [138]. Additionally, the tumor suppressive
function of PHLPP1 has been demonstrated in vivo, as Phlpp1 loss causes prostate neoplasia in mice
and promotes invasive carcinoma progression in Pten+/− transgenic mice [138]. In contrast, Phlpp2
loss impairs Pten/p53-deleted prostate tumor growth in mice [139], indicating PHLPP1 and PHLPP2
mediate differential AKT-independent functions. Indeed, PHLPP2 can dephosphorylate MYC at
residue Thr58 to prevent MYC degradation and promote tumor progression [139]. Consequently, in
PHLPP2-positive MYC-driven advanced prostate cancer, it has been suggested that PHLPP2 may
present a valuable therapeutic target [139].

In addition, genetic alterations in PPP2CA (protein phosphatase 2 catalytic subunit alpha) that
encodes the negative AKT regulator PP2A have also been observed in prostate cancer [42–46], and
PP2A loss has been linked to prostate cancer progression and metastatic potential in the clinic [140].
PPP2CA mutation and deep deletion events occur in 0.4–1.4% of patients with prostate cancer (Tables
S1–S3), further highlighting the diversity of genetic aberrations in AKT regulators that could promote
oncogenic PI3K signaling.

2.4. SGK Deregulation

The serum/glucocorticoid-regulated kinase isoforms SGK1, SGK2, and SGK3 belong to a subgroup
of the AGC (cAMP-dependent, cGMP-dependent, and protein kinase C) family of protein kinases that
play a role in multiple cellular processes including cell growth, proliferation, metabolism, intracellular
trafficking and survival [141–143]. SGK1 and 3 are considered to be ubiquitously expressed, while
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SGK2 expression is prominent in the liver, kidney, pancreas, and brain [144]. SGKs share structural
similarities, upstream regulators, substrates and functions with the AKT isoforms (reviewed in [142]).
For instance, all SGKs are phosphorylated and activated by PDK1, and SGK1 is a downstream
target of mTORC2 [26,143,145–148] (Figure 1). SGKs are also activated by PI3K/PDK1-independent
mechanisms, for example SGK1 is regulated by big mitogen-activated protein kinase-1 (BMK-1) and p38
mitogen-activated protein kinase in response to epidermal growth factor (EGF) and interleukin-6 (IL6)
respectively [149,150]. Although the role of SGKs during prostate cancer is currently unclear, SGK1
over-expression has been shown to facilitate CRPC transition in a prostate cancer xenograft model,
indicating that SGK1 can promote ADT-resistance [151]. Furthermore, the SGK1 inhibitor GSK650394
has been shown to induce autophagy and apoptosis in PC3, LNCaP, DU145, and CWR22RV1 prostate
cancer cells in vitro [152]. Interestingly, SGK1 and SGK3 have also been linked to PI3K/AKT-targeted
therapy resistance in breast cancer [145,148]. Gasser and colleagues have also shown that INPP4B
over-expression leads to enhanced SGK3 activation in ZR-75-1 breast cancer cells, triggering a switch
from AKT- to SGK-dependent signaling downstream of PDK1 [153].

Mutation of the SGK isoforms is a rare event in human cancers, however gene amplification is
commonly detected [154]. In keeping with this, SGK1, SGK2, and SGK3 are rarely mutated in prostate
cancer (≤0.41%), whereas amplification occurs in up to 2.5%, 2.0%, and 20.3% of cases respectively
(Tables S1–S3). Of note, the frequency of SGK3 gene amplification is particularly high in the SUC2/PCF
IDT metastatic prostate adenocarcinoma dataset (Table S3), underlining the need for future studies to
establish how SGKs contribute to prostate cancer and metastatic progression.

2.5. Loss of FOXO Transcription Factors

The mammalian forkhead box O (FOXO) family consists of four transcription factors (FOXO1, 3, 4,
and 6) that are highly similar in structure and function [155]. In response to insulin and growth factors,
FOXOs modulate the transcription of several target genes to mediate key cellular processes including
proliferation, apoptosis, autophagy, inflammation, metabolism and stress resistance, and they form
an important regulatory circuit within the AKT and mTOR signaling cascades [156–158] (Figure 1).
FOXOs are regulated by several kinases, including AKT and SGK isoforms, which phosphorylate and
inactivate FOXO-mediated gene transcription by inhibiting FOXO DNA binding and triggering FOXO
nuclear-to-cytoplasm translocation [157–159]. FOXOs are generally regarded as tumor suppressors,
and are reported to inhibit mTORC1 via sestrins, however a number of oncogenic functions are
emerging in the literature [156–158]. For instance, FOXO-mediated transcription of the mTORC2
component RICTOR in response to physiological stress is reported to promote mTORC2 signaling [156].
FOXOs also provide a reciprocal negative feedback loop between PI3K-AKT-mTOR pathway and AR
signaling [12] (discussed in Section 3.2).

In prostate cancer, FOXO mutations are rare (<0.5% incidence), however FOXO1 and FOXO3
deep deletion is a frequent event, occurring in up to 15.2% and 13.4% of patients respectively (Tables
S1–S3). FOXO3 lies within the 6q21 locus that is frequently lost in prostate cancer [160], and reduced
FOXO3 (also FOXO3a) activity via peptide driven inhibition is reported to accelerate prostate cancer
progression in the transgenic adenocarcinoma mouse prostate (TRAMP) neuroendocrine prostate
cancer model [161]. FOXO1 has also been shown to bind and inhibit the transcriptional activity
of E26 transformation-specific (ETS) transcription factor ERG, which is over-expressed in 50% of
prostate cancers owing to TMPRSS2-ERG (transmembrane protease, serine 2: ERG fusion) gene
rearrangements [162]. Furthermore, Foxo1 bi-allelic deletion and ERG overexpression can cooperate
to cause prostate neoplasia in mice [162]. Together, these findings suggest FOXO1/3 act as tumor
suppressors during prostate cancer.

FOXO4 gene amplification occurs in up to 8.8% of patients with metastatic prostate cancer (Table
S3), however the functional importance of this genetic alteration remains to be clarified. Although
FOXO4 down-regulation is reported to correlate with reduced prostate cancer metastasis-free survival,
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conversely FOXO4 knockdown in LNCaP cells can increase metastatic potential [163]. Thus, future
work addressing the role of FOXO4 during prostate cancer progression is warranted.

2.6. TSC1-TSC2-TBC1D7 Complex and RHEB Deregulation

To regulate mTORC1 signaling, TSC1, TSC2, and TBC1D7 form a complex to suppress RHEB
GTPase, an upstream activator mTORC1 [164] (Figure 1). Activated AKT directly phosphorylates
TSC2 at multiple residues to inhibit the TSC1:TSC2 complex, activate RHEB GTPase, and subsequently
stimulate mTORC1 signaling [165,166]. TSC2 is also regulated by MAPK, WNT, and energy signals
through coordinated phosphorylation by ERK, GSK3, and AMPK respectively, thus limiting mTORC1
activation and cell growth in response to poor growth conditions, and illustrating TSC2 as a central
node for PI3K-AKT-mTOR crosstalk with multiple signaling cascades [164,166–168].

TSC1 and TSC2 are frequently mutated/deleted in a variety of solid tumors, including lung (22%)
and liver (16%) cancers, leading to deregulated PI3K-AKT-mTOR signaling [169,170]. In prostate cancer,
the frequency of TSC1 and TBC1D7 mutation or deep deletion is low (≤0.8% incidence, Tables S1–S3),
whereas TSC2 mutation and deep deletion are more frequent (1–1.8% and up to 4.2% of cases respectively,
Tables S1–S3). Interestingly an inactivating splice variant of TSC2 unique to African American patients
with prostate cancer has also recently been linked to aggressive prostate cancer and therapeutic
resistance [60]. In mice, Tsc1 conditional deletion in murine prostate epithelium is reported to cause
prostate neoplasia associated with elevated mTORC1 signaling [171], and combined Tsc2 and Pten
heterozygosity has been shown to promote invasive prostate carcinoma relative to single mutants [172].
In lung cancer, TSC1 and TBC1D7 have been shown to function as oncoproteins [173], possibly reflecting
mTORC1-independent functions such as TSC1-mediated activation of TGFβ-SMAD2/3 signaling [174].
Remarkably, up to 3%, 4%, and 7% of patients with prostate cancer also display TBC1D7, TSC1,
and TSC2 high-level amplification respectively (Tables S1–S3), yet the functional consequence is
currently unclear.

RHEB GTPase has also been shown to act as a proto-oncogene in prostate cancer and up to 4% of
patients with prostate cancer carry RHEB gene amplification, however RHEB oncogenic mutations are
rare (≤0.1% incidence, Tables S1–S3). RHEB GTPase is over expressed in several prostate cancer cell
lines and transgenic mice over-expressing Rheb specifically within the prostate epithelium develop
low-grade prostatic intraepithelial neoplasia lesions by 10 months of age, accompanied with increased
mTORC1 activity [175]. Rheb over-expression can also cooperate with Pten haploinsufficiency to
promote prostate tumorigenesis [175], indicating RHEB amplification is likely to be a genetic driver of
prostate tumorigenesis in the clinic.

2.7. Amplification of mTORC1 and mTORC2 Complex Components

The mTORC1 and mTORC2 protein complexes are functionally and structurally distinct, originally
distinguished by their sensitivity to the mTOR inhibitor rapamycin [176–178]. Both mTORC1 and
mTORC2 complexes contain mTOR, MLST8 (also known as G-protein beta-subunit like, GβL),
TEL2, TTI1, and the negative regulator DEPTOR [179,180]. RAPTOR and PRAS40 (encoded by
AKT1S1) are additional members of mTORC1 complex, whereas RICTOR, mSIN1, and PROTOR1/2
form the mTORC2 complex [180] (Figure 1). mTORC1 and mTORC2 are downstream effectors
and regulators of PI3K/AKT signaling that mediate key cellular processes in response to growth
factors and hormones [179,181–183]. mTORC1 is sensitive to rapamycin treatment and functions
to regulate cell growth, autophagy, protein translation machinery, and cell-cycle progression by
phosphorylating substrates such as ULK1, S6K and 4EBP1 [179,183–185]. The mTORC2 complex
plays a critical role in PI3K/AKT signaling by increasing the activity of AKT, SGK1 and PKCα to
regulate cell survival, metabolism and cytoskeletal dynamics [184] (Figure 1). mTORC2 is generally
insensitive to rapamycin [179], however chronic exposure to the drug has been shown to impair
mTORC2 assembly [185]. Crucially, mTORC1 and mTORC2 can also regulate each other via multiple
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mechanisms, including AKT regulation of PRAS40 to block suppression of mTORC1 activity and S6K
regulation of mSIN1 to modulate mTORC2 activity [186].

In general, the frequency of genetic alterations in mTORC1 and mTORC2 components is low
in prostate cancer. Genomic profiling data have shown that mTOR mutation occurs in 0.6–1.6% of
cases, and the frequency of mutation or deep deletion in the other components of mTORC1/2 is
≤1% (Tables S1–S3). However, DEPTOR gene amplification is comparatively frequent, occurring in
5.1–21.4% of cases, with the highest incidence observed in the SUC2/PCF-IDT metastatic prostate
adenocarcinoma dataset (Tables S1–S3). In addition, DEPTOR amplification directly correlates with
worse disease/progression-free survival in the TCGA Firehose Legacy prostate adenocarcinoma dataset
(Figure S4), indicating DEPTOR amplification may provide a valuable predictive biomarker in the
clinic. DEPTOR is an endogenous suppressor of mTOR kinase activity, yet DEPTOR upregulation
can reduce S6K1 activation, thus relieving feedback inhibition from mTORC1 to PI3K and mTORC2
signaling that results in increased AKT activation [187]. Nevertheless, DEPTOR knockdown in
colorectal cancer cells reduced cell proliferation and induced differentiation [188], raising the possibility
that DEPTOR can promote tumorigenesis in other epithelial cancers. DEPTOR has also been shown
to exert mTORC1/2-independent functions in the nucleus as a transcriptional regulator in multiple
myeloma cells [189] and is a transcriptional target of WNT/β-catenin/MYC signaling in colorectal
cancer cells [188], adding further complexity to PI3K-AKT-mTOR and WNT pathway crosstalk.

In addition to DEPTOR, a number of other genes encoding mTOR components were also distinctly
amplified in the SUC2/PCF-IDT metastatic prostate cancer dataset (AKT1S1, 2.7%; MLST8, 7.7%;
MAPKAP1, 4.5%; RPTOR, 7%; RICTOR, 5%; TELO2, 6.5%; TTI1, 2.5%, Table S3), which could
potentially facilitate tumor progression. However, none of these genetic alterations correlate with
disease/progression-free survival (determined by cBioPortal analysis of the TCGA Firehose Legacy
prostate adenocarcinoma dataset, n = 492, data not shown) [47,48]. Significantly, bi-allelic deletion of
Rictor in mouse prostate epithelium has revealed RICTOR is not required for normal tissue homeostasis,
yet RICTOR loss can suppress Pten-deleted prostate tumorigenesis in mice [190]. These findings
indicate that mTORC2 signaling can contribute to PTEN-deleted prostate cancer growth, and that
mTORC2 inhibition may be efficacious in the clinic against prostate cancers with PTEN loss [190].

Intracellular amino acids can also activate mTORC1 signaling by stimulating vacuolar H+-ATPase
(v-ATPase) to activate Ragulator, a guanine exchange factor that converts RAGA/B·GDP to RAGA/B·GTP,
enabling formation of the active RAG complex where RAGA·GTP or RAGB·GTP form heterodimers
with either RAGC·GDP or RAGD·GDP [36,191–195]. Similarly to RAGA/RAGB, RAGC/RAGD are
functionally redundant and are 80–90% homologous [195]. When amino acids are sufficient, mTORC1
is recruited to the lysosome where it binds to the active RAG complex via RAPTOR, followed by its
localization to RHEB that leads to mTORC1 activation [36,191,195] (Figure 1). Recent evidence also
suggests that amino acids such as glutamine can activate mTORC1 in a RAG-complex independent
manner, for example via the GTPase adenosine ribosylation factor 1 (ARF1) [196], highlighting the
complex nature of mTORC1 regulation.

In prostate cancer, genetic alterations in RRAGA and RRAGC genes that encode RAGA and RAGC
respectively are uncommon, however RRAGB (encoding RAGB) is amplified in up to 7.7% of cases and
RRAGD (encoding RAGD) deep deletion occurs in 6.5–14.4% of cases (Tables S1–S3). Interestingly,
RRAGD deep deletion in prostate adenocarcinoma strongly correlates with FOXO3 deletion (one-sided
Fisher’s Exact test, p-value < 0.001; data sourced from the cBioPortal platform, TCGA Firehose Legacy
prostate adenocarcinoma dataset, n = 492), however the functional consequence of RRAGD/FOXO3
co-deletion and RAGB amplification during prostate cancer growth and therapeutic resistance is
currently unknown and merits further investigation.

2.8. Aberrant AMPK Signaling

The metabolic sensor AMPK functions to maintain an adenosine triphosphate (ATP) equilibrium,
influencing cell growth, lipid and glucose metabolism, autophagy and cell polarity [197]. AMPK
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is composed of a catalytic subunit (α1/α2, encoded by PRKAA1/PRKAA2), a β structural
subunit (β1/β2, encoded by PRKAB1/PRKAB2) and a regulatory γ subunit (γ1/γ2/γ3, encoded by
PRKAG1/PRKAG2/PRKAG3) [198]. AMPK activation plays a tumor suppressive role by inhibiting
mTORC1 through the phosphorylation of TSC2 and RAPTOR in response to energy stress [199]
(Figure 1), and by negatively regulating lipogenesis [200–202]. AMPK can also play an oncogenic role
during stress (including hypoxia, oxidative stress, and glucose deprivation) to activate AKT, yet the
molecular mechanisms involved remain to be fully elucidated [200]. Mutation and deep deletion of
the AMPK subunits are uncommon in human malignancies [203], including prostate cancer (<1.2%
incidence, Tables S1–S3). Instead, gene amplification of the AMPK subunits is more common [43,45,204].
In prostate cancer, high-level amplification of PRKAB1, PRKAB2, PRKAG2, and PRKAG3 occurs in up
to 6.3%, 6.8%, 4.1%, and 2% of cases respectively (Tables S1–S3). Whether AMPK amplification equates
to increased activity remains to be determined, however AMPK phosphorylation/activation is reported
to positively correlate with Gleason score and disease progression [205,206].

Interestingly, androgen-mediated activation of AMPK has been shown to increase the
growth of prostate cancer cells, associated with elevated intracellular ATP levels and peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-mediated mitochondrial
biogenesis [206]. Thus, AR-mediated AMPK activation could potentially function to avoid energy
crisis and promote tumor growth. Upstream activators of AMPK include Ca2+/calmodulin-dependent
protein kinase kinase β (CAMKKβ), liver kinase B1 (LKB1), sestrins, and potentially mitogen-activated
protein kinase kinase kinase 7 (MAP3K7) [207–209]. Below we explore several potential mechanisms
underpinning deregulation of the AMPK-AKT/mTOR signaling axis in prostate cancer.

2.8.1. CAMKKβ Amplification

CAMKKβ is encoded by CAMKK2 and phosphorylates AMPK in response to Ca2+ signaling. In
prostate cancer, CAMKK2 is amplified in up to 6.3% of patients (Tables S1–S3), however it is currently
unknown if CAMKK2 amplification promotes AMPK activity in the clinic. In a Pten-deleted prostate
cancer mouse model, Camkk2 deletion or CAMKKβ pharmacological inhibition has been shown to
suppress prostate tumorigenesis and reduce de novo lipogenesis, whereas Prkab1 (AMPK-β1) and
Pten co-deletion accelerates tumor progression [210]. These findings indicate that CAMKKβ plays an
oncogenic role in this setting and that CAMKKβ and AMPK-β1 play opposing roles in Pten-deficient
prostate cancer, possibly reflecting their differential regulation of lipogenesis [210]. CAMKKβ has also
been shown to activate AMPK in response to androgen signaling, and AMPK can subsequently inhibit
AR function to form a negative feedback loop [210]. However, the impact on the PI3K-AKT-mTOR
signaling cascade remains unclear. Interestingly, a recent report has shown that CAMKKβ can directly
phosphorylate AKT at residue Thr308 in ovarian cancer cells [211], indicating CAMKKβ may regulate
AKT/mTOR signaling both directly and indirectly via AMPK.

2.8.2. LKB1 Loss

LKB1 (encoded by serine/threonine kinase 11, STK11) is a multifaceted enzyme that plays a
tumor suppressive role by phosphorylating multiple substrates (e.g., AMPK and PTEN) to regulate
crucial cellular processes including cell metabolism, polarity, differentiation, and proliferation [212,213]
(Figure 1). While STK11 deletion or inactivating mutations are frequent in lung cancer (occurring
in up to 50% of patients) [208], STK11 mutations are rare in prostate cancer (0.2% incidence, Tables
S1–S3) and the frequency of STK11 deep deletion is also comparatively low (0–3.4% incidence, Tables
S1–S3). We have previously shown that LKB1 exerts a tumor suppressive function in the prostate, as
Lkb1 homozygous deletion in murine prostate epithelial cells causes prostate intra-epithelial neoplasia
(PIN), associated with elevated PI3K/AKT signaling [214]. The relatively mild effects of LKB1 loss are
greatly enhanced when combined with Pten heterozygosity in the mouse prostate, which causes lethal
metastatic prostate cancer [215]. Interestingly, the expression of either wild-type LKB1, or a kinase-dead
form of LKB1 (LKB1K78I) is sufficient to reduce tumor burden and impair metastatic potential of DU145
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prostate cancer cells that lack LKB1, indicating LKB1 may also elicit a kinase-independent tumor
suppressive function [215]. These in vivo findings indicate that deregulation of the LKB1-AMPK
signaling axis is a potential mechanism whereby AKT/mTOR signaling is potentiated to facilitate
prostate tumor formation and/or progression. Furthermore, a recent study has shown that LKB1 protein
levels are reduced in immortalized prostate cancer cell lines relative to normal prostate epithelial cells,
and siRNA-mediated STK11 knockdown correlated with elevated hedgehog signaling and increased
proliferation and invasion of prostate cancer cells in vitro, however PI3K-AKT-mTOR signaling was
not assessed [216].

2.8.3. Sestrin Deletion

Sestrins are a family of stress inducible antioxidant proteins comprising of SESN1, SESN2, and
SESN3, which play a key role in regulating autophagy, mitophagy, metabolic homeostasis, inflammation,
hypoxia and oxidative stress [217–219]. SESN1 and SESN2 are p53 target genes that are induced upon
DNA damage and oxidative stress [217]. SESN1 and SESN2 can directly bind to both the TSC1:TSC2
complex and AMPK, which leads to AMPK activation/autophosphorylation in a p53-dependent
manner and stimulates AMPK-mediated phosphorylation of TSC2 to negatively regulate mTORC1
signaling [217]. In addition, sestrins are reported to negatively regulate mTORC1 signaling via
GATOR2/RAG, indicating that sestrins can also mediate PI3K-AKT-mTOR signaling in response to
energy stress (e.g., nutrient starvation) [220,221].

Genetic alterations in the genes encoding sestrins have been linked to non-small cell lung carcinoma
(NSCLC) and colorectal cancer, and recent evidence in the literature has indicated sestrins play a tumor
suppressive role [221,222]. Although sestrin mutations are rare (≤0.8%), SESN1 deep deletion is a
frequent event in prostate cancer occurring in 4.7–13.4% of cases (Tables S1–S3), potentially leading to
increased mTORC1 signaling through alleviation of SESN1-mediated negative regulation of mTORC1.
Interestingly, similarly to FOXO3, SESN1 is located within the 6q21 locus that is commonly lost in
prostate cancer [160]. SESN1 is also reported to be transcriptionally repressed by AR [223], whereas
p53 and FOXOs are known to mediate SESN1 transcription [156,217]. Thus, future work exploring the
functional significance and predictive value of SESN1 depletion in prostate cancer could identify new
therapeutic avenues or biomarkers to aid patient care.

2.8.4. MAP3K7 Deletion

MAP3K7 (also known as transforming growth factor (TGF) β-activated kinase 1, TAK1)
is a serine/threonine protein kinase that mediates cell survival via NF-κB-dependent and
NF-κB-independent signaling in response to TGFβ and cytokines [224]. Recent evidence in the
literature has indicated that MAP3K7 may also mediate AMPK-AKT-mTOR signaling, as MAP3K7/TAK1
inactivation is associated with AMPK activation and reduced p-mTOR levels in skeletal muscle [209].
However, MAP3K7 is reported to mediate mTOR signaling independently of AMPK in hepatocellular
carcinoma, possibly via p38 activation [225].

In prostate cancer, MAP3K7 is a putative tumor suppressor gene and MAP3K7 deletion has been
shown to directly correlate with prostate cancer progression, lymph node metastasis, and biochemical
recurrence [226,227]. MAP3K7 deep deletion is a frequent event in prostate cancer, occurring in
up to 14.8% of patients (Tables S1–S3). Furthermore, loss of Map3k7 in mice has been shown to
promote prostate tumorigenesis [227], suggesting MAP3K7 plays a tumor-suppressive function in the
prostate. However, in an AML xenograft model MAP3K7 inhibition was found to attenuate leukemia
development [228], indicating that MAP3K7 plays a dual role as a tumor suppressor and an oncogene
depending on the malignancy.
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3. The PI3K-AKT-mTOR Pathway Intersects with Multiple Oncogenic Signaling Cascades to
Facilitate Prostate Cancer Growth

The PI3K-AKT-mTOR signaling cascade is one of the most frequently upregulated pathways
in prostate cancer, which potentiates multiple downstream signaling events to mediate a plethora
of cellular processes that promote tumor growth and therapeutic resistance to current treatment
regimens. Targeting the PI3K-AKT-mTOR pathway using small molecules, such as pan-PI3K,
PI3K-isoform specific, AKT, mTOR and dual PI3K/mTOR inhibitors has been challenging owing
to their limited efficacy and poor tolerability (reviewed in [14–17,134,229,230]). Many clinical trials
involving PI3K-AKT-mTOR-directed therapies have failed owing to incomplete inhibition of the
pathway, reflecting the multiple modes of pathway redundancy and numerous positive/negative
feedback loops that exist both within the PI3K-AKT-mTOR cascade and via crosstalk with other
signaling pathways [15,231–236] (Figure 1). Here, we review PI3K-AKT-mTOR interactions with
the RAS/MAPK, AR, and WNT signaling pathways, illustrating the need to improve our molecular
understanding of the broader PI3K-AKT-mTOR signaling network. Delineating the complexity of the
PI3K-AKT-mTOR pathway interactions with other signaling cascades during normal tissue homeostasis,
tumorigenesis and therapeutic resistance is crucial for the discovery of new, efficacious personalized
treatment approaches that overcome PI3K-AKT-mTOR inhibitor resistance.

3.1. PI3K-AKT-mTOR and RAS/MAPK Signaling Crosstalk

The RAS/MAPK cascade transduces extracellular growth signals via transmembrane receptors
(e.g., RTKs and GPCRs) and a series of intracellular protein kinases to regulate gene expression
in the nucleus, and to mediate a range of cellular functions including cell proliferation, migration,
differentiation, senescence, and survival [25,237,238]. Growth factors bind to the extracellular surface
of RTKs (e.g., epidermal growth factor receptor, EGFR, and fibroblast growth factor receptor, FGFR)
leading to a conformational change that enables RTK dimerization and autophosphorylation of several
tyrosine residues within the RTK cytoplasmic tail. This creates docking sites for adaptor proteins that
stimulate downstream effector cascades, such as growth factor receptor-bound protein 2 (GRB2) that
recruits Son of Sevenless (SOS) and the GTPase RAS to activate the MAPK cascade (RAF-MEK-ERK
signaling) and drive transcription of RAS/MAPK target genes [237,238] (Figure 1).

The RAS/MAPK cascade is frequently deregulated in human cancers, including prostate
cancer [238]. Activating genetic alterations (i.e., mutation/amplification) in RAS (HRAS, NRAS,
or KRAS) and BRAF have been reported in primary and metastatic prostate cancer (1–8% incidence),
and augmented MAPK signaling is reported to correlate with castration-resistance and metastatic
progression [43,45,46,101,239]. The PI3K-AKT-mTOR and RAS/MAPK pathways are interconnected
at multiple levels (Figure 1), predominantly owing to (a) shared upstream regulation mechanisms
through RTKs/GPCRs and their associated adaptors, (b) the ability of respective cytosolic signaling
components to interact and cross-regulate, and (c) the regulation of joint downstream targets (e.g., BAD
and RPS6), reviewed in [25,240]. At the level of the receptor for example, the GRB2-SOS complex that is
recruited to activated RTKs can bind to the scaffolding protein GAB1 (GRB2-associated binder-1), which
interacts with RasGAP, SHP2, PI3K, and PIP3 to augment both RAS/MAPK and PI3K-AKT-mTOR
signaling [25]. In addition, mTORC1 signaling can negatively regulate RTK signaling to reduce both
PI3K-AKT-mTOR and RAS/MAPK activity, including mTORC1-S6K-mediated suppression of the
insulin receptor substrate protein IRS1; a major IGF-1 receptor substrate and adaptor protein that can
promote both PI3K and RAS activation by binding to p85 and GRB2 respectively [25,241]. S6K can also
phosphorylate RICTOR to reduce mTORC2 signaling [25,242].

At the membrane, RAS-GTP can also bind to the RAS-binding domain (RBD) of p110α, p110δ,
and p110γ to directly activate several Class I PI3K catalytic subunit isoforms [20,243]. Intracellular
components of both cascades also interact to form multiple feedforward and feedback loops that enable
PI3K-AKT-mTOR and RAS/MAPK pathway cross-regulation (Figure 1) [25,232,240]. For instance,
RAS/MAPK activation has been shown to stimulate mTORC1 signaling through ERK, which can
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directly phosphorylate TSC2, RAPTOR and 90 kDa ribosomal S6 kinase (RSK) to inactivate/dissociate
the TSC1:TSC2 complex and regulate the recruitment of mTORC1 substrates [244–246]. ERK-RSK
signaling can also phosphorylate serum response factor (SRF), cAMP response element-binding
protein (CREB) and RPS6, thus promoting cap-dependent translation independently of mTORC1-S6K
signaling [247,248]. In addition, AKT is also reported to directly phosphorylate and negatively regulate
RAF to suppress the MAPK cascade [249,250], and activated RAS has recently been shown to directly
interact with mSIN1 to stimulate mTORC2 signaling in cancer cells (including prostate cancer cell
lines) [251].

3.1.1. RAS/MAPK-PI3K-AKT-mTOR Interactions Promote Resistance to PI3K-AKT-mTOR
Pathway-Directed Therapies

Clinical trials exploring the efficacy of inhibitors targeting the PI3K-AKT-mTOR pathway in
prostate cancer have been extensively reviewed previously [14–17]. Despite promising results in
early preclinical studies [252,253], allosteric mTORC1 inhibitors (e.g., rapamycin and rapamycin
analogs/rapalogs such as Everolimus and Temsirolimus) have been ineffective in patients with prostate
cancer, owing to their inability to suppress AKT activity and a number of adverse side effects [17,254].
Evidence in the literature has revealed several mechanisms of resistance, including activation of
the RAS/MAPK pathway [235,255–257]. Both normal and transformed prostate epithelial cells
have been shown to augment RAS/MAPK signaling in response to mTORC1 inhibition [235,255],
and administration of Everolimus (RAD001) has been shown to induce MAPK signaling in a
Pten-deleted mouse model of prostate cancer [235,255]. Although the mechanisms underpinning
resistance to mTORC1 inhibitors are not completely understood, several signaling events that involve
PI3K/AKT/PI3K and RAS/MAPK crosstalk have been identified. For instance, mTORC1 inhibition is
reported to promote AKT and RAS/MAPK signaling by blocking mTORC1-S6K-mediated negative
regulation of IRS1 and mTORC2 signaling [258,259] (Figure 2A). Inhibition of mTORC1 has also been
shown to prevent mTORC1 stabilization of growth factor receptor bound protein 10 (GRB10), an RTK
adaptor protein that negatively regulates RTK signaling [260].

Resistance to AKT inhibitors (e.g., capivasertib and ipatasertib) has also been linked to elevated
RAS/MAPK signaling and mTORC2 activity [14,261]. AKT inhibition can lead to the nuclear
accumulation of active FOXO1, resulting in increased transcription of FOXO1-regulated genes, such as
ERBB2/3 that encode human epidermal growth factor 2/3 (HER2/3) RTKs [25,237,262–264] (Figure 2B).
PI3K inhibition with either pan-PI3K inhibitors (GDC0941 and XL-147) or a dual PI3K/mTOR inhibitor
(BEZ235) has also been found to increase HER2/3 expression in breast cancer, resulting in increased
RAS/MAPK signaling [265,266]. Furthermore, FOXO-dependent transcription is associated with p110α
and PDK1 co-inhibition [145].

Additionally, the mTORC2 substrate SGK1 can replace AKT in response to PI3K/AKT inhibition,
leading to the activation of shared AKT substrates that mediate oncogenic cellular processes such
as cell growth, survival metabolism, and migration [145,267] (Figure 2B). In PIK3CA mutant breast
cancer cells, PDK1-SGK1 signaling has been shown to sustain AKT-independent mTORC1 activation to
promote resistance to the p110α-isoform-specific PI3K inhibitor BLY719, and PDK1 or SGK1 blockade
can restore BYL719 sensitivity [145]. Furthermore, elevated SGK1 can predict for AKT inhibitor
resistance in breast cancer cells [267]. Interestingly, Class I PI3K and AKT inhibition has also been
shown to increase PI3K Class III hVsp34-SGK3 signaling in breast cancer cells, which can substitute for
AKT by phosphorylating TSC2 to activate mTORC1 [148]. Whether SGK1/3 shares AKT’s ability to
phosphorylate and activate RAF is currently unknown.
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Figure 2. PI3K-AKT-mTOR and RAS/MAPK pathway crosstalk can contribute to mTORC1 and AKT
inhibitor resistance. Model schematics illustrating reported mechanisms of therapeutic resistance to
(A) mTORC1 inhibition and (B) AKT inhibition. mTORC1 and AKT blockade potentiates a series of
feedback/feedforward loops between the PI3K-AKT-mTOR and RAS/MAPK signaling pathways, leading
to augmented RAS/MAPK signaling and incomplete suppression of the PI3K-AKT-mTOR cascade that
can promote drug-resistant tumor growth. AKTi, AKT inhibitor; mTORC1i, mTORC1 inhibitor.

3.1.2. Co-targeting RAS/MAPK and PI3K-AKT-mTOR Signaling in Prostate Cancer

Co-activation of the RAS/MAPK and PI3K-AKT-mTOR signaling pathways occurs frequently
in human malignancies including prostate cancer, thus considerable research has been devoted to
establishing how these two oncogenic cascades interact [101,256,257,268–270]. Nearly all metastatic
prostate cancer patients are reported to show deregulation of both cascades [43]. To model this in vivo,
genetically engineered mouse models of prostate cancer with prostate specific Pten homozygous
deletion harboring either a KRasG12D activating mutation or oncogenic BRaf V600E with NK3 Homeobox
1 (Nkx3.1) depletion, promotes rapid tumor growth and metastatic progression relative to the single
mutants [101,268,269]. To our knowledge, these tumor models were the first immunocompetent
transgenic mouse models of prostate adenocarcinoma to display reproducible metastatic disease.

Taken together, these findings indicate that PI3K-AKT-mTOR and RAS/MAPK signaling synergize
to promote prostate cancer growth and metastatic progression, and given the frequency of co-activation
of these cascades in the clinic, this provides a clear justification for exploring the combination of
PI3K-AKT-mTOR and RAS/MAPK pathway inhibitors in patients with advanced prostate cancer. This
notion is further supported by the fact that MEK inhibition is associated with elevated PI3K-AKT-mTOR
signaling in mammalian cancer cells, including prostate cancer cells [271,272]. Preclinical studies have
also shown that co-inhibition of MEK and mTORC1 can significantly reduce tumor burden relative to
monotherapy in a mouse model of prostate cancer driven by simultaneous heterozygous deletion of
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Nkx3.1 and Pten [256], and can inhibit cell growth and increase cytotoxicity in the castration-resistant
CWR22Rv1 human prostate cancer cell line [272]. However, MEK inhibition alone is reported to
be sufficient to suppress the metastatic spread of Pten-deleted and KRas activated stem/progenitor
murine prostate cancer cells orthotopically transplanted in vivo, similarly to combined mTORC1 and
MEK inhibition [101]. This highlights the need to improve our molecular understanding of how these
cascades interact during disease progression and in the presence of different genetic drivers to aid the
stratification of patients that will benefit from (a) PI3K-AKT-mTOR inhibition, (b) MEK inhibition or (c)
combined PI3K-AKT-mTOR and RAS/MAPK blockade.

Several prostate cancer clinical trials have been designed to investigate the therapeutic efficacy
of targeting MEK (e.g.,MEK1/2 inhibitor trametinib, ClinicalTrials.gov identifiers: NCT02881242 and
NCT01990196) or the PI3K-AKT-mTOR cascade (e.g., pan-AKT inhibitors including ipatasertib
and capivasertib, ClinicalTrials.gov identifiers: NCT01485861/NCT03673787 and NCT02525068/

NCT02121639 respectively) [134,273]. Metformin (an oral type 2 anti-diabetic drug) is also currently
being investigated in prostate cancer within the STAMPEDE trial [274]. Metformin targets the
mitochondrial respiratory chain complex I, leading to reduced mitochondrial ATP production that causes
cellular energy crisis with subsequent AMPK activation and mTORC1 inhibition [275]. Metformin has
also been shown to inhibit MEK/ERK in response to growth factors, contrasting mTORC1 inhibitor
treatment with rapamycin that increases MAPK signaling [276].

Although not currently specific to patients with prostate cancer, clinical trials exploring
co-inhibition of the PI3K-AKT-mTOR and MAPK cascades to treat various advanced solid cancers
have also been developed (e.g., ClinicalTrials.gov identifiers: NCT01390818, NCT01347866, and
NCT02583542), although response rates appear to be low and are linked to RAS and RAF mutations [277].
For example, a recent Phase Ib study of combination therapy with the MEK1/2 inhibitor binimetinib
(Mektovi) and the pan-PI3K inhibitor Buparlisib (BKM120) in advanced solid tumors reported
promising efficacy in patients with advanced ovarian cancer with RAS/RAF genetic alterations,
however continuous dosing resulted in intolerable toxicities and an intermittent schedule is suggested
for future trials [278]. Additionally, the MATCH screening trial (targeted therapy directed by genetic
testing in treating patients with advanced refractory solid tumors, lymphomas, or multiple myeloma,
ClinicalTrials.gov identifier: NCT02465060) will investigate the efficacy of MEK and PI3K inhibitors
as monotherapies in patients with progressive disease that carries a genetic alteration in either the
RAS/MAPK or the PI3K-AKT-mTOR pathways respectively.

3.2. PI3K-AKT-mTOR and AR Signaling Crosstalk

AR signaling regulates cell growth, differentiation, migration and survival, and plays a critical
role as a transcriptional regulator during prostate development, normal prostate tissue homeostasis,
and prostate cancer [279–281]. AR is a steroid nuclear receptor that transmits androgen signals such as
testosterone (T), or its more potent metabolite dihydrotestosterone (DHT), to regulate gene expression
and coordinate cellular responses. T is derived from cholesterol through a cascade of biochemical
reactions involving four enzymes: cytochrome P450 side-chain cleavage enzyme (P450scc), cytochrome
P450 17α-hydroxylase/17,20-lyase (CYP17A1), 3β-hydroxysteroid dehydrogenase (3β-HSD) and
17β-hydroxysteroid dehydrogenase (17β-HSD) [282]. The conversion of cholesterol to pregnenolone
is catalyzed by P450scc, and its subsequent conversion to progesterone is catalyzed by 3β-HSD.
Pregnenolone and progesterone can be converted by CYP17A1 to 17-OH-pregnenolone and
17-OH-progesterone and subsequently to dehydroepiandrosterone (DHEA) and androstenedione
(AD or A4). DHEA and AD may then be converted to androstenediol and T by 17β-HSD [282]. T
synthesis and secretion predominantly occurs in the Leydig cells of the testes, and is stimulated by
pituitary-derived luteinizing hormone (LH), which is secreted in response to hypothalamus-derived
LHRH, (also known as gonadotrophin-releasing hormone, GnRH) [281,283]. In the prostate,
5-alpha-reductase converts T to DHT [281,283]. In addition, androgens can also be produced by
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the adrenal glands and in some instances by prostate tumor cells [284], which may contribute to
prostate cancer growth post-orchiectomy [285].

In the absence of androgens, AR forms a cytoplasmic complex with chaperones (e.g., HSP90
and HSP70). Androgen binding displaces the chaperones and triggers a conformational change
in AR, which enables AR homodimerization and nuclear translocation (Figure 1) [279,281,286].
Nuclear AR homodimers regulate the transcription of androgen-regulated genes (e.g., SLC43A1,
FKBP5, CAMKK2, NKX3.1 and KLK3) by directly binding to an androgen responsive element (ARE)
in the promotor/enhancer region of target genes [279,286]. However, growth factors (e.g., EGF
and IGF-1), cytokines (e.g., IL6) and intracellular signaling kinases (e.g., AKT and SRC) can also
independently stimulate AR dependent transcriptional activity when androgen levels are low, which
can facilitate therapeutic resistance to androgen/AR blockade [12,281,287]. In addition to regulating
gene transcription, AR can also mediate a number of intracellular signaling pathways through direct
protein–protein interactions within the cytoplasm (known as non-genomic AR signaling) [12,281]. For
instance, AR is reported to activate SRC family kinases, PKC, RAS, ERK, PI3K, and AKT [12,288].

Aberrant AR signaling is a common feature of prostate cancer [289], with up to 56% of
primary cases and 100% of metastatic cases reported to carry genetic alterations within key AR
pathway components [43]. While the majority of men with prostate cancer initially respond to
androgen/AR-directed therapy, they inevitably develop castration-resistant prostate cancer (CRPC),
as malignant cells develop therapeutic resistance [5,290]. Several inherent and acquired resistance
mechanisms have been identified, including AR genetic alterations (e.g., activating mutations, gene
amplification, androgen-independent constitutively active splice variants, AR loss), augmented
androgen biosynthesis, adrenal androgens, AR-bypass signaling (e.g., glucocorticoid receptor (GR)
regulation of shared AR target genes), trans-differentiation to neuroendocrine prostate cancer
and ligand-independent activation via crosstalk with another signaling cascade, such as the
PI3K-AKT-mTOR pathway [12,283].

The PI3K/AKT/mTOR and AR pathways have been shown to cross-regulate through several
reciprocal inhibitory loops [11,12,24] (Figure 3). Consequently, the PI3K-AKT-mTOR pathway can be
inadvertently activated in response to androgen/AR-directed therapies, and vice versa PI3K-AKT-mTOR
pathway inhibition can augment AR signaling, leading to therapeutic resistance. Human patient
samples (both primary tumor and bone metastases), human prostate cancer cell lines and transgenic
mouse models of prostate cancer have consistently demonstrated that AKT-mTOR signaling is
increased in response to androgen/AR-directed blockade [11,13,24,291–293]. Mechanistically, it is
reported that inhibiting AR signaling reduces expression of the AR target gene FK506-binding protein-5
(FKBP5), which leads to PHLPP destabilization and reduced PHLPP-mediated dephosphorylation of
AKT at Ser473 to promote AKT signaling [11,24] (Figure 3A). Thus, compensatory activation of the
PI3K-AKT-mTOR pathway in response to androgen/AR pathway inhibition can facilitate CRPC growth.

Conversely, PI3K-AKT-mTOR pathway inhibition is associated with augmented AR signaling
that can contribute to drug resistance and promote prostate cancer progression [11,293–295]. Carver
and colleagues showed that PI3K/mTOR inhibition activates AR signaling in human xenograft and
transgenic mouse models of prostate cancer, and that co-treatment with the PI3K/mTOR inhibitor
BEZ235 and the antiandrogen MDV3100 (enzalutamide) significantly reduced tumor burden relative to
monotherapy [11]. In corroboration, resistance to the AKT inhibitor capivasertib (AZD5363) in LNCaP
prostate cancer xenografts is also associated with elevated AR signaling, and combining AZD5363
treatment with the antiandrogen bicalutamide prolonged disease stabilization [295]. Furthermore,
mTOR and EGFR co-inhibition with everolimus and gefitinib has shown limited sensitivity in patients
owing to enhanced AR activity and PSA levels [293], providing further rationale for combining AR
and PI3K-AKT-mTOR blockade to treat prostate cancer.
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Figure 3. PI3K-AKT-mTOR and AR signaling crosstalk facilitates resistance to androgen/AR and
AKT-directed monotherapy. Schematics depict reported model mechanisms for therapeutic resistance
to (A) androgen/AR-directed therapy, which leads to increased AKT activation, and (B) AKT inhibition.
AD, androstenedione; CYP17A1, cytochrome P450 17A1; DHEA, dehydroepiandrosterone; Ub,
ubiquitination event.

Several distinct molecular mechanisms have been identified that underpin AR reactivation upon
AKT inhibition. Notably, AKT inhibition can prevent AKT-mediated nuclear exclusion of FOXOs,
which can lead to augmented transcription of FOXO-target genes such as RTKs (e.g., ERBB2/3 encoding
HER2/3) (Figure 3B) [11,262,296]. HER2/3 activity has been shown to promote AR signaling by
protecting AR from ubiquitination and proteasomal degradation, and by enhancing AR binding to
ARE target sequences and stimulating AR transcriptional activity [297–299] (Figure 3B). Nonetheless,
the role of FOXO-dependent signaling in PI3K-AKT-mTOR and AR pathway crosstalk is complex.
Although FOXO transcription factors upregulate the expression of RTKs [262] causing a subsequent
increase in AR signaling [298], the ectopic expression of FOXO1 conversely dampens AR activity,
which is further exacerbated when FOXO1 is co-transfected with the AR coregulator HDAC3 [300].

PTEN loss has also been shown to downregulate AR signaling via the upregulation of several
factors that inhibit AR signaling through histone modification mechanisms such as early growth
response 1 (EGR1), transcription factor AP-1 (c-JUN), and the catalytic subunit of polycomb repressive
complex 2 enhance of zeste homolog 2 (EZH2) (Figure 1) [24]. PTEN protein-phosphatase activity has
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also been shown to protect the tumor suppressor NK3 homeobox 1 (NKX3.1) from degradation, which
can derail the AR transcriptional network [301]. Of note, NKX3.1 and AR can cross-regulate [302], and
enforced NKX3.1 expression can suppress Pten-deleted prostate tumorigenesis in transgenic mice [303].

Despite the antagonistic crosstalk between AR and AKT (Figure 3), AR signaling can boost mTORC1
activation through an AR-dependent increase in amino acid transport during tumorigenesis [304]. AR
mediates expression of L-type amino acid transporters (e.g., LAT3 encoded by SLC43A1) to maintain
sufficient levels of leucine needed for mTORC1 signaling and cell growth (Figures 1 and 3) [304].
Moreover, LAT1 and LAT3 transport inhibition is sufficient to decrease cell growth and mTORC1
signaling in prostate cancer cells in vitro [304]. Recent in vitro data have also revealed that mTOR
can directly interact with AR in the nucleus of prostate cancer cells to promote metabolic rewiring,
and high levels of nuclear mTOR correlate with poor prognosis in patients with prostate cancer [293].
Additionally, AKT has been shown to directly bind and phosphorylate AR when T levels are low,
although the functional significance of this event remains to be determined [16,305,306].

The reciprocal feedback loop between AR and PI3K-AKT-mTOR signaling may also be perturbed
by Speckle-type BTB/POZ protein (SPOP) loss of function mutations that lead to the stabilization of
the SPOP substrate SRC3 (e.g., p.F133V), which consequentially increases PI3K activity [307]. SPOP
is an adaptor protein of the Cullin 3 family E3 ligases that can target SRC3 for ubiquitin-mediated
degradation and a known tumor suppressor [12,308–310]. In prostate cancer, SPOP is frequently
mutated (9–11% incidence) [45,46]. Remarkably, SPOP mutation can also stabilize AR and potentiate
AR signaling whilst the PI3K-AKT-mTOR signaling pathway is activated, allowing coordinated and
cooperative signaling that drives tumorigenic growth [307]. Conversely, wildtype SPOP can trigger E3
ligase mediated degradation of AR via hinge domain binding when androgens levels are low [311].
Furthermore, AR has been shown to positively regulate the PI3K-AKT-mTOR pathway via a direct
interaction with the SH2 domain of the Class IA PI3K regulatory subunit p85α, which has been shown
to activate the PI3K-AKT-mTOR cascade [312], further highlighting the complexity of the interactions
between these two cascades.

Taken together, these findings support the rationale for combining pharmacological inhibition
of the AR and PI3K-AKT-mTOR cascades to treat prostate cancer in the clinic, and highlight the
need for further work to delineate the molecular mechanisms underpinning crosstalk between these
two oncogenic cascades. Importantly, clinical trials exploring co-targeting AR and PI3K-AKT-mTOR
signaling are beginning to show promise. A randomized Phase Ib/II study combining the pan-AKT
inhibitor ipatasertib with abiraterone in mCRPC patients has reported ipatasertib + abiraterone
prolongs radiographic progression-free survival (rPFS), improves overall survival and extends
time to PSA progression compared to abiraterone alone, particularly in patients with PTEN loss
(ClinicalTrials.gov identifier: NCT01485861) [134]. This study also reports that the adverse effects
common to PI3K-AKT-mTOR blockade (e.g., hyperglycemia) were generally clinically manageable [134].
A Phase I dose escalation study combining enzalutamide and capivasertib to treat mCRPC has also
recently reported 3/16 patients responded (ClinicalTrials.gov identifier: NCT02525068) [313]. In
this study, patients who met the response criteria had PTEN loss or AKT activating mutations,
low/absent AR-V7 protein levels and elevated p-ERK [313]. Nevertheless, several additional clinical
trials investigating the combination of AR and PI3K-AKT-mTOR blockade in men with mCRPC did
not demonstrate a therapeutic benefit and were associated with poor tolerability (ClinicalTrials.gov
identifiers: NCT01385293, NCT01634061 and NCT01717898) [314–316]. Interestingly, D’Abronzo and
colleagues also recently showed that eIF4E phosphorylation at residue Ser209 in human CRPC cell
lines pre-treated with the antiandrogen bicalutamide underpins resistance to subsequent combination
therapy with bicalutamide + rapamycin treatment. Remarkably, suppression of eIF4E phosphorylation
by MNK1/2 (MAP kinase interacting serine/threonine kinase1/2) or ERK1/2 inhibition was shown to
sensitize bicalutamide pre-treated CRPC cells to combined anti-androgen and mTORC1 blockade [317],
presenting a novel avenue for overcoming therapeutic resistance. Thus, despite some promising
results, it is evident that further investigation into the molecular mechanisms underpinning AR and
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PI3K-AKT-mTOR pathway crosstalk in prostate cancer is required to improve patient stratification
and to discover new therapeutic approaches and predictive biomarkers that can inform future clinical
trial design.

3.3. PI3K-AKT-mTOR and WNT Signaling Interactions

The WNT family is an evolutionarily conserved group of proteins essential for growth control,
organ development, tissue homeostasis and stem cell renewal in multiple organs, and is crucial for
normal prostate development [318,319]. WNT signaling is potentiated by secreted WNT ligands (a
family of 19 lipoglycoproteins) that bind extracellularly to transmembrane frizzled receptors (FZD1-10)
and their co-receptors, such as low-density lipoprotein receptors (e.g., LRP5 and LRP6), tyrosine
protein-kinases (e.g., receptor tyrosine kinase–like orphan receptor-1 and -2, ROR1/2), and tyrosine
kinase-related receptors (e.g., receptor-like tyrosine kinase, RYK, protein tyrosine kinase 7, PTK7,
and muscle specific kinase, MuSK) [318–320]. The WNT signal is transduced intracellularly via
dishevelled (DVL), which subsequently activates either β-catenin-dependent/canonical WNT signaling
or β-catenin-independent/non-canonical WNT signaling [318–320]. In the absence of a canonical WNT
ligand, cytosolic β-catenin levels are maintained at a low level via the β-catenin destruction complex
that contains the scaffold protein AXIN, the tumor suppressor adenomatous polyposis coli (APC),
GSK3β and casein kinase 1 (CK1). The β-catenin destruction complex phosphorylates β-catenin,
leading to its ubiquitylation and proteasomal degradation [321]. Canonical WNT signals disrupt
the β-catenin destruction complex, resulting in β-catenin stabilization and accumulation, nuclear
translocation and interaction with TCF/LEF transcription factors to upregulate WNT target genes such
as MYC and AXIN2 [321] (Figure 1). Non-canonical WNT signaling involves WNT-mediated activation
of RhoA/ROCK and RAC/JNK/NFAT signaling (planar cell polarity pathway), or phospholipase C
(PLC) activation and the accumulation of intracellular Ca2+ that stimulates calmodulin-dependent
kinase II (CamKII), calcineurin and protein kinase C (PKC) signaling (WNT/Ca2+ pathway) [320].

Activation of both the canonical and non-canonical WNT cascades has been reported in
localized and advanced prostate cancer, and oncogenic deregulation of core WNT pathway
components frequently occurs in primary and metastatic prostate cancer (up to 6% and 19% incidence
respectively [45]), primarily via APC deep deletion/truncating mutations and CTNNB1/β-catenin
activating mutations [45,46,320,322,323]. Furthermore, the WNT/β-catenin pathway is strongly linked
to androgen/AR-directed therapy and chemotherapy resistance [324–327], thus WNT signaling presents
an attractive therapeutic target for advanced prostate cancer. In addition, AR is in fact a WNT/β-catenin
target gene, and AR and β-catenin can directly interact and co-localize in the nucleus to mediate
transcriptional activity of AR-regulated genes [328–330] (Figure 1). WNT and AR signaling cascades
have also been shown to reciprocally inhibit each other in murine prostate cancer [331].

Mouse models have been instrumental in determining the role of WNT signaling in prostate
cancer, and we and others have shown that constitutive activation of β-catenin or Apc bi-allelic deletion
predisposes to prostate adenocarcinoma in mice [269,331–333]. Moreover, β-catenin activation can
cooperate with Pten heterozygous or homozygous deletion to promote prostate cancer progression,
CRPC transition and metastatic potential [269,331–333], indicating a synergistic relationship exists
between the PI3K-AKT-mTOR and WNT cascades.

Several molecular mechanisms that permit cross-regulation of the PI3K-AKT-mTOR and WNT
signaling cascades have emerged in the literature, which could influence prostate cancer growth
and resistance to anti-androgens and/or PI3K-AKT-mTOR pathway inhibitors [320,322,323,334,335]
(Figure 4). While canonical WNT signaling mediates cellular β-catenin levels, the level of active
β-catenin (unphosphorylated at residues Ser37 and Thr41) in melanoma, breast and prostate cancer
cells is reported to be regulated by the PI3K-AKT-mTOR cascade, in a process that is dependent on
PP2A activity [335]. PP2A is known to negatively regulate AKT, however it is currently speculated that
this phosphatase may also directly dephosphorylate and activate β-catenin [335]. Additionally, the
PI3K-AKT-mTOR pathway has also been shown to mediate β-catenin localization [335], and several
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transcription factors that directly interact with β-catenin are co-regulated by the PI3K-AKT-mTOR
pathway, such as FOXO3a [336] and SOX4 [337]. In prostate cancer cells, FOXO3a has been shown
to suppress β-catenin transcriptional activity and can be inhibited by AKT [336], whereas SOX4 is a
positive regulator of canonical WNT and is stimulated by AKT [338] (Figure 4).
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Figure 4. PI3K-AKT-mTOR and WNT signaling crosstalk. Upon ligand binding (WNT ON), the
destruction complex is recruited to the plasma membrane leading to β-catenin accumulation in both
the cytoplasm and nucleus, where it activates gene expression through TCF binding. Insert illustrates
WNT signaling in the absence of WNT ligand (WNT OFF). The interplay between PI3K-AKT-mTOR
and WNT may occur through shared pathway components (e.g., GSK3β, PTEN, PP2A) and/or the joint
regulation of transcription factors such as MYC, FOXO3a, SOX4 or YAP/TAZ. CDK4, cyclin-dependent
kinase 4; LATS1/2, l-type amino acid transporter 1/2; LDHA, l-lactate dehydrogenase A chain; SLC2A3,
solute carrier family 2, facilitated glucose transporter member 3 (encoding GLUT3, glucose transporter
3); TAZ, transcriptional co-activator with PDZ-binding motif; TEAD, transcriptional enhanced associate
domain transcription factor; YAP, Yes-associated protein.

In addition to transmitting canonical WNT signals, β-catenin also form adherens junctions
with α-catenin and E-cadherin at cell–cell junctions to maintain tissue architecture and facilitate
cell–cell signaling (Figure 4). PTEN has also been shown to modulate β-catenin nuclear localization
and transcriptional activity through caveolin-1 (CAV1)-dependent dissociation of β-catenin from
E-cadherin at the membrane independently of PI3K-AKT-GSK3β signaling, leading to increased tumor
formation and metastatic progression in melanoma [339].

Crosstalk between the PI3K-AKT-mTOR and WNT/β-catenin signaling pathways is also mediated
via GSK3β and the TSC1:TSC2 complex [167] (Figure 4). GSK3β play a critical role in both cascades,
serving as a core member of the β-catenin destruction complex that helps to maintain low level of
cytosolic/nuclear β-catenin in the absence of WNT signal [340], and as a direct substrate of AKT [167].
AKT inactivates GSK3β by phosphorylating residue Ser9 [167]. GSK3β can also phosphorylate
and activate TSC2 resulting in inhibition of mTOR activity [167], and can restrict cellular growth
by suppressing glucose uptake via TSC2 and mTOR [341]. Active WNT signaling inhibits GSK3β,
abrogates the suppression of mTOR and stimulates phosphorylation of S6K, S6, and eukaryotic
translation initiation factor 4E binding protein 1 (4EBP1) [167]. Interestingly, in the absence of TSC1 or
TSC2, S6K has also been shown to inactivate GSK3β by directly phosphorylating residue Ser9 and
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active GSK3β has also been shown to phosphorylate/activate S6K, adding further complexity to GSK3β
signaling between the WNT and PI3K-AKT-mTOR cascades [342]. However, previous work has also
indicated that GSK3β does not mediate crosstalk between the PI3K-AKT-mTOR and WNT/β-catenin
pathways [343,344], raising the possibility that GSK3β function is context/tissue dependent. Of note,
WNT ligands can also activate mTOR through MYC-dependent suppression of TSC2 [345].

PI3K-AKT-mTOR and WNT signaling may also interact through Hippo signaling. Hippo signaling
is tightly intertwined with cell size regulation and nutrient sensing through LKB1-AMPK, TSC1:TSC2
and mTOR [346,347], and the Hippo pathway signaling proteins yes-associated protein (YAP) and
transcriptional co-activator with PDZ-binding motif (TAZ) are integral parts of both canonical and
non-canonical WNT signaling [348,349]. YAP and TAZ are members of the β-catenin destruction
complex, and in the presence of WNT signals, they dissociate from the complex and translocate to
the nucleus to activate downstream targets [348] (Figure 4). AMPK activation has also been shown to
negatively regulate YAP/TAZ activity [347].

Non-canonical WNT signaling has also been shown to activate the PI3K-AKT-mTOR pathway.
For example, WNT/FZD7-dependent dissociation of Gβγ from Gαi enhances PI3K-AKT signaling and
increases tumor cell invasive potential [350]. ROR1 can also activate PI3K-AKT signaling in response
to trans-phosphorylation by tyrosine kinases, such as MET and SRC [351]. In addition, WNT receptor
Frizzled2 (FZD2) can drive epithelial-to-mesenchymal transition (EMT) and cell migration through
activation of Fyn [352], and activated Fyn kinase activity has been shown to suppress the AMPK-LKB1
signaling axis by blocking LKB1 redistribution into the cytoplasm [353].

Interestingly, the PI3K-AKT-mTOR, WNT, MAPK and AR signaling cascades all converge
to regulate the transcription factor MYC, which is frequently amplified in prostate
cancer/mCRPC [44,45,354]. While MYC is a WNT/β-catenin target gene [355], PI3K-AKT-mTOR
signaling can mediate MYC mRNA stability, translation and protein stability [356–360]. AR signaling
has also been shown to stimulate MYC in AR-driven prostate cancer, while in normal prostate tissue AR
silences MYC to maintain normal homeostasis [361,362]. However, MYC is also reported to antagonize
AR transcriptional activity in prostate cancer [363]. MYC upregulation is frequently observed in
prostate cancer, and although targeting MYC remains a clinical challenge, preclinical studies have
emphasized the potential efficacy of MYC blockade for patients with late-stage prostate cancer [364].

WNT inhibitors are beginning to enter clinical trials, including small-molecule inhibitors to
the enzyme porcupine that block WNT ligand secretion, such as WNT974 (LGK974) [320,322].
Preliminary data from a WNT974 phase 1 clinical trial (NCT01351103) for a small range of human
malignancies (excluding prostate cancer) report a manageable safety profile and suppression of
canonical WNT/β-catenin target gene AXIN2 [320], and recent preclinical studies have indicated that
WNT974 treatment is efficacious against prostate cancer [331,365]. β-catenin has also been reported to
facilitate resistance to PI3K and AKT inhibition in colon cancer [334]. Thus, further work exploring the
therapeutic benefit of targeting the WNT pathway in prostate cancer is warranted.

4. Conclusions

In summary, the PI3K-AKT-mTOR cascade is frequently activated in prostate cancer, and genomic
profiling has revealed that oncogenic genetic alterations occur within a diverse array of PI3K-AKT-mTOR
pathway components. Significant research efforts have been devoted to delineating the mode of
action of several of these aberrations (e.g., PTEN deletion and PIK3CA activating mutation), however
our molecular understanding of how these events differentially mediate cell signaling programs is
limited, and several genetic alterations remain to be studied functionally. Future work to gain novel
insight into the functional consequence of these genetic alterations in prostate cancer is necessary
to (a) identify passenger vs. driver alterations, (b) establish the ability of individual aberrations
to synergize with additional oncogenic events, and (c) discover their mode of action during tumor
growth, metastasis and therapeutic resistance. In conjunction with genomic and transcriptomic
data, establishing the frequency and impact of post-transcriptional modifications and epigenetic
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events within core PI3K-AKT-mTOR pathway components during prostate tumorigenesis and disease
progression/recurrence is also crucial, as these components are regulated at multiple levels and
genomic/transcriptomic data do not consistently equate with protein activity.

Targeting the PI3K-AKT-mTOR pathway in prostate cancer remains a key clinical challenge.
Therapeutic resistance emerges owing to various feedback/feedforward loops and redundancy
mechanisms that prevent complete suppression of the pathway and cause compensatory augmentation
of interacting signaling pathways, thus rationalizing the exploration of combination therapies.
Encouragingly, clinical trials are beginning to report therapeutic efficacy when combining
PI3K-AKT-mTOR and androgen/AR-directed therapies, particularly in patients with mCRPC that
display PTEN loss. However, the mechanism of resistance to PI3K-AKT-mTOR pathway-targeted
therapies is likely to vary dramatically between patients and within individual tumors owing to
several factors. These include the activity status of the pathway components, the extent of intratumoral
heterogeneity, the mode and concentration of upstream stimuli, the genetic alterations present and
the composition of the tumor microenvironment. Furthermore, our ability to successfully translate
preclinical findings to the clinic is currently hampered by the limited number of prostate cancer
preclinical models available, which do not fully cover the broad range of prostate cancer subtypes
or disease heterogeneity seen in the clinic. Accordingly, to discover newtherapeutic approaches that
increase patient response rates and overall survival, further delineation of the complex signaling
network that exists within the PI3K-AKT-mTOR pathway and the interacting MAPK, AR, and WNT
pathways is needed, together with the development of a wider range of preclinical models that better
recapitulate the clinic and a deeper understanding of the molecular biology underpinning prostate
cancer disease subtypes and tissue heterogeneity.
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APC Adenomatous polyposis coli
AR Androgen receptor
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ATG14 Autophagy related 14 homolog
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BMK-1 Big mitogen-activated protein kinase-1
CaMKII Calmodulin-dependent kinase 2
CAMKKβ Ca(2+)/calmodulin-dependent protein kinase kinase β

CAV1 Caveolin-1
CDK4 Cyclin-dependent kinase 4
c-JUN Transcription factor AP-1
CK1 Casein kinase 1
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CREB cAMP response element-binding protein
CRPC Castrate resistant prostate cancer
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DEPTOR Dishevelled, EGL-10 and pleckstrin (DEP) domain-containing mTOR-interacting protein
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EGF Epidermal growth factor
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EGR1 Early growth response 1
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ERG1 ETS-related Gene 1
ERK1 Mitogen-activated protein kinase 3
ERK2 Mitogen-activated protein kinase 1
EZH2 Enhancer of zeste homolog 2
FKBP5 FK506 binding protein 5
FOXO Forkhead box protein O
FGFR Fibroblast growth factor receptor
FZD Frizzled family receptor
GAB1 GRB2-associated binder-1
GDP Guanosine diphosphate
GLUT3 Glucose transporter 3
GnRH Gonadotrophin-releasing hormone
GPCR G-protein coupled receptor
GR Glucocorticoid receptor
GRB2 Growth factor receptor-bound protein 2
GRB10 Growth factor binding protein 10
GSK3β Glycogen synthase kinase 3 beta
GTP Guanosine triphosphate
HDAC3 Histone deacetylase 3
HER2/3 Human epidermal growth factor receptor 2/3
HSD3B/17B3 Hydroxysteroid dehydrogenase 3B/17B3
HSP70/90 Heat shock protein 70/90
IGF Insulin growth factor
IGF-1 Insulin growth factor 1
IHC Immunohistochemistry
IL6 Interleukin 6
INPP4B Inositol polyphosphate 4-phosphatase type II
INPP5D Inositol polyphosphate-5-phosphatase D
INPP5J Inositol polyphosphate-5-phosphatase J
INPPL1 Inositol polyphosphate phosphatase like 1
IRS Insulin receptor substrate
IRS1 Insulin receptor substrate protein 1
KLK3 Kallikrein related peptidase 3
LAT1/2/3 L-type amino acid transporter 1/2/3
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LDHA L-lactate dehydrogenase A chain
LEF Lymphoid enhancer binding factor
LH Luteinizing hormone
LHRH Luteinizing hormone-releasing hormone
LKB1 Liver kinase B1
LRP5/6 Low-density lipoprotein receptor-related proteins 5 and 6
MAPK Mitogen-activated protein kinase
MAP3K7 Mitogen-activated protein kinase kinase kinase 7
mCRPC Metastatic castrate resistant prostate cancer
MDM2 Mouse double minute 2 homolog
MEK Mitogen-activated protein kinase kinase
MSKCC Memorial Sloan Kettering Cancer Centre
mLST8 MTOR associated protein LST8 homolog
MMTV-PyMT Mouse mammary tumor virus-polyoma middle tumor-antigen
MNK1 MAP kinase interacting serine/threonine kinase 1
MNK2 MAP kinase interacting serine/threonine kinase 2
mSIN1 Mitogen-activated protein kinase associated protein 1 (MAPKAP1)
mTOR Mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
mTORC1i mTORC1 inhibitor
mTORC2 Mammalian target of rapamycin complex 2
MuSK Muscle specific kinase
NF-κB Nuclear factor kappa light chain enhancer of activated B cells
NKX3.1 NK3 Homeobox 1
NSCLC Non-small-cell lung carcinoma
P Phosphorylation event
PDK1 Phosphoinositide-dependent kinase 1
PGC-1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PHLPP PH domain leucine-rich repeat protein phosphatase
PHLPP1 PH domain and leucine rich repeat protein phosphatase 1
PHLPP2 PH domain and leucine rich repeat protein phosphatase 2
PI Phosphatidylinositol
PI3K Phosphoinositide 3-kinase
PI(3)P Phosphatidylinositol 3-phosphate
PI(3,4)P2 Phosphatidylinositol 3,4-bisphosphate
PIN Prostate intra-epithelial neoplasia
PIP2 Phosphatidylinositol 4,5-bisphosphate
PIP3 Phosphatidylinositol 3,4,5-trisphosphate
PIPP Proline-rich inositol polyphosphate 5-phosphatase
PKB Protein kinase B, AKT
PKC Protein kinase
PKCα Protein kinase C alpha
PLC Phospholipase C
PP2A Protein phosphatase 2A
PPP2CA Protein phosphatase 2 catalytic subunit Alpha
PRAS40 Proline-rich AKT substrate of 40 kDa
PROTOR1 Protein observed with Rictor-1
PROTOR2 Protein observed with Rictor-2
PSA Prostate specific antigen
PTEN Phosphatase and tensin homologue deleted on chromosome 10
PTK7 Protein tyrosine kinase 7
RAF Rapidly accelerated fibrosarcoma
RAG Recombination activating genes
RAPTOR Regulatory-associated protein of mTOR
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RBD Ras-binding domain
RHEB Ras homolog enriched in brain
RICTOR Rapamycin-insensitive companion of mTOR
ROR1/2 Receptor tyrosine kinase–like orphan receptor-1 and -2
RPS6 Ribosomal protein S6
rPFS Radiographic progression-free survival
RSK 90 kDa Ribosomal S6 kinase
RTK Tyrosine kinase receptor
RYK Receptor-like tyrosine kinase
S6K Ribosomal protein S6 kinase/p70 ribosomal S6 kinase
SESN1 Sestrin 1
SGK1 Serum and glucocorticoid regulated kinase 1
SGK2 Serum and glucocorticoid regulated kinase 2
SGK3 Serum and glucocorticoid regulated kinase 3
SH2 Src homology 2
SHIP1 SH2 domain-containing inositol 5′-phosphatase 1
SHIP2 SH2 domain-containing inositol 5′-Phosphatase 2
SLC2A3 Solute carrier family 2, facilitated glucose transporter member 3
SLC43A1 Solute carrier family 43 member 1
SOS Son of Sevenless
SPOP Speckle type BTB/POZ protein
SRC-3 Steroid receptor co-activator 3
SRF Serum response factor
SU2C-PCF IDT Stand Up To Cancer & Prostate Cancer Foundation International Dream Team
T Testosterone
TAK1 TGFβ-activated kinase 1
TAZ Transcriptional coactivator with PDZ binding motif
TBC1D7 TBC1 Domain Family Member 7
TCF T cell Factor
TCGA The Cancer Genome Atlas
TEAD Transcriptional enhanced associate domain
TEL2 Telomere length regulation protein
TGF Transforming growth factor
TMPRSS2-ERG Transmembrane protease, serine 2: ETS Transcription Factor fusion
TRAMP Transgenic adenocarcinoma mouse prostate
TSC1 Tuberous Sclerosis complex 1
TSC2 Tuberous Sclerosis complex 2
TTI1 TELO2 interacting protein 1
Ub Ubiquitination event
ULK1 Unc-51 Like Autophagy Activating Kinase 1
UVRAG UV radiation resistance-associated gene; v-ATPase, Vacuolar (H+)-ATPase
VPS15 Vacuolar protein sorting 15
V-ATPase Vacuolar H+-ATPase
WNT WNT ligand
YAP Yes-associated protein
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