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Binary-black-hole orbits precess when the black-hole spins are misaligned with the binary’s orbital
angular momentum. The apparently complicated dynamics can in most cases be described as simple
precession of the orbital angular momentum about an approximately fixed total angular momentum.
However, the imprint of the precession on the observed gravitational-wave signal is yet more complicated,
with a nontrivial time-varying dependence on the black-hole dynamics, the binary’s orientation and the
detector polarization. As a result, it is difficult to predict under which conditions precession effects are
measurable in gravitational-wave observations, and their impact on both signal detection and source
characterization. We show that the observed waveform can be simplified by decomposing it as a power
series in a new precession parameter b ¼ tanðβ=2Þ, where β is the opening angle between the orbital and
total angular momenta. The power series is made up of five harmonics, with frequencies that differ by the
binary’s precession frequency, and individually do not exhibit amplitude and phase modulations. In many
cases, the waveform can be well approximated by the two leading harmonics. In this approximation we are
able to obtain a simple picture of precession as caused by the beating of two waveforms of similar
frequency. This enables us to identify regions of the parameter space where precession is likely to have an
observable effect on the waveform, and to propose a new approach to searching for signals from precessing
binaries, based upon the two-harmonic approximation.
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I. INTRODUCTION

When the spins of black holes in a binary system are
misaligned with the binary’s orbital angular momentum,
both the spins and orbital angular momentum will precess
[1–4]. We therefore expect that most astrophysical binaries
will undergo precession, but to date there has been no
evidence of precession in gravitational-wave (GW) obser-
vations from the Advanced LIGO and Virgo detectors [5,6].
This is not necessarily surprising, because precession often
leaves only a weak imprint on the observable signal,
particularly when the black holes are of comparable mass
and the binary’s orbit is face-on to the detector, which are
the most likely configurations that have been observed so
far. Despite this heuristic picture, there is no simple means
to estimate the measurability of precession of a given
binary configuration, and as such it is difficult to predict
when precession effects will be conclusively observed in
GW events.
Detailed parameter estimation techniques have been

developed, which enable the reconstruction of the param-
eters of observed signals [7–11], in addition to approximate
Fisher-matrix methods [12,13]. In parallel, techniques have
been developed that provide an intuitive understanding of
the measurement accuracy of certain parameters (or param-
eter combinations) [14–19]. These have typically involved
either approximations (such as leading order, Fisher Matrix

type calculations), restriction to a subset of system param-
eters (for example masses and spins; timing and sky
location; binary orientation). Combined, these give an
understanding of the accuracy of parameter estimation
for nonprecessing systems.
In parallel, there have been significant developments

in understanding the implications of precession, starting
with the early work in Refs. [1,3,4] which provided in-
sights into the impact of precession on the gravitational
waveform emitted during the inspiral of compact binaries.
Subsequently, black hole binary waveforms which incor-
porate precession through merger have been developed
[20–24]; large scale parameter estimation studies of pre-
cession have been performed to identify the regions of para-
meter space where precession will be observable [25–32];
and new theoretical insights into the impact of precession
on both detection and parameter estimation have been
obtained [33–35]. Complementary to this, there have been
several efforts to understand the impact of precession on
searches [33,36], and to implement searches for precessing
signals [3,4,37–39]. This has led to an increasingly clear
picture of the impact of precession: it is most significant
for binaries with large mass ratios, where the in-plane
spin components are large and for systems where the
total angular momentum is mis-aligned with the line of
sight.
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At leading order, the gravitational waveform emitted by a
precessing binary is composed of five harmonics, which are
offset by multiples of the precession frequency [20,35]. We
show that these harmonics form a natural hierarchy with the
amplitude of the sub-leading harmonics suppressed by a
factor that depends upon the opening angle (the angle
between the orbital and total angular momenta). Using this
approximation, and restricting to the two leading harmon-
ics, we are able to obtain relatively simple expressions for
the precession waveform. Each harmonic takes the form of
a nonprecessing-binary waveform (i.e., with monotonic
amplitude and frequency evolution during the inspiral of
noneccentric systems), and the amplitude and phase mod-
ulations of the complete precessing-binary waveform arise
as beating between the two harmonics.
The purpose of this paper is to introduce this decom-

position (Sec. III), with an alternative derivation given in
the Appendix, and the two-harmonic approximation
(Sec. IV), and to identify its range of validity and accuracy
(Sec. V). We then discuss a proposed search for precessing
binaries using the two-harmonic approximation (Sec. VI)
and finally introduce the notion of a “precession SNR” that
can be used to determine whether precession effects are
observable in a given system (Sec. VII). We begin in the
next section with a summary of precession in black-hole
binaries.

II. BLACK HOLE SPIN INDUCED PRECESSION

In the general theory of relativity a binary consisting
of two objects of masses, m1 and m2 (where we choose
m1 ≥ m2 and denote q ¼ m1=m2, so that q ≥ 1), with spin
angular momenta S1 and S2, orbiting each other with
angular momentum L, will slowly inspiral due to the loss
of energy and momentum through the emission of gravi-
tational waves. If S1kS2kL, then the plane of the orbit
remains fixed and in noneccentric binaries the amplitude
and frequency of the emitted gravitational wave increases
as the orbital separation decreases. The system eventually
merges and forms a single perturbed black hole that emits
gravitational radiation as a superposition of quasinormal
ringdown multipoles, until the system settles down to its
final state [40].
For the case where the total spin is not aligned with the

total orbital angular momentum, ðS1 þ S2Þ ×L ≠ 0, in
most cases the orbital plane of the binary will precess
around the approximately constant total angular momen-
tum J ¼ S1 þ S2 þL, i.e., L precesses around J, and the
spins precess such that _S ¼ − _L [1]. For configurations
where J ≈ 0, the system undergoes “transitional preces-
sion” [1,2], but this is expected to be rare in LIGO-Virgo
detections. The angle between L and J is denoted by β. In
simple precession cases β slowly increases during inspiral
as L decreases (recall that in the Newtonian limit L ∝

ffiffiffi
r

p
,

where r is the orbital separation), but the spin magnitudes

S1 and S2 remain fixed, and, to a good approximation, so do
their orbit-averaged components parallel and perpendicular
to L, Sijj and Si⊥. The opening angle β typically varies very
little over the portion of a binary’s inspiral that is visible in
a GW detector, and so it is often possible to make the
approximation that β is constant. This approximation has
been used to good effect in Ref. [33], and we will also use it
in some of the discussion in this paper.
Adopting the notation that the inclination angle of the

binary as seen by an observer, ι, is the angle between the
orbital angular momentum and the line of sight (see Fig. 1),
cos ι ¼ L̂ · N̂, where a caret denotes a unit vector (e.g.
â ¼ a=jaj), the binary’s orbital inclination becomes times
dependent. As a result the energy emitted in GWs in the N̂
direction will also be time dependent, where the maximum
instantaneous energy emission is approximately in the
direction of L̂. If N̂ is aligned with Ĵ, then ι ≈ β and
varies slowly and with minimal oscillations due only to
orbital nutation. If N̂ is in some other direction, then the
energy emission will be modulated on the precession
timescale. In the following we will not use the inclination
ι, but rather combinations of β and the angle between J and
N̂, denoted by θJN. As noted previously, Ĵ is approximately
constant for simple precession cases, and we will treat it as
a constant in the analysis in Sec. III.
The signal measured in a detector will exhibit modu-

lations in phase and amplitude that depend on β, θJN, the
precession angle of L around J, denoted by α, and the
polarization ψ of the observed signal. These angles are
illustrated in Fig. 1, and discussed further in Sec. III. For
now we note several well-known features of precession
waveforms [1,2], which will be further sharpened in the

FIG. 1. Plot showing how the precession angles used in this
study are defined in the J-aligned frame. The normal vector here
indicates the line of sight of the observer, L̂ and Ĵ are the orbital
angular momentum and total angular momentum vectors respec-
tively, S1x; S1y and S1z are the x, y and z components of the spin
on the larger black hole.
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discussion later in the paper. The strength of precession in a
system is characterized by the degree of tilt of the binary’s
orbit, given by β, and by the precession frequency ΩP of
L around J, which is given by

Ωp ¼ _α: ð1Þ
The angle β is determined primarily by the total spin in
the plane, and binary’s mass ratio and separation.
At leading order we can write the orbital angular
momentum of the system as L ¼ μ

ffiffiffiffiffiffiffi
Mr

p
, where μ is the

reduced mass, μ ¼ m1m2=M ¼ qM=ð1þ qÞ2, and so to
first approximation,

tan β ¼ S⊥
μ

ffiffiffiffiffiffiffi
Mr

p þ Sk
; ð2Þ

which provides us with the basic dependence of β on the
binary configuration. At leading order the precession
frequency can be written as,

Ωp ≈
�
2þ 3

2q

�
J
r3
; ð3Þ

meaning that to first approximation it does not depend on
the spins (or therefore the opening angle β), but only on
the binary’s total mass, mass-ratio, and separation (or
equivalently orbital frequency). The number of precession
cycles over a certain time or frequency range (e.g., over
the course of an observation), depends on the total mass
and mass-ratio of the binary. In a GW observation there is
a partial degeneracy between the mass ratio and the
aligned spin Sjj [12,15,41], meaning that one of the chief
effects of a measurement of precession will be to improve
the measurement of these two physical properties [28].
In the remainder of this paper we choose to describe the

gravitational wave signal, precessing or nonprecessing,
with the IMRPhenomPv2 phenomenological model pre-
sented in Ref. [20]. This model exploits the phenomenol-
ogy of simply precessing binaries described earlier, with
the additional approximation that a precessing-binary
waveform can be factorized into an underlying nonprecess-
ing waveform, and the precessional dynamics [42]. The
underlying nonprecessing-binary model is IMRPhenomD
[43,44], using only the spin components aligned with L. In
IMRPhenomD both aligned spin components are used to
generate an approximate post-Newtonian phasing and
amplitude, with corrections provided by fits to numeri-
cal-relativity waveforms, that are parametrized by two
different combinations of the two spin components.
Although IMRPhenomD has been found to model well
two-spin systems [45], its dominant spin dependence can
be characterized well by the effective spin,

χeff ¼
1

M

�
S1

m1

þ S2

m2

�
· L̂; ð4Þ

which takes values between −1 (both maximal antialigned
spins) and þ1 (both maximal aligned spins) to describe the
magnitude of spin aligned with the total angular momen-
tum. For a given configuration IMRPhenomPv2 uses the
corresponding IMRPhenomD waveform, but with the
final spin modified to take into account the in-plane spin
components. A frequency-dependent rotation is then
applied to the nonprecessing waveform to introduce the
precession dynamics, which are modeled by frequency-
domain post-Newonian expressions for the precession
angles for an approximately equivalent single-spin system
[20,46], where the large black hole has spin,

χp ¼
1

A1m2
1

max ðA1S1⊥; A2S2⊥Þ; ð5Þ

where A1 ¼ 2þ 3q=2 and A2 ¼ 2þ 3=ð2qÞ and Si⊥ is the
component of the spin perpendicular to L. The effective
precession spin parameter is obtained by averaging the
relative in-plane spin orientation over a precession cycle,
and so more accurate for a system that undergoes many
precession cycles.
There are several important features which are not

incorporated in the IMRPhenomPv2 waveform. These
include two-spin effects [21,47,48], gravitational wave
multipoles other than the leading 22 mode [22], significant
precession during merger [49], and spin alignment due to
spin-orbit resonances during inspiral [50,51]. Some of
these effects will have an impact upon the distributions
of black hole spin orientations when the binaries enter the
LIGO or Virgo sensitivity band while others can leave
imprints on the waveform which may be observable,
particularly close to the merger. Nonetheless, the
IMRPhenomPv2 has been used in the analysis of all
LIGO-Virgo observations during the first two observing
runs [5,6,52,53], and it captures much of the dominant
phenomenology of precessing-binary waveforms. In addi-
tion, the decomposition presented in the next section is in
no way tied to the particular waveform used and could be
equally well applied to other waveform models for pre-
cessing binaries which, for example, incorporate two-spin
effects and precession during merger. The current formal-
ism does not include additional gravitational wave multi-
poles, and we will investigate this in a future work. We
expect the broad features of many of the results presented in
the remainder of the paper to be relatively unaffected by the
specific waveform choice, but the details for any specific
signal could change.

III. HARMONIC DECOMPOSITION OF THE
WAVEFORM FROM A PRECESSING BINARY

The gravitational waveform emitted by a precessing
system, as observed at a gravitational wave detector, can
be expressed approximately as [4,33]
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hðtÞ ¼ −
�
do
dL

�
AoðtÞRe½e2iΦSðtÞðFþðCþ − iSþÞ

þ F×ðC× − iS×ÞÞ�: ð6Þ

Here, AoðtÞ denotes the amplitude of the gravitational wave
signal in a (time-varying) frame aligned with the orbital
angular momentum of the binary, and depends upon the
masses and spins of the binary. Since the amplitude scales
linearly with the luminosity distance, we have chosen to
introduce a fiducial normalization AoðtÞ for a waveform at a
distance do and explicitly extract the distance dependence.

1

ΦS is the phase evolution in the frame aligned with the total
angular momentum J of the binary. The phase evolution,
ΦS, is related to the orbital phase, ϕorb, as

ΦSðtÞ ¼ ϕorbðtÞ − ϵðtÞ ð7Þ

where [54]

_ϵðtÞ ≔ _αðtÞ cos βðtÞ ð8Þ

and, as before, β is the opening angle and α gives the phase
of the precession of L around J as shown in Fig. 1. Fþ and
F× give the detector response relative to the J-aligned
frame and Cþ;×, Sþ;× encode the time-varying response to
the gravitational wave due to the evolution of the binary’s
orbit relative to the detector. They depend upon the three
angles introduced previously: the precession opening angle
β and phase α and the angle between the total orbital
angular momentum and the line of sight θJN. In terms of
these angles, we can express Cþ;× and Sþ;× as2

Cþ ¼ −
�
1þ cos2θJN

2

��
1þ cos2β

2

�
cos 2α

−
sin 2θJN

2

sin 2β
2

cos α −
3

4
sin2θJNsin2β;

Sþ ¼
�
1þ cos2θJN

2

�
cos β sin 2αþ sin 2θJN

2
sin β sin α;

C× ¼ − cos θJN

�
1þ cos2β

2

�
sin 2α − sin θJN

sin 2β
2

sin α;

S× ¼ − cos θJN cos β cos 2α − sin θJN sin β cos α: ð9Þ

The nonprecessing expressions can be recovered in the
limit of β → 0 and α → constant (which is then degenerate
with the polarization of the system). When β is nonzero, the

effect of precession is to modulate the detector response
at frequencies ΩP and 2ΩP. To make the harmonic content
of Cþ;× and Sþ;× more explicit, we first introduce the
parameter,

b ¼ tan ðβ=2Þ; ð10Þ

and write the response functions in terms of it. The terms
involving β can be expressed as

1þ cos2β
2

¼ 1þ b4

ð1þ b2Þ2 ;

cos β ¼ 1 − b4

ð1þ b2Þ2 ;

sin 2β
2

¼ 2bð1 − b2Þ
ð1þ b2Þ2 ;

sin β ¼ 2bð1þ b2Þ
ð1þ b2Þ2 ;

sin2β ¼ 4b2

ð1þ b2Þ2 : ð11Þ

Substituting the trigonometric identities from Eq. (11) into
the expressions for Cþ and Sþ in Eq. (9) we obtain,

�
do
dL

�
ðCþ − iSþÞ ¼ −e2iα

X4
k¼0

Aþ
k

�
bke−ikα

ð1þ b2Þ2
�
;

�
do
dL

�
ðC× − iS×Þ ¼ ie2iα

X4
k¼0

A×
k

�
bke−ikα

ð1þ b2Þ2
�
; ð12Þ

where we have introduced Aþ
k and A×

k as

Aþ
0 ¼ Aþ

4 ¼ do
dL

�
1þ cos2θJN

2

�
;

A×
0 ¼ −A×

4 ¼ do
dL

cos θJN;

Aþ
1 ¼ −Aþ

3 ¼ 2
do
dL

sin θJN cos θJN;

A×
1 ¼ A×

3 ¼ 2
do
dL

sin θJN;

Aþ
2 ¼ 3

do
dL

sin2θJN;

A×
2 ¼ 0: ð13Þ

In the approximation where the direction of total angular
momentum is constant, the Aþ;×

k are time independent
amplitudes, and the time dependence of the amplitude
functions is captured as a power series in the param-
eter b ¼ tanðβ=2Þ.

1Of course, the observed waveform is also affected by the
redshifting of frequencies. For the calculation discussed here, we
work in the detector frame and consider the observed masses,
which are (1þ z) times the source frame masses.

2We have rewritten the Cþ term relative to what is normally
given in the literature, e.g. [4,33], to group terms with the same α
dependence.
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Finally, we can use the harmonic decomposition in
Eq. (12) to obtain a decomposition of the waveform,
Eq. (6),

hðtÞ ¼ Re
��

AoðtÞe2iðΦSþαÞ

ð1þ b2Þ2
�

×
X4
k¼0

ðbe−iαÞkðFþAþ
k − iF×A×

k Þ
�
: ð14Þ

This allows us to clearly identify the impact of precession
on the waveform. First, precession leads to an additional
phase evolution at frequency 2ΩP and a decrease in the
amplitude by a factor ð1þ b2Þ2. The precessing waveform
contains five harmonics that form a power series in b,
whose amplitude depends upon the detector response,
distance and viewing angle of the binary. The frequency
of each harmonic is offset from the next by the precession
frequency ΩP. Similar results have been obtained previ-
ously, by manipulating the spin-weighted spherical har-
monic decomposition of the waveform, e.g. [34,35].
However, it was not previously observed that the relative
amplitudes of the harmonics were related in a straightfor-
ward manner. In the Appendix, we present an alternative
derivation of the result in Eq. (14) in terms of this spin-
weighted spherical harmonic decomposition of the wave-
form, as is customary when producing waveform models
for precessing binaries [20].
As a final step, we would like to explicitly extract three

more time-independent angles that characterize the wave-
form, namely the polarization angle ψ , the initial phase ϕo
and the initial polarization phase αo.

3

The unknown polarization ψ is currently folded into the
detector response functions Fþ;×. It is more useful to
extract ψ and then consider the detector response to be a
known quantity dependent upon only the details of the
detector and the direction to the source. Thus, we write the
detector response as,

Fþ ¼ wþ cos 2ψ þ w× sin 2ψ ;

F× ¼ −wþ sin 2ψ þ w× cos 2ψ ; ð15Þ

where wþ and w× are the detector response functions in a
fixed frame—for a single detector it is natural to choose
w× ¼ 0 and for a network to work in the dominant
polarization for which wþ is maximized [55]. The unknown
polarization of the source relative to this preferred frame is
denoted ψ .
To isolate the initial orbital and precession phases, we

explicitly extract them from the binary’s phase evolution by
introducing,

ΦðtÞ ≔ ΦSðtÞ − ϕo þ αðtÞ − αo

¼ ϕorbðtÞ − ϕo þ
Z

αðtÞ

αo

2b2

1þ b2
dα: ð16Þ

Thus ΦðtÞ vanishes at t ¼ 0 and evolves as the sum of the
orbital phase and an additional, precession dependent,
contribution.
We then substitute the expressions for Fþ;×, Eq. (15),

and Φ, Eq. (16), into the expression for hðtÞ given in
Eq. (14), and isolate the time-varying terms from the
constant, orientation dependent angles. The waveform
can be written as the sum of five precessing harmonics,
the amplitudes of which are constants that depend upon the
binary’s sky location, distance and orientation:

h ¼
X4
k¼0

wþðhk0A1
k þ hkπ

2
A3

kÞ þ w×ðhk0A2
k þ hkπ

2
A4

kÞ; ð17Þ

where hk0;π
2
are the waveform harmonics and Aμ

k are

constants. The waveform harmonics are

hk0ðtÞ ¼ Re

�
AoðtÞe2iΦ

�
bke−ikðα−αoÞ

ð1þ b2Þ2
��

;

hkπ
2
ðtÞ ¼ Im

�
AoðtÞe2iΦ

�
bke−ikðα−αoÞ

ð1þ b2Þ2
��

: ð18Þ

The harmonics form a simple power series in be−iα, so the
amplitude of each successive harmonic is reduced by a
factor of b, and the frequency is reduced by ΩP.
The amplitudes for the harmonics are given by

A1
k ¼ Aþ

k cosϕk cos 2ψ −A×
k sinϕk sin 2ψ ;

A2
k ¼ Aþ

k cosϕk sin 2ψ þA× sinϕk cos 2ψ ;

A3
k ¼ −Aþ

k sinϕk cos 2ψ −A×
k cosϕk sin 2ψ ;

A4
k ¼ −Aþ

k sinϕk sin 2ψ þA×
k cosϕk cos 2ψ ; ð19Þ

where the Aþ;× were introduced in Eq. (13), ψ is the
polarization and the phase angle for each harmonic is,

ϕk ¼ 2ϕo þ ð2 − kÞαo: ð20Þ

These amplitudes form a generalization of the F -statistic
decomposition of the nonprecessing binary waveform (see
e.g. [55]). In the limit that b → 0, the precessing decom-
position reduces to the standard expression for the non-
precessing waveform as the amplitude for all harmonics
other than k ¼ 0 vanish.
The precessing waveform can equally well be written in

the frequency domain by performing a Fourier transform of
the time-domain expressions given above [56]. In this case,
Eq. (17) is unchanged, as are the constant amplitude terms
in Eq. (19). The frequency dependent harmonics are simply

3The initial polarization phase αo is sometimes denoted in the
literature as ϕJL.
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the Fourier transform of the time-domain modes given in
Eq. (18), and naturally satisfy hkπ

2
¼ ihk0.

The expansion above is most natural when b < 1, which
corresponds to opening angles of β < 90°. In cases where
the opening angle is greater than 90° it is natural to
reexpress the waveform in terms of c ¼ b−1 ¼ cotðβ=2Þ
in which case the waveform can be expressed as a power
series in c. We will not discuss the large opening angle
calculation further in this paper, but note that many of the
arguments presented below would extend in a straightfor-
ward manner to this case.

A. Obtaining the harmonics

Here, we give an explicit prescription to obtain the five
harmonics for the waveform, introduced in Eq. (17). To do
so, we generate waveforms for orientations that contain
only a subset of the harmonics, and combine them to isolate
a single harmonic. For simplicity, we restrict attention to
the þ polarization by fixing wþ ¼ 1, w× ¼ 0 and consider
a binary at a distance dL ¼ do.
Harmonics k ¼ 0 and k ¼ 4. When the viewing angle of

the signal is aligned with the total angular momentum,
θJN ¼ 0, the observed waveform contains only the zeroth
and fourth harmonics as Aþ;×

1;2;3 vanish for θJN ¼ 0. We also
fix αo ¼ 0, to obtain,

hϕo¼0;ψ¼0 ¼ h00 þ h40;

hϕo¼π
4
;ψ¼π

4
¼ −h00 þ h40: ð21Þ

From these, we can extract the k ¼ 0 and 4 harmonics,

h00 ¼
1

2
ðhϕo¼0;ψ¼0 − hϕo¼π

4
;ψ¼π

4
Þ;

h40 ¼
1

2
ðhϕo¼0;ψ¼0 þ hϕo¼π

4
;ψ¼π

4
Þ: ð22Þ

The π
2
phases of the harmonics can be obtained in an

identical way.
Harmonics k ¼ 1 and k ¼ 3. When the signal is edge

on, the × polarization contains only the first and third
harmonics. Then, fixing θJN ¼ π

2
and ψ ¼ π

4
, we have,

hαo¼0;ϕo¼π
4
¼ −2ðh10 þ h30Þ;

hαo¼π
2
;ϕo¼0 ¼ −2ðh10 − h30Þ; ð23Þ

so that,

h10 ¼ −
1

4
ðhαo¼0;ϕo¼π

4
þ hαo¼π

2
;ϕo¼0Þ;

h30 ¼ −
1

4
ðhαo¼0;ϕo¼π

4
− hαo¼π

2
;ϕo¼0Þ: ð24Þ

Harmonic k ¼ 2. Finally, from the þ polarization of the
edge-on waveform, we can extract the second harmonic—
in principle we could also get k ¼ 0 and k ¼ 4, but we have

already described a method to obtain them. Fixing θJN ¼ π
2

and ψ ¼ 0 we have,

hαo¼0;ϕo¼0 ¼
1

2
h00 þ 3h20 þ

1

2
h40;

hαo¼π
2
;ϕo¼0 ¼ −

1

2
h00 þ 3h20 −

1

2
h40; ð25Þ

so that,

h20 ¼
1

6
ðhαo¼0;ϕo¼0 þ hαo¼π

2
;ϕo¼0Þ: ð26Þ

B. Precession with varying orientation

The observable effect of precession will vary signifi-
cantly with the binary orientation, as has been discussed in
many previous works, for example [1,33]. Interestingly,
both the amplitude and frequency of the observed pre-
cession depends upon the viewing angle. The harmonic
decomposition derived above provides a straightforward
way to understand this effect. The observed amplitude and
phase modulations can be understood as the beating of the
different harmonics against each other, with the amplitude
of the composite waveform being maximum when the
harmonics are in phase and minimum when they are out
of phase.
In Fig. 2, we show the waveform for four different

orientations: (a) along J, (b) × polarization at 45° to J, (c/d)
þ=× polarization orthogonal to J. In all cases, we show the
last two seconds of the waveform (from around 25 Hz) for a
40 M⊙ binary, with q ¼ 6, and in-plane spin on the larger
black hole of χP ¼ 0.6. This configuration gives an open-
ing angle of β ≈ 45° (and b ≈ 0.4) which leads to signifi-
cant precession effects in the waveform.
When viewed along J, there is minimal precession as

only the k ¼ 0 and 4 harmonics are present in the system
and the k ¼ 4 harmonic is down-weighted by a factor of
b4 ≈ 0.03 relative to the leading harmonic. Furthermore,
the modulation comes from the beating of the k ¼ 0 and
k ¼ 4 harmonics and occurs at four times the precession
frequency. When the line of sight is orthogonal to the total
angular momentum, the k ¼ 0, 2, 4 harmonics are present
in the þ polarized waveform and k ¼ 1, 3 in the ×
polarization. The k ¼ 0 and 2 harmonics have close to
equal amplitude (although k ¼ 2 is down-weighted by
b2 ≈ 0.17, the amplitude as given in Eq. (13) is maximal).
Consequently the observed waveform has maximal ampli-
tude and phase modulation due to precession. For the ×
polarized signal, it is the k ¼ 1, 3 harmonics that contrib-
ute, with k ¼ 3 a factor of b2 ≈ 0.17 smaller than k ¼ 1.
Consequently, precession effects are less significant. In
both cases, precession occurs at twice the precession
frequency as it is from the beating of the k ¼ 0 and k ¼
2 (þ polarization) or k ¼ 1 and k ¼ 3 (× polarization). For
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the × polarized signal with θJN ¼ 45°, the k ¼ 0, 1, 3, 4
harmonics are present, with k ¼ 0, 1 dominating and
having approximately equal amplitude. For this signal,
the binary precesses from a face-on orientation, ι ¼ 0 to
edge-on, ι ¼ 90°, and the waveform amplitude oscillates
from the maximum to zero. Here, modulations occur at the
precession frequency.

C. Importance of precession over parameter space

From the intuitive discussion of precession presented in
[1,4,33] and summarized in Sec. II, it is straightforward to
identify regions of parameter space where precession is
most likely to have a significant impact upon the binary
dynamics and, consequently, the observed waveform.
Specifically, we expect that higher mass ratios, larger in-
plane spins and negative aligned spin components will all
lead to a larger opening angle and more significant
precession [33]. Here we briefly revisit this discussion,
framing our results in terms of the parameter b introduced
earlier. Explicitly, we introduce the waveform-averaged
value of b as,

b̄ ≔
jh1j
jh0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
df jh1j2

SnðfÞR
df jh0j2

SnðfÞ

vuuut ; ð27Þ

where h0;1 are the harmonics of the waveform introduced in
Eq. (18) and SnðfÞ is the noise power spectrum of the
detector. For this work, we choose SnðfÞ to be the design-
sensitivity Advanced LIGO noise curve [5] and evaluate
the integral over the frequency range f ∈ ½20; 1024� Hz.4
For binaries where the opening angle β is approximately
constant, b̄ ≈ tanðβ̄=2Þ.
Figure 3 shows the value of b̄ on several two-

dimensional slices through the four dimensional parameter
space of total mass M, mass ratio q, effective spin χeff and
precessing spin χp. Keeping other quantities fixed, the
value of b̄ increases with total mass. For higher masses,
the late inspiral and merger occur in the sensitive band of
the detectors and, close to merger, the opening angle
increases as orbital angular momentum is radiated. For
masses above 40 M⊙ the mass dependence of b̄ is small,
with only a 10% decrease from 40 M⊙ to 100 M⊙. Thus,
for the other figures, we fixM ¼ 40 M⊙ and investigate the
dependence of b̄ on q; χeff and χp. The dependence of b̄
follows directly from Eq. (2). The opening angle will

FIG. 2. The observed waveform from a 40 M⊙ binary with mass ratio q ¼ 6, χeff ¼ 0 and χp ¼ 0.6. The waveform is shown for four
different binary orientations: θJN ¼ 0 (upper left); θJN ¼ 45°, × polarization (upper right); θJN ¼ 90°, þ polarization (lower left);
θJN ¼ 90°, × polarization (lower right). For each waveform, the harmonics that contribute to the signal, their sum and the envelope of
the full precessing waveform are shown. The insets show a zoom of a portion of the waveform to more clearly demonstrate that
precession arises as a beating between the different harmonics.

4Using a realistic noise curve similar to the observed curves
during 01 and O2 would change the reported values slightly, as
these noise curves are less sensitive than design, particularly at
low frequencies. The qualitative patterns seen in the figure would
remain the same however.
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increase with mass ratio, as the orbital angular momentum
decreases. The opening angle, and also b̄, increase with χp.
It follows directly from the definition that tan β scales
linearly with χp, and hence approximately linearly for
b ¼ tanðβ=2Þ. Finally, the opening angle decreases as the
effective spin χeff increases, so that the largest value of b̄ is
obtained with significant spin antialigned with J.
Over much of the parameter space we have explored,

b̄≲ 0.3. This includes binaries with mass ratio up to 4∶1,
with precessing spin χp ≲ 0.6, and zero or positive aligned
spin, χeff ≥ 0. Only a small part of parameter space has
b̄ > 0.4, the value used in generating the waveforms in
Fig. 2, and b > 0.5 is only achieved with at least two of: a)
close to maximal χp, b) high mass ratio, q≳ 5 or c) signi-
ficant spin anti-aligned with the orbital angular momen-
tum χeff ≲ −0.4.
Next, we consider the importance of precession for an

astrophysically motivated population. In Fig. 4, we show the
distribution of b̄ for three distributions of black hole masses
and spins. For each population, wegenerate 100,000 binaries

uniformly in co-moving distance, with masses drawn from a
power law distribution—pðm1Þ ∝ m−α

1 , with α ¼ 2.35—
and different spin distributions, which are the same as those
used in Refs. [57–59]. We consider populations where the
spins are preferentially low and alignedwith the binary orbit;
lowand isotropically alignedor drawn froma flat distribution
and preferentially leading to precession. A low spin distri-
bution is a triangular distribution peaked at zero spin and
dropping to zero at maximal spin while a flat distribution is a
uniform between zero and maximal spin. The aligned
distribution is strongly peaked toward aligned spins, while
the isotropic distribution assumes a uniform distribution of
spin orientations over the sphere. The precessing distribution
is strongly peaked toward spins orthogonal to the orbital
angular momentum, i.e., with significant orbital precession
[60,61]. To account for observational biases, we keep only
those signals that would be observable above a fixed
threshold in a gravitational wave detector. We find that even
for the most extreme precessing population considered, the
mean value of b̄ is 0.15 with over 90% of binaries having

FIG. 3. The value of b̄ across the parameter space of total mass, mass ratio, χeff and χp. In each figure, two of the parameters are varied
while the other two are fixed to their fiducial values of M ¼ 40 M⊙, q ¼ 4, χeff ¼ 0, χp ¼ 0.6 (this point is marked with a ⋆ in all the
plots). The total mass has a limited impact on the value of b̄, for masses over M ≈ 40 M⊙; below this the b̄ increases with mass, as the
later parts of the merger are brought into the most sensitive band of the detector. The value of b̄ is seen to increase as the mass ratio or
precessing spin χp are increased and decrease as the aligned component of the spin χeff increases. Thus, the value of b is largest for a
binary with unequal masses, a large spin on the more massive component which has significant components both in the plane of the orbit
and anti-aligned with the orbital angular momentum.
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b̄ < 0.3. This result is obviously sensitive to the assumptions
on the mass and spin distribution. In Ref. [59] we investigate
a larger number of spin distributions, including ones which
allow for large spin magnitudes, and we find that the peak of
the b̄ distribution is below 0.2 and that over 90% of binaries
have b̄ < 0.4 in all cases.
Figure 5 shows b̄ for a range of neutron star–neutron star

and neutron star–black hole binaries. For neutron star–black
hole binaries, the picture is similar to that for black hole
binaries, with large values of b̄ observed for high mass ratios
and large χP. However, as an earlier part of thewaveform is in
the detector’s sensitive band, the impact of precession is less
observable at fixedmass ratio than for highermass black hole
binaries. For neutron star binaries, the value of b̄ remains
below 0.15 across the parameter space, and is less than 0.05
for reasonable neutron star spins, χ ≲ 0.4.

IV. THE TWO-HARMONIC APPROXIMATION

The precessing waveform can be expressed as the sum of
five harmonics whose amplitudes form a power series in
b ¼ tanðβ=2Þ. Furthermore, over the majority of the space
of binary mergers, the value of b is less than 0.3. In
addition, for b̄ ≤ 0.4 the dominant harmonic—the one
containing the most power—must be either k ¼ 0 or 1.
Thus, for the vast majority of binary mergers, we expect
that these two harmonics will be the most significant.
This motivates us to introduce the two-harmonic

approximation, in which we generate a waveform contain-
ing only the k ¼ 0 and k ¼ 1 harmonics, i.e.,

h ¼
X
k¼0;1

wþðhk0A1
k þ hkπ

2
A3

kÞ þ w×ðhk0A2
k þ hkπ

2
A4

kÞ: ð28Þ

The expression for the two-harmonic waveform can be
simplified by restricting to the single detector case (i.e.,
setting wþ ¼ 1 and w× ¼ 0), explicitly working with the
waveform in the frequency domain, for which hkπ

2
ðfÞ ¼

ihk0ðfÞ, and dropping the subscript 0 on the zero-phase
waveform, so that hkðfÞ ≔ hk0ðfÞ. The two harmonics of
interest are,

h0ðfÞ ¼ AoðfÞe2iΦðfÞ
�

1

ð1þ bðfÞ2Þ2
�
; ð29Þ

h1ðfÞ ¼ AoðfÞe2iΦðfÞ
�
bðfÞe−iðαðfÞ−αoÞ
ð1þ bðfÞ2Þ2

�
; ð30Þ

and the two-harmonic waveform then becomes,

h2harm ¼ A0h0 þA1h1; ð31Þ

where,

FIG. 4. The distribution of b̄ for a 3 different populations of
binary black holes. Each population assumes either a low-
isotropic, low-aligned or a flat precessing spin distribution. A
power-law distribution in masses is assumed in all cases (see text
for details).

FIG. 5. The value of b̄ across the binary neutron star and neutron-star–black-hole space. The left figure shows the variation of b̄ for an
NSBH system with a 1.4 M⊙ neutron star, χeff ¼ 0 and varying black hole mass and χp. The right figure shows the variation of b̄ against
mass ratio and χp for a binary neutron star system of total mass 2.7 M⊙ and χeff ¼ 0.
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A0 ¼
d0
dL

�
1þ cos2θJN

2
cos 2ψ − i cos θJN sin 2ψ

�

× e−ið2ϕoþ2αoÞ;

A1 ¼
d0
dL

ðsin 2θJN cos 2ψ − 2i sin θJN sin 2ψÞ

× e−ið2ϕoþαoÞ: ð32Þ

Thus, the two-harmonic waveform is composed of two
components that have frequencies offset by ΩP, and any
observed amplitude and phase modulation of the waveform
is caused by the beating of one waveform against the other.
The relative amplitude and phase of the two harmonics is
encoded by

ζ ≔
b̄A1

A0

¼ b̄eiαo
�

sin 2θJN cos 2ψ − 2i sin θJN sin 2ψ
1
2
ð1þ cos2 θJNÞ cos 2ψ − i cos θJN sin 2ψ

�
:

ð33Þ

The value of ζ depends upon the viewing angle, encoded in
θJN and ψ , and the initial precession phase αo. It is not
difficult to show that ζ can take any value as the parameters
θJN, ψ , αo are varied. For example, at θJN ¼ 0, A1 vanishes
and so does ζ, while at θJN ¼ π=2 and ψ ¼ π=4, A0

vanishes and ζ → ∞. Since the initial precession phase
αo is a free parameter, the phase of ζ also can take any
value. The overall amplitude and phase of the signal also
depends upon the distance and coalescence phase so that
any values of the amplitude and phase of the signal in the
two harmonics are consistent with a signal.

V. VALIDITY OF THE TWO-HARMONIC
WAVEFORM

To investigate the validity of the two-harmonic approxi-
mation, we compare the approximate waveform with the
full, five-harmonic, precessing waveform across the param-
eter space. The error will be of order b2, which is small over
much of the parameter space, and for the majority of
orientations.
Figure 6 shows the overlap between the full waveform

and a subset of the harmonics for a binary withM¼40M⊙,
q ¼ 4 and χeff ¼ 0, while varying the orientation and value
of χP. In each case, we calculate,

Oðh; h0Þ ¼ maxϕo
ðhjh0Þ

jhjjh0j ; ð34Þ

where,

ðajbÞ ¼ 4Re
Z

∞

fo

a⋆ðfÞbðfÞ
SðfÞ df; ð35Þ

and SðfÞ is the power spectral density of the detector data.
Thus the overlap is maximized over the phase, but not over
time or any of the mass and spin parameters. An overlap of
close to unity shows that the two waveforms are very
similar, while a lower value of overlap implies significant
deviations between the waveforms. As a rule of thumb, an
overlap Oðh; h0Þ≲ 1–3=ρ2 will be observable at a signal to
noise ratio ρ [15,62,63].
We calculate the overlap of the full waveform, h, against
(1) the leading order waveform in the precession ex-

pansion, h0;
(2) the dominant harmonic, i.e. the harmonic of h0 and

h1 which contains the largest fraction of the power in
the full waveform;

(3) the two-harmonic waveform with the appropriate
values of A0 and A1.

For the þ polarized waveform (left column), the k ¼ 0

harmonic is dominant for all values of θJN and χP, so that
the observed overlap with the full waveform is above 0.8
across the parameter space. For θJN ≈ 0 or small values of
χP, the other harmonics make a minimal contribution and
the overlap is close to unity. For larger values of θJN and χP
the other harmonics are more significant and the overlap
drops to 0.9 or less. The two-harmonic waveform is a
significantly better match to the full waveform, with an
overlap greater than 0.99 for much of the parameter space,
and only below 0.9 for edge-on systems with high χP where
the k ¼ 2 harmonic contributes most strongly (and the k¼1

contribution vanishes).
For the × polarized waveform (center column), the effect

of incorporating the k ¼ 1 harmonic is dramatic. For θJN ¼
90° the k ¼ 0 contribution vanishes and only the k ¼ 1, 3
harmonics are present. Thus, the overlap with harmonic
k ¼ 0 is essentially zero. Using the best of k ¼ 0, 1
provides a good overlap with the edge-on waveform, but
there is still a poor overlap at θJN ≈ 60° where both the
k ¼ 0 and 1 harmonics contribute significantly to the
waveform. This effect has been observed previously, for
example in [33,34] and a geometric understanding of its
origin provided. The two-harmonic waveform matches
remarkably well to the full waveform, with the largest
differences for θJN ¼ 90° and χP ≈ 1 where the overlap
drops to 0.99 due to the contribution from the k ¼ 3
harmonic.
The right column shows the overlap as the orientation of

the binary changes. As expected, at points where the k ¼ 0
harmonic vanishes (θJN ¼ 90° and ψ ¼ 45°), the overlap
with this harmonic drops to zero. The dominant harmonic is
a good match to the waveform, except for orientations
where two harmonics contribute significantly. As discussed
in detail in Ref. [33], this corresponds to configurations
where the binary orientation passes through the null of the
detector response (i.e. the signal goes to zero) once per
precession cycle. Thus, the radius of the circle with poor
overlaps is approximately equal to the opening angle of
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the binary. The two-harmonic approximation provides an
excellent fit to the full waveform over the majority of
orientations, only dropping below 0.95 for orientations
where θJN → 90° and ψ ≈ 0; 90°, where the k ¼ 2 harmonic
is most significant.
Next, we investigate the validity of the two-harmonic

approximation for a population of binaries. To begin with,
let us fix the masses and spins and just consider the effect
of binary orientation. As before, we choose M ¼ 40 M⊙,
q ¼ 4, χeff ¼ 0 and χP ¼ 0.6, corresponding to b̄ ≈ 0.3,
with the binary orientation distributed uniformly over
cosðθJNÞ, ϕo, αo, ψ . Figure 7 shows the distribution of
the overlap between the full waveform and (1) the k ¼ 0
harmonic, (2) the dominant harmonic and (3) the two-
harmonic approximation. The results are shown for both a
uniformly distributed population, and a population of sig-
nals observable above a fixed threshold in the detector—
thereby favoring orientations that produce the largest
amplitude gravitational wave. The median overlap with
either the k ¼ 0 or dominant harmonic is ≲0.9, while the
two-harmonic approximation improves the median overlap

to 0.99. Using the dominant harmonic, there are a small
fraction of signals with overlaps of 0.7 or lower (and for the
k ¼ 0 harmonic, this tail extends to overlaps of 0.2), while
for the two harmonic approximation, the worst overlap
is 0.88.
We can use these results to obtain a rough sense of the

benefits of performing a search using the two-harmonic
approximation. Previous, more detailed, investigations of
this question have been carried out in, e.g. [33,39,64].
Current gravitational wave searches make use of spin-
aligned waveforms [65,66], and a precessing waveform
will naturally be identified by a spin-aligned waveform
which matches well the dominant harmonic. Thus, we can
use the overlaps between the precessing waveforms and
dominant harmonics as a proxy for the performance of an
aligned spin search. Since the median overlap is 0.9 we
would expect to recover approximately 70% as many
signals (≈0.93 for a population uniform in volume) as
with a full precessing search, above a fixed threshold. A
search based upon the two-harmonic approximation
would recover around 97% of these signals, indicating

FIG. 6. The overlap between a precessing waveform and a subset of the harmonics, as a function of the precessing spin and binary
orientation for a 40 M⊙ binary with mass ratio q ¼ 4 and χeff ¼ 0. The top row shows the overlap between the leading, k ¼ 0, harmonic
and the full waveform; the second row shows the overlap between the dominant harmonic and the full waveform; the bottom row shows
the overlap between our two-harmonic precessing waveform and the full waveform. The first column is for the þ polarization, second
for × and third for fixed χP ¼ 0.6 and varying polarization.

TWO-HARMONIC APPROXIMATION FOR GRAVITATIONAL … PHYS. REV. D 102, 024055 (2020)

024055-11



an improvement of over 30% in sensitivity to such
systems.
We also show how the distribution of overlaps varies

across the mass and spin parameter space, as encoded by
the parameter b̄ and plotted for three choices of spin
distribution in Fig. 4.5 For b̄ ≲ 0.13—accounting for three
quarters of signals in the low-isotropic population—the
median overlap between the dominant harmonic and the
full waveform is above 0.97. Thus, for the majority of

expected signals, the spin-aligned search will have good
sensitivity. However, even for low values of b̄ there will be
some orientations of signals where two dominant har-
monic will not match the waveform well, while the two-
harmonic waveform still provides an essentially perfect
representation of the waveform for all orientations. At b̄ ≈
0.25 the median overlap with the dominant harmonic
waveform drops to 0.9, and it is here that a search with
the two-harmonic approximation could provide a 30%
improvement. We note, however, that for the low-isotropic
distribution this accounts for only 5% of systems. While
systems with such significant precession may be rare they
would come from interesting areas of parameter space,
with high mass ratios and spins. It is only at b̄ ¼ 0.4 that
the median overlap for the two harmonic waveform drops
to 0.97, indicating a 10% loss relative to an ideal search,
but also 70% improvement over a spin-aligned search.

VI. SEARCHING FOR PRECESSING BINARIES

The two-harmonic approximation provides an ideal basis
to develop a search for binaries with precession. The typical
approach to searching for binary coalescences has been to
generate a template-bank of waveforms that covers the
parameter space [67–69]. These templates comprise dis-
crete points in the mass and spin space chosen so that the
waveform produced by a binary anywhere in the parameter
space of interest has a match of at least 97% with one of the
templates. The waveform for each template is then match-
filtered against the data to identify peaks of high SNR, and
various signal consistency and coincidence tests are used to
differentiate signals from nonstationary noise transients
[65,66,70–72]. Current searches make use of a template
bank covering the four dimensional mass and aligned-spin
space [73,74].6 The search takes advantage of the fact that
changing the sky location, distance and orientation of the
binary only changes the overall amplitude and phase of the
signal, and these quantities can be maximized over in a
simple manner.
When developing a search for precessing binaries, the

search becomes more challenging due to the increasing
number of parameters. In principle, it is necessary to
search over two masses and six spin components,
although, in practice it will probably be sufficient to
restrict to the masses, χeff and χP. The second complica-
tion is that the observed morphology of the waveform
varies as the orientation of the binary changes, and it
becomes necessary to search over binary orientation θJN,
polarization ψ and precession phase αo, although methods

FIG. 7. The distribution of the overlap of the precessing
waveform with the k ¼ 0, dominant and two-harmonic wave-
forms for a population of signals with M ¼ 40 M⊙, q ¼ 4,
χeff ¼ 0. The top plot shows the overlap distribution for χP ¼ 0.6,
with random orientation of the signal. The lighter shaded regions
give the distribution for a randomly oriented population of
sources and the darker regions for the expected observed
distribution (for a uniform-in-volume source). The lower plot
shows the overlap between full and approximate waveforms as a
function of b̄. The lines on the plot show the value of the overlap
for the median (solid line), worst 10% (dashed) and worst 1%
(dot-dashed) of signals.

5While these plots were made with fixed masses and χeff , they
should give a reasonable indication of the accuracy of the two-
harmonic waveform across the mass and spin parameter space, as
a function of b̄. For different masses and spins, the evolution of
the precession angle during the coalescence can have a slight
impact upon the relative importance of the modes but, as b
typically does not change significantly over the observable
waveform, this effect is likely to be small. Furthermore, as
different modes are not perfectly orthogonal, the degree to which
they are not will also have a small effect upon the results. As
shown in Sec. VII, the harmonics are close to orthogonal for
M ≲ 40 M⊙ so that the results shown here will be representative,
at least at lower masses.

6As we have discussed, the most significant effect on the
observed waveform arises due to the effective spin χeff , which is a
combination of the aligned spin components of the two wave-
forms. Thus, although the template space is four dimensional, one
of the spin directions provides limited variation to the waveforms,
and thus is relatively straightforward to cover.
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have been developed to straightforwardly handle a subset
of these parameters [39,75].
The two-harmonic waveform can be used to maximize

the SNR over the binary orientation in a simple way. The
two complex amplitudes A0 and A1, defined in Eq. (32),
are dependent upon five variables: the distance, dL, binary
orientation, θJN, ψ , and the initial orbital and precession
phases, ϕo, αo. Since A0 and A1 can take any value in the
complex plane, it is possible to construct the two-harmonic
SNR by filtering the two harmonics h0 and h1 against the
data and then freely maximizing the amplitudes so that,

ρ22harm ¼ ρ20 þ ρ21: ð36Þ

If the harmonics are not orthogonal, the two-harmonic SNR
should be calculated using h0 and h1⊥—the k ¼ 1 harmonic
with any component proportional to h0 removed. The
extrinsic parameters of the binary (distance, sky location,
orientation, orbital and precession phase) can be searched
over through maximization over the amplitudes of the two
harmonics, leaving only the masses and spins as dimen-
sions to search using a bank of waveforms.
We must still construct a bank of waveforms to cover the

four-dimensional parameter space of masses, the effective
aligned χeff and precessing χP components of the spins. The
amplitude and phase evolution of a single harmonic does
not carry the tell-tale amplitude and phase modulation
caused by precession, but does have a different phase
evolution due to precession [20,35]. Since the phase
evolution of each precessing harmonic is degenerate with
a nonprecessing waveform with different mass-ratio or
effective spin, the bank of templates will essentially be a
bank of nonprecessing waveforms. This may allow us to
reduce the size of the template bank.
The k ¼ 0 harmonic of the precessing waveform has an

additional phase [see Eq. (16)] of,

δϕ0ðtÞ ¼
Z

t

to

2b2

1þ b2
_αdt0: ð37Þ

For systems in which orbital angular momentum dominates
over spin angular momentum, the precession frequency is
inversely proportional to orbital frequency, ΩP ¼ _α ∝ f−1

[1,4,33]. This is the same frequency dependence as the 1PN
contribution to the waveform, whose amplitude depends
upon the mass ratio. Consequently, it is reasonable to
expect that the precession-induced phase will be indistin-
guishable from a systematic offset in the binary mass ratio,
or the effective spin [16]. Similarly, the k ¼ 1 harmonic has
essentially the same amplitude evolution as the nonprecess-
ing waveform, but with a phase difference of,

δϕ1ðtÞ ¼ −
Z

t

to

1 − b2

1þ b2
_αdt0; ð38Þ

which will also, in many cases, be degenerate with a change
in the mass ratio or aligned spin.
In Figure 8, we investigate the degeneracy in the spin

(χeff–χP) space of the two leading precession harmonics.
We consider a system with masses, M ¼ 40 M⊙ and
q ¼ 4, and spins χeff ¼ 0, χp ¼ 0.6 and investigate how
the two waveform harmonics vary as the spins are
changed. The figure shows the match—the overlap maxi-
mized over time-offsets—between our fiducial waveform
and one with the same masses but different spins. For both
harmonics, there is a band in the χeff–χP plane where the is
mismatch is small—the different phase evolution of each
harmonic caused by varying χP can be offset by a suitable
change in χeff . The relation is approximately quadratic,
Δχeff ∝ ðΔχPÞ2, which is to be expected. Recall, from
Eq. (37), that the change in phase due to precession is
quadratic in b, and therefore also in χP at least for small
values of b. Meanwhile the phasing of the waveform
varies, at leading order, linearly with χeff .

FIG. 8. The mismatch between the k ¼ 0 (left) and k ¼ 1 (right) harmonic of two precessing signals as the effective spin χeff and
precessing spin χP are varied. For all waveforms, the total mass is fixed to 40 M⊙ and the mass ratio to 4. One waveform has χeff ¼ 0 and
χP ¼ 0.6 (the point marked by a star), while the spins of the second waveform are varied. The blue and green lines show the value of χeff ,
for the k ¼ 0 and k ¼ 1 harmonics respectively, which gives the largest match with the fiducial waveform; the red line is the average of
these values.
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This degeneracy in the χeff–χP plane suggests that a single
templatewaveform could be used to search over an extended
region corresponding, for example, to the region ofmismatch
< 0.03 in Fig. 8. However, this will only work if the
degenerate region for the k ¼ 0 and k ¼ 1 harmonics is
the same. It is clear from Eqs. (37) and (38) and Fig. 8 that
they are not identical. Nonetheless,7 for the examplewe have
considered, the two degenerate regions are similar, and along
the line that traces themid-point between the best fit values of
χeff for the two harmonics, both harmonics have a match
above 0.97 with the initial point. Thus, to an accuracy
appropriate for generating a template bank, we can use the
two harmonics from a singlewaveform to cover a band in the
χeff–χP plane which spans all values of χP. This effectively
reduces the dimensionality of the parameter space to three
dimensions: mass, mass ratio and one spin parameter.
Our proposal to develop a precessing search is as

follows. First, generate a bank of templates to cover the
space of nonprecessing binaries. At eachM, q, χeff point in
the template bank, construct the two-harmonic waveform
for a fixed value of χP. Then, filter the data against the two
harmonics and calculate the two-harmonic SNR, as defined
in Eq. (36) to identify candidate events in a single detector.
It will be necessary to extend the existing χ2 signal
consistency test [71] to each harmonic, taking into account
the presence of the other harmonics, to reduce the impact of
nonstationarity in the data. Next, perform coincidence
between detectors by requiring a signal in the same
template at the same time, up to the allowed time delays
based upon speed of propagation. For a nonprecessing
signal observed in two detectors, the relative amplitude and
phase of the SNR in each detector can take any value, even
though some are astrophysically more likely [76] (and this
can be used to increase search sensitivity). However, for the
two-harmonic waveform not every signal observed in two
detectors will be compatible with an astrophysical source.
This can be seen through simple parameter counting: there
are ten measured quantities (two complex amplitudes and a
time of arrival in each detector), which depend upon eight
parameters, the five orientation parameters (dL, θJN, ψ , ϕo,
αo), sky location and merger time. An additional coinci-
dence test to check for consistency between parameters will
likely be necessary to reduce the search background. A
similar problem arises already in extending the amplitude
and phase consistency of [76] to three or more detectors and
methods developed for that purpose may be helpful for the
precessing search.
We can estimate the likely sensitivity improvement from

a precessing search, as we have briefly discussed in Sec. V.

A nonprecessing search will typically find the dominant
harmonic of the waveform. Thus, for signals where two
harmonics provide a significant contribution, a search
based on the two-harmonic waveform has the potential
to out-perform the nonprecessing search. The two-har-
monic waveform has four degrees of freedom, encoded in
A0 and A1, compared to two for the nonprecessing search.
Thus, the noise background is higher for the two-harmonic
search and, based upon a comparison of the tails of the χ2

distribution with 2 and 4 degrees of freedom, an increase of
around 5% in SNR is required to obtain the same false
alarm rate (see e.g., Ref. [39] for a discussion of this issue).
Thus, a signal will be observed as more significant in the
two-harmonic search than a nonprecessing search if the
SNR can be increased by 5% or more. Figure 7 shows that
this occurs for b̄≳ 0.15, and for binaries with b̄ above this
value the two-harmonic search has the potential to outper-
form a nonprecessing search. We note, however, that a
given template will cover a range of spin values and
consequently a range of b̄, so it may be more appropriate
to deploy the two-harmonic search for templates with an
average of b̄ which is greater than 0.15.
Another challenge of searches for precessing systems is

the associated computational cost [39], which can be
prohibitive. The maximum computational cost for the
two-harmonic search would be double that of a comparable
nonprecessing search: it becomes necessary to filter both
the k ¼ 0 and 1 harmonics, and computational time is
dominated by this matched filtering. However, since both
the k ¼ 0 and k ¼ 1 harmonics are essentially nonprecess-
ing waveforms, there may be waveforms associated with
the k ¼ 1 harmonics are already in the set of k ¼ 0
waveforms, but associated with different parameters. If
so, this could further reduce the computational cost.

VII. OBSERVABILITY OF PRECESSION

The two-harmonic approximation allows us to easily
identify regions of the binary merger parameter space for
which precession will leave an observable imprint on the
waveform. Since the amplitude and phase evolution of a
single harmonic is generally consistent with that of a
nonprecessing waveform (see above and [34,35]), it is
only when two harmonics can be observed that we are able
to clearly identify precession in the system. We are there-
fore interested in deriving an expression for the precession
SNR, ρp, defined as the SNR in the second most significant
harmonic, and determining when it will be observable. If
the two harmonics h0 and h1 in Eq. (31) are orthogonal,
then the precession SNR is simply,

ρp ¼ minðjA0h0j; jA1h1jÞ;

¼ ρ2harm

�
minð1; jζjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jζj2
p

�
; ð39Þ

7Strictly, when doing this comparison, we must use the same
time offset for the two harmonics, whereas the figure allows for
an independent maximization of the time delay for each har-
monic. Fixing a single time delay does slightly decrease the
matches, but not significantly enough to change the conclusions.
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where ζ, defined in Eq. (33), gives the ratio of the SNR in
the k ¼ 1 and k ¼ 0 harmonics and ρ2harm is the total SNR
in the two-harmonic waveform.
Let us briefly examine where in parameter space the two

harmonics are close to orthogonal.Where there are sufficient
precession cycles we expect the two harmonics, h0 and h1,
will be close to orthogonal, and the overlap to be close to zero
[35]. The overlap between the two harmonics for various
two-dimensional slices through the parameter space is shown
in Fig. 9. At higher masses, where the binary completes one,
or fewer, precession cycles in the detector’s sensitive band,
there is a larger overlap between the harmonics. At negative
χeff andminimal χp, the overlap is also significant. However,
providing the mass of the system is below 50 M⊙, for the
much of the parameter space the overlap is less than 0.1 and
simple expression in Eq. (39) will be applicable.
Taking into account the overlap between harmonics, the

total power in the two-harmonic waveform is,

ρ22harm ¼ jA0h0j2ð1þ 2Re½ζo1;0� þ jζj2Þ: ð40Þ
where o1;0 is complex overlap between the two harmonics:

o1;0 ¼
ðh1jh0Þ þ iðh1jih0Þ

jh1jjh0j : ð41Þ

We can project the SNR onto directions parallel and
perpendicular to the h0 waveform to obtain the SNR in
these two directions as,

ρ20 ¼ jA0h0j2ð1þ 2Re½ζo1;0� þ jζo1;0j2Þ;
ρ2⊥;0 ¼ jA0h0j2jζj2ð1 − jo1;0j2Þ: ð42Þ

Similarly, the power parallel to and perpendicular to the
k ¼ 1 harmonic is,

ρ21 ¼ jA0h0j2ðjo1;0j2 þ 2Re½ζo1;0� þ jζj2Þ;
ρ2⊥;1 ¼ jA0h0j2ð1 − jo1;0j2Þ: ð43Þ

The precession SNR is defined as the power orthogonal
to the dominant harmonic,8

FIG. 9. The overlap Oðh0; h1Þ between the k ¼ 0 and k ¼ 1 harmonics across two-dimensional slices in the parameter space of total
mass, mass ratio, χeff and χp. In each plot, two of the parameters are varied while the other two are fixed to their fiducial values of
M ¼ 40 M⊙, q ¼ 4, χeff ¼ 0, χp ¼ 0.6.

8In exceptional circumstances, where the overlap is large and
ζo1;0 is close to −1, there can be more power in ρ⊥;i than ρi. In
such cases, it is natural to use ρi to determine if precession is
present, although this is not ideal as ρ⊥;i need not resemble a
nonprecessing waveform.
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ρp ≔ minðρ⊥;0; ρ⊥;1Þ;

¼ ρ2harm minð1; jζjÞ
�

1 − jo1;0j2
1þ 2Re½ζo1;0� þ jζj2

�1
2

: ð44Þ

As expected, the precession SNR scales with the total
SNR of the signal, so that precession will be more easily
observed for louder events. If there is significant degen-
eracy between the harmonics, the numerator will be
reduced, making the observation of precession more
difficult. Finally, in the limit that o1;0 → 0, the expression
simplifies to the one given earlier for orthogonal harmonics
in (39), as expected.
What value of ρp will be required to observe precession?

This will happen if the evidence for a signal with χp ≠ 0 in
the data is greater than that for a nonprecessing source.
This can be evaluated through Bayesian model selection,
by considering the Bayes factor between the hypotheses.
However, such a calculation requires a full exploration of the
parameter space. We can, instead, obtain an approximate
answer by considering the maximum likelihood. Since the
two-harmonic waveform is more general than the non-
precessing waveform, it will always give a larger maximum
likelihood even in the absence of precession do to its ability
to fit the detector noise. Thus, we are interested in examining
the expected increase in SNR due to the inclusion of the
second harmonic, in the absence of any power in it.
The two-harmonic SNR can be written as

ρ22harm ¼ ρ2np þ ρ2p: ð45Þ

where ρnp is the nonprecessing SNR or, equivalently, the
SNR in the dominant harmonic. In the absence of precession,
ρp will be χ2 distributed with 2 degrees of freedom, as we are
able to freely maximize over the amplitude and phase of the
two harmonics independently [70,72]. Consequently, in 90%
of cases, noise alonewill give a value of ρp < 2.1. Therefore,
as a simple criterion, we require that,

ρp ≥ 2.1; ð46Þ

for precession to be observable. In Ref. [77] we use this
definition to investigate in detail the observability of pre-
cession over the parameter space.

VIII. DISCUSSION

We have presented a new, intuitive way to understand the
observability of precession in GWobservations. By keeping
only the leading precession term, we have derived a
precession SNRand argued that this can be used to determine
when precession will be observable. Before discussing
applications we point out the main limitations of this
analysis. As is clear from the formulation, this analysis
works best for binaries where b ¼ tanðβ=2Þ is small. This
typically corresponds to situations where the masses are

comparable, the precessing spin is small and any aligned
component of the spin is aligned (rather than antialigned)
with the orbital angular momentum. We have shown above
that this assumption is valid for a reasonable population.
We now point to several advantages and applications of

this formulation:
First, it gives new understanding of the observability of

precession, and also of the origin of precession as the
beating of two waveform components with slightly differ-
ing frequencies (also discussed in [35]). It is difficult to
identify the presence of precession in a GW observation
directly from χP, since the prior astrophysical expectation
disfavors χP ¼ 0. While the deviation from the prior can be
determined through the Bayes factor, the results in this
paper suggest that the precession SNR ρP could provide a
direct measure of whether precession has been measured in
a signal. The potential applications of ρP are discussed in
the companion paper [59], and will be investigated in more
detail in Ref. [77], where we probe the measurability of
precession across the gravitational wave parameter space.
There exist a number of detailed population analyses

which extract the features of the underlying population of
gravitational waves from the set of observed gravitational
wave events, for example [6,78–80]. These typically use
the full posterior distributions recovered from the gravita-
tional wave signal [9,81] to infer the population and, as
such, naturally account for precession effects in the
observed signals when inferring the black hole mass and
spin populations. Nonetheless, there have been a number of
studies performed which investigate the population proper-
ties using a subset of the recovered parameters, see e.g.
[6,57,58,82–84], and have been successfully used to infer
interesting properties of the mass and spin distributions.
The majority of these studies have restricted attention to the
aligned components of the spins. The precession SNR
provides a straightforward method to determine the signifi-
cance of precession, and provides away to probe observ-
ability of precession in populations of binaries. In using this
method we have been able to derive constraints on the
preferred spin distribution including precession effects [59].
Both of the applications highlighted above are currently

possible using other more sophisticated but computation-
ally expensive methods such as Bayesian model compari-
son. This is, of course, a more general method that makes
fewer assumptions than we do in computing ρp, however
the computational costs associated with calculating the
marginal likelihood over multiple, e.g. precessing and
nonprecessing, models per binary are not feasible for a
large number of binaries. For example the analysis in [59]
involved calculating ρp for 1 million binaries, and comput-
ing the Bayes factor for 1 million binaries would certainly
not be practical. Similar, lightweight analyses, could also
be developed using the formalism introduced in, e.g. [33],
and if this is done, it would be interesting to compare them
with the results from the two harmonic analysis.
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Finally, we have outlined a method by which the two-
harmonic approximation could be used to develop a search
for precessing binaries. We have shown that in principle
that this approach could result in a significant increase in
sensitivity without the computational overheads associated
with other precessing search methods. In addition, the
formalism should provide a way to identify the parts of
parameter space where a precessing search is likely to
increase sensitivity. We plan a detailed investigation into
the feasibility of a precessing search based upon the two-
harmonic approximation in future work.
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APPENDIX: DERIVATION USING
SPIN-WEIGHTED SPHERICAL HARMONICS

In this appendix, we provide an alternative derivation of
the power series decomposition of the precessing wave-
form, given in Sec. III, based upon the spin-weighted
spherical harmonic decomposition of the waveform [85]
and its application to precession as described in [20,54].
Specifically, we wish to obtain the result in Eq. (14).
Throughout, we follow the notation used in [22].
The gravitational waveform emitted during a binary

merger,

h ≔ hþ − ih× ðA1Þ

can naturally be decomposed into a set of spin-weighted
spherical harmonics as

hðt; λ⃗; θ; αoÞ ¼
X
l≥2

X
−l≤m≤l

hl;mðt; λ⃗Þ−2Yl;mðθ;ϕÞ ðA2Þ

where θ and ϕ give the orientation of the observer relative
to a coordinate system used to identify the spherical
harmonics, λ⃗ encodes the physical parameters of the system
(masses, spins, etc) and t is the time.
The multipoles for a precessing system are approximated

by “twisting up” [20,54] the multipoles of the nonprecess-
ing counterpart based upon the orientation of the orbital
angular momentum given by the opening angle β, pre-
cession angle α and the third Euler angle ϵ defined via

_ϵ ¼ _α cos β: ðA3Þ

Then, the precessing multipoles are given by

hprecl;mðtÞ ¼
X

−l≤n≤l
hNPl;nD

l
n;mðαðtÞ; βðtÞ; ϵðtÞÞ ðA4Þ

where the Wigner D-matrix is

Dl
n;mðα; β; ϵÞ ¼ eimαdln;mð−βÞe−inϵ ðA5Þ

and the Wigner d-matrix given, for example, in [86].
Combining these decompositions gives the waveform for

a precessing binary as

h ¼
X
l;m;n

−2Yl;mðθ;ϕÞDl
n;mðα; β; ϵÞhl;nðt; λ⃗Þ: ðA6Þ

In performing the twisting, it is natural that the precessing
waveform is described in a coordinate system aligned
with the orbital angular momentum, so that θ ¼ θJN.
Furthermore, the orientation of the x-axis will be specified
relative to the (initial) precession phase so that ϕ ¼ −αo.
In this work, we restrict attention to the case where the

nonprecessing model contains only the l ¼ 2 and n ¼ �2
modes, and require symmetry in gravitational wave emis-
sion above and below the plane of the binary so that
hl;n ¼ ð−1Þlh⋆l;−n. This eliminates the sum over l and m
from Eq. (A6). Furthermore, we can expand the spherical
harmonics using

−2Y2;mðθJN;−αoÞ ¼
ffiffiffiffiffiffi
5

4π

r
d2m;2ðθJNÞe−imαo ðA7Þ

to obtain

hprec ¼
X

−2≤m≤2

ffiffiffiffiffiffi
5

4π

r
d22;mðθJNÞeimðα−αoÞ

× ½hNP22 d22;mð−βÞe−2iϵ þ ðhNP22 Þ⋆d2−2;mð−βÞe2iϵ�:
ðA8Þ

We now wish to rewrite the above to show that the
waveform can be decomposed in modes whose amplitudes
form a power series in b ¼ tanðβ=2Þ. To do so, we note that
the Wigner d-matrices can be evaluated as powers of
sinðβ=2Þ and cosðβ=2Þ, so that if we are able to group
terms with the same indices we will arrive at the desired
expression. We do this by using the d-matrix identities:

dln;m ¼ ð−1Þm−ndlm;n ¼ ð−1Þm−ndl−n;−m ðA9Þ

and relabeling the dummy index m → −m in the second
term of Eq. (A8) to obtain:
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hprec ¼
X

−2≤m≤2

ffiffiffiffiffiffi
5

4π

r
d22;mð−βÞ

× ½ð−1Þmd22;mðθÞðhNP22 ðtÞe−2iϵeimðα−αoÞÞ
þd22;−mðθÞðhNP22 ðtÞe−2iϵeimðα−αoÞÞ⋆� ðA10Þ

Finally, we can evaluate the Wigner d-matrices as

d22;mð−βÞ ≔ Cm cos2þmðβ=2Þ sin2−mðβ=2Þ

¼ Cmb2−m

ð1þ b2Þ2 ðA11Þ

where C�2 ¼ 1, C�1 ¼ 2, C0 ¼
ffiffiffi
6

p
and, as before,

b ¼ tanðβ=2Þ. Similarly, we introduce τ ¼ tan θJN=2,
and evaluate the d-matrices for the angle θJN. This gives

hprec ¼
X

−2≤m≤2

ffiffiffiffiffiffi
5

4π

r
ðCmÞ2b2−m
ð1þ b2Þ2

×

�
τ2−m

ð1þ τ2Þ2 ðh
NP
22 ðtÞe−2iϵeimðα−αoÞÞ

þ ð−τÞ2þm

ð1þ τ2Þ2 ðh
NP
22 ðtÞe−2iϵeimðα−αoÞÞ⋆

�
ðA12Þ

This is close to the desired form and, in particular, we
have obtained an decomposition where the relative strength
of each mode is decreased by a factor of b. To obtain an
expression comparable to Eq. (14) we must evaluate the
waveform observed at a detector with response Fþ and F×
to the two gravitational polarizations.

hðtÞ ¼ Re½ðFþ þ iF×Þhprec�

¼ Re

�� ffiffiffiffiffiffi
5

4π

r
ðhNP22 Þ⋆e2iðϵþα−αoÞ

ð1þ b2Þ2
� X2

m¼−2

ðCmÞ2
ð1þ τ2Þ2 ðbe

−iðα−αoÞÞ2−mðFþ½τ2−m þ ð−τÞ2þm� − iF×½τ2−m − ð−τÞ2þm�Þ
�
:

ðA13Þ

Then, to finally equate this with the desired expression, we
must make the identification

ffiffiffiffiffiffi
5

4π

r
ðhNP22 Þ⋆e2iϵ ¼

do
dL

AoðtÞe2iΦS ; ðA14Þ

where ΦS is defined in Eq. (7). Thus the amplitude of the
waveform, AoðtÞ is the same as the scaled 22 mode while
the phase of the 22 mode is the (negative) of the orbital
phase. Furthermore, it is straightforward to show that the
Aþ;×

k coefficients are given by

Aþ
ð2−mÞ ¼

do
dL

ðCmÞ2
�
τ2−m þ ð−τÞ2þm

ð1þ τ2Þ2
�
;

A×
ð2−mÞ ¼

do
dL

ðCmÞ2
�
τ2−m − ð−τÞ2þm

ð1þ τ2Þ2
�
: ðA15Þ

Substituting these identifications, we obtain the desired
expression for the waveform observed at a detector,

hðtÞ ¼ Re

��
AoðtÞe2iðΦSþαÞ

ð1þ b2Þ2
�

×
X4
k¼0

ðbe−iαÞkðFþAþ
k − iF×A×

k Þ
�
: ðA16Þ
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