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ABSTRACT The rapid response characteristics and high-speed growth of electric vehicles (EVs) 
demonstrate its potential to provide auxiliary frequency regulation services for independent system operators 
through vehicle-to-grid (V2G). However, due to the spatiotemporal random dynamics of travel behavior, it 
is challenging to evaluate the ability of EV cluster to provide ancillary services under the premise of reaching 
the expected state of charge (SOC) level. To address this issue, a novel calculation model of charge and 
discharge capacity of EV cluster based on trip chain with excellent parallel computing performance is 
presented in this work. Following the introduction of the characteristic variables of the proposed trip chain 
model, the user’s continuous travel behavior in a time scale of several weeks is simulated. In particular, a 
bidirectional V2G scheduling strategy based on the five-zone map is designed to guide the charging and 
discharging behavior of EVs, where the expected SOC levels are guaranteed. The results of a 3-week travel 
simulation verify the effectiveness of the presented model in coordinating the V2G scheme and calculating 
the charge and discharge capacity of the EV cluster. 

INDEX TERMS Charge and Discharge Capacity, Electric Vehicles, Expectation-Maximization, Trip 
Chain, Vehicle-to-Grid. 

I. INTRODUCTION 
In recent years, the development of renewable energy 
sources, such as wind and solar power, has made great 
progresses. By the end of 2018, China’s full-caliber power 
generation capacity has reached to 1900GW, including 
184.27GW of wind power and 174.33GW of solar power 
with increases of 12.4% and 33.7% over the previous year, 
respectively. The proportion of renewable energy installed 
has reached 18.9%. The strong intermittence of renewable 
energy sources may lead to inevitable frequency variations, 
while conventional generating units cannot provide 
frequency regulation services in a cost-effective manner [1]-
[3]. Meanwhile, as an environment-friendly alternative to 
internal combustion engine vehicles, electric vehicles (EVs) 
have been widely promoted around the world. By 2030, the 
number of EVs in China will reach 60 million with a power 
consumption of about 1.3% of the national electricity 
consumption. The peak charging load will reach to 479GW, 
while uncoordinated charging may result in energy losses, 

voltage deviations, transformer overload, and electricity 
prices increasing [4]-[7]. 

New methods to model EV charging loads are under 
development. By assuming that the user’s initial states of 
charge (SOC) follows a certain normal distribution, references 
[8] and [9] use the method of Monte Carlo to draw samples of 
the arrival time, driving mileage, and the initial SOC of EVs 
to calculate the daily charging load profiles. However, the 
conditions of using this method may be too strict to fully 
reflect the randomness of user travel patterns. The queuing 
models for calculating the load of the charging station are 
proposed in [10] and [11] based on the assumption that the 
arrival time of EVs at the charging station follows the Poisson 
Distribution. This method is suitable for calculating charging 
loads in centralized places such as shopping mall car park, 
highway service areas, etc. However, the effectiveness of this 
model to calculate decentralized charging loads needs to be 
improved. By considering the impact of economics, 
convenience, and driving preferences on the charging 
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behavior of EVs, an agent-based simulation model is proposed 
in [12] and [13] to evaluate the impact of EV charging on grid 
loads. In order to describe the spatial-temporal randomness of 
the user’s travel behavior, the trip chain theory based on the 
Markov Random Process is used in [14]-[18]. By fitting the 
user’s travel characteristics on weekdays and weekends such 
as the departure time, driving distance, and parking duration, 
the charging loads under different parking scenarios are 
calculated in [17]. An inhomogeneous Markov model is 
presented in [18] to capture the diurnal variation in the use of 
an EV, where a large number of parameters are reduced by 
using B-spline. However, the complexity of the model may 
limit its applications in scenarios with large-scale EVs. 

EV cluster is a collection of a large number of EVs in a 
certain area. By controlling the charging and discharging 
behavior of EV clusters to track Automatic Generation 
Control (AGC) signals, vehicle-to-grid (V2G) could provide 
ancillary services such as frequency regulation and voltage 
regulation, even reducing wind and photovoltaic active power 
curtailment. According to the studies in [2], [19]-[26], the 
V2G control strategies could be broadly classified into two 
main categories: unidirectional V2G and bidirectional V2G. 

Unidirectional V2G is technically easy to be implemented, 
through which power can only flow from the grid to the EV 
[2], [19]-[20]. A unidirectional V2G hierarchical model that 
satisfies both supplementary frequency regulation and user 
travel needs is presented in [2], which allocates AGC signals 
based on the EV’s regulation capability. However, this model 
is similar to the one presented in [19], wherein the V2G power 
of each EV is determined by the charging station, which makes 
it unsuitable for decentralized charging scenarios. A V2G 
model for frequency regulation under the performance-based 
compensation scheme is proposed in [20], which maximizes 
the user’s income by improving the EV’s ability to track AGC 
signals. However, this scheme fails to consider the impact of 
frequency regulation on battery losses. 

Bidirectional V2G requires higher requirements on the 
inversion performance of charging equipment, which achieves 
a bidirectional power flow between the EV battery and grid 
[21]-[26]. A two-level hierarchical control mechanism based 
on mixed-integer linear programming is proposed in [21]. The 
EV charging and discharging scheme is determined by 
estimating the EV frequency modulation capability of the 
charging station and substation in each time slot. The 
capability of EVs in executing the reactive power 
compensation by tracking AGC signals is investigated in [22]. 
V2G-based EV supplementary frequency regulation has been 
adopted by many Independent System Operators (ISOs), such 
as PJM, California ISO, New York ISO and Midcontinent ISO 
[20]. However, the method of obtaining the intuitive charging 
and discharging capabilities of EV clusters is still under-
researched. 

To overcome these issues and maximize the contribution of 
bidirectional V2G to the grid, two major challenges still exist 
as follows: 

1) The primary purpose of EVs is to meet users’ travel needs. 
Therefore, based on practical data, analyzing the user’s travel 
pattern through the trip chain model with time-space variation 
probability is the fundamental work to study the impact of 
integrating large-scale EVs on power grids. 

2) Evaluating the ability of large-scale EV clusters to 
respond to AGC signals, i.e. charge and discharge capacity, on 
the premise of obtaining the expected battery SOC level, helps 
to guide the mid- and long-term planning of power grids and 
the assessment of renewable energy consumption capacity. 

The contributions of this paper include: 
1) Based on the spatiotemporal-varying probabilistic 

characteristics of starting and ending a trip, the probability 
distributions of the trip chain characteristic variables are fitted. 

2) The trip chains on a time scale of several weeks of the 
EV clusters are simulated, which can reflect the spatial-
temporal distribution of EVs’ diurnal driving patterns. 
Moreover, the simplified block structure makes it more 
suitable for the simulation of large-scale EV cluster travel 
behavior than the method presented in [18]. 

3) Inspired by the nine-zone map model applied in the 
control of substation voltage and reactive power [27], [28], a 
five-zone map model with closed boundaries is proposed, 
which is a new tool to describe the ability of an EV to respond 
to AGC signals more intuitively than the methods in [20], [21], 
[23] under the premise of meeting the owner’s travel needs. 

4) The charge and discharge capacities of the EV cluster are 
calculated based on the trip chains and the five-zone map. 

5) The simulation of travel and charge-discharge behaviors 
are parallelized to increase the calculation speed based on the 
consideration that the EVs in the cluster are independent of 
each other. 

The rest of this paper is organized as follows. Section II 
introduces the modeling of trip chains. Section III provides the 
mathematical model of the five-zone map. Section IV 
illustrates the calculation process. Section V presents the 
details of the proposed model and the results of a case study. 
The conclusion drawn from the study is provided in Section 
VI. 

II. TRIP CHAIN THEORY 

A. STRUCTURE OF THE TRIP CHAIN 
Analyzing the EV user’s travel pattern with time-space 
variation probability is the fundamental work to study the 
charging demand of EVs. The trip chain model can be used to 
reflect the dynamic characteristics of the travel pattern. A trip 
chain model is proposed based on the related studies in [15], 
[17]-[18], [29]-[31], its structure is illustrated in Figure 1. Bi is 
the i-th trip block in the trip chain, Ts,i, Ta,i, and Tg,i are the 
departure time, arrival time, and parking end time of the i-th 
trip, tv,i and tp,i are the driving time and parking duration of the 
i-th trip, pi-1 and pi are the departure type and destination type 
of the i-th trip, di is the driving mileage of the i-th trip. 
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FIGURE 1.  Structure of a trip chain. 

Six typical trip chains composed of daily activities are 
shown in Figure 2. Some references limit the length of the trip 
chain, for instance, by reducing the number of trips in one day 
[15]-[16]. In order to fully consider the randomness and 
continuity and explore the diversity of travel laws on a long 
timescale, this paper does not reduce the length of the trip 
chain and does not force EVs to return home at the end of the 
day during the simulation. 
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FIGURE 2.  Examples of typical trip chains. 
The U.S. Federal Highway Administration released the 

latest National Household Travel Survey (NHTS) in 2017. It 
is assumed that EV owners have the same travel patterns as 
the survey, hence the TRIPPUB.csv file released in the survey 
is used as the dataset in this paper. 

B.  CHARACTERISTIC VARIABLES OF THE TRIP CHAIN 
Each trip in the trip chain is abstracted into a trip block consists 
of several characteristic variables that follow different 
distributions. The fitting methods of the characteristic 
variables are described as follows: 
1)  THE FIRST DEPARTURE TIME OF A DAY 

The frequency histogram of the first departure time of a day 
is shown in Figure 3. It shows that the first departure time 
follows a Gaussian mixture distribution. Therefore, the 
Expectation-Maximization (EM) algorithm in [32] is used to 
fit the parameters of the Gaussian mixture distribution. 
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FIGURE 3.  PDF histograms of the daily first departure time. 
According to the probability theory, the probability density 

function (PDF) p(x) of a one-dimensional Gaussian mixture 
distribution array X = {x1, x2, …, xN} can be expressed as: 
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where Θ=(ω1, ω2, … , ωM, θ1, θ2, … , θM) indicates that the 
Gaussian mixture distribution is composed of a finite number 
of M single Gaussian distributions, ωk is the weight of the k-th 
single Gaussian distribution, which satisfies ∑ ωk

M
k=1 =1, θk is 

the mean and standard deviation (μk, σk) of the k-th single 
Gaussian distribution, pk( x | θk ) is the PDF of the k-th single 
Gaussian distribution. 

For simplicity, the readers are referred to the proof of 
parameter-estimation of Gaussian mixture distribution based 
on the EM algorithm in Appendix A. The steps to use the EM 
algorithm are given in (2)-(4). 

According to the Bayesian theory, the probability that the i-
th sample xi is generated by the k-th Gaussian distribution is: 
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where Θ(t) is the estimated value of Θ at the beginning of the 
t-th iteration. 

The distribution parameter Θk
(t+1) = (ωk
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each Gaussian distribution is calculated iteratively: 
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The iteration ends when the difference of the probability 
distribution parameters between two iterations meets the 
following condition: 

( ) ( )( ) { }1max ,    1,2, ,t t
k k k Mε+Θ −Θ < ∀ ∈ 

, (4) 

where ε represents the threshold error. 
After calculating the parameters of every single Gaussian 

distribution with the EM algorithm, the Gaussian mixture 
distribution model of the first departure time of the day can be 
obtained. 
2)  TRAVEL DESTINATION TYPE 

This paper considers Q types of travel destinations, i.e. pi∈ 
{D1, D2, …, Dj, …, DQ}, wherein pi = Dj means the destination 
of the i-th trip is Dj. The transition probability of the i-th trip 
P[ pi | pi-1, Ts,i] between different destinations is a conditional 
probability based on the departure time Ts,i. Therefore, this 
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paper divides a day into H periods and calculates the frequency 
of travel records in each period. Then, an H × Q × Q transition 
probability matrix R can be created, where the element rk,i,j is 
the travel transition probability from Di to Dj during the period 
of [tk-1, tk]. 

The most common travel destination types on weekdays 
and weekends are given in Table I sorted by frequency. It can 
be seen that the 6 types of travel destinations have a 
cumulative probability of 90%, and there is a clear difference 
between weekdays and weekends. Herein, it is assumed that 
the destination for each trip in the trip chains is one of the 6 
types, i.e. Q=6. 

TABLE I 
THE MOST COMMON TRAVEL DESTINATION TYPES 

Proportion Home 
/% 

Work 
/% 

Shop- 
ping 
/% 

Enter- 
tainment 

/% 

Pick- 
up 
/% 

Dining 
/% 

Sum 
/% 

Weekday 32.34 17.90 16.05 8.67 7.73 7.36 90.05 
Weekend 37.31 3.88 20.34 14.50 4.50 10.77 91.30 

It is assumed that the starting and ending locations of the 
trip chain are both Home. However, a trip with Home as the 
destination does not necessarily mean Home is the end of the 
trip chain. Taking this into consideration, trips with Home as 
the destination are further divided into two categories: a) 
Homea: temporary parking at home; b) Homeb: return home 
and end the current trip chain. Therefore, the transition 
probability matrix R can be expanded as H × Q × (Q+1). 
3)  DRIVING TIME AND MILEAGE 

The driving time tv, i follows a log-normal distribution when 
the departure type pi-1 and destination type pi of the i-th trip are 
determined [17], i.e. ln(tv, i ) ~ N[ μv(pi-1, pi), σ

 2
 v(pi-1, pi)] which 

takes the uncertain factors into account, such as driving habits, 
traffic jam, and different distances to the same destinations. 

The driving mileage di follows a normal distribution when 
the driving time tv, i is determined, i.e. di ~ N[ μd(tv, i), σ 2

 d(tv, i)], 
and the power function characteristics are satisfied between 
μd(tv) with tv, and σd(tv) with tv as shown in Figure 4. The 
driving time is divided into several equally spaced segments, 
and the power function form y(tv)=a×tv

b is used to fit the 
distribution parameters of the driving mileage in each segment 
[17]. 
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FIGURE 4.  Power function relationship between driving mileage and 
driving time. 

4)  PARKING DURATION 
The length of parking depends on the type of travel 

destination, i.e. where it is parked. As shown in Figure 5, the 
parking durations at destinations of Homea, Shopping, 
Entertainment and Pick-up follow log-normal distributions. 
The parking durations at destinations of Work and Dining 
follow Gaussian mixed distributions composed of 3 and 2 
single Gaussian distributions. It should be noticed that for the 
i-th trip with Homeb as the destination, the parking duration tp,i 
is determined by the first departure time of the next day. 
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FIGURE 5. PDF histograms of parking durations at different destinations. 

5)   THE DIFFERENCE BETWEEN WEEKDAYS AND 
WEEKENDS 

Data shows that there is a clear difference between the 
travel preferences on weekends and weekdays. Therefore, 
each of the above-mentioned characteristic variables needs to 
be fitted separately.  

Besides, since the daily trips in the NHTS 2017 dataset are 
evenly surveyed, the ratio between the number of daily trips 
that occur on weekdays and weekends can reflect the user’s 
preference difference for starting a trip chain between 
weekdays and weekends. Therefore, we define the probability 
of starting a trip chain on weekdays as P1=1. The probability 
of starting a trip chain on weekends P2 can be expressed as: 

wke
2 1

wkd

/ 2
/ 5

NP P
N

= , (5) 

where Nwke and Nwkd are the numbers of travel records on 
weekends and weekdays.  
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III.  EV SCHEDULING STRATEGY BASED ON THE FIVE-
ZONE MAP 

A.  MODEL OF THE FIVE-ZONE MAP 
In order to intuitively reflect the ability of EVs responding to 
AGC signals and participating in V2G under the premise of 
meeting the owner’s travel needs, an EV scheduling strategy 
based on the five-zone map is proposed as a new solution. 
When the EV is plugged into the power grid, it will upload 
necessary information such as whether it will participate in 
V2G, the expected off-grid time and the expected off-grid 
SOC to the charging pile. EV’s five-zone map is illustrated in 
Figure 6. 

Z1:Free Zone Z2:Stop Charging Zone
Z3:Stop Discharging Zone Z4:Forced Charging Zone Z5:Standby Zone

(a) Five-zone map of EV (b) Five-zone map without Standby Zone
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FIGURE 6.  Five-zone map of EV. 

In Figure 6(a), Sl and Su are the minimum and maximum 
SOCs during V2G, Ta and Tg are the time when the EV is 
connected to and disconnected from the grid. Sa is the SOC 
when it is connected to the grid, and Sf is the lowest SOC meets 
the user’s travel demand when it is disconnected from the grid. 
The closed area Z formed by the polyline abcdef represents the 
safe operating zone based on the SOC during the on-grid time, 
where the line segments bc and fe represent the upper and 
lower boundary of the SOC, and the line segment ed represents 
the forced-charging boundary, the line segment dc represents 
the SOC range when the EV is disconnected from the grid. 

Assuming the slope of line segments ab and ed is kc, and the 
slope of line segment af is kd, which can be expressed as: 
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d
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where ηc and ηd are the charging efficiency and discharging 
efficiency, Pc and Pd are the charging power and discharging 
power measured at the grid side, Cb is the EV battery capacity. 

Each point x(t, St) in zone Z is a charging state of EV, 
wherein St is the SOC at time t. The locations of the 6 boundary 
points of zone Z are given in Table II. 

TABLE II 
 BOUNDARY POINTS OF ZONE Z 

Boundary point Coordinates 
a (Ta, Sa) 
b [Ta + (Su - Sa)/kc, Su] 
c (Tg, Su) 
d (Tg, Sf) 
e [Tg - (Sf - Sl)/kc, Sl] 
f [Ta + (Sl - Sa)/kd, Sl] 

The on-grid period of the EV is divided into several sub-
control periods with intervals of T. The behavior of EV in each 
sub-control period can be charging, discharging and standby. 
According to different results caused by different behaviors of 
EV in each sub-control period, the zone Z can be divided into 
five sub-zones, i.e. free zone Z1, stop charging zone Z2, stop 
discharging zone Z3, forced charging zone Z4 and standby zone 
Z5. The criteria for dividing each zone are described as follows: 
1)  STOP CHARGING ZONE Z2 

Charging in the stop charging zone will cause the SOC to 
be higher than the upper limit Su. Therefore, the charging 
behavior should be stopped in this zone. The criterion that the 
charging state of the EV at time t in the stop charging zone x(t, 
St)∈Z2 can be expressed as: 
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, (7) 

2)  STOP DISCHARGING ZONE Z3 
Discharging in the stop discharging zone will cause the 

SOC to be lower than the limit Sl or the SOC cannot meet the 
travel need when the EV is disconnected from the grid. 
Therefore, the discharging behavior should be stopped in this 
zone. The criterion that the charging state of the EV at time t 
in the stop discharging zone x(t, St)∈Z3 can be expressed as: 
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3)  FORCED CHARGING ZONE Z4 
Discharging or standby in the forced charging zone will 

cause the SOC to reach the forced-charging boundary ed. The 
criterion that the charging state of the EV at time t in the forced 
charging zone x(t, St)∈Z4 can be expressed as: 

( )

( ) ( )

( )

f f l
c g f g g

c c

f
c g f c g f g g

c

c g f f g g

,

,

,

l
l t

l
t

t

S S S S
S S k t T T S T T t T

k k
S S

k t T S S k t T T S T t T T
k

k t T S S S T T t T

− − ≤ ≤ − + + − − ≤ ≤ −

 −

− + ≤ ≤ − + + − < ≤ −

 − + ≤ ≤ − < ≤


, (9) 

4)  STANDBY ZONE Z5 
The existence of the standby zone depends on the value of 

the sub-control period T. If T meets the condition in (10), the 
stop charging zone Z2 and the stop discharging zone Z3 will 
form a closed intersection zone, which is the standby zone. 
Charging or discharging in the standby zone will cause the 
SOC to reach the limit Su or the forced-charging boundary ed. 
If T does not meet the condition in (10), the standby zone will 
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not exist. The five-zone map without Z5 is shown in Figure 
6(b). 

u f

c d

S ST
k k
−

>
−

,  (10) 

If the standby zone Z5 exists, the criterion that the charging 
state of the EV at time t in the standby zone x(t, St)∈Z5 can be 
expressed as: 

( ) ( ) ( )

( ) ( )

u f c d,u c c g f d g g
c

u fc g u d g f g
d c

, g

S S k k T
S k T S k t T T S k T T T t T Tt k

S Sk t T S S k t T S T T t Tt k k








− − −
− ≤ ≤ − + + − + − ≤ ≤ −

−
− + ≤ ≤ − + ≤ +

−
− <

,  (11) 

5)  FREE ZONE Z1 
The other area in Z is regarded as the free zone Z1, where 

EVs can choose to charge, discharge or standby. The free zone 
Z1 can be expressed as: 

( )1 2 3 4 5\Z Z Z Z Z Z= ∪ ∪ ∪ , (12) 

B.   BEHAVIORAL DECISION-MAKING IN FIVE-ZONE 
MAP 
1)  FREE ZONE Z1 

The decision-making strategy of charge and discharge 
behavior in the free zone is shown in Figure 7(a). Point A 
represents the charging state of the EV at the initial moment 
of the period of [ nT, (n+1)T ]. Segments AB, AC, and AD 
represent the SOC updating trace with the EV’s state being 
charging, discharging, and standby. None of the three 
behaviors will reach the boundary of Z. Therefore, any 
behavior can be selected in the free zone. 
2)  STOP CHARGING ZONE Z2 

The decision-making strategy of charge and discharge 
behavior in the stop charging zone is shown in Figure 7(b). 
The upper boundary of zone Z can be reached with the battery 
being charged during the period of [ nT, (n+1)T ]. Therefore, 
the battery should be charged first and then standby during this 
period, as shown by line ABD. Discharge or standby can also 
be selected in the stop charging zone. 
3)  STOP DISCHARGING ZONE Z3 

The decision-making strategy of charge and discharge 
behavior in the stop discharging zone is shown in Figure 7(c). 
The lower boundary of zone Z can be reached with the battery 
being discharged during the period of [ nT, (n+1)T ]. Therefore, 
the battery should be discharged first and then standby during 
this period, as shown by line ACD. Charge or standby can also 
be selected in the stop discharging zone. 
4)  FORCED CHARGING ZONE Z4 

The decision-making strategy of charge and discharge 
behavior in the forced charging zone is shown in Figure 7(d). 
The forced-charge boundary ed can be reached both with the 
battery being discharged or standby during the period [ nT, 
(n+1)T ]. Therefore, the battery should be charged during this 
period, as shown by line AB. 
5)  STANDBY ZONE Z5 

In the standby zone, EV should remain standby to ensure 
the SOC will not reach the boundary of the zone Z.  

(a) Decision in Free Zone (b) Decision in Stop Charging Zone

(c) Decision in Stop Discharging Zone (d) Decision in  Forced Charging Zone
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FIGURE 7.  Behavioral decision-making in the five-zone map. 

IV.  CHARGE AND DISCHARGE CAPACITY OF EV 
CLUSTER 

A.   ANALYSIS OF THE CHARGE AND DISCHARGE 
BEHAVIOR 
The SOC at the arrival time of the i-th trip can be expressed as: 

a, s,
b100i i

i
T T

dS S
C

υ
= − , (13) 

where STa,i and STs,i are the SOC at the arrival time and 
departure time of the i-th trip, STa,i is considered to be higher 
than 15% to ensure the safety of driving, di is the diving 
mileage of the i-th trip (km), υ is the power consumption per 
100 kilometers (kWh/100km) and Cb is the battery capacity 
(kWh). 

In this paper, two charging modes are considered, i.e. slow 
charging with AC power of Pc and fast charging with DC 
power of Pc

’. 
For EVs do not participate in V2G, their charging behavior 

depends on the SOC level STa,i and the usual initial charging 
SOC Ss. Their discharge capacity is regarded as zero.  

For EVs participate in V2G, when arriving at the destination, 
information of Ta, Tg, Sl, Su, Sa, and Sf are uploaded to the 
charging pile. Then, the five-zone map can be obtained based 
on (6)-(12). The charging or discharging behavior in each sub-
control interval can be determined according to the five-zone 
map scheduling strategy during the parking. It is assumed that 
the AGC signals of the power grid for the EV cluster are 
known, and the authority to decide the charging or discharging 
behavior is granted to the charging pile. 

The analysis of the charging and discharging behavior of an 
individual EV is shown in Figure 8. When the parking is over, 
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the charging and discharging power profile of the EV can be 
calculated by merging the behaviors during the parking.  
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FIGURE 8.  Analysis of the charging and discharging behavior of an 
individual EV. 

B.  CALCULATION PROCESS OF THE CHARGE AND 
DISCHARGE CAPACITY 
According to the above methods, the simulation steps of the 
trip chains and the calculation steps of the charge and 
discharge capacity can be described as follows: 

1) Fit characteristic variables of the trip chain, including the 
first departure time of the day, the trip transition probability, 
the driving time and mileage, and the parking duration. 

2) Start to model trip chains. Specify the max simulation 
time as Tmax, the number of EVs as N, and the current EV index 
as n=1. 

3) Draw a sample of the first departure time of the day Ts,1, 
and set the current trip index as i=1. 

4) Draw samples of the travel destination pi, driving time tv,i, 
and driving mileage di of the i-th trip, calculate the arrival time 
as Ta,i=Ts,i+ tv,i. 

5) If the destination pi is Homeb, then end the current trip 
chain and start a new trip chain for the next day; otherwise, go 
to 6). 

6) Draw a sample of the parking duration tp,i, calculate the 
end time of the i-th trip as Tg,i = Ta,i + tp,i. 

7) If the current time Tg,i exceeds the max simulation time 
Tmax, go to 9); otherwise, go to 8). 

8) Calculate the departure time of the (i+1)-th trip as 
Ts,i+1=Tg,i, and let i=i+1, then go to 4). 

9) If the current EV index n exceeds N, go to 10); otherwise, 
let n=n+1 and go to 3). 
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FIGURE 9.  Flowchart of the charge and discharge capacity calculation. 

10) Start to calculate charge and discharge capacity. Let n=1. 
11) Specify I as the number of trips of the n-th EV in the 

cluster. 
12) Initialize the SOC at the departure time of the first trip 

to 1, and let the trip index i=1. 
13) Calculate the SOC at the arrival time of the i-th trip 

based on (13).  
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14) Determine the charging and discharging behaviors, and 
calculate the charging and discharging power profile during 
the parking according to Figure 8. 

15) If the current trip index i exceeds I, go to 16); otherwise 
let i=i+1 and go to 13). 

16) If the current EV index n exceeds N, then calculate the 
charging and discharging power profile of the EV cluster; 
otherwise, let n=n+1 and go to 11). 

The flowchart of the charge and discharge capacity 
calculation is depicted in Figure 9. 

V.  CASE STUDY 
The charge and discharge capacity of EV clusters is calculated 
based on the NHTS dataset released by the Federal Highway 
Administration in 2017. 

A.  PARAMETERS OF THE EV CLUSTER 
According to a report from the International Council on Clean 
Transportation (ICCT) on the American EV market [33], the 
top five EV models with the highest market share are used for 
modeling EV clusters. Their battery parameters are listed in 
Table III. The power of slow charge and fast charge are set to 
5kW and 50kW respectively. The size of the EV cluster is set 
to 5000, and the proportion of various types of vehicles in the 
cluster is determined according to the market share. 

TABLE III 
BATTERY PARAMETERS OF TOP 5 TYPES OF EVS 

EV models Proportion of 
quantity 

Battery capacity 
(kWh) 

Power efficiency 
(kWh/100km) 

Tesla Model 3 63.0% 75 16 
Tesla Model X 11.2% 100 24 
Tesla Model S 11.0% 100 15.4 
Chevrolet Bolt 8.1% 66 17.2 

Nissan Leaf 6.7% 30 21.2 

According to the EV Project Nissan Leaf Vehicle Summary 
Report jointly released by Nissan and the Office of Energy 
Efficiency & Renewable Energy [34], the usual initial 
charging SOC Ss of EV owners normally follows a normal 
distribution, i.e. Ss ~ N (0.48, 0.1522). 

The timeslot for observing SOC is set to 1 minute, and the 
maximum simulation time is set to 3 weeks. 

B.   FITTING THE PROBABILITY DISTRIBUTION 
PARAMETERS 
1)  DATA CLEANING 

Trips of which the driving time and mileage are valid values 
(i.e. non-zero or non-null value) with private cars are selected 
from the dataset, including a total of 601,071 trips on 
weekdays and 183,777 trips on weekends. Hence, the 
probability of a weekend trip is 0.764 according to (5). 
2)  TRAVEL DESTINATION TYPES 

As mentioned before in Section II.B, it is assumed that the 
destination for each trip is one of the 6 most common types, 
i.e. Home, Work, Shopping, Entertainment, Pick-up, and 
Dining. Home is further divided into Homea and Homeb.  

Travel transition probability among different destinations 
varies over time. Dividing a day into 24 periods, the trip 
transition probabilities between destinations in each period of 

weekdays and weekends are calculated. The comparison of 
travel transition probabilities in 08:00-09:00 and 14:00-15:00 
on weekdays and weekends is shown in Figure 10. The peak 
value of the red curve in Figure 10(a) is 0.585, which means a 
trip taking “Home” as the departure has a probability of 58.5% 
of taking “Work” as the destination during the period of 08:00-
09:00. It can be seen that the choice of the travel destination is 
closely related to the type and time of the departure.  
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FIGURE 10.  Travel transition probabilities in typical periods. 
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3)  THE FIRST DEPARTURE TIME OF THE DAY 
The EM algorithm is used to fit the first departure time of 

the day which follows a one-dimensional Gaussian mixture 
distribution composed of 3 single Gaussian distributions, the 
distribution parameters in hours are shown in Table IV. The 
PDF histograms based on these parameters are shown in 
Figure 11. 

TABLE IV 
DISTRIBUTION PARAMETERS OF THE FIRST DEPARTURE TIME OF THE DAY 

Parameters 
 θ1   θ2   θ3  

ω1 μ1 σ1 ω2 μ2 σ2 ω3 μ3 σ3 
Weekdays 0.36 7.42 0.91 0.43 8.63 1.99 0.21 13.07 3.10 
Weekends 0.79 9.51 1.89 0.12 13.99 1.36 0.10 17.36 1.84 
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FIGURE 11.  PDF histograms of the fitted daily first departure time. 

4)   DURATION OF PARKING AT DIFFERENT 
DESTINATIONS 

As mentioned in Section II.B, models of log-normal 
distributions and Gaussian mixed distributions composed of 3 
and 2 single Gaussian distributions are used to fit the parking 
duration under different types of destinations. The parameters 
of the probability distributions are shown in Table V. 

TABLE V 
DISTRIBUTION PARAMETERS OF PARKING DURATION 

Destinations Distribution Types Weekdays Weekends 

Homea 
(minute) Log-normal 

μ 4.34 4.48 
σ 1.15 1.13 

Shopping 
(minute) Log-normal 

μ 3.11 3.20 
σ 0.90 0.92 

Work 
(hour) 

Gaussian mixed 
distributions 

composed of 3 
single distributions 

ω1 0.12 0.13 
μ1 0.72 0.54 
σ1 0.51 0.41 
ω2 0.38 0.30 
μ2 3.75 3.13 
σ2 1.25 1.40 
ω3 0.50 0.57 
μ3 8.91 8.02 
σ3 1.54 2.37 

Entertainment 
(minute) Log-normal 

μ 4.65 4.71 
σ 0.96 0.96 

Pick-up 
(minute) Log-normal 

μ 1.81 1.90 
σ 1.23 1.27 

Dining 
(hour) 

Gaussian mixed 
distributions 

composed of 2 
single distributions 

ω1 0.51 0.51 
μ1 0.31 0.47 
σ1 0.23 0.34 
ω2 0.49 0.49 
μ2 1.12 1.33 
σ2 0.73 0.88 

 

5)  DRIVING TIME AND MILEAGE 
The driving time tv between different departure and 

destination types follows the log-normal distribution, the 
parameters of which are listed in Appendix B. Dividing the 
driving time of all trips into several levels at a five-minute 
interval and calculating the average mileage of each level, the 
power function is used to fit the relationship between mileage 
and driving time, and the average absolute error (MAE) is 
calculated. The fitted parameters are shown in Table VI. 

TABLE VI 
POWER FUNCTION PARAMETERS OF DRIVING MILEAGE 

Trip days μd σd 
a b MAE a b MAE 

Weekdays 0.2622  1.2602  1.2091  0.1500  1.2476  0.3615  
Weekends 0.1677  1.3956  0.7378  0.2019  1.1571  0.3777  

Therefore, the driving mileage on weekdays and weekends 
follow the conditional normal distribution as below: 

N[0.2622×tv
1.2602, (0.1500×tv1.2476)2],  

N[0.1667×tv
1.3956, (0.2019×tv1.1571)2]. 

C.  SIMULATION OF THE TRIP CHAIN 
The simulation of the EV cluster trip chain follows the steps 
shown in Figure 9. The mileage for each trip is selected as the 
verification object. The probability density function and 
cumulative distribution function (CDF) of the mileage in the 
original and the simulated data are shown in Figure 12, which 
shows that the simulated trip chains conform to the actual 
driving law. 
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FIGURE 12.  Comparison of trip mileage in original and simulated data. 

D.  CALCULATION OF THE CHARGE AND DISCHARGE 
CAPACITY 
It is assumed that owners charge or discharge only in 
residential areas, working areas, shopping areas, and 
entertainment areas, and do not charge or discharge during 
pick-up and meals. To reduce the impact of the simulation 
initialization and compare the results on weekdays and 
weekends, the charge and discharge capacity of the EV cluster 
on the second Tuesday and the third Saturday are analyzed. 

To illustrate the implementation of the proposed V2G 
scheduling strategy, 20 EVs are randomly selected from the 
EV cluster, in which No.1-12 will participate in V2G, and 
No.13-20 will not. The charging and discharging behaviors of 
the selected EVs within 24 hours of the second Tuesday are 
drawn in a heat map together with the baseload of the grid, as 
shown in Figure 13.  

It can be seen that during the on-peak period of the baseload, 
most of EVs No.1-12 discharge to feed energy back to the grid, 
and a few of them charge to ensure the users’ travel needs. 
During the off-peak period of the baseload, EVs No.1-12 
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charge to fill the valley of load curve and prepare for next 
day’s trips. The charging decisions of EVs No.13-20 depend 
on the users’ travel needs, and no discharging decision is made. 
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FIGURE 13.  Charge and discharge behaviors of 20 selected EVs. 

The proportion of EVs participating in V2G in the cluster is 
usually affected by objective factors such as the driving 
demand, electricity price, and battery anti-aging technology. 
Studies in [35]-[37] have shown that optimistic discharge 
incentive policies can increase this proportion. In this paper, 
the proportion of EVs participating in V2G in the cluster is 
defined as Kp, which is regarded as an adjustable preset 
parameter to analyze the charge-discharge capability under 
different objective conditions. Kp can be expressed as: 

p
p

N
K

N
= , (14) 

where Np is the number of EVs participating in V2G in the 
cluster; N is the size of the EV cluster, i.e. the total number of 
EVs in the cluster. 

The charge and discharge capacity on weekdays and 
weekends in each area when Kp = 0.6 are shown in Figure 14, 
and the proportion of energy charged and discharged in each 
area are listed in Table VII. 
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FIGURE 14.  Charge and discharge capacity of EV cluster. 

In line with the AGC signals from the power grid, the 
charge power of the cluster is concentrated on the off-peak 
period of the baseload, i.e. 22:00 to 06:00 the next day, and the 
discharge power of the cluster is concentrated on the on-peak 
period of the baseload, i.e. 08:00-20:00. The short parking 

duration and the small number of EVs lead to low charging 
and discharging power in shopping and entertainment areas. 

During the off-peak period of the baseload, the power grid 
releases AGC signals of charging, EVs participating in V2G 
are charged during this period to meet their daytime travel 
needs. Since most EVs are at home during this period, the 
energy charged in the residential area accounts for a 
proportion of 95.1% in all areas. 

TABLE VII 
PROPORTION OF ENERGY CHARGED AND DISCHARGED IN EACH AREA 

Areas Weekday (%) Weekend (%) 
Charge Discharge Charge Discharge 

Residential 70.8% 60.5% 78.5% 76.9% 
Working 24.2% 36.8% 12.3% 17.1% 
Shopping 2.4% 1.0% 3.8% 1.8% 

Entertainment 2.6% 1.7% 5.4% 4.2% 

During the on-peak period of the baseload, the power grid 
releases AGC signals of discharging. The discharge capacity 
in the working area on weekends is lower than on weekdays, 
and the energy-discharged in the working area on weekdays 
increases by 19.7% compared to weekends. The discharge 
capacity in the working area in the morning is higher than that 
in the afternoon. This is because a large number of EVs arrive 
at the working area in the morning and feed the remaining 
power back to the grid. They charge in the afternoon to meet 
the travel needs after work.  

Besides, some owners set off late in the morning and some 
owners end their trips in the early evening, which causes two 
peaks in the discharge capacity profile in the residential area. 

E.   CHARGE AND DISCHARGE CAPACITY IN 
DIFFERENT SITUATIONS 
1)   CHARGE AND DISCHARGE CAPACITY WITH 
DIFFERENT Kp 
When Kp = 0, it is considered that the discharge capacity of the 
EV cluster in response to the AGC signals is zero. Charge 
demand comes from uncoordinated charging of EVs. The 
charge demand on weekdays and weekends in each area is 
shown in Figure 15, and the proportion of energy charged in 
each area are listed in Table VIII. 
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FIGURE 15.  Charge and discharge capacity of EV cluster when Kp = 0. 

It can be seen that the peak charging load in the residential 
area appears around 20:00 and is the highest among these 
areas. The peak charging load in the working area appears 
around 10:00. The energy-charged on weekends in the 
working area decreased by 16.7% than weekdays, which 
results in a 10.0% increase in energy-charged in the residential 
area. The charging demand in shopping and entertainment 
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areas is low, and the peak load appears in the afternoon. The 
proportion of energy-charged in these two areas has increased 
from 7.5% on weekdays to 14.2% on weekends. However, it 
is still lower than in other areas.  

TABLE VIII 
PROPORTION OF ENERGY CHARGED IN EACH AREA 

Areas Weekdays (%) Weekends (%) 
Residential 59.8% 69.8% 
Working 32.7% 16.0% 
Shopping 3.6% 5.5% 

Entertainment 3.9% 8.7% 

There is a significant peak-to-valley difference in the daily 
charge demand profile. The charge demand is high in the 
daytime and evening and low in the early morning. The peak 
of the total charge demand on weekends is about 1.5 to 2 hours 
later than on weekdays. The energy-charged in working area 
accounts for 32.7% on weekdays, a decrease to 16.0% on the 
weekends leads to the daily load curve changing from a 
double-peak to a single-peak, and the peak-to-valley 
difference increasing by 10.9%. 

When Kp = 0.6, the charge and discharge capacity of EV 
cluster on weekdays and weekends in each area is shown in 
Figure 14. It should be noticed that, because the power grid 
released AGC signals of charging during the off-peak period 
of the baseload, the energy-charged in the residential area has 
increased by 166.5% compared to the case when Kp = 0, which 
helps to reduce the wind power curtailment at night. 

When Kp = 0.3, the charge and discharge capacity of EV 
cluster on weekdays and weekends in each area is shown in 
Figure 16. The energy charged and discharged on weekdays 
have decreased by 29.5% and 48.2% compare to the case when 
Kp = 0.6. 

 
0 4 8 12 16 20 24

0
3
6
9

12
15

Time (hour)
(a) Charge Capacity on Weekday

Residential Entertainment TotalShoppingWorking

0 4 8 12 16 20 24
0
3
6
9

12
15

Time (hour)

Po
w

er
 (M

W
)

(b) Discharge Capacity on Weekday

(c) Charge Capacity on Weekend (d) Discharge Capacity on Weekend

0 4 8 12 16 20 24
0
3
6
9

12
15

Time (hour)
0 4 8 12 16 20 24

0
3
6
9

12
15

Time (hour)

Po
w

er
 (M

W
)

Po
w

er
 (M

W
)

Po
w

er
 (M

W
)

FIGURE 16.  Charge and discharge capacity of EV cluster when Kp = 0.3. 

2)   CHARGE AND DISCHARGE CAPACITY WITH 
DIFFERENT CLUSTER SIZE N 
When Kp = 0.6, the charge and discharge capacity and energy 
on weekdays of the cluster with different sizes N are shown in 
Figure 17. With the increase of cluster size, the charge 
capacity during the off-peak period of the baseload and the 
discharge capacity during the on-peak period have been 

greatly improved, which has significantly increased the 
dispatch capacity of the power grid. There is a strong linear 
correlation between the energy charged and discharged with 
the size N, which can be fitted as a linear function y=αx+β 
whose parameters and root mean square error RMSE are given 
in Table IX. 
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FIGURE 17.  Capacity and energy of EV cluster of different sizes. 
TABLE IX 

LINEAR FUNCTION PARAMETERS OF ENERGY CHARGED AND DISCHARGED 

Areas Energy charged Energy discharged 
α β RMSE α β RMSE 

Residential 0.0158  0.1281  0.6425  0.0087  0.0053  0.5330  
Working 0.0054  0.0533  0.3319  0.0054  -0.1462  0.3305  
Shopping 0.0005  0.0435  0.0612  0.0001  -0.0150  0.0245  

Entertainment 0.0005  -0.0188  0.0575  0.0002  0.0412  0.0467  
Total 0.0229  -0.3054  0.6672  0.0152  -0.9215  0.5850  

F.  COMPARISON WITH OTHER METHODS 
1)  CHARGE DEMAND 
An EV charge demand model is proposed in [38], which 
assumes that the start charging time of EVs follows a normal 
distribution N(17.5, 3.42), and the daily mileage follows a log-
normal distribution log-N(3.4, 0.52). Another EV charge 
demand model is proposed in [39], which assumes that 30% 
of the EVs in the cluster will charge in the working area where 
the start charging time follows a normal distribution N(9, 0.52), 
and 70% will charge in the residential area where the start 
charging time follows a normal distribution N(19, 1.52). 
Besides, the initial charging SOC follows the normal 
distribution N(0.6, 0.12). Neither model can calculate the 
discharge capacity of EV clusters. 

A comparison of the charge demand results between the 
proposed model and the other two models has been carried out. 
Assuming that the size of the EV cluster is 5000. The charge 
demand of different models on weekdays are shown in Figure 
18, and the energy charged are given in Table X. 

It can be seen that the energy-charged in [38] are close to 
the results in this paper while the peak charging load appears 
in the early evening. This is because this model does not 
consider the charge demand in the working area. 
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FIGURE 18.  Comparison of charge demands of different models. 
TABLE X 

ENERGY-CHARGED OF DIFFERENT MODELS 
Models Energy charged / MWh 

In this paper  40.7 
In [38] 39.1 
In [39] 50.5 

Compared with the model in this paper, the charge demand 
curve of the model in [38] has two peaks with higher peak 
values and higher energy-charged. This is because the model 
assumes that the initial charging SOC is concentrated around 
0.6, but ignores the impact of the driving mileage on the 
charge demand. As the driving range of EVs increases, owners 
will allow EVs to start charging at lower SOC levels. 
Therefore, the rationality of the assumption in [39] needs to be 
further verified. 
2)  CHARGE AND DISCHARGE CAPACITY 

A trip chain model is proposed in [15], which assumes that 
users do not travel more than 3 times in one day. The optional 
trip chains of this model include Home-Work-Home, Home-
Other-Home, Home-Work-Shopping-Home, Home-Other-
Work-Home, and length of other chains does not exceed 3. 
Another trip chain model is proposed in [16], which considers 
only two types of trip chains, i.e. Home-Work-Home, and 
Home-Work-Shopping/Dining-Home. The model assumes 
that the arrival time at the working area follows a uniform 
distribution U(8, 9), and the departure time from the working 
area follows a uniform distribution U(17, 18.5), and all EVs 
will return home before 22:30. 

A comparison of charge-discharge capacity results between 
the proposed model and the other two models has been carried 
out. Assuming that the size of the EV cluster is 5000 and Kp = 
0.6, the charge-discharge capacities of different models on 
weekdays are shown in Figure 19, and the energy charged and 
discharged are given in Table XI. 
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FIGURE 19.  Comparison of charge and discharge capacity of different 
models. 

TABLE XI 
ENERGY CHARGED AND DISCHARGED OF DIFFERENT MODELS 

Models Energy charged / MWh Energy Discharged / MWh 
In this paper  114.0 73.2 

In [15] 112.7 73.6 
In [16] 110.6 63.4 

It can be seen that the energy charged and discharged in [15] 
are close to the results in this paper. However, by specifying 
the type of trip chains and limiting the number of daily trips, 
the model makes the distribution of users’ departure and 
arrival times more concentrated. Therefore, a peak appears in 
the daytime charging power curve, which is 37% higher than 
that in this paper. 

The model in [16] puts forward stricter restrictions on travel 
time distribution and the number of daily trips, which leads to 
an increase of 91% in the daytime charging power peak 
compared to [15]. The discharged-energy in its model is 13.4% 
lower than that in this paper. This is because the model 
assumes that all EVs will leave the working area before 18:30. 
Therefore, the EVs which has been discharged are charged 
during 13:00-17:00 to meet travel needs, which results in 
charge capacity rises while discharge capacity falls. On the 
contrary, the model proposed in this paper believes that not all 
users will leave the working area around 18:00, which meets 
the actual travel laws. 

G.  PARALLEL IMPLEMENTATION OF THE METHOD 
The existing models need to fit travel characteristics from 
massive data and simulate the travel and charge-discharge 
behavior of large-scale EV clusters, which may cause huge 
calculation burdens. In recent years, the development direction 
of utilizing CPU computing power has shifted from increasing 
single-core frequency to balancing multi-core performance 
[40]-[42]. At the same time, cloud service providers such as 
Amazon Web Services, Microsoft Azure and Huawei Cloud 
can provide Elastic Cloud Server (ECS) to meet the need of 
differentiated computing [43]-[45]. Therefore, the proposed 
model is processed in parallel to increase the calculation speed. 
The computing platform is the ECS instance c6.4xlarge.4 
provided by Huawei Cloud, which has 16 CPU cores based on 
Intel Cascade Lake clocked at 3.0 GHz, as well as 64 GB of 
memory and 40 GB of hard disk space. The operating system 
is CentOS 7.6.1810 (64-bit). A multi-process parallel 
computing environment is established based on Python 3.7. 
When the EV cluster size is 5000, the running time of each 
module in single-process serial mode is given in Table XII. 

TABLE XII 
RUNNING TIME OF EACH MODULE IN SERIAL MODE 

Modules Functions Running time (s) 
M1 Data cleaning 11.2 
M2 Fit characteristic variables 41.1 
M3 Trip chain simulation 187.4 
M4 Charge-discharge capacity 243.9 
M5 Visualization of results 16.7 

It can be seen that the calculation of M3 and M4 modules 
takes longer time. Because the behaviors of EVs in the cluster 
are independent of each other, the simulation of travel and 
charge-discharge behaviors can be parallelized. Parallelizing 
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the calculations of M3 and M4 wherein the C processes can run 
simultaneously and evenly distribute the computing tasks for 
each process. The calculation process of each module is shown 
in Figure 20. 

M1: Data cleaning Serial computation

M2: Fit characteristic 
variables Serial computation

M3: Trip chain 
simulation

M4: Charge/Discharge 
capacity

M5: Visualization of 
results Serial computation

Parallel computation
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FIGURE 20.  Calculation process of each module. 
The parallel acceleration ratio is defined as RC to reflect the 

effect of multi-process on the calculation acceleration: 

1
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C

TR
T

= , (15) 

where T1 is the total running time when only one process is 
allowed to create under certain cluster size N. TC is the total 
running time when C processes are allowed to create 
simultaneously under the same cluster size N. 
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FIGURE 21.  Parallel acceleration ratio under multiple processes. 
Figure 21 shows the parallel acceleration ratio RC under 

different numbers of processes C. It can be seen that: 
1) RC increases with the increase of the number of processes 

C. The acceleration effect is positively correlated with the 
cluster size, which proves the excellent parallel computing 
performance of the model. 

2) When C is less than 16, i.e. the number of processes is 
less than the number of CPU cores, the growth rate of RC 
decreases with the increase of C. This is because the 

proportion of the running time of the serial modules M1, M2, 
and M5 increases with the increase of C. 

3) When C is greater than 16, RC decreases slowly. This is 
because the increased resources consumed by process 
management results in a decrease of the computing efficiency. 

The results have proved the excellent parallel computing 
performance of the model. The number of processes should be 
set as close as possible to the number of CPU cores to achieve 
a higher computing efficiency. 

VI.  CONCLUSION 
This paper proposes a novel calculation model of charge and 
discharge capacity of EV clusters based on the trip chain. 
Based on the NHTS 2017 dataset, the characteristic variables 
of the trip chain are firstly fitted using probability distribution 
models. The trip chains of the EV cluster on a time scale of 
several weeks are simulated. In particular, a scheduling 
strategy based on the five-zone map is designed to calculate 
the charge and discharge capacities. 

The following conclusions are unveiled by the studies: 
1) The scheme based on the proposed five-zone map can 

guide the EV cluster to operate as an energy storage system by 
charging during off-peak periods and discharging or standing-
by during on-peak periods, which increases with the growing 
of V2G participation rate Kp. 

2) The charge capacity in the residential and working area 
accounts for a total proportion of around 93%. The discharge 
capacity of the working area in the morning is higher than that 
in the afternoon. There are two peaks in the daily discharge 
capacity curve of the residential area. The results have verified 
the effectiveness of the trip chain model in simulating the 
commuting characteristics of the residents. 

3) It shows that there is a nonlinear correlation between the 
charge and discharge capacity with the cluster size, while there 
is a strong linear correlation between the energy charged and 
discharged with the cluster size. 

4) The parallel acceleration ratio RC under different number 
of processes C proves that the proposed model has excellent 
parallel computing performance. 

The case study verifies the effectiveness of the model 
proposed. This work is suitable for evaluating the 
responsiveness of EV clusters to AGC signals, as well as the 
potential for providing frequency regulation. It would be high-
efficient to apply the presented trip chain model to simulate 
the travel behavior of large-scale EV clusters on a long-term 
scale. 

APPENDIX A 
PROOF OF PARAMETER-ESTIMATION OF GAUSSIAN 
MIXTURE DISTRIBUTION BASED ON THE EM 
ALGORITHM 
This is to demonstrate the parameter estimation of one-
dimensional Gaussian mixture distribution composed of a 
finite number of M single Gaussian distributions.  

Supposing the observation value of a one-dimensional 
Gaussian mixture distribution array composed of N samples is 
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X = {x1, x2, …, xN}, the PDF of which is expressed in (1), then 
the log-likelihood function of X can be expressed as: 
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The essence of the EM algorithm is to find the value of Θ 
that maximizes L(Θ | X). However, (16) includes additions in 
logarithm, so it is not feasible to directly calculate the extreme 
value directly by derivation. To simplify the likelihood 
function expression, a set of random variable Y={y1, y2, ⋯ , yN} 
is introduced, and yi∈{1, 2, ⋯ , M}, i=1, 2, … , N, yi=k 
indicates that the i-th sample xi is generated by the k-th 
Gaussian distribution. 

Then, the log-likelihood function of the complete data can 
be expressed as: 

( ) ( )

( ) ( )

( )

1

1

1

  ln | , ln |

ln | |

l

,

n |

,

i i

i i i

i

i y

N

i y

y
i

y y

N

i
i

N

i
i

i

L

p

yX Y p x

p py x y

x

θ θ

ω θ

=

=

=

 Θ = Θ     

 =  

 =  

∏

∑

∑

 (17) 

The EM algorithm can be summarized in 3 steps: 
1) E-Step: Calculate the log-likelihood function expectation 

of the complete data Q(Θ|Θ(t)) ; 
2) M-Step: Calculate the parameter Θ(t+1) that maximizes 

Q(Θ|Θ(t)) ; 
3) Perform E-Step and M-Step alternately until 

convergence. 
The detailed process is as follows: 
1) E-Step: Suppose that at the beginning of the t-th iteration, 

the estimated value of Θ is Θ(t)=( ω1
(t), ω2

(t), … , ωM
(t), θ1

(t), 
θ2

(t), … , θM
(t)), then, the expectation of the log-likelihood 

function of the complete data becomes: 
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where D is the value space of y. 
Assuming the probability that the i-th sample xi is generated 

by the k-th Gaussian distribution be p(yi=k | xi, Θ(t)), then (18) 
becomes: 
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Base on Bayesian theory, the posterior probability p(k | xi, 
Θ(t)) in (19) can be expressed as 
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2) M-Step: Calculate the parameter Θ(t+1)
 that maximizes 

Q(Θ|Θ(t)). 
a) Calculation for ωk

(t+1). Introduce Lagrange multiplier λ 
into Q(Θ|Θ(t)), and let the partial derivative of Q(Θ|Θ(t)) to ωk 
be 0: 
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Then, the following results can be derived: 
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Sum k on both sides of (22): 
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Then, it can be derived that λ = -N. Substituting it into (22), 
the following result can be obtained: 
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b) Calculation for μk
(t+1). Assuming the partial derivative of 

Q(Θ|Θ(t)) to μk is 0: 
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Then: 
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c) Calculation for σk
(t+1). Similarly, assuming the partial 

derivative of Q(Θ|Θ(t)) to (σk
2)-1 be 0: 
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Then: 
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3) Perform E-Step and M-Step alternately until 
convergence: 
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where ɛ is the error threshold. 

APPENDIX B 
LOG-NORMAL DISTRIBUTION PARAMETERS OF DRIVING TIME IN MINUTES 

TABLE XIII 
LOG-NORMAL DISTRIBUTION PARAMETERS OF DRIVING TIME IN MINUTES 

Trip day Departure Destination 
Home Work Shopping Entertainment Pick-up Dining 

Weekday 
(μv, σv) 

Home (2.42, 0.74) (2.17, 0.84) (2.57, 0.82) (3.14, 0.93) (2.42, 0.85) (2.29, 0.93) 
Work (2.84, 1.02) (2.35, 0.76) (2.93, 0.74) (2.79, 0.84) (2.37, 0.78) (2.44, 0.77) 

Shopping (3.00, 0.77) (2.72, 0.83) (2.77, 0.95) (2.96, 0.85) (2.84, 0.80) (2.35, 0.77) 
Entertainment (2.82, 0.83) (2.77, 0.92) (2.43, 0.89) (2.81, 0.94) (2.94, 0.86) (2.55, 0.81) 

Pick-up (2.39, 0.77) (2.44, 0.81) (2.71, 0.82) (2.97, 0.87) (2.34, 0.82) (2.41, 0.77) 
Dining (2.54, 0.76) (2.36, 0.95) (2.31, 0.75) (2.86, 1.03) (2.58, 0.86) (2.46, 0.97) 

Weekend 
(μv, σv) 

Home (2.43, 0.74) (2.16, 0.87) (2.38, 0.80) (2.94, 0.92) (2.55, 0.79) (2.46, 1.03) 
Work (2.91, 1.11) (2.40, 0.74) (2.73, 0.79) (2.96, 0.83) (2.56, 0.87) (2.57, 0.82) 

Shopping (2.84, 0.79) (2.46, 0.83) (2.75, 0.95) (2.71, 0.73) (2.82, 0.79) (2.45, 0.75) 
Entertainment (2.98, 0.85) (2.82, 0.94) (2.70, 0.85) (3.11, 1.05) (2.99, 1.15) (2.83, 0.89) 

Pick-up (2.56, 0.90) (2.67, 1.05) (2.86, 0.81) (3.11, 0.87) (2.68, 0.91) (2.59, 0.86) 
Dining (2.61, 0.84) (2.46, 0.91) (2.25, 0.87) (2.77, 0.93) (2.81, 0.92) (2.57, 1.07) 
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