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a b s t r a c t 

Sub-millimeter imaging at 7T has opened new possibilities for qualitatively and quantitatively studying brain 
structure as it evolves throughout the life span. However, subject motion introduces image blurring on the order 
of magnitude of the spatial resolution and is thus detrimental to image quality. Such motion can be corrected for, 
but widespread application has not yet been achieved and quantitative evaluation is lacking. This raises a need 
to quantitatively measure image sharpness throughout the brain. We propose a method to quantify sharpness of 
brain structures at sub-voxel resolution, and use it to assess to what extent limited motion is related to image 
sharpness. 

The method was evaluated in a cohort of 24 healthy volunteers with a wide and uniform age range, aiming to 
arrive at results that largely generalize to larger populations. Using 3D fat-excited motion navigators, quantitative 
R 1 , 𝑅 

∗ 
2 and Quantitative Susceptibility Maps and T 1 -weighted images were retrospectively corrected for motion. 

Sharpness was quantified in all modalities for selected regions of interest (ROI) by fitting the sigmoidally shaped 
error function to data within locally homogeneous clusters. A strong, almost linear correlation between motion 
and sharpness improvement was observed, and motion correction significantly improved sharpness. Overall, the 
Full Width at Half Maximum reduced from 0.88 mm to 0.70 mm after motion correction, equivalent to a 2.0 times 
smaller voxel volume. Motion and sharpness were not found to correlate with the age of study participants. We 
conclude that in our data, motion correction using fat navigators is overall able to restore the measured sharpness 
to the imaging resolution, irrespective of the amount of motion observed during scanning. 
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. Introduction 

Throughout the life span, the brain develops and ages both on the
acro- and microscopic level, with large variations in volume of brain

tructures, myelination and iron deposition ( Acosta-Cabronero et al.,
016; Lebel et al., 2012; Yeatman et al., 2014 ). In vivo sub-millimeter
maging at ultra-high field strength (7T and higher) has opened up new
ossibilities for studying these processes quantitatively at an unprece-
ented level of detail ( Caan et al., 2019; Keuken et al., 2017; Waehnert
t al., 2016 ). With the increase in spatial resolution and consequently
onger scanning times, subject motion is clearly an increasingly impor-
ant topic of study. Examples of unavoidable motion are breathing, car-
iac motion, sneezing and blinking. In other cases, such as anxiety, dis-
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omfort or hyperactivity, motion can be minimized by proper prepa-
ation and instruction ( Godenschweger et al., 2016 ). Still, involuntary
ubject motion is on the order of magnitude of the imaging resolution
nd therefore degrading image quality ( Herbst et al., 2014; Stucht et al.,
015 ). Ultra-high resolution imaging therefore often requires motion
orrection embedded in acquisition and reconstruction. Extreme exam-
les include imaging at 350 μm resolution using retrospective FatNav
otion correction ( Federau and Gallichan, 2016 ), as well as 250 μm res-

lution T 1 -weighted imaging and 150 μm resolution Time-of-Flight an-
iography using prospective marker-based motion correction ( Lüsebrink
t al., 2017; Mattern et al., 2018 ). 

To allow for reliable application of motion correction techniques,
heir robustness in larger cohorts with a varying age range needs to
 (H.E. Nijsse), w.vanderzwaag@spinozacentre.nl (W. van der Zwaag), 
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Fig. 1. Overview of our method. Using 3D fat-excited motion navigators, acquired data are retrospectively corrected for motion. Sharpness is quantified for selected 
regions of interest (ROIs, here illustrated for a ventricle) by fitting the sigmoidally shaped error function (erf) to data within locally homogeneous clusters over 
the edge of the ROI. A decrease in the full width at half maximum ( ΔFWHM) of the error function after motion correction is indicative for increased sharpness in 
corrected data. 
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e demonstrated. In addition to visual inspection, quantitative infor-
ation on the relation between the extent of motion and the improve-
ent in image quality is needed. Such information can come from en-

ropy minimization ( Atkinson et al., 1999 ), the relative improvement
n the metric used for motion correction ( McGee et al., 2000 ) or sig-
al in the air background ( Mortamet et al., 2009 ). Other studies com-
ared intensity differences before and after correction ( Gallichan and
arques, 2017 ), computed the normalized gradient squared of the im-

ges ( Gretsch et al., 2019; McGee et al., 2000 ), or studied segmenta-
ion repeatability ( Kecskemeti and Alexander, 2020 ). These metrics en-
ble to demonstrate an apparent improvement in image quality, but fail
o quantify the actual improvement in apparent spatial resolution, per-
eived as the sharpness of the image. 

Early work on super-resolution proposed fitting a sigmoid func-
ion to obtain the edge width as a measure of image resolution
 Greenspan et al., 2002 ), an approach that was also followed in the
eld of electron microscopy ( Rieger and van Veen, 2008 ). Here image
harpness was not defined as a physical measure related to distance but
ather a rise in image intensity. Hence, it required constant-intensity
bjects to be applied on. Clearly, the human brain is a highly com-
lex and anatomically variable organ, for which these conditions are
ot met. This raises a need for a method to measure image sharpness as
n ( Schoormans et al., 2020 ), applicable throughout the brain. 

We propose a method to quantify sharpness over the edge width of
pecific brain structures, and use it to assess the improvement in reso-
ution after motion correction. Our focus lies on assessing the effect of
imited motion, i.e., around or below the imaging resolution, on image
harpness. We further aim to study to what extent motion is correlated
ith image sharpness. To this end, motion correction is performed ret-

ospectively, such that differences between uncorrected and corrected
ata can be studied. Here we evaluate motion correction using 3D fat-
xcitation motion navigators (FatNavs) ( Gallichan and Marques, 2017;
retsch et al., 2019 ), an imaging based method exploiting the sparse fat

ignal circumscribing the brain as a proxy to determine rigid brain mo-
ion. The method is evaluated in a cohort of 24 healthy volunteers with
 wide and uniform age range, aiming to arrive at results that mostly
eneralize to larger populations. 
. Theory 

Obtaining a global measure for image sharpness in high resolution
rain data is challenging for a number of reasons. First, since myeli-
ation and iron deposition patterns vary within anatomical structures
 de Hollander et al., 2014; Marques and Norris, 2018; Tardif et al.,
015 ), quantitative parameters will not be constant. Second, varia-
ions in tissue signal can result in that only part of the tissue bound-
ry will have sufficient contrast for image sharpness to be measurable.
hird, limited Signal-to-Noise Ratio (SNR) challenges a robust estimate
f sharpness in imaging data. 

Fig. 1 provides an overview of our proposed method to address these
hallenges. Given a region of interest (ROIs), being a (sub)cortical brain
tructure, sharpness is defined along the transition boundary to the sur-
ounding tissue. A sigmoidal function used to model the intensity tran-
ition and sharpness estimation over the ROI’s edge is fitted to signal
alues, allowing for accurate estimation of the edge width and its un-
ertainty, given the amount of noise present in the data. The resulting
harpness estimate is defined in terms of physical distance, thus being in-
ariant to scaling of input signal values. To account for local variability
n tissue signal, a clustering approach is followed to define sharpness
ithin sub-regions of similar tissue. Furthermore, calculations are re-

tricted to clusters where sufficient contrast with the surrounding tissue
s available, assessed by the model fit quality. 

We now proceed by introducing our target function for sharpness
stimation, followed by the clustering approach used to arrive at locally
recise sharpness estimates, and our parameterization of motion. 

.1. Target function 

While in the ideal situation the PSF of MRI can be considered to
e an isotropic sinc( · ) function ( Wang et al., 2007 ), sequence limi-
ations may introduce a directionality to the PSF. In the context of this
ork, the MP2RAGE-sequence, when acquired with Cartesian sequential
artition-encoding, is presumed to have a directionality to its PSF due to
 1 relaxation ( Marques et al., 2010 ). Subject motion during scanning is
ssumed to impose an additional detrimental effect on image resolution,
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Fig. 2. Illustration of the clustering method. (a) Example ROI (ventricle) in black, (b) with a region enclosing the ROI-boundary used for sharpness measurement. 
(c) The external sub-region covers multiple anatomical structures (here: corpus callosum (CC), thalamus (Tha), striatum (Str)), (d) and clusters are to be found in 
homogeneous areas, in order to obtain unimodal intensity profiles as a function of signed distance to the ROI edge. (e) To this end, a two-step hierarchical k-means 
clustering is employed, to find spatially coherent clusters within homogeneous intensity areas. (f) Clusters are expanded back into the ROI for computing profiles, 
(g) and tested to be valid (green) or invalid (red) due to shape, insufficient data or high noise level or uncertainty. 
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ith additional possibly anisotropic image blur and ghosting artifacts as
 result ( Hedley and Yan, 1992 ). Finally, given that sharpness is to be
etermined over tissue boundaries, a potential gradual change of tissue
ill further reduce the local apparent sharpness in the image. 

Rather than explicitly modeling these additive effects on the PSF for
ur data, we are taking a utilitarian approach for the purpose of as-
essing the hypothesized improved sharpness after retrospective motion
orrection. First, the PSF is estimated locally, and here assumed to be
aussian and isotropic, PSF =  (𝜎2 ), with standard deviation 𝜎. Second,
otion is assumed to only increase 𝜎 and otherwise not affect the dis-

ribution. Third, a tissue boundary is assumed to be an edge function,
hich after undergoing the blurring effect of a Gaussian PSF yields a sig-
oid function. Its profile can under these assumptions be described by a

umulative Gaussian function, also known as the error function (erf( · )).
he measured signal as a function of distance S ( d ) is then modeled as: 

( 𝑑) = 𝑆 0 + 

ℎ 

2 
⋅ erf 

( 

𝑑 − 𝑑 𝑐 √
2 𝜎

) 

+  

(
0 , 𝜏2 

)
. (1)

Here S 0 is the signal offset, h is a scaling factor denoting the contrast
ifference over the edge width and d c is a spatial offset to account for
 possible local segmentation offset with respect to the current model.
dditive normally distributed noise with variance 𝜏2 is assumed. 

The standard deviation of uncorrected and corrected data 𝜎uncorr,corr 

s computed first. Sharpness is then inferred from the corresponding
ull width at half maximum, FWHM uncor r, cor r = 2 . 36 ⋅ 𝜎uncor r, cor r , such that
FWHM = FWHM uncorr − FWHM corr yields the improvement in sharp-
ess. 
.2. Clustering 

Selecting the data for error function fitting over the edge of a given
OI is commonly done along one dimension (1D). The procedure is

hen to select a point at the edge, determine the normal to the inter-
al ROI surface in that point and sample data along a line. This ap-
roach has been implemented successfully for super-resolution in MRI
 Greenspan et al., 2002 ) and in other fields of science, e.g., electron
icroscopy ( Rieger and van Veen, 2008 ). A downside is that, given

he low signal-to-noise ratio (SNR) in MRI, such an approach would
ample insufficient data for reliable parameter fitting. Furthermore, the
esolution of MRI is limited, even at ultra-high field strength, to both
ender a sufficiently densely sampled intensity profile and to precisely
ompute the normal to the ROI-surface that would be a prerequisite
or unbiased sharpness estimation. Finally, the interpolation required
o sample along arbitrary lines would reduce the sharpness we aim to
easure. 

We propose an alternative approach for estimating sharpness at sub-
oxel resolution in noisy data. Fig. 2 illustrates the clustering procedure
ollowed to arrive at spatially coherent regions for curve fitting. Through
lustering, as specified below, locally homogeneous tissue is sampled on
ither side of the ROI-boundary, from 3 mm internal to 4 mm external.
he external part is designed not to overlap with multiple anatomical
tructures (e.g. only the corpus callosum, see ( Fig. 2 c). The average clus-
er size is targeted to be 500 voxels (equivalent to a sphere with a radius
f approximately 5 voxels). Thus, the total number of clusters per ROI
an vary largely, dependent on its size. Within each cluster, each voxel
s assigned its normal distance d to the boundary and the sigmoid func-
ion ( Eq. (1) ) is fitted to the normal distances, from which the FWHM
or this cluster is obtained. 
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Fig. 3. (a) Sequence diagram with two gradient echo (GRE) readout blocks of variable lengths reading out one and four TEs respectively, and a 3D fat-exciting 
EPI navigator. (b) An elliptical shutter turbo readout is performed, colored per readout. The center (11 readouts, boxed) serves as anatomical reference during 
reconstruction. (c) Example 4D fat-navigator: transverse, coronal and sagittal slices at one time point, with to the right a space-time plot along the indicated red 
markers. (d) Corresponding translation and rotation parameters computed through rigid realignment. 
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In the abovementioned procedure, two stage k-means clustering is
erformed in the external region only ( Fig. 2 c). An initial clustering
tage is run on z -transformed and concatenated spatial coordinates and
ignal values, so that contiguous regions with similar signal intensity
re grouped together. Intensities are Gaussian smoothed with a standard
eviation of 3 voxels to suppress noise ( Fig. 2 d). Four classes of tissue
ypes are segmented in this initial clustering stage. A subsequent, more
efined clustering is performed on spatial coordinates alone, separately
ithin each of the initially obtained clusters ( Fig. 2 e). This stage aims

o obtain spatially coherent clusters, something which is not guaranteed
ith signal value added as a feature during clustering. All voxels in the

dge and internal part of the ROI are assigned to a cluster following a
earest neighbour rule to arrive at regions in which signal profiles are
erived and curve fitting is performed ( Fig. 2 f). 

.3. Single motion parameter 

To quantify general motion, we derive a single motion parameter
 ROI describing the extent of a rigid motion pattern over time within
 given ROI. Previous work proposed k -space weighted motion met-
ics through partition-weighted integrated motion ( Castella et al., 2018;
odd et al., 2015 ). Similar to ( Dosenbach et al., 2017 ), we consider these
o be estimated through rigid realignment on a series of N FatNavs im-
ges. For the realignment of image i to some reference image, we can
efine the rigid transformation matrix T i 

 

𝑖 = 

[ 
𝐑 

𝐢 𝑡 𝑖 

0 1 

] 
, (2)

iven an estimated rotation matrix R 

i and translation vector 𝐭 𝐢 =
𝑡 𝑖 𝑥 𝑡 𝑖 𝑦 𝑡 𝑖 𝑧 

𝑇 . 
For each voxel in the brain, the displacement vector according to

he FatNavs is calculated through 𝑑 𝑖 ( ⃗𝑥 ) = 

(
𝑇 𝑖 

−1 
�⃗� − ⃗𝑥 

)
. For each ROI,

he absolute mean ROI displacement is computed for each time point: 

 

𝑖 
ROI = 

||||∫ 𝑑 𝑖 ( ⃗𝑥 ) 𝑑 ⃗𝑥 
|||| (3)
�⃗� ∈ROI e  
The average extent of motion over time is defined as a weighted
verage over all estimated 𝑚 

𝑖 
ROI 

 ROI = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑤 𝑖 𝑚 

𝑖 
ROI , (4)

We opted for a Gaussian normalized weighting w i with an empiri-
ally chosen FWHM of 50% of the second phase encoding dimension
f k -space k z . This normalization emphasized motion states which are
entered in time, i.e., corresponding to the center of k -space in our se-
uence readout pattern ( Fig. 3 b), which dominates image contrast. Here,
 motion-induced sampling error in only a few k -space points propa-
ates to a large error in image domain. High-resolution spatial details
re instead decomposed into a larger set of high frequencies scattered
hroughout k -space, much less likely to be affected by one instance of
otion. Note that ideally this weighting of FatNavs were to be applied

dentically along both phase encoding dimensions. Practically, we were
onstrained by the scanners’ line-by-line readout, such that each FatNav
amples the entire first phase encoding dimension (apart from the ellipti-
al shutter, Fig. 3 b). Finally, a summarizing average motion parameter
 = 

1 
𝑛 

∑
𝑅𝑂𝐼𝑠 𝑚 ROI is estimated over n ROIs. For comparison purposes,

he Framewise Displacement (FD) was computed, following the imple-
entation in Dosenbach et al. (2017) . 

. Experiments 

.1. Subjects 

A subset of 24 participants from the AHEAD adult lifespan database
 Alkemade et al., 2020 ) were selectively included to achieve sex balance
12 F) and a uniform age range distribution (between 21 and 81 years
f age). The study was approved by the local ethical committee. All
olunteers provided written informed consent to usage of their data for
his study prior to participation. 

.2. Data acquisition 

Volunteers were scanned at a 7 T scanner (Philips, Best, NL),
quipped with a Nova Medical head coil (Wilmington MA, USA), con-
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Fig. 4. Example outline of ROIs used in this study, with transverse, sagittal, and coronal slices, and plotted isosurfaces, including thalamus (pink/yellow), striatum 

(purple/red), ventricles (brown/green), 4th ventricle (light green) and cortical GM/WM boundary (blue). 
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w  
aining a two-channel transmit and a 32-channel receive head coil.
econd-order image based B 0 -shimming was performed. 

The sequence was built on top of the previously published
P2RAGEME (Magnetization Prepared 2 Rapid Acquisition Gradient

choes Multi Echo) sequence ( Caan et al., 2019 ) for simultaneous R 1 , R 

∗ 
2 

nd QSM mapping (see Fig. 3 (a)). Briefly, in this sequence two different
radient echo (GRE) blocks are read out after an inversion pulse, the first
eing a single echo and second a multi echo readout. This flexible de-
ign allows for longer echo times (TEs) in the second readout block while
aintaining a short repetition time of the sequence (TR MP2RAGEME ). A
D Echo Planar Imaging (3D-EPI) fat-exciting motion-navigator (Fat-
av) was inserted into the sequence after the two GRE readout blocks
 Gallichan and Marques, 2017; Gretsch et al., 2019 ). The Multiple In-
erleaved Scanning Sequences (MISS) environment, as provided by the
endor, was used to alternately acquire the two gradient echo blocks
nd the fat-navigated EPI-readout. The total scanning time amounted to
7 min. 

The sequence parameters of the two GRE readout blocks were: Field
f View (FOV) 205 mm × 205 mm × 164 mm, 234 sagittal slices,
oxel size 0.7 mm isotropic, fold-over direction AP, 150 lines per block,
andwidth 405 Hz, parallel imaging undersampling (APxFH) 2x1, ellip-
ical shutter with sequential line-by-line k-space readout (see Fig. 3 (b)),
R MP2RAGEME = 6.8 s, inversion times TI 1 = 0.67 s and TI 2 = 3.7 s, repe-
ition times TR 1 = 6.2 ms and TR 2 = 31 ms, first echo time TE = 3.0 ms
or both readouts, for the second readout four echoes were acquired with
TE = 8.5 ms, flip angle 4 ∘ for both readouts. 

For the FatNav-readout (see Fig. 3 (c)), fat was selectively excited us-
ng a three-subpulse binomial excitation pulse. The sequence parameters
ere: FOV = 240 mm × 240 mm × 160 mm, resolution 2 mm isotropic,
ENSE (APxRL) 4 × 2, half scan (Partial Fourier) 0.75 × 0.75, EPI-factor
9, TR = 15 ms, TE = 5 . 8 ms, flip angle 1 ∘, total read-out duration 477
s. Note that the frame rate corresponds to TR MP2RAGEME = 6 . 8 s. 

An additional coil sensitivity reference scan was acquired to per-
orm a GRAPPA (generalized autocalibrating partially acquisitions
 Griswold et al., 2002 )) reconstruction. This GRE matched the FOV of
he MP2RAGEME sequence, had a flip angle of 6 ∘ and a resolution of
.0 mm isotropic. The scanning time was 42 s. 

.3. Motion correction and reconstruction 

Motion correction and reconstruction were performed offline in
etro-MoCo-Box 1 ( Gallichan and Marques, 2017 ) a Matlab (The Math-
orks, Inc., Natick, MA) toolbox for retrospective motion-correction of

D MRI k-space data. GRAPPA calibration data were used to interpo-
ate undersampled GRE-data, with a kernel size of 2x2. FatNavs were
igidly realigned, i.e., with six Degrees Of Freedom (DOF), using Statisti-
al Parametric Mapping software (SPM8) ( Ashburner and Friston, 2005 )
see Fig. 3 (d)). Subsequently, registration parameters were interpolated
n time, accounting for the elliptical shutter readout of subsequent shots
1 https://github.com/dgallichan/retroMoCoBox 

v
 

m  
see Fig. 3 (b)). The motion parameters of the 11 center FatNavs corre-
pond to the readout of the center of k-space (see Fig. 3 (b)) and were
veraged and used as anatomical reference point during reconstruction.

Motion correction was performed per coil element, after GRAPPA re-
onstruction. All reconstructed k -space lines were assigned to the closest
orresponding FatNav, and subsequently corrected for the translation
nd rotation components by multiplying by a phase factor and corre-
ponding rotation. Subsequently, data were simultaneously regridded
nd Fourier transformed through the non-uniform Fast Fourier Trans-
orm (nuFFT) ( Fessler and Sutton, 2003 ). Coil images m j were combined

sing complex conjugated normalized sensitivity weighting �̂� 

𝐻 

𝑗 
, to ob-

ain complex-valued images 𝑚 = 

∑𝐶 
𝑗=1 �̂� 

𝐻 

𝑗 
𝑚 𝑗 . 

Finally, quantitative R 1 , R 

∗ 
2 and Quantitative Susceptibility Maps

QSM) maps were computed as described elsewhere ( Caan et al., 2019;
iu et al., 2015 ). Motion uncorrected images and parameter maps were
enerated by omitting correction steps in an otherwise unchanged re-
onstruction pipeline. 

.4. Segmentation and clustering 

R 1 -maps were segmented using the Nighres toolbox
 Huntenburg et al., 2018 ), and a set of (sub)-cortical ROIs was se-
ected: the left/right/fourth ventricle, left/right thalamus and striatum,
nd the cortical GM/WM boundary for analysis ( Fig. 4 ). The per-voxel
istance to the ROI-boundary could be specified with sub-voxel pre-
ision using the computed segmentation, which provided a level-set
epresentation ( Bazin et al., 2014 ). 

Clustering was performed according to the procedure mentioned in
ection 2.2 (see Supplementary Fig. S3). To obtain the required corre-
pondence for computing differences in sharpness between motion un-
orrected and corrected data ΔFWHM ( Eq. (2.1) ), only one of these had
o be segmented and clustered for analysis. We opted to segment motion
orrected and not uncorrected data, because of the anticipated higher
mage quality. Furthermore, the objective function enabled to model a
patial offset in the boundary location ( Eq. (1) ), which compensates for
mall segmentation deviations between corrected and uncorrected data.
hrough these steps, and curve fitting validity assessment as described
elow, the required correspondence in clustering for comparative anal-
sis could be obtained. 

.5. Sharpness measurement 

R 1 , 𝑅 

∗ 
2 , QSM and T 1 -weighted images were analyzed after motion

orrection. Within all clusters of all ROIs, signal profiles as a function
f signed distance over the ROI-boundary were computed. Non-linear
east squares fitting of the objective function ( Eq. (1) ) was performed in
ATLAB using Levenberg-Marquardt optimization with bisquare robust
eighting ( Levenberg, 1944; Marquardt, 1963 ). Estimated parameter
alues, uncertainties and normalised error values were obtained. 

Curve fitting validity was assessed using three criteria, that had to be
et in both uncorrected and corrected data fits for a cluster to be con-

https://github.com/dgallichan/retroMoCoBox
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idered valid. First, the relative confidence bound, obtained from the
ramér-Rao Lower Bound (CRLB) of 𝜎 had to be smaller than 50%. Sec-
nd, the number of internal data points inside the ROI had to be more
han 10% of the total number of points. Third, the noise level needed
o be smaller than 50% of the estimated height h of the objective func-
ion, in which the noise level was obtained from the normalised error
f the fit. Sharpness metrics for (un)corrected data FWHM uncorr,corr and
he improvement ΔFWHM were computed for all clusters, and median
alues over ROIs and subjects were obtained. Similarly, the extent of
otion m ROI was computed. A one-way Analysis of Variance (ANOVA)

n the ΔFWHM score of all clusters and subjects was conducted to as-
ess a significant improvement in sharpness per subject in a post-hoc
nalysis, using SPSS (IBM, Armonk, NY). 

Because of non-normally distributed data, non-parametric Spear-
an’s correlation analyses between sharpness and motion were per-

ormed, from which correlation coefficients 𝜌 were obtained. This was
one both on the subject and ROI level. 

To investigate potential effects of subject age, motion and sharpness
ere plotted against age at time of scanning, and non-parametric Spear-
an’s correlation analyses were performed. 

The source code for the clustering and sharpness assessment is made
vailable online 2 . 

.6. Evaluation and comparison against other metrics 

To validate the choice for segmenting motion corrected and not un-
orrected data, R 1 -maps were analysed using motion uncorrected data
s the reference, while sharpness was only determined in the cortical
M/WM boundary. 

The presented method contains a number of parameters for which
euristically chosen parameter values are proposed. To assess the ro-
ustness against variation in these parameters, a number of settings were
aried and the effects evaluated. The extent of the sampling region was
hanged, from 4 to 3 mm externally while maintaining a 3 mm inter-
al region. Meanwhile, the outer layer used for clustering was increased
rom 1 mm to 2 mm. Furthermore, the cluster size was changed from
00 to 250 and 1000 voxels. Lastly, the relative confidence bound was
hanged from 50% down to 25% and up to 100%. 

In an early study, Normalized Gradient Squared (NGS) and Gradient
ntropy were reported as sensitive image metrics for studying the effect
f motion correction ( McGee et al., 2000 ). In the context of limited mo-
ion in this study, we expected NGS to be a more sensitive metric than
he histogram-based entropy metric and therefore included NGS in the
nalysis, computed on R 1 -maps. 

MRI Quality Control (MRIQC) is a software package including a large
et of metrics ( Esteban et al., 2017 ), which are computed in a stan-
ardized way. Because of ill-defined background values, we computed
RIQC-metrics on R 1 -maps for within-brain metrics only, and used the
agnitude image of the second inversion with the shortest echo time

NV 2,TE1 for image background related metrics. 
For all metrics, we computed difference scores of uncorrected and

orrected data, and considered a positive difference an improvement in
mage quality. We then exploratively analysed the ensemble of metrics,
y performing one-sided Student’s t -tests to assess the improvement,
nd non-parametric Spearman correlation tests to evaluate the relation
o the extent of motion m . Based on the test results, a subset of most
escriptive metrics was selected for comparison against the proposed
harpness metric. 

The Framewise Displacement (FD) was correlated with m and
WHM-metrics of R 1 using non-parametric Spearman correlation tests. 

Contrast-to-Noise Ratios (CNR) were computed for one participant
xperiencing median motion in all clusters for R 1 and 𝑅 

∗ 
2 . The estimated

eight h ( Eq. (1) ) was used as contrast measure, and the Mean Absolute
2 https://doi.org/10.21942/uva.12220658.v1 

 

m  

o  
ifference (MAD) of the fitting residuals as robust noise measure, such
hat CNR = h /MAD. 

. Results 

An example reconstruction of R 1 -maps of uncorrected and corrected
ata in a selected subject is given in Fig. 5 . The thalamus is a struc-
ure located deep inside the brain and this location might not be much
ffected by rotations of the head. Nevertheless, there is clear blurring
isible of the ventricular border at the level of the thalamus, which is
ignificantly reduced in the rightmost panel with the corrected image
white arrowhead). Similar sharpening can be seen at the CSF-WM and
M/WM boundaries (white diamonds). In Fig. 6 , the result of motion
orrection on sharpness in the prefrontal cortical areas is shown for se-
ected subjects with a visually observed increasing level of motion arti-
acts before correction. In the case of limited motion (average motion
 = 0 . 21 mm), better visibility of a perivascular space and longitudinal
ssure could be seen ( Fig. 6 a, white arrowhead/diamond). In the case of
ore apparent motion blurring ( 𝑚 = 0 . 52 mm), distinct improvement in

harpness at the sulcal GM/CSF boundary can be seen ( Fig. 6 b, white ar-
owhead), In the two selected subjects with the largest extent of motion,
emarkable differences are seen, with significant residual ghosting in
ne ( 𝑚 = 0 . 55 mm, Fig. 6 c) and restoration of image quality in the other
ubject ( 𝑚 = 1 . 54 mm, Fig. 6 d). Detailed inspection of motion plots of
hese two subjects (Fig. S2) revealed respectively continuous oscillatory
atterns and a large shift midway through the experiment. 

Fig. 7 illustrates motion correction in R 1 -, 𝑅 

∗ 
2 - and QSM-maps. The

nterior limb of the internal capsule appeared sharper in the corrected
 1 map (white arrowhead). Of note, enlarged Virchow-Robin spaces can
e observed as hypointensities in the basal ganglia. In uncorrected data,
ne of these in the caudate nucleus was visible in the 𝑅 

∗ 
2 -map only after

otion correction (white arrowhead). 
Over all subjects, the median and 95-percentile values of the extent

f motion were 𝑚 = 0 . 21 mm and 0.55 mm respectively. The median
harpness in motion uncorrected data was FWHM uncorr = 0 . 88 mm, re-
ucing to FWHM corr = 0 . 70 mm in corrected data. The median improve-
ent in ΔFWHM was 26%. Converted to voxel volume, this implies an

ffective 2.0 times larger voxel volume if no motion correction were
pplied. The One-way ANOVA on ΔFWHM revealed that all but one
ubject showed a significant improvement in sharpness ( ΔFWHM = 0 . 12
m, 95% confidence interval − 0.03 − 0.27 mm), corresponding to the

ubject depicted in Fig. 6 c. 
Fig. 8 shows the summary sharpness metrics as a function of the ex-

ent of motion m for the quantitative as well as the T1-weighted images.
harpness on average improved for all subjects in all modalities. For
oth the R 1 and the T 1 -weighted images, a significant correlation be-
ween motion and sharpness was found in the uncorrected data and in
he improvement score but not in the corrected data. Furthermore, the
 

∗ 
2 -sharpness values did not correlate with motion with or without mo-

ion correction. Finally, QSM-sharpness values correlated with motion
n both uncorrected and motion corrected images. 

Focusing on R 1 , one subject has relatively non-sharp corrected
WHM corr = 1 . 1 mm, with no significant improvement ΔFWHM = 0 . 12
m, in concordance with the ANOVA ( Fig. 6 c). One other subject ex-
erienced a large extent of motion ( m > 1.5 mm, corresponding to the
ubject shown in ( Fig. 6 d)) but also shows the largest improvement in
FWHM. 

Studying the sharpness in more detail on the ROI-level, as shown
n Fig. 9 it can be seen that on average, the improvement is largest in
he cortical GM/WM-boundary, and smallest in the thalamus. It also ap-
eared that in the thalamus the lowest relative number of valid clusters
as found, 38% and 37% respectively in left and right hemispheres,
able 1 . 

In the analysis of existing metrics as depicted in Fig. 10 , selected
etrics were the Normalized Gradient Squared (NGS), the Coefficient

f Joint Variation (CJV) with which high values are associated with the

https://doi.org/10.21942/uva.12220658.v1
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Fig. 5. Example cropped sagittal slice of an uncor- 
rected and corrected R 1 -map. The white arrowhead in- 
dicates the boundary of the thalamus (Tha). White dia- 
monds point to CSF/GM and CSF/GM boundaries. See 
Fig. S1 for a plot for all included subjects. 

Fig. 6. Example cropped transverse slices of R 1 -maps in the prefrontal cortex of selected subjects with increasing apparent level of motion artifacts before correction. 
(a) White arrowhead and diamond: perivascular space and longitudinal fissure. (b) White arrowhead: GM/CSF boundary. See Supplementary Fig. S2 for estimated 
motion parameters of these subjects. 

Fig. 7. Illustration of motion correction in multiple quan- 
titative maps. From left to right: R 1 , 𝑅 

∗ 
2 and QSM. A trans- 

verse slice of motion corrected data (top) with an inset of 
uncorrected (center) and corrected data (bottom) is dis- 
played. White arrowheads point to the anterior limb of the 
internal capsule ( R 1 ) and an enlarged Virchow-Robin space 
( 𝑅 

∗ 
2 ) in corrected data insets. 
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Fig. 8. Estimated median sharpness in R 1 , 𝑅 

∗ 
2 , QSM 

and T1-weighted images for all subjects in full width 
at half maximum (FWHM) in mm as a function of es- 
timation motion in mm, in uncorrected and corrected 
data, with the improvement in sharpness. Spearman’s 
correlation coefficient 𝜌 is printed, where an asterisk 
( ∗ ) denotes significance ( p < 0.05). The dashed line in 
the sharpness plot denotes the imaging resolution. 
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resence of motion artifacts ( Poldrack et al., 2016 ), kurtosis in CSF k csf ,
esidual partial volume effect in CSF rPVE csf , median background inten-
ity bg med and the amount of artifactual intensities in the air background
I 1 ( Mortamet et al., 2009 ). This figure illustrates that this ensemble of
etrics confirms a significant improvement in image quality, as well

s a correlation of the improvement in image quality with motion. The
etrics related to aliasing in the image background bg and QI point
med 1 
o a measurable increase in apparent artifacts, correlated with the extent
f motion in uncorrected and corrected data (bg med ). 

The sharpness in FWHM and its uncertainty (Cramér-Rao Lower
ound, CRLB) were plotted against CNR for R 1 and 𝑅 

∗ 
2 in two ROIs,

he left and right ventricles, and the cortical GM/WM-boundary, see
ig. 11 . CNR in R 1 is approximately twice as high as in 𝑅 

∗ 
2 , and un-

ertainty correspondingly lower. Also for low CNR-values in the range
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Fig. 9. Sharpness in uncorrected and corrected data FWHM uncorr,corr , plotted per ROI, on median values over left and right hemispheres for ventricles, striatum, 
thalamus and the GM/WM-boundary. The dashed line denotes the acquired imaging resolution. 

Table 1 

Statistics on the Full Width at Half Maximum (FWHM) in un- 
corrected and corrected data (with Interquartile range) in mm, 
and relative number of valid clusters and total number of clus- 
ters (with standard deviations) per ROI: left/right lateral and fourth 
ventricle (Ventr lat,lr,4 ), left/right striatum (Str lr ), left/right thalamus 
(Tha lr ), GM/WM-boundary (GW-b). FWHM-values are averaged over 
hemipheres. 

ROI FWHM uncorr FWHM corr clusters clusters 
rel. valid total 

Ventr lat,lr 0.81 (0.22) 0.64 (0.09) 0.81 ± 0.10 28 ± 4 
0.77 ± 0.08 27 ± 3 

Ventr 4 0.77 (0.26) 0.68 (0.18) 0.67 ± 0.09 8 ± 1 
Str lr 0.91 (0.22) 0.67 (0.11) 0.59 ± 0.12 25 ± 3 

0.58 ± 0.08 24 ± 2 
Tha lr 0.97 (0.34) 0.90 (0.35) 0.38 ± 0.11 16 ± 2 

0.37 ± 0.10 15 ± 1 
GW-b 1.50 (0.35) 1.15 (0.11) 0.93 ± 0.06 533 ± 63 
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 < CNR < 5, sufficient valid cluster fits are observed, albeit at higher
ncertainty. 

As a validation experiment, sharpness was computed at the cortical
M/WM boundary by segmenting motion uncorrected instead of cor-

ected data. The obtained median (Interquartile Range) values were
ot dissimilar from those reported in Table 1 , being FWHM uncorr =
 . 51(0 . 34) mm and FWHM corr = 1 . 15(0 . 11) mm. 

To assess the robustness of the method, heuristically chosen parame-
er values were varied. First, when changing the thickness of the external
egion from 1 to 2 mm and reducing the external sampling region from
 to 3 mm while maintaining an internal region of 3 mm, the total num-
er of clusters (computed in the external layer) approximately doubled,
hile cluster validity dropped by 20%. The reported FWHM in uncor-
ected and corrected data both increased by 4%. Subsequently, reduc-
ng the cluster size from 500 to 250 voxels led to an increase in FWHM
f 7%, while an increase to 1000 voxels resulted in a large increase
n FWHM by 27%. Lastly, the relative confidence bound was assessed.

hen increasing the bound for R 1 to 25% or 100%, the reported FWHM-
alues did not change. For 25%, all clusters in the thalamus were judged
nvalid, while changing to 100% resulted in a larger visually observed
umber of false positive cluster fits. For 𝑅 

∗ 
2 (and QSM), we had to re-

ax the validity constraint on uncertainty to 100%, to obtain a sufficient
umber of valid clusters ( Figs. 8 and 11 ). 

The proposed motion metric m was compared against the Frame-
ise Displacement (FD). These metrics correlated significantly ( 𝜌= 0.49,
 = 0.015). The sharpness in uncorrected R 1 -maps correlated signifi-
antly with FD ( 𝜌= 0.44), but the improvement in sharpness did not cor-
elate with FD ( 𝜌= 0.17). 

Fig. 12 shows no significant relation between age and correspond-
ngly motion, uncorrected and corrected sharpness metrics ( 𝑝 = 0 . 88 ,
 = 0 . 88 , 𝑝 = 0 . 30 ). The subject with unsuccessful motion correction was
bove 70 years of age, the subject with a large extent of motion and a
arge improvement younger than 25. 

. Discussion 

We have presented a method for estimating sharpness in motion
ompensated quantitative imaging at 7T. Through a combined cluster-
ng and sigmoidally shaped error function curve fitting approach, sharp-
ess could be locally estimated as the edge width of a selected set of seg-
ented anatomical structures at sub-voxel resolution. The structures of

hoice characterized different regions and tissue contrasts in the brain,
ncluding cortical boundaries, deep subcortical structures, and the ven-
ricular system. By performing retrospective motion correction using
at-excited motion navigators, we could precisely quantify the improve-
ent in sharpness. We were able to show that this improvement corre-
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Fig. 10. Estimated median values for existing metrics in uncorrected and cor- 
rected R 1 -maps data, with the improvement in sharpness, as a function of esti- 
mation motion in mm. Note the difference in scale for the improvement plots. 
Significant correlations are plotted in blue circles, with printed Spearman’s cor- 
relation coefficients 𝜌. Dashed line denote a significant difference in improve- 
ment, with negative values implying a deterioration according to the metric. 
Refer to the text for an explanation of metrics. 
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ated significantly to the extent of motion experienced during scanning.
harpness estimation was performed in a group of 24 subjects with a
arge and uniform age range covering the entire adult life span. Mo-
ion correction was illustrated to be feasible in multiparametric R 1 -,
 

∗ 
2 - and Quantitative Susceptibility Mapping (QSM)-data, as well as in
 1 -weighted images. 

In R 1 -maps, motion correction significantly improved sharpness in
ll but one subject. Our sharpness metric did not point to a degraded
mage quality in any of the R 1 -maps. In general, a strong, almost linear
orrelation between motion and sharpness improvement was observed.
omputing motion per ROI averaged over clusters proved beneficial,
ince no correlation between the Framewise Displacement (FD) metric
nd the improvement in sharpness was observed. The median sharp-
ess in motion uncorrected data was 0.88 mm, reducing to 0.70 mm in
orrected data. The median improvement was 26%. Converted to voxel
olume, this implies an effective 2.0 times larger voxel volume if no
otion correction were applied. 

With regard to 𝑅 

∗ 
2 - and QSM-maps, an overall significant improve-

ent in sharpness could also be demonstrated, using ROIs defined in
 1 -maps. In uncorrected data, a significant correlation of sharpness with
otion (with non-zero slope) is visible in QSM but not in 𝑅 

∗ 
2 ( Fig. 8 ).

irst, boundaries were defined on R 1 , while 𝑅 

∗ 
2 and QSM might not as

ystematically change on the same ROIs. Second, for 𝑅 

∗ 
2 -maps, lower

NR and resulting higher uncertainty (CRLB) in the estimated FWHM
s compared to R 1 ( Fig. 11 ) are thought to be the underlying cause. Low
NR thus still allows for assessing the improvement in sharpness using
ur proposed metric, albeit with a reduced ability to measure edge in-
ormation precisely enough to identify a relation between the improve-
ent in sharpness and motion. Also, QSM, exploiting phase information,

s more sensitive to motion effects as compared to 𝑅 

∗ 
2 , estimated from

agnitude data. However, QSM-maps after correction were still corre-
ated with motion where R 1 was not, pointing to residual phase artifacts
resent in the data, possibly induced by B 0 -fluctuations which were not
orrected for. 

Our results add to earlier work on motion correction in quantitative
maging in multi-parameter mapping (MPM) ( Callaghan et al., 2015 )
nd QSM ( Mattern et al., 2019 ). With regard to the MPM-sequence,
hich comprises of a series of shorter acquisitions, we suspect that
atNav motion correction might lead to a smaller improvement but
omparable final sharpness compared to the MP2RAGE-ME sequence.
 limitation here would be that the acquisition time would have to be
xtended, because in contrast to the MP2RAGE-ME sequence no idle
ime is available to be exploited for the FatNav readouts in the GRE-
eadouts of MPM. In T 1 -weighted images, nearly identical results as in
 1 -maps were observed, illustrating that our method is generalizable to
on-quantitative data. Future work should confirm our hypothesis that
ide application in different weighted contrasts is feasible, also at 3T. 

Sharpness in R 1 across all tested ROIs was improved by motion cor-
ection, from limited amounts (in the thalamus and fourth ventricle)
o systematically large positive improvements (cortical WM boundary),
ee Table 1 . We anticipate that subcortical structures, including the tha-
amus and fourth ventricle, experience less displacement than cortical
tructures such as the GM/WM cortical boundary. The relative number
f valid clusters used in the estimation may further play a role here:
nly 38% of the clusters were valid for the thalamus, compared to well
bove 50% for the other structures. One explanation for this is the fact
hat the boundary of the thalamus with the neighboring WM of the inter-
al capsule is very gradual, making the sigmoid fit not accurate enough
ver small windows. The fourth ventricle on the other hand has fairly
eliable boundaries with the neighboring brainstem and cerebellum tis-
ues, but is located in a region with increased pulsation artefact and
ower overall SNR. And, due to its small size, only 8 clusters could be
efined to estimate sharpness from. A strength of our study is the uni-
orm and wide age distribution. We could see that everybody moves,
egardless of age. This makes us confident to state that our metric can
e successfully applied in a broader population. 

The reported FWHM in corrected R 1 - and T 1 -weighted data falls be-
ow the imaging resolution of 0.7 mm for a subset of subjects. We at-
ribute this to the Gaussian PSF that has been used. While this allows for
 precise first order approximation to the sinc( · ) function for measuring
he improvement ΔFWHM, it may result in an systematically underesti-
ated FWHM because of ignored Gibbs ringing. 

The analysis of existing metrics showed that none of the tested met-
ics achieved the same strong correlations with motion as the proposed
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Fig. 11. Sharpness (FWHM) and its uncertainty (Cramér-Rao Lower Bound, CRLB) per cluster labeled by validity as a function of Contrast-to-Noise Ratio (CNR) for 
R 1 and 𝑅 

∗ 
2 in two ROIs: left/right ventricles (Vent lr ) and GM/WM-boundary (GW-b). Note the different CNR-ranges for R 1 and 𝑅 

∗ 
2 . Uncorrected and corrected data 

are jointly plotted. 

Fig. 12. Motion and sharpness in uncorrected and corrected data plotted as a function of age. The dashed line in the sharpness plot denotes the imaging resolution. 
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etric does. This could prove to be of added value, potentially also in the
eneral MRI quality control setting ( Esteban et al., 2017 ). Interestingly,
he amount of aliasing in the background of the corrected data increased
ompared to the uncorrected data. Visual inspection indeed confirmed
 minute increase in aliasing artifacts in the corrected image of a sub-
ect with extensive motion. We attribute this to the retrospective rota-
ion of k-lines, such that the sampling pattern is no longer regular. This
s a limitation of retrospective motion correction. Sparsity-constrained
econstruction using compressed sensing ( Lustig et al., 2007 ) or deep
earning ( Lønning et al., 2019 ) were proposed as approaches to recon-
truct irregularly sampled data. 

We constrained ourselves to locally assessing image quality by quan-
ifying sharpness at tissue boundaries, which imposes a limitation on
he applicability of our approach. Motion-induced measurement errors
n k-space propagate not only to a local blur but also to global aliasing
rtifacts throughout the Field-of-View, as was observed above. The lat-
er effect is most prominent within the brain for large displacements.
his was confirmed by the outcomes of our analysis, in the two sub-
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A  
ects showing the largest extent of motion. The first of the two showed
ignificant aliasing artifacts that could not be corrected for, caused by
igher frequency motion ( Fig. 6 (c), Supplementary Fig. S2). The second
ubject experienced a large shift midway through the scan, inducing a
trong ghosting artifact jeopardizing our local sharpness quantification.
he FatNavs could however accurately capture this motion pattern, re-
ulting in a removal of the ghosting artifact and an improved and qual-
tatively restored image ( Fig. 6 (d)). 

The second limitation of our approach is that the error function fit-
ing needed to be computed over a certain spatial extent of 7 mm, for
n imaging resolution of 0.7 mm. Small or thin anatomical structures
re therefore challenging to assess, for instance at the GM/CSF bound-
ry or within the brainstem. Furthermore, the requirement for intensity
amples on both sides of the boundary makes it challenging to measure
harpness in highly curved regions. However, because we systematically
iscard regions with unreliable estimates, this measurement noise pri-
arily biased the uncertainty of the sharpness estimation. Estimated

WHM-values proved to be invariant against changes in heuristically
hosen parameter settings, provided that clusters remained sufficiently
mall (500 voxels) in order to locally sample tissue values. The valid-
ty criterion on uncertainty needed to be relaxed for the more noisy 𝑅 

∗ 
2 

nd QSM data as compared to R 1 data, to balance between false posi-
ive and negative clusters. Indeed, CNR-values were on average a factor
wo lower in 𝑅 

∗ 
2 than in R 1 . Still, an average improvement in sharpness

ould be demonstrated. 
Our work focused on retrospective motion correction using FatNavs

nly, which were initially proposed in 2D ( Skare et al., 2015 ) and col-
apsed ( Engström et al., 2015 ) form. In 3D, fat navigators were applied
n ultra-high resolution imaging( Federau and Gallichan, 2016 ), and in
 comparison against Moiré phase tracking, both methods were shown
o result in excellent motion correction ( Gretsch et al., 2019 ). Further-
ore, application in the clinical setting of patients with brain tumors

ed to improvement in image quality ( Glessgen et al., 2019 ). However,
ur method of sharpness quantification can be more broadly applied. In
etrospective motion correction, other approaches to which our sharp-
ess estimation could be applied include the use of 3D radial acquisitions
 Anderson et al., 2013 ), field monitoring ( Vannesjo et al., 2015 ) and FID
avigators ( Kober et al., 2011; Wallace et al., 2019 ). Prospective motion
orrection dates back more than 25 years ago ( Maclaren et al., 2013 ),
nd the methods proposed include volumetric navigators ( Kecskemeti
nd Alexander, 2020; Tisdall et al., 2012 ), fat navigators ( Andersen,
019; Boer, 2020; Truong, 2019 ), optical markers ( Callaghan et al.,
015; Stucht et al., 2015; Todd et al., 2015 ), real-time field con-
rol ( Özbay et al., 2017 ) and NMR field probes ( Eschelbach et al.,
019 ). Prospective motion correction does not allow for a direct com-
utation of the improvement in imaging sharpness. Reverse retrospec-
ive motion correction was proposed to demonstrate the improvement
 Zahneisen et al., 2016 ). A cross-sectional comparison would be another
pproach to quantitatively evaluate sharpness for prospective motion
orrection using the proposed method. Alternatively, analyzing residual
otion could be considered, such as in a cortical laminar fMRI-study at
.4 Tesla ( Bause et al., 2020 ). 

Several studies indicate that motion differs with age, and between in-
ex and control groups ( Greene et al., 2016 ). Additionally, differences
n motion may, at least in part, explain differences observed in MRI
easures. In the adult population above 20 years of age, a significant
ositive association between age and the extent of motion was found in
 cohort of 266 subjects ( Savalia et al., 2017 ). Note that our study was
ot powered to confirm this relation in our data ( Fig. 12 ). Conversely,
n the pediatric population below 20 years of age, a significant negative
elation was found ( Dosenbach et al., 2017 ). Importantly, head motion
uring scanning was shown to affect both structural ( Brown et al., 2010 )
nd functional pediatric imaging ( Greene et al., 2018 ), and reduce gray
atter volume and cortical thickness measures in adults ( Reuter et al.,
015 ). Effects of motion were also demonstrated in neuropsychiatric
atient groups. A clinical ultra-high field studies indicated that motion
ignificantly affected 𝑅 

∗ 
2 -values in Alzheimer’s patients ( Versluis et al.,

010 ). Motion correction is thus indispensable to alleviate these biases
hich hamper quantitative comparisons between groups and may be-

ome an essential practice in modern neuroimaging. 
Beyond evaluating the effectiveness of motion correction techniques

nd quantifying the patterns of motion in pediatric and clinical popula-
ions, the sharpness of anatomical boundaries might be a feature of in-
erest for developmental and plasticity studies. Although regions where
he error function fitting is not robust should be considered with caution,
harpness differences at the boundary between WM and GM may reflect
ifferences in cortical and sub-cortical myelination ( Dinse et al., 2015;
euken et al., 2017; Tardif et al., 2016 ) which may reveal subtle and

mportant differences in the underlying micro-circuits ( Turner, 2019 ). 

. Conclusion 

The proposed metric revealed that limited sub-voxel motion almost
inearly affects the apparent resolution in most investigated parameter
aps and image contrasts, and further allows to quantify the improve-
ent in sharpness irrespective of the extent of motion in high resolution

uantitative and weighted imaging. 
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