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Abstract Vegetable oils are one of the main agricultural
commodities. Demand has been increasing steadily over
the last five decades and, with finite land available, it is
vital that we increase productivity. My laboratory has
focused on the regulation of plant lipid metabolism and, as
part of this work, we identified diacylglycerol
acyltransferase (DGAT) as important at regulating carbon
flux during oil accumulation. This led to collaborations
with Randy Weselake’s research group when we quantified
the importance of DGAT in oilseed rape by using flux con-
trol analysis. Later, with David Taylor, we showed that
over-expression of DGAT boosted oil accumulation in
field-grown crops by around 8%. These studies led to a
multitude of experiments with different oil crops, such as
oil palm and soybean, as well as many rewarding collabora-
tions with Randy.
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Abbreviations
BUCA  bottom-up control analysis

DAF days after flowering

DAG diacylglycerol

DAP days after pollination

DGAT  diacylglycerol acyltransferase

FwW fresh weight

GPAT  glycerol 3-phosphate acyltransferase
LPAAT lysophosphatidic acid acyltransferase
MCA metabolic control analysis

PAPase phosphatidic acid phosphatase

TAG triacylglycerol

TDCA  top-down control analysis
Introduction

Lipids have several major roles in organisms—as storage
compounds (usually triacylglycerol [TAG]), as major com-
ponents of membranes, as lipid-derived signaling mole-
cules and as surface components (waxes, cutin and suberin
in plants) (Gunstone et al., 2007; Gurr et al., 2016). My
research has focused on the biosynthesis of acyl lipids and,
in particular, on its regulation (Harwood, 2019). In the
early nineties we turned our attention to oilseed rape (Bras-
sica napus), one of the major oil crops. There are two dis-
tinct types of B. napus, the low erucate (LEAR) varieties
(called Canola in Canada), utilized for food and the high
erucate (HEAR) varieties, mainly used for industrial pur-
poses (Gunstone et al., 2007). Canola varieties produce an
oil which contains a high proportion of oleate (62%) and
has a “healthy” ratio of n-6/n-3 polyunsaturated fatty acids
(21% linoleate, 10% alpha-linolenate). Such oilseed rape is
the third most important vegetable oil (15% total world pro-
duction) (Weselake et al., 2017) and dominates oil
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production in Northern Europe and Canada (Harwood
et al., 2017).

In order to generate background data, we examined
changes in the major acyl lipids of rapeseed embryos dur-
ing development. This study showed the steady increase in
TAG during the period of rapid development (20—40 days
after pollination (DAP)) but, unexpectantly, there was also
an increase in diacylglycerol (DAG) during this period
(Table 1) (Perry and Harwood, 1993a). We interpreted this
transient accumulation of DAG as indicating that the activ-
ity of diacylglycerol acyltransferase (DGAT) might limit
TAG synthesis at times of high lipid accumulation (Perry
and Harwood, 1993a). These observations were followed
up by radiolabeling studies, which again indicated that
DGAT could significantly control carbon flux and, indeed,
was likely to be the main Kennedy pathway enzyme to
exert significant flux control (Perry and Harwood, 1993b).

One of the pieces of evidence to indicate that DGAT
could exhibit the most flux control within the Kennedy
pathway (during rapid accumulation of seed oil) was that
only DAG accumulated significantly during the radio-
labeling experiments (Perry and Harwood, 1993b). We
followed this observation up by using novel NMR tech-
niques, together with our colleagues in Grenoble (Perry
et al., 1999). The data confirmed that DAG accumulated to
five-times the level of the next most abundant intermediate
and, furthermore, that DGAT had the lowest activity of the
four enzymes in the Kennedy pathway (Table 2)(Perry
et al., 1999).

In our original analysis of developing oilseed rape
embryos, there was a small decrease in TAG per embryo
after 40 DAP which coincided with the dehydration of
seeds (Perry and Harwood, 1993a). This decrease was later
shown to be due to lipase activity and could represent
losses of about 10% in the final oil yield (Kelly
et al., 2013).

The above observations with oilseed rape led to two
developments. First, the perceived importance of DGAT

Table 1 Fresh weight and non-polar lipids in developing rapeseed
embryos

DAP Values/embryo
Fresh wt. (mg) DAG (mg) TAG (mg)

17 0.81 22 274
21 0.97 4.6 85.6
25 2.85 10.1 252.7
31 3.62 16.9 400.1
41 4.53 28.2 970.8
46 4.03 19.1 954.0
Mature 2.80 11.9 935.5

Data taken from Perry and Harwood (1993a).
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Table 2 Kennedy pathway enzyme activity and intermediate levels
in developing rapeseed embryos

Total activity (nmol/ Substrate conc.

min/gFW) (mg/gFW)
GPAT 10.0 £ 0.5 0.0387
LPAAT 95.0+2.8 0.27 £ 0.09
PAPase 77.5+59 0.81 £0.02
DGAT 38+0.2 40=£0.1

Embryos were at 30 DAF and incubated in the light. Data as
means + SD (n = 3), taken from Perry et al. (1999).

was noted by Randy Weselake (then at the University of
Lethbridge, Alberta) who had begun his important work on
this enzyme. Second, we were encouraged to apply the
technique of metabolic control analysis to oil accumulation
in crops, having successfully applied it to lipid biosynthesis
in leaves where light stimulation of lipid formation was
shown to be due primarily to the activity of acetyl-CoA car-
boxylase (Page et al., 1994).

Metabolic Control Analysis

Metabolic control analysis (MCA) is a method for examin-
ing metabolic pathways and, in particular, of providing
quantitative measures of constraints in the process—thus
giving evidence for important control or regulatory points.
Originally developed by the pioneering laboratories of
Kacser and of Rapoport (Heinrich and Rapoport, 1974,
Kacser and Burns, 1973) the techniques have been thor-
oughly discussed by Fell in a book (Fell, 1997).

The theory of MCA shows that the control of flux is dis-
tributed throughout a pathway. Thus, the idea (often pro-
moted in textbooks) that there is a single “rate-limiting”
step or enzyme reaction in a pathway is mis-guided. Fur-
thermore, it is often ignored that, as conditions change, the
control of metabolism along a pathway or between path-
ways will almost invariably alter also.

The first application of MCA to lipid biosynthesis was
when we examined light-stimulated fatty acid (lipid) syn-
thesis in the leaves of monocotyledons (barley, wheat)
(Page et al., 1994). We used a version of MCA termed
“Bottom-Up” Control Analysis (BUCA) where a particular
reaction is targeted by use of a specific inhibitor or other
means of altering it (e.g. by changing expression of an
enzyme). An alternative method is termed Top-Down Con-
trol Analysis (TDCA) where the pathway is divided into
parts connected by an intermediate. TDCA is useful
because it provides an immediate overview of the whole
pathway (Quant, 1993). Thus, it will provide information
about the regulation exercised by large sections of the
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pathway. Furthermore, it does not depend on the ability to
manipulate the activity of individual reactions specifically.
For the use of TDCA applied to lipid formation in plants,
the overall synthesis was divided into two blocks of reac-
tions. Block A consisted of the de novo biosynthesis of
fatty acids (in plastids) and Block B reactions were those of
lipid assembly, mainly by the Kennedy pathway on the
endoplasmic reticulum. The two Blocks were connected by
the acyl-CoA intermediates (see Ramli et al., 2002b).

We first published on the use of TDCA in plants as part
of a session organized by the Biochemical Society
(Harwood et al., 1999) and, later, as part of my Society of
Chemical Industry International Lecture Award. They were
later referred to in a review article about olive and other
fruits (Salas et al., 2000) and then, in more detail, with ref-
erence to oil palm and olive fruits (Ramli et al., 2002a, b).
Further analysis of the accumulation of oil in fruits revealed
important differences between oil palm and olive fruits
(Ramli et al., 2005). Because of its importance as the pre-
miere oil crop (Weselake et al., 2017), we produced a
detailed analysis of MCA in oil palm (Ramli et al., 2009).

Working Together

As a result of our joint research interests, Randy Weselake
and [ started to talk about DGAT and the possibility of
working together. I visited Lethbridge and we talked more!
This was followed by a post-doctoral fellow in my labora-
tory, Mingguo Tang, spending a short time there. His work
contributed to a nice paper where we used a DGAT-
overexpressing line of B. napus to see how transgenic
manipulation could be used to boost oil yields.

In B. napus, as in many other plants, there is more than
one DGAT isoform. DGAT-1 seems to be the main isoform
concerned with the usual pattern of acyl-TAG molecular
species while DGAT-2 appears to be prominent in those oil
crops that accumulate unusual TAG (Cahoon et al., 2007).
Previous work in Randy’s laboratory had shown that
DGAT-1 was the main isoform in B. napus embryos and
we thought it would be the most effective at enhancing oil
accumulation. In particular, we thought that it might be par-
ticularly important when oilseed rape was unlikely to reach
its full potential due to environmental stress (Weselake
et al., 2008). Overexpression of DGAT-1 increased DGAT
activity and, as expected, reduced the DAG/TAG ratio in
seeds. These data were consistent with DGAT being impor-
tant for flux control (Perry et al, 1999; Perry and
Harwood, 1993a, b). It was reassuring that the over-
expression of DGAT in B. napus also gave increased oil
yields for oilseed rape plants not only in the greenhouse but
also in the field (Weselake et al., 2008) (Table 3). The seed
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Table 3 Seed properties of Brassica napus overexpressed with
BnDGATI cDNA

Westar DI—2.20
DGAT Activity (umol/mn/mg, protein) 183 +£0.8 785 +£7.6
DAG/TAG ratio 0.09 0.05
Oil yield (%)—greenhouse growth 4154+ 19 47.7+0.3
Oil Yield (%)—field grown 454+ 04 475+ 1.5

Data taken from Weselake et al. (2008) with means + SD (n = 3).
Activity and the DAG/TAG ratio were measured at 27DAF. The field
conditions were for the summer of 2005 in Alberta.

oil content of transgenic lines increased between 5% and
12% when grown in fields under drought conditions in Sas-
katchewan in the summer of 2003. This was important
because it reduced the losses due to drought in a number of
lines. By the theory of MCA, overexpression of DGAT
which exerted strong flux control should have changed the
values for Group Flux Control Coefficients. Thus, in
TDCA for B. napus, most control was in the lipid assembly
portion of the overall pathway for oil accumulation (Ramli
et al.,, 2002a, b). This changed in the overexpressing lines
from 69% to 51% (Table 4) Weselake et al., 2008) thus
showing that constraints in oil synthesis were lowered by
overexpressing DGAT. Such observations demonstrated
clearly the value of determining flux control values before
going to the trouble of altering gene expression.

In a follow-up, Randy and I collaborated with David
Taylor at the National Research Council of Canada
(Saskatoon) to assess more fully the performance of
DGAT-overexpressing lines in the field. We monitored
growth and oil yield in two successive seasons (2006,
2007), one of which was drought stressed. In both years,
there was a significant increase in oil yield—5-8% in 2006
and 3-7% in 2007 on a dry weight basis (Taylor
et al., 2009). In the greenhouse, similar lines gave 10-16%
increases in oil yield. These large-scale trials fully validated
our proposals, first, that DGAT activity could be an impor-
tant constraint on TAG biosynthesis and, second, that its
overexpression could have a significant impact on commer-
cial yields of B. napus.

Our joint work on the overexpression of DGAT in oil-
seed rape was also reported in several conference commu-
nications (e.g. Guschina et al, 2007; Weselake
et al., 2007a, b) while the full details of MCA in B. napus
were described in (Tang et al., 2012). It is noticeable that
nowadays when efforts are made to increase oil yields in
crops, increased DGAT expression is a favored tactic (e.g.
Lardizabal et al., 2008; Vanherke et al., 2012). Indeed,
Randy and I had already discussed the utility of DGAT
overexpression for increasing oil yields in two review arti-
cles (Weselake et al., 2009a, b).
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Table 4 Changes in the flux control characteristics on over-
expressing DGAT in oilseed rape

Group flux control coefficient

Fatty acid synthesis Lipid assembly
Westar (n = 5) 0.31 £0.02 0.69 + 0.02
D1-2.20 (n = 3) 0.49 £ 0.05 0.51 +0.05

Data taken from Weselake et al. (2008).

Around this time, the collaboration between Randy and
myself took on a new dimension. The AOCS Lipid Library
was looking for a new editor and I was encouraged to
apply. While being interviewed and then offered the post, I
became aware that Randy was also interested. So why not
cooperate? Our appointment as joint editors-in-chief proved
to be a happy time for me. Randy was conscientious, punc-
tual, and always forthcoming with ideas. After a few years
and with our retirements approaching, we handed the task
to Alejandro Marangoni in 2017. We also made a few indi-
vidual contributions (e.g. Harwood, 2010) and, I hope, left
the site in good condition.

Subsequent to the main days of our collaborations,
Randy and I have continued to author conference proceed-
ings (Guschina et al., 2011), reviews (Chen et al., 2015;
Harwood et al., 2013; Woodfield et al., 2015) and chapters
in books (Harwood et al., 2017; Weselake et al., 2017).
Since our initial work on DGAT, I have continued research
with oilseed rape. This has involved some new collabora-
tions which have revealed the subtleties of acyl lipid metab-
olism during oil accumulation (Woodfield et al., 2017) as
well as the use of lipidomics to address the perennial ques-
tion of how important are the relative contributions of
DGAT and phospholipid: diacylglycerol acyltransferase
(PDAT) for TAG formation in different plants (Woodfield
et al., 2018). In particular, we have been interested in
whether any other enzymes in the Kennedy pathway, apart
from DGAT, could contribute significantly to the carbon
flux into TAG formation. When we looked at
lysophosphatidic acid acyltransferase (LPAAT), we found
that its overexpression could raise TAG accumulation sig-
nificantly and our collaborator, David Fell, was able to
derive some new (and potentially very useful) equations to
allow calculation of flux without using inhibitors to modify
the radiolabeling of intermediates (Woodfield et al., 2019).
Randy spotted our new publication and e-mailed me, even
before he had received his special “New Phytologist” copy
that we had recommended! He pointed out that raising
LPAAT activity might increase levels of the phosphatidic
acid intermediate. If this occurred then there was the possi-
bility that DGAT would be stimulated (Caldo et al., 2018)
and that subsequently could explain (part of?) the increase
in oil yields in LPAAT overexpressors. Inspired by his
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suggestion, I went back to the laboratory data we had and,
at least in the radioisotope experiments, the levels of phos-
phatidic acid labeling were increased in our transgenic
lines!

Perhaps this is an appropriate place to end this short arti-
cle? Working with Randy has always been a pleasure. He
is not only a fine scientist but also a gentleman. Our collab-
orations have, I believe, contributed positively to lipid sci-
ence. Moreover, from the above example it seems that his
impact is far from finished!
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