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Abstract： Empirical-statistical models of debris-flow are challenging to implement in 8 

environments where sedimentary and hydrologic triggering processes change through time, such as 9 

after a large earthquake. The flexible and adaptive statistical methods provided by machine learning 10 

algorithms may improve the quality of debris flow predictions where triggering conditions and the 11 

nature of sediment that can bulk flows varies with time. We developed a hybrid machine-learning 12 

model of future debris-flow volumes using a dataset of measured debris-flow volumes from 60 13 

catchments that generated post-Wenchuan Earthquake (Mw 7.9) debris flows. We input topographic 14 

variables (catchment area, topographic relief, channel length, distance from seismic fault, and 15 

average channel gradient) and the total volume of co-seismic landslide debris into the PSO-16 

ELM_AdaBoost machine-learning model, created by combining Extreme learning machine (ELM), 17 

particle swarm optimization (PSO) and adaptive boosting machine learning algorithm (AdaBoost). 18 

The model was trained and tested using post-2008 Mw 7.9 Wenchuan Earthquake debris flows, then 19 

applied to understand potential volumes of post-earthquake debris flows associated with other 20 

regional earthquakes (2013 Mw 6.6 Lushan Earthquake, 2010 Mw 6.9 Yushu Earthquake). We 21 

compared the PSO-ELM_Adaboost method with different machine learning methods, including 22 

back-propagation neural network (BPNN), support vector machine (SVM), ELM, PSO-ELM. The 23 

Comparative analysis demonstrated that the PSO-ELM_Adaboost method has a higher statistical 24 

validity and prediction accuracy with a mean absolute percentage error (MAPE) less than 0.10. The 25 

prediction accuracy of debris-flow volumes triggered by other earthquakes decreases to 0.11 - 0.16 26 

(absolute percentage error), suggesting that once calibrated for a region this method can be applied 27 

to other regional earthquakes. This model may be useful for engineering design to mitigate the risk 28 

of large post-earthquake debris flows.  29 
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1. Introduction 33 

Co-seismic landslides triggered by strong earthquakes can act as sources for post-earthquake debris 34 

flows (Chen 2011; Fan et al. 2019). In the regions hardest-hit by the Mw 7.9 Wenchuan Earthquake, 35 

where up to 3 km3 of landslide material was deposited, post-earthquake debris flows have been prevalent 36 

and appear to be triggered by the remobilization of landslide sediment (X. Fan et al., 2018b). The deposits 37 

from co-seismic landslides can act as sources for post-seismic debris flows that occur with greater 38 

frequency and magnitude than pre-earthquake debris flows (Tang et al. 2012; Yu et al. 2013). 39 

Catastrophic debris flows continue to occur during periods of extreme rainfall, with notable events 40 

occurring in 2008, 2010, 2013, and 2019. The Zhouqu debris flow on August 7, 2010 (C. Tang et al., 41 



2011), Hongchun and Wenjia debris flows on August 13, 2010 (Q. Xu et al., 2012), and Wenchuan debris 42 

flows on August 20, 2019 caused notable socio-economic losses. Understanding potential post-43 

earthquake debris-flow volumes is crucial for mitigating losses during the post-earthquake 44 

reconstruction. 45 

Post-earthquake debris flows are typically fast-moving, sediment-water mixtures that initiate 46 

in one of three ways, either as new landslides, from remobilization of co-seismic landslide debris, 47 

or remobilization of in-channel sediment. Here, we define debris flows broadly as mass movements 48 

of mixtures of poorly sorted sediment and variable amounts of water during a rainstorm in a 49 

catchment (Iverson, 1997). The dynamics of debris flows that control their volume is complex and 50 

strongly depend on the rate of bulking that occurs as the flow mobilize and transport landslide and in-51 

channel sediment (Iverson et al. 2011; Horton et al. 2019). While there is no simple relationship between 52 

topographic metrics and the mechanisms of bulking; catchment morphometry, geology and 53 

hydroclimatic conditions have been used to estimate the potential distribution of debris-flow volumes on 54 

debris flow fans (de Haas and Densmore 2019). Empirical relationships between debris-flow volumes 55 

and topography have been established in different hydro-climatic contexts including to estimate debris-56 

flow volumes associated with wildfires (Santi et al., 2008) and extreme rainfall (Chang et al., 2011). 57 

Simoni et al. (2011) validated that debris-flow volume, inundated area and cross-sectional area have 58 

mutual relations based on the vast majority of cases. Marchi et al. (2019) also suggested that there was a 59 

weak, but significant correlation between debris-flow volume and catchment area. The evidence from 60 

previous work suggests that topographic metrics provide a first-order control on debris-flow volumes 61 

such that topographical models may be useful for hazard mapping and analysis. 62 

Machine learning offers a potentially new method to improve debris-flow volume prediction. They 63 

are purely statistical in their implementation and make no assumptions regarding triggering conditions. 64 

Machine-learning approaches make predictions or decisions based on sample data, known as "training 65 

data" without being explicitly programmed (Bishop 2006). Machine learning methods can include neural 66 

networks, non-linear regression, and other methods to optimise data for predictive purposes (Table 1). 67 

These methods have been applied in landslide assessment and displacement forecasting, are seen as being 68 

efficient and reliable measures of these parameters (e.g. Mennis and Guo 2009; Tien Bui et al. 2016; 69 

Zhou et al. 2018). For example, Fanos et al. (2018) proposed and evaluated a hybrid model using 70 



machine-learning methods and GIS for potential rockfall source identification with an accuracy of 0.92 71 

based on training data and 0.96 on validation data. Kern et al., (2017) proposed an advanced model using 72 

machine learning to improve the ability to accurately predict debris flow events in wildfire-prone 73 

intermountain western United States. Debris-flow volume is one of the most important parameters to 74 

evaluate a potential hazard. Particularly, when designing any protection measures, an acceptable volume-75 

estimation of debris flow has to be defined. However, little existing research attempts to identify potential 76 

volumes of debris flows relate to post-earthquake topographic metrics and co-seismic landslide debris. 77 

Many studies contain data on the estimation of debris-flow volumes using empirically-based models to 78 

correlate debris-flow volume with morphometric catchment characteristics (de Haas and Densmore, 79 

2019; Gartner et al., 2008; Ma et al., 2013; Marchi et al., 2019; Chang et al., 2011 and references therein). 80 

Debris-flow volumes calculated using these methods may overestimate the actual volumes by up to two 81 

orders of magnitude (Rickenmann, 1999).  82 

After earthquakes, remobilization of co-seismic and in-channel debris increases the potential for 83 

debris flows that are of greater volume than has previously been experienced (Fan et al., 2019b). Under 84 

these conditions, debris flow hazard depends both on a changing frequency of triggering precipitation 85 

(Marra et al., 2017) and a changing magnitude and frequency distribution of debris-flow volumes (R. L. 86 

Fan et al., 2018). There has been a significant focus, particularly after the 2008 Wenchuan earthquake, 87 

on the first part of this problem (X. Fan et al., 2018b), yet despite this work, both hard and soft engineered 88 

structures are often inundated by debris flows that are many times their design capacity. By focusing on 89 

the volume part of the problem, we can develop tools that can be used to better understand the scale of 90 

debris flows that are possible in a catchment. Machine learning methods allow us to examine their 91 

predictive capacity for debris-flow volume, in order to support the engineering design to reduce losses 92 

and costs following an earthquake. Prediction of debris flow volume is important for post-earthquake 93 

hazard assessment and mitigation because their size and frequency are strongly affected by the total 94 

deposited materials in catchments (Bovis and Jakob, 1999). 95 

Table 1. Introduction of several major machine-learning algorithms 96 

Name Description Application Literature 

Back propagation-

based neural 

network (BPNN) 

A neural network composed of three layers 

(input, hidden and output), is simply a gradient – 

descent algorithm that uses to minimize the total 

error or mean error of target. 

Mapping and prediction 

tool in the geotechnical 

engineering field, etc. 

Neaupane and Achet 

(2004); Dou et al. (2015); 

Yang et al. (2019); etc. 

Support vector 

machine (SVM) 

A non-linear regression forecasting method, in 

which the input variables are mapped into a high-

dimensional linear feature space through a non-

Landslide susceptibility, 

displacement forecast 

model and volume of 

Marjanović et al. (2011); 

Zhou et al. (2016); Xu et 

al. (2012a); Zhu et al. 



linear transformation. debris flow prediction, etc. (2018); etc. 

Extreme learning 

machine (ELM) 

A novel training algorithm for single-hidden-

layer feedforward neural networks with randomly 

assigned input weights and biases. The only 

unknown parameter is the output weights. 

Classification and 

regression problems, etc. 

Ding et al. (2015); Cao et 

al. (2016); Guan et al. 

(2018); Yoan et al. 

(2010); etc. 

Adaptive boosting 

machine learning 
algorithm 

(AdaBoost) 

An adaptive boosting machine learning 

algorithm, which was designed to facilitate 
cooperation among weak predictors and to cope 

with classification problems among the weak 

predictors. 

Landslide susceptibility 

model, debris flow 
prediction and facial 

recognition programs, etc. 

Tien Bui et al. (2016a); 

Pai et al. (2014); Liu et 
al. (2015); Kadavi et al. 

(2018); etc. 
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Here we use morphological features and co-seismic deposits collected from 60 debris-flow 98 

catchments in the hardest-hit region by the Wenchuan earthquake, to (1) determine the significant 99 

components for volume-estimation of future debris flows, based on correlation analysis and 100 

dimensionality reduction to figure out the indeterminate relations between morphometric parameters, 101 

volume of deposited materials in each catchment and potential debris-flow volume; (2) propose a hybrid 102 

machine-learning model to improve the performance of model computations and reduce the sensitivity 103 

of the model to the variations in different conditioning factors, which is composed of extreme learning 104 

machine (ELM), particle swarm optimization (PSO)and adaptive boosting machine learning algorithm 105 

(AdaBoost); and (3) compare with other machine-learning models (BNPP, SVM, ELM and PSO-ELM), 106 

and validate using debris flows triggered in Ludian and Yushu earthquake. The proposed model, 107 

therefore, can be suitable and helpful for post-earthquake debris flow assessment and mitigation design-108 

volume estimation. 109 

2. Study area 110 

Longmen Shan, a steep mountain range at the edge of the Tibetan Plateau in Southwestern China 111 

has been selected as the study area (Fig. 1). This region comprises 60 typical catchments over 1.2×104 112 

km2 from Yinxiu Town to Beichuan County, through a rugged mountain range with elevations varying 113 

between 407m and 6100m above sea level (a.s.l.). Ridges and valleys generally trend NE direction, 114 

parallel to the geologic structure, along which the slope gradients are up to 69°, with more than half of 115 

the slopes being steeper than 36° (X. Fan et al., 2018a). The mountain range is bisected by major axial 116 

drainage basins, such as the Min and Mianyuan Rivers that also act as the main transport routes through 117 

the mountains. Debris flows tend to occur in smaller first to fifth order catchments that intersect with 118 

these main stem rivers. Beneath the vegetation and thin soil cover, the rocks of the mountainous areas 119 

consist mainly of basalt, granite, phyllite, dolomite, limestone, sandstone and shale, and other types of 120 



rocks, which range from Precambrian to Cretaceous in age and have a highly fractured and weathered 121 

feature. Large thrust earthquakes that generate co-seismic landslides are common in this landscape (Fan 122 

et al., 2019a). Post-earthquake debris flows associated with the 2008 Mw 7.9 Wenchuan earthquake have 123 

occurred in every monsoonal season since the earthquake. The debris flows initiate in catchments where 124 

intense seismic shaking (intensities of XI and X) has greatly increased the volume of deposited materials 125 

available to be mobilized (Fig. 1). Catchments often produce debris-flow events more than once, e.g. 126 

Wenjia catchment in Fig. 2.  127 

 128 
Fig. 1. Map of the study area with topography background based on 30m DEM, county boundaries, the epicenter of the 129 
Wenchuan Earthquake and faults (WMF Wenchuan-Maowen fault, YBF Yingxiu-Beichuan fault, PF Pengguan fault.). 130 
We collected data from 60 catchments that have experienced debris flows in ten years after the earthquake (blue dots). 131 
These debris flow catchments are concentrated close to the faults (red line) and in areas of high seismic intensity (pink 132 

polygons). 133 



 134 
Fig. 2. Examples of the extremely large volume debris-flow events that occurred in the Wenjia catchment region, 135 

Qingping Town. (a) The topography of Wenjia catchment based on 10m DEM with a basin boundary and main channel 136 
(1-1'). (b) The biggest catastrophic debris flow event occurred on 13-08-2010.  137 

3. Material and Methodology 138 

3.1 Datasets 139 

We focus on 60 typical debris-flow catchments with abundant previous work during the period 140 

2008-2018 in the selected study area. A debris-flow catchment is defined as any first to fifth order 141 

catchment that has experienced a debris flow at the catchment mouth. The historical debris-flow events 142 

were water-laden masses of soil and fragmented rocks that travelled long distances in the areas with 143 

significant gully topography, called gully-type debris flow (Yu et al., 2014). The data are randomly 144 

distributed in six different geographical regions, and then a stratified random sampling method is applied 145 

to divide the collected data into two datasets with a 9:1 ratio. The first one (54 catchments) is used for 146 

building the model whereas the second one (6 catchments randomly split from each area, as shown in 147 

Fig. 1 and Table 2) is used for the model testing, respectively. Ten percent of the data using for 148 

testification is restricted presently by a limitation of data (Area-6 has only three catchments). 149 

For each catchment, we paid attention to the four morphological factors that have been highlighted 150 

in previous studies (Gartner et al., 2008; de Haas and Densmore 2019; Marchi et al. 2019) as having the 151 

potential to control debris-flow volume, including catchment area (A), topographic relief (H), channel 152 



length (L), and average channel gradient (J). These were all measured from the junction of the tributary 153 

catchment and the main axial river drainage using standard algorithms in ArcGIS using 10- and 30-meter 154 

digital elevation models (sources of DEMs are from UAV photogrammetry and SRTM, respectively), as 155 

most vulnerable linear infrastructure, towns and villages are located along these main rivers. We 156 

calculated the main channel length (L) along the main channel from the basin out let to the start of stream 157 

within the drainage network derived from the DEM by a flow accumulation threshold (Fig. 2a), H is the 158 

change in elevation between the basin mouth and the highest point in the catchment, J is the ratio of H/L. 159 

Distance from seismic fault (D) serves as a proxy for the intensity of seismic shaking and frequency of 160 

co-seismic landslide deposits (Huang and Li, 2009), as both attenuate rapidly away from thrust faults 161 

like the Yingxiu-Beichuan fault. We also used two metrics that were to account for the observations that 162 

many of the debris-flows in the Wenchuan area were initiated in co-seismic landslide debris. V is the 163 

total volume of co-seismic landslide debris generated in each catchment. Debris-flow volume (V0) is the 164 

debris-flow magnitude defined by Marchi and D’Agostino (2004), means the total volume of debris 165 

discharged during a single event, irrespective of the number of surges. Detailed information on debris-166 

flow volumes are difficult to determine due to the wide territorial extent and to the long-time span of the 167 

dataset. Most of the data are derived from the available technical journals, e.g. Tiantao (2014), Wentao 168 

(2015) and Tang et al. (2010), reports and unpublished documents organized and produced by the local 169 

relevant authority management agencies. Fig.3 shows the frequency distributions of some morphometric 170 

parameters, and co-seismic landslide volumes in catchments, which are integrated to be the dataset 171 

foundation for subsequent determination of significant components. These debris flow events mostly 172 

occurred in catchments smaller than 10 km2, with topographic relief between 500 and 2,000 m, channel 173 

lengths less than 7 km, at less than 6 km from the seismic fault. There is a wide range in co-seismic 174 

landslide volume, although volume (< 500×104 m3) correspond to 75.0% of the total samples. 175 

Table 2. Dataset of debris-flows in the study area summarized, Area-1: Gaochuan (No.1 - No. 21), Area-2: Qingping (No. 176 

22 - No. 29), Area-3: Yingxiu (No. 30 - No. 42), Area-4: Road 213 (No. 43 - No. 47), Area-5: Longchi (No. 48 - No. 57), 177 

Area-6: Beichuan (No. 58 - No. 60). The acronyms mean separately: A - Catchment area, H - Topographic relief, L - 178 

Channel length, D - Distance from seismic fault, J - Average channel gradient, V - Total volume of co-seismic landslide 179 

debris and V0 - Debris-flow volume. 180 

No. 
A 

(km2) 

H 

(m) 

L 

(km) 

D 

(km) 

J 

(‰) 
V 

(104m3) 

V0 

(104m3) 

1 14.74 882 4.56 1.46 193.42 485.76 115.11 

2 0.69 565 1.93 2.87 292.75 49.53 10.68 

3 1.54 374 2.22 3.19 168.47 25.58 6.20 



4 0.65 180 1.45 0.57 124.14 7.01 2.80 

5 8.17 1150 3.94 0.06 291.88 1603.25 285.39 

6 8.91 970 3.10 4.42 312.90 920.70 213.13 

7 3.83 640 2.41 0.88 265.56 195.90 58.81 

8 0.50 470 1.20 2.08 391.67 42.84 8.24 

9 3.25 920 2.61 2.54 352.49 996.46 182.44 

10 0.10 188 0.58 1.44 324.14 11.60 2.82 

11 2.22 754 1.43 0.85 527.27 375.70 65.23 

12 0.72 531 0.74 0.46 717.57 35.10 7.86 

13 30.84 910 4.01 3.42 226.93 2000 800 

14 2.17 1000 1.15 2.52 869.57 27.66 12.32 

15 3.05 698 2.17 1.60 321.66 299.21 69.92 

16 0.86 972 1.46 8.86 665.75 64.56 18.12 

17 2.97 1027 1.12 10.16 916.96 121.23 66.35 

18 3.66 865 1.26 5.30 686.51 592.74 166.35 

19 0.74 529 0.78 2.50 678.21 112.51 8.56 

20 4.06 772 2.80 5.50 275.71 405.10 104.38 

21 0.72 643 0.68 0.26 945.59 45.36 6.35 

22 0.86 585 0.74 1.55 790.54 34.51 5.34 

23 0.53 463 0.67 1.29 691.04 29.84 4.31 

24 0.62 532 0.84 0.17 633.33 35.21 5.38 

25 0.69 546 0.74 0.57 737.84 30.64 4.71 

26* 7.81 1490 4.90 3.60 304.08 1580.20 657.30 

27 1.36 1177 2.59 0.87 454.44 334.30 156.80 

28 5.72 986 3.66 0.16 269.40 432.66 108.61 

29 8.43 963 4.02 3.80 239.55 964.86 292.10 

30 5.24 876 2.08 7.60 421.15 234.64 51.42 

31 6.51 886 4.98 10.50 177.91 287.52 67.93 

32 6.27 1870 5.60 16.89 333.93 358.26 74.12 

33 5.35 1288 3.60 0.13 357.78 358.14 98.40 

34 10.70 1842 5.82 0.42 316.49 1151.41 218.72 

35 2.18 1820 2.72 0.72 669.12 322.30 80.40 

36 54.2 2900 14.2 0.47 204.23 2180.57 505.34 

37 0.06 984 1.58 0.65 622.78 222.00 77.30 

38 7.50 935 5.20 4.39 179.81 647.48 150.50 

39 2.18 1220 2.68 4.93 455.22 122.30 92.51 

40 5.21 1678 3.40 2.51 493.53 321.32 89.16 

41 1.21 1596 1.14 2.07 140.00 13.80 3.62 

42 10.39 1453 5.51 2.61 263.70 727.04 108.91 

43 16.49 2382 6.20 0.68 384.19 742.68 194.52 

44 1.12 1000 3.25 1.36 307.69 35.93 8.21 

45 0.97 1600 1.87 2.10 853.33 48.84 15.30 

46 0.29 1580 2.10 1.97 752.38 17.22 4.38 

47 21.70 2952 8.90 0.57 331.69 366.67 136.07 

48 0.46 650 1.30 1.68 500.00 31.63 8.97 

49 8.63 1605 4.45 1.49 360.67 858.94 250.06 

50 1.98 965 2.44 0.92 395.29 81.40 28.89 

51 1.54 1002 2.35 1.53 426.38 77.60 16.30 

52 0.68 952 1.95 1.71 488.21 191.29 46.67 

53 8.32 1668 4.76 3.86 350.42 136.02 29.25 

54 0.20 434 1.21 0.91 358.68 21.46 6.29 

55 0.21 440 1.26 1.82 349.21 19.17 2.54 



56 0.29 460 1.35 0.85 340.74 26.13 7.94 

57 0.64 660 1.98 4.80 333.33 59.90 15.60 

58 1.55 1120 4.01 0.45 279.30 270.16 94.50 

59 9.80 1162 4.51 9.58 257.65 1754.64 162.64 

60 36.77 1203 11.92 7.04 100.92 1200.26 311.93 

* Wenjia catchment in Qingping town (Fig. 2). 181 

  

  

  
Fig. 3. Frequency distributions of the morphological features (A, H, L, D and J), and the total volume of co-seismic 182 

landslide debris (V) in the study region 183 

3.2 Workflow of the proposed hybrid model 184 

The hybrid model was based on AdaBoost mechanism (Freund and Schapire, 1995), a machine 185 

learning meta-algorithm that adjusts adaptively to the errors of the weak hypotheses returned by a weak 186 



learning algorithm, supported by ELM model (Ding et al., 2015) and PSO algorithm (El-Shorbagy and 187 

Hassanien, 2018) for parameter optimization. The processing steps are summarized in Fig. 4. First of all, 188 

correlation analysis and dimensionality reduction were applied to determine significant components for 189 

the model building. Then, the hybrid model for volume estimation of potential debris flows was trained 190 

and tested. Finally, the model was applied to estimate the volumes of debris flows measured after the Mw 191 

6.9 2010 Yushu earthquake and the Mw 6.6 2013 Lushan earthquake. 192 

 193 
Fig. 4. The overall framework and methodological workflow of the hybrid model 194 

3.2.1 Data preprocess 195 

The first step of data processing is to determine the significant and independent components for 196 

model building by correlation analysis (using both linear and non-linear relationships) and dimension 197 

reduction methods. Pearson correlation coefficient (PCC) and maximal information coefficient (MIC) 198 

are selected and applied to explore the correlations between single factors (A, H, L, D, J and V) and 199 

debris-flow volume (V0). PCC is a well-established measurement of correlation, with a range of +1 200 

(perfect correlation) to -1 (perfect but negative correlation) and 0 denoting the absence of a relation 201 

(Adler and Parmryd, 2010). MIC proposed by Reshef et al. (2011) as a measurement of the correlation 202 

between two variables. The value of MIC is normalized from 0 to 1, and the larger value indicating a 203 

much stronger association between two variables. Principal component analysis (PCA) is one of most 204 

common methods to reduce the number of possibly correlated variables into a small number of newly 205 



uncorrelated variables, and orthogonal to each other (Nandi et al., 2016). Thus, PCC, MIC and PCA are 206 

used to finish data preparation for the model building in subsequent research. 207 

3.2.2 Hybrid model of PSO-ELM_AdaBoost  208 

AdaBoost, a group intelligent predictor, is designed to facilitate mutual cooperation among weak 209 

predictors and to cope with forecasting problems among these weak predictors (Pai et al., 2014). So, we 210 

can present a hybrid model by AdaBoost mechanism composed of suitable weak predictors. Compared 211 

to BPNN and SVM, ELM has a fast learning speed and strong generalization performance (Ding et al. 212 

2014). Therefore, the ELM model is used to identify the weak predictors of the hybrid model, moreover, 213 

an evolutionary computational algorithm (PSO) minimizes the loss function by optimizing the weights 214 

and thresholds.  215 

(1) Extreme learning machine (ELM) 216 

ELM is a single-hidden layer feedforward neural network (SLFN), basically composed of three 217 

layers: the input layer, the hidden layer, and the output layer (Ding et al. 2015). The hidden layer output 218 

matrix can be computed by a random assignment to input layer weight matrix and hidden layer biases, 219 

such as least-square linear regression. ELM model can be expressed as Eq. (1) and Eq. (2). 220 

𝑓𝑀(𝑥𝑗) = 𝑦𝑗 , ∀𝑗               (1) 221 

∑ 𝛽𝑖𝐺(𝑤𝑖 , 𝑏𝑖 , 𝑥𝑗)𝑀𝑖=1 = 𝑡𝑗, 𝑗 = 1,2,⋯ ,𝑁              (2) 222 

Set the training set (𝑥𝑖 , 𝑡𝑖), the hidden node output function 𝐺(𝑤, 𝑏, 𝑥), and the number of hidden 223 

nodes 𝑀. Where 𝑥𝑗 represents the input parameters, 𝑤𝑖  is the weight vector connecting the 𝑖th hidden 224 

node, and 𝛽𝑖 is the weight vector connecting the 𝑖th hidden node and the output nodes. The ELM training 225 

contains three steps: (a) randomly generate the weight vector 𝑤 that connects the input layer and the 226 

hidden layer, and generate the hidden layer bias; (b) calculate the hidden layer output matrix 𝐻 by Eq. 227 

(3); (c) calculate the output weight, �̂� = 𝐻+𝑇, where 𝐻+ is the Moore-Penrose generalized inverse of 228 

the hidden layer output matrix 𝐻, 𝑇 is the expected output matrix. 229 

𝐻(𝑤1, ⋯ , 𝑤𝐿; 𝑏1, ⋯ , 𝑏𝐿; 𝑥1, ⋯ , 𝑥𝑁) = [𝐺(𝑤1, 𝑏1, 𝑥1) ⋯ 𝐺(𝑤𝐿 , 𝑏𝐿 , 𝑥1)⋮ ⋱ ⋮𝐺(𝑤1, 𝑏1, 𝑥𝑁) ⋯ 𝐺(𝑤𝐿 , 𝑏𝐿 , 𝑥𝑁)]𝑁×𝐿     (3) 230 

(2) Particle swarm optimization (PSO) 231 



PSO is a population-based stochastic optimization method with a concise performance and 232 

intelligent background (El-Shorbagy and Hassanien, 2018). Inspired by the feeding behavior 233 

characteristics of bird flocks, PSO is frequently used to solve the optimization problem. In the PSO 234 

model, each particle is described by three basic parameters (position, speed and fitness value), which 235 

represents a solution for the target problem. The pursuit process of PSO is implemented through a loop 236 

iteration, in which the global best solution can be achieved by adjusting the trajectory of each particle 237 

toward its own best location and the entire swarm (Ab Talib and Mat Darus, 2016). Considering that 238 

prediction accuracy of ELM may be strongly influenced in modelling, PSO, therefore adopted to 239 

determine the appropriate parameters and the model named as PSO-ELM. 240 

(3) The model and performance evaluation 241 

To implement the model, we followed these steps: (a) We initially assigned an equal weight {𝐷𝑡(𝑖)} 242 

to each dataset {𝑋𝑖}. (b) Then the PSO-ELM based predictor 𝑃𝑡 forecast the debris-flow volume series 243 {𝑋𝑖}, and the corresponding overall error {𝑒𝑡} by Eq. (4), 244 

{𝑒𝑖 = |𝑋𝑖−�̂�𝑖|𝑋𝑖 , 𝑖 = 1,2,⋯ , 𝑛𝑒𝑡 = 1𝑛∑ 𝑒𝑖𝑛𝑖=1                      (4) 245 

(c) We computed the series weights for the built predictor 𝑃𝑡 : 𝑊𝑡 = 12 𝑙𝑛(1−𝑒𝑡𝑒𝑡 ) and updated the 246 

sampling weights {𝐷𝑡(𝑖)} of the series {𝑋𝑖} by Eq. (5), 247 

{𝐷𝑡(𝑖) = 𝐷𝑡−1(𝑖)𝛽𝑡−𝑒𝑖𝑍𝑡𝛽𝑡 = 𝑒𝑡1−𝑒𝑡                             (5) 248 

where 𝑍𝑡 is the normalizing impact which realizes ∑ 𝐷𝑡(𝑋𝑖)𝑛𝑖=1 = 1. The procedure of steps (a to c) 249 

was repeated until all the PSO-ELM based predictors are executed (𝑇). Finally, we summarized all the 250 

PSO-ELM based predictors (𝑃𝑡) in the Adaboost framework to form the final strong predictor (𝑃): 𝑃 =251 ∑ 𝑊𝑡𝑃𝑡𝑇𝑡=1 . Then, root mean square error (RMSE) and mean absolute percentage error (MAPE) provide 252 

an assessment of the proposed hybrid model performance.  253 



4. Results 254 

4.1 Correlation analysis 255 

Correlation analysis demonstrates positive linear correlations between debris-flow volume and 256 

catchment area, catchment length, and total volume of co-seismic deposits (Fig. 5). V and V0 were well 257 

correlated ( 𝑉0 = 0.26𝑉 + 1.04, 𝑃𝑣𝑎𝑙𝑢𝑒 = 0.000, 𝑅2 = 0.80 ), while morphologic factors all 258 

demonstrate positive correlations, but with lower R2 values ( 𝐴:𝑉0 = 11.51𝐴 + 39.80, 𝑃𝑣𝑎𝑙𝑢𝑒 =259 2.09𝐸 − 10, 𝑅2 = 0.50 ; 𝐻:𝑉0 = 0.10𝐻 − 1.72, 𝑃𝑣𝑎𝑙𝑢𝑒 = 0.002, 𝑅2 = 0.15 ; 𝐿:𝑉0 = 34.66𝐿 +260 0.380, 𝑃𝑣𝑎𝑙𝑢𝑒 = 1.26𝐸 − 6, 𝑅2 = 0.34). D has a 𝑃𝑣𝑎𝑙𝑢𝑒 = 0.86  higher than 0.05 which indicates 261 

strong evidence for the null hypothesis. J has an opposite relation (𝐽: 𝑉0 = −0.25𝐽 + 214.09, 𝑃𝑣𝑎𝑙𝑢𝑒 =262 0.006, 𝑅2 = 0.13). Meanwhile, issues of autocorrelation still existed among these factors, e.g. L, H and 263 

J. In order to reduce attribute characteristics and meet an assumption of mutual independence among 264 

factors in Modelling, dimensionality reduction was applied to ensure the significant components in this 265 

work.  266 

 
(a) Correlation between A, V0 and V0/V. There is a linear 

correlation between A and V0, but little correlation with 

the ratio of V0/V. 

 
(b) Correlation between H, V0 and V0 / V. There is a little 

linear correlation between H and V0, but little correlation 

with the ratio of V0/V. 

 
(c) Correlation between L, V0 and V0 / V. There is a little 

linear correlation between L and V0, but little correlation 

with the ratio of V0/V. 

 
(d) Correlation between D, V0 and V0 / V. There is little 

linear correlation between D and V0, but little correlation 

with the ratio of V0/V. 



  
(e) Correlation between J, V0 and V0 / V. There is a little 

linear correlation between J and V0, but little correlation 

with the ratio of V0 / V. 

(f) Correlation between V, V0 and V0 / V. There is a linear 

correlation between V and V0, but little correlation with 

the ratio of V0 / V. 

Fig. 5. Graphs plotted with each catchment's morphological features (A, H, L, D and J), the total volume of co-seismic 267 
landslide debris (V) and potential volume of debris flow (V0), and the ratio (V0/V). 268 

4.2 Determination of significant components 269 

To measure the correlation both linear and nonlinear between two variables, Pearson correlation 270 

coefficient (PCC) and maximal information coefficient (MIC) were applied to calculate the correlations 271 

between morphological features (A, H, L, D and J), the total volume of co-seismic landslide debris (V) 272 

and debris-flow volume (V0) (Table 3). It can be seen that correlations obtained from MIC are more 273 

significant than those of PCC. PCC even calculates a negative value from the average channel gradient 274 

(J). Correlations of MIC show that the sensitivity order is V > A > L> H >J > D, which is consistent with 275 

the result from preliminary analysis on the raw dataset.  276 

Table 3. Result of correlation analysis by PCC and MIC 277 

Factor PCC MIC Sensitivity 

Catchment area (A) 0.710 0.828 2 

Topographic relief (H) 0.389 0.634 4 

Channel length (L) 0.579 0.690 3 

Distance from seismic fault (D) 0.023 0.251 6 

Average channel gradient (J) -0.354 0.342 5 

Co-seismic landslide volume (V) 0.892 0.967 1 

Principle component analysis was used to reduce dimensionality (Table 2). Four significant 278 

components (P-1 to P-4) have already had a cumulative ratio of up to 94.2 % (Table 4). Subsequently, 279 

these four mutually independent significant components (P-1 to P-4) became input parameters of 280 

machine learning models. New datasets were produced by a matrix multiplication from the eigenvector 281 

(right part of Table 4) and the raw datasets (Table 2). 282 

Table 4. Eigenvalues and eigenvectors of the significant components 283 

Component Eigenvalue 
Ratio* 

(%) 

Cumulative 

ratio (%) 

Eigenvector 

 

Factor 
𝜆𝑝−1 𝜆𝑝−2 𝜆𝑝−3 𝜆𝑝−4 

P-1 2.930 48.829 48.829 A 0.308 0.070 0.012 -0.217 

P-2 1.025 17.089 65.918 H 0.249 0.437 0.400 -0.051 

P-3 0.974 16.230 82.148 L 0.330 0.008 0.053 -0.252 

P-4 0.723 12.049 94.197 D 0.050 -0.678 0.700 0.240 



P-5 0.302 5.040 99.238 J -0.182 0.564 0.538 0.325 

P-6 0.046 0.762 100.000 V 0.199 0.018 -0.292 1.052 

Note: * Ratio is obtained by the equation of eigenvalue/variance. 284 

4.3 Results of machine learning modelling 285 

After selecting the four significant components for debris-flow volume estimation, different 286 

machine learning models (BPNN, SVM, ELM, PSO-ELM and PSO-ELM_AdaBoost) were trained and 287 

tested. Detailed criteria and parameter-setting in the models are shown in Table 5. BPNN composed of a 288 

three-layer model is available in MATLAB's built-in toolbox for the debris-flow volume estimation, 289 

based on the same training and testing set with parameters setting (Table 5). The SVM model is 290 

developed and executed by MATLAB program, and the tuning parameters of the SVM (Table 5) are 291 

determined by fivefold cross-validation for its advantage on the average exacted prediction error and 292 

circumvents the overfitting problem (Ge et al., 2018). In the ELM model, as shown in Table 5, the only 293 

parameter-setting determined by Sigmoid function is the number of neurons in the hidden layer. PSO-294 

ELM model is using PSO algorithm to optimize the connection weight between the input layer and the 295 

hidden layer, and the threshold value of the hidden layer neuron in the ELM model. The parameters-296 

setting of PSO-ELM can be found in Table 5. The parameters-setting of PSO-ELM_Adaboost are the 297 

same to PSO-ELM, but take ten times the number of iterations (PSO-ELM model). 298 

Table 5. Parameters-setting in different machine learning models 299 

Name Parameters in modelling 

BPNN 
A three-layer BPNN composed of an input layer (4 neurons), hidden layer (4 neurons), and an output layer. 

Initial learning rate (LR) = 0.05, Number of epochs = 5000, Root mean square error (RMSE) = 0.01. 

SVM 

Radial basis kernel function (RBF) was adopted as the network kernel function. Penalty factor (c) and the parameter of 

kernel function (g) were 5.6569 and 0.0625, respectively. These tuning parameters of SVM are determined by the cross-

validation method, as shown in Appendix Fig. A-1. 

ELM 
Sigmoid was adopted as an activation function to find the optimal number of hidden layer nodes for the cyclic analysis 

from 1 to 100. MSE is below 0.03, Number of hidden nodes is up to 57 (Appendix Fig. A-2). 

PSO-ELM 
The number of hidden nodes is up to 40. In PSO, acceleration coefficients c1=1.5, c2=1.7, inertia weight w=1 and 

sizepop=20, maxgen=100. Other parameters are the same as the ELM model (Appendix Fig. A-3).  

PSO-ELM 

AdaBoost 
Number of iterations: 𝑇 = 10. The other parameters are the same as PSO-ELM. 

 300 

Results can be seen in Fig. 6. The predicted values obtained using PSO-ELM and PSO-301 

ELM_AdaBoost exhibit better agreement with observations than the other models (max. value=40.05, 302 

40.06 < 162.84, 137.80 and 185.94, respectively). The wave range of differences (zone a-e) show a 303 

similar conclusion, and PSO-ELM_AdaBoost has much better performance. There is also a good 304 

agreement between the estimated and measured debris-flow volumes between the training and testing 305 

set, with the lowest error value of 20.14×104 m3 (RMSE) and 8.15 % (MAPE) in the proposed PSO-306 

ELM_AdaBoost model. The lowest of average run time is 0.042 s by ELM model, which is significantly 307 



faster than other models. The coupled models (PSO-ELM and PSO-ELM_AdaBoost) are better than 308 

single model (BPNN, SVM and ELM) on the prediction performance, but to require longer run times. 309 

PSO-ELM_AdaBoost is nearly 3 seconds slower due to its more complex network architecture. 310 

  
(a) comparison diagram by the training set, zone a-e 

display the wave range in each model, zone A displays a 

comparison among the models. 

(b) comparison diagram by testing set 

Fig. 6. Comparative analysis between predicted and measured value (Absolute difference in Y-axis (a) and X-axis (b) 

are defined as an absolute value between each predicted value and measured value in different models. X-axis (b) used 

a logarithmic coordinate.) 

 311 

We conducted a sensitivity analysis on our training data, by removing the largest one data in the 312 

testing set (No. 26 in Table 2 and Fig. 6b). Doing this decreases the uncertainty in the model result. The 313 

effect of this large value varied based on the structure of the machine-learning model imposed, with 314 

BPNN and PSO-ELM_AdaBoost having a much large effect than SVM, ELM, and PSO-ELM. In order 315 

to test the generalization ability of this proposed hybrid model and evaluate whether it is helpful to the 316 

volume estimation of future debris flow trigged by other earthquakes. We ran three further tests on debris-317 

flows associated with different earthquakes; Lengmu catchment and Zhonggang catchment in Lushan 318 

earthquake of Mw 6.6 (20 April 2013) and Buqinglong catchment in Yushu earthquake of Mw 6.9 (14 319 

April 2010). 320 

Based on the three further tests from similar basic morphological features and measured loose 321 

material source, the predicted values of the potential volume of future debris flow are larger than the 322 

measured ones (Table 6). The absolute percentage error (APE) exceeds 11%, which is larger than the 323 

result of the testing set (8.15%). It seems that the calibrated model performs well within the Longmen 324 

Shan, a region of diverse geology and topography. The increased error from the three cases of the 325 

application indicates that there still have limitations to apply this proposed model to other debris-flow 326 

catchments in different seismic regions. The reason is debris-flow volume likewise influenced by the 327 



expected rainfall conditions and lithologic characteristics of the catchment. These factors should be 328 

considered in the subsequent study. In spite of these limitations, the hybrid model is a helpful role in 329 

volume estimation of future debris flows. This comes with two advantages for future planning for debris 330 

flows; that the model accuracy improves with additional data and produces acceptable accuracy for the 331 

engineering design to protect the safety and property in the seismic areas. The first advantage reflects the 332 

flexibility of machine learning methods. The relationships between debris-flow volume and the factors 333 

framed within a neural network allows the prediction accuracy to improve as new data are introduced to 334 

the model. The frequency-size distribution of debris flows can be incorporated with the previous work 335 

on the other landslide types (Malamud et al., 2004) to quantify the severity of post-earthquake debris-336 

flow events. As such, this allows the model to become smarter with time. The second is related to model 337 

predictive capacity. After the Wenchuan earthquake, post-earthquake debris flows occurred suddenly 338 

and at a magnitude never experienced within the region. As part of the 3-year post-earthquake 339 

reconstruction plan, many hundreds of engineered debris flow structures were created to mitigate the 340 

effects of these hazardous events. Many of these structures were designed without a clear understanding 341 

of the potential volumes of debris flows that could be produced after this event. Our model provides a 342 

simple application for the estimation of the potential for the largest debris-flow volumes from a 343 

catchment. Given the correlations with the volume of co-seismic landslide debris and catchment size and 344 

slope, there is significant potential for this method to be used for the development of engineering 345 

structures that can mitigate the largest possible debris-flows. Furthermore, this model can be transferred 346 

between earthquake events within the same region. This suggests that a well-calibrated regional machine 347 

learning model could potentially act as a useful debris-flow volume prediction tool for the immediate 348 

aftermath of an earthquake. 349 

Table 6. Model validation in other seismic regions 350 

Name 
A 

(km2) 

H 

(m) 

L 

(km) 

D 

(km) 

J 

(‰) 
V 

(104m3) 

V0 (Measured 

value, 104m3) 

V0 (Predicted value by PSO-

ELM_Adaboost, 104m3) 

APE 

(%) 

Buqinglong catchment 19.80 1016 3.03 8.60 335.31 90.05 42.32 47.11 11.32 

Lengmu catchment 9.44 2048 3.98 15.10 514.57 381.87 68.60 76.46 11.46 

Zhonggang catchment 17.76 2235 9.72 17.48 229.94 600.42 96.05 111.53 16.12 

5. Discussion and Conclusion 351 

Our machine learning model predicts the magnitude of that largest single debris-flow event in a 352 

given catchment by analyzing the characteristics of 60 debris-flow catchments in the hardest-hit regions 353 

of the Wenchuan earthquake in the decade after the earthquake. The presented model (PSO-354 



ELM_AdaBoost) composed of four-significant components demonstrates an uncertainty in the 355 

prediction of the largest possible debris-flows in a catchment of between 11 % and 16 %. A comparison 356 

of the developed model with the existing semi-empirical function originated from worldwide debris-flow 357 

events (de Haas and Densmore 2019; Simoni et al. 2011; Ma et al. 2013) and the fitting function between 358 

the total volume of co-seismic landslide debris (V) and debris-flow volume (V0) using the three cases 359 

trigged by other earthquakes is made. The results are shown in Fig. 7. The volume from the fitting 360 

function is much lower than the measured value in Buqinglong catchment but much higher in Lengmu 361 

catchment, and even beyond the figure's boundary in Zhonggang catchment (157×104 m3). The proposed 362 

hybrid model is evidently supported by over-prediction to larger volumes than the measured ones, 363 

otherwise, there is also under-prediction to smaller volumes by the empirical-statistical functions. The 364 

estimated accuracy of the machine-learning model is better than the empirical models with specific 365 

consideration of the total volume of co-seismic landslide debris, and training dataset in the given regions. 366 

The standard errors of estimated volumes by Ma et al. (2013) are much larger than ones by de Haas and 367 

Densmore (2019), for the possible reason that the empirical formulas have only considered the statistical 368 

relationship between loose material volume and debris-flow volume. Similarly, the equation of linear 369 

regression between V and V0 obviously has a poor performance on volume estimation of debris flows. 370 

 371 
Fig. 7. Comparison of the volume-estimations of debris flows by PSO-ELM_AdaBoost, measurement and semi-empirical 372 

function. The fitting function is between the total volume of co-seismic landslide debris (V) and debris-flow volume (V0) in 373 
Fig. 5 (f). The solid black line indicates a perfect fit and dotted lines represent the plus and minus one specific tolerance 374 

value (e.g., 10×104 m3). 375 
For a given catchment, the debris-flow volume depends on the amount of sediment available and 376 

the potential of the flow to mobilize and transport along the debris-flow path, therefore it might be 377 



regarded as a function of catchment morphometry, geology and hydroclimatic conditions (de Haas and 378 

Densmore, 2019). The debris-flow volumes have a relation of proportional growth with basin area which 379 

supplies loose materials from widespread sediment sources, especially along the main channel. Co-380 

seismic landslides increase the amount of loose debris on slopes and in gully floors. As a consequence, 381 

debris flow frequency increases, and large debris flows occur at lower rainfall rates in the years 382 

immediately following strong earthquakes (Ma et al., 2013; Guo et al., 2016). Therefore, even though 383 

there is close correlation between the volume of loose material available within the basin after the 384 

earthquake and the debris-flow volume (X. Guo et al., 2016), other parameters (e.g., rainfall intensity or 385 

slope gradient) still can influence the debris-flow magnitude, especially during a single event. After the 386 

Mw 7.6 Chi-Chi earthquake in Taiwan, Chen et al. (2011) presented a recovery equation to describe the 387 

variation in the rainfall threshold for triggering debris flow after the earthquake and evaluated the 388 

recovery period. However, similar attempts in the Wenchuan context have been challenging to 389 

implement. In the instance of such large epistemic uncertainty, machine learning models may provide a 390 

useful alternative to process-based or semi-empirical models, particularly in the specific case of debris 391 

flow volumes. The machine learning method makes no assumptions about parameter correlations, instead 392 

compiles a range of data and produces the most optimised result. In these specific cases, where triggering 393 

and bulking conditions are changing rapidly, our work demonstrates that machine learning methods may 394 

be a powerful tool to aid hazard mitigation. Hence, we strongly recommended using the presented model 395 

to estimate the volumes of debris flows with careful attention to the specific circumstance. In practical 396 

usage, therefore, a tolerance value (e.g. 10×104 m3 in Fig. 7) can be included in the volume estimation 397 

of future debris flows, which has been proved to have a much better estimation performance combined 398 

with the proposed machine-learning model. 399 

While we do not explicitly calculate the frequency for the largest potential landslide volume, our 400 

modelling implicitly calculates the largest potential debris flow that will occur within the 10 years after 401 

a strong earthquake. Evidence from a number of large earthquakes has demonstrated that high debris 402 

flow rates are common immediately after an earthquake, decaying to background rates within 4 – 10 403 

years (Marc et al., 2019). Hence our modelling has an implicit timescale of within 10 years after a large 404 

earthquake. This timescale is particularly important for earthquake recovery, as post-earthquake debris 405 

flows can affect vulnerable and displaced communities. In the post-Wenchuan earthquake case, the 406 



building of debris flow check dams primarily occurred within 3 years of the earthquake, based on 407 

standard, linear equations that dramatically underestimated the potential volume of debris flows and were 408 

often inundated (Chuan Tang et al., 2011). There is a strong desire for better predictive capacity of hazard 409 

volumes in these key few years after an earthquake. We demonstrate the potential power of machine 410 

learning as a tool that can be translated, albeit with an increase in uncertainty, to earthquake events in 411 

similar topographic, geologic, and hydrologic settings. Thus, our application of machine learning 412 

presents an alternative to more traditional methods for estimating debris flow susceptibility. However, 413 

as the model does not include a specific temporal component, it does not attempt to model debris flow 414 

hazard for a particular catchment.   415 

In conclusion, the type of machine learning model chosen affects the robustness of the model result, 416 

with the hybrid model (PSO-ELM_AdaBoost) showing the strongest correlations with the measured 417 

volumes in the test data. Importantly, the uncertainty does not decrease when applied to debris-flows 418 

associated with different earthquakes of different magnitudes in the same tectonic setting (the collision 419 

region of the India Plate with the Eurasia Plate). This result suggests the machine-learning methods could 420 

prove useful as initial estimates of debris-flow potential after earthquakes. 421 
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Appendix 429 

 430 

Fig. A-1. Parameters determination in SVM model 431 

 432 

Fig. A-2. Parameters determination in ELM model 433 

 434 

Fig. A-3. Parameters determination in PSO-ELM model 435 
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