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Abstract
In this paper, a flexible cascaded multilevel inverter is proposed with a wide operational range. The inverter can change its 
topology structure to operate in three modes by a bidirectional switch unit. The nine-level or five-level mode of the inverter 
is adopted to optimize the output waveform when the input power is low. To decrease power losses, the three-level mode 
of the inverter is adopted to reduce the number of active switch devices when the input power is high. The topology and 
modulation strategy of the proposed inverter are presented and analyzed. The total losses and current THD of the inverter 
are calculated. In addition, simulations and experiments are conducted. The obtained simulation and experimental results 
indicate the correctness and feasibility of the proposed inverter and its modulation strategy.

Keywords Photovoltaic generation · Multilevel inverter · Multiple modes · Modulation strategy

1 Introduction

Nowadays, photovoltaic systems are becoming more popu-
lar due to their advantages in terms of unlimited reserva-
tion, pollution-free and convenient utilization [1]. As a core 
piece of equipment for photovoltaic systems, inverters play 
an important role in reducing output harmonics and improv-
ing system efficiency [2]. Compared with traditional two-
level inverters, multilevel inverters are more suitable for PV 
systems due to their unique characteristics [3–5]. Multilevel 
inverters come with the benefits of reduced du/dt, reduced 
device voltage stress, improved output waveform quality and 
smaller filter inductance [6–8]. These benefits make it easier 
to meet the demands in photovoltaic applications.

There are a few classics multilevel inverter topologies. 
These classes are the neutral point clamped topology (NPC) 
[9–11], the flying capacitor topology (FC) [12, 13], and the 
cascaded H-bridge topology (CHB) [14–16]. NPC invert-
ers are widely used in photovoltaic systems due to their 

characteristics of low switch losses, and freedom from com-
mon-mode leakage current. However, all of the NPC invert-
ers need to solve the problem of capacitor voltage balance 
on dc side. CHB inverters can heighten the voltage rank by 
series connections. However, CHB converters require mul-
tiple sets of isolated dc sources, which is a main drawback 
of this topology.

Topologies with the multilevel structure have good output 
characteristics due to their ability to produce staircase-like 
voltage waveforms. However, multilevel inverters exhibit 
an important limitation. For an increased number of output 
levels, they require many power switches, which increases 
the cost, control complexity and the losses of devices [17]. 
In photovoltaic applications, the output power of PV cells 
spans a wide range and varies greatly [18–21]. Due to the 
wide input range of inverters, the power levels of the power 
devices and filter inductor are selected from the maximum 
output power. This leads to high device cost, high losses and 
low system utilization.

There is a contradiction between achieving a wide opera-
tional range and reducing power losses [22, 23]. For the 
past few years, efforts have been directed to reduce the cost 
and losses in multilevel inverters, and many topologies 
have appeared. In [24] and [25], a T-type inverter with a 
significant reduction in the number of power devices was 
described. In addition, this topology can be applied to any 
number of voltage levels within the switch maximum volt-
age. The losses are decreased since higher voltage rated 
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switches operate at the fundamental frequency in this topol-
ogy. In [26], a multilevel inverter using the series/parallel 
conversion of dc voltage sources was proposed. When the 
capacitors are connected in series, the voltage of devices is 
reduced, as well as the total losses of the devices. In [27], 
a flying capacitor clamped inverter based on a switched-
capacitor was proposed. Its modulation strategy reduced the 
losses of the switch devices by curtailing the switch fre-
quency of certain switches. In [28], an H-bridge inverter 
with dc side switches was proposed and applied to a PV 
system. In this topology, the bridge arm switches operate at 
a low frequency, which reduces the switch losses. The above 
inverter topologies reduced losses by optimizing the topol-
ogy structure. However, all of the switches are always under 
operating state, and the total losses are still large.

Considering the actual conditions in a PV system, the 
operational range of an inverter should be wide. Different 
output characteristics of an inverter are needed under differ-
ent conditions. This paper proposes a cascaded multilevel 
inverter. Based on a wide operational range, the inverter can 
provide different output characteristics to adapt to different 
conditions. Using a bidirectional switch unit, the proposed 
inverter can change its topology structure to operate in three 
modes: nine-level mode, five-level mode and three-level 
mode. When the dc input power is low, the nine-level or 
five-level mode can provide more output levels to improve 
the quality of the output waveform. When the dc input power 
is high, the three-level mode can reduce the number of active 
switch devices to decrease the inverter losses.

This paper is organized as follows. Section 2 introduces 
the topology of a cascaded multi-mode inverter, and modula-
tion methods of the three modes are described in detail. In 
addition, the capacitor voltage balance on the dc side is ana-
lyzed. Section 3 analyzes and calculates the losses and the 
current total harmonic distortion of the inverter during the 
three modes. Section 4 offers simulation and experimental 
results. Section 5 provides some conclusions for this paper.

2  Cascaded multimode inverter and its 
modulation strategy

2.1  Topology structure

The topology of the proposed cascaded multilevel inverter 
is presented in Fig. 1a. It consists of twelve switches S1–S12, 
and a bidirectional switch unit S0. In addition, it also con-
tains four clamping diodes D1–D4, four clamping capaci-
tors C1–C4, and two dc voltage sources. By the bidirectional 
switch unit, the proposed inverter can change its topology 
structure to operate in three operation modes. According to 
different working conditions, different operation modes can 
be applied.

The three working modes are presented as follows. (1) 
Keep the bidirectional switch S0 off, and the topology is a 
cascaded nine-level inverter. This mode is called the nine-
level mode, as shown in Fig. 1b. (2) Keep the bidirectional 
switch S0 off, keep the switches S1, S2, S7 and S8 on, and 
the topology is a cascaded five-level H-bridge inverter. This 
mode is called the five-level mode, as shown in Fig. 1(c). (3) 
Keep the bidirectional switch S0 as well as the switches S1, 
S2, S4, S7, S8 and S9 on. Meanwhile, keep switches S6 and S11 
off. The topology becomes one H-bridge inverter composed 
of the switches S3, S5, S10 and S12. With the switches S1, S2, 
S4, S7 and  S9 and the bidirectional switch S0 kept on, two dc 
sources are connected in parallel. This mode is called the 
three-level mode, as shown in Fig. 1d.

2.2  Modulation strategy

When the proposed inverter operates in the nine-level mode, 
the switches connected to the dc side (S1, S2, S7, S8) are 
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Fig. 1  Diagrams showing: a topology of the proposed inverter; b 
nine-level mode; c five-level mode; d three-level mode
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controlled to output required waveforms, and the bridge arm 
switches (S3–S6, S9–S12) are controlled to change the polar-
ity of output waveforms. Therefore, the dc side switches act 
at a high frequency while the bridge arm switches act at 
a low frequency. Taking the upper half of the topology as 
an example, the voltage of each capacitor is 0.5Udc. When 
S1 and S2 are switched on, the clamping capacitors C1 and 
C2 are in the discharge state, and the output voltage is Udc. 
When S1 is on and S2 is off, or when S1 is off and S2 is on, 
only one capacitor discharges. Thus, the output voltage is 
0.5Udc. When both S1 and S2 are switched off, none of the 
capacitors discharge. Thus, the output voltage is 0.

The modulation strategy of the nine-level mode of the 
proposed inverter is shown in Fig. 2. It requires eight car-
riers  (Tri1–Tri8) and one reference signal (Tref) to generate 
original waveforms. The amplitude of each carrier is 1, the 
frequency is the same, and the phase difference between 
adjacent carriers is 90°. Depending on modulation ratio M1, 
the amplitude of the reference signal Tref changes between 
0 and 1. Eight sets of rectangular pulse signals are obtained 
by comparing the carriers and the reference signal, to control 
the dc side switches. In addition, the switches (S3–S6, S9–S12) 
are controlled by the reference signal polarity.

Moreover, the capacitors (C1–C4) clamp the dc voltage 
when the proposed inverter operates in the nine-level mode. 
The inverter can output a nine-level voltage when all the 

capacitor voltage is Udc/2. Thus, it is of great importance to 
keep the voltage balance of the capacitors. When the inverter 
outputs a voltage of ± Udc/2, ± Udc, ± 3Udc/2, only parts of 
the capacitors discharge. As a result, the capacitor voltage 
balance was broke. The key to achieving voltage balance 
is to make all of capacitors output the same energy in one 
cycle.

Figure 3 shows the discharge states of four capacitors, 
and the colored squares mean the discharge time of each 
capacitor. Since the carrier frequency is much higher than 
the modulation frequency, the reference signal in Fig. 3 
can be seen as a horizontal line. The amplitude of the 
carriers is 1. When the reference signal is in the interval 
of [0, 0.25], the inverter outputs a voltage of 0 or Udc/2. 
As a result, there are 0 or 1 capacitor discharges at the 
same time, as shown in Fig. 3a. Similarly, when the ref-
erence signal is in the interval of [0.25, 0.5], there are 
1 or 2 capacitors discharged at the same time, as shown 
in Fig. 3b. When the reference signal is in the interval 
of [0.5, 0.75], there are 2 or 3 capacitors discharged at 
the same time, as shown in Fig. 3c. In addition, when the 
reference signal is in the interval of [0.75, 1], there are 3 
or 4 capacitors discharged at the same time, as shown in 
Fig. 3d. Therefore, whatever the value of the reference 
signal, four capacitors can take turns discharging, and the 
discharge times of all the capacitors are equal. As a result, 
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Fig. 2  Modulation strategy for the nine-level mode
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Fig. 3  Capacitor states under different reference signal amplitudes: a 
Tref ∈ [0, 0.25]; b Tref ∈ [0.25, 0.5]; c Tref ∈ [0.5, 0.75]; d Tref ∈ [0.75, 1]
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each of the capacitors output the same energy, and volt-
age balance of capacitors is achieved under the carrier 
frequency. The number of voltage level changes when the 
modulation ratio M1 changes, and the capacitor voltages 
are always balanced. Compared with voltage balance strat-
egies under the modulation frequency, the voltage balance 
strategy proposed in this paper has a smaller voltage ripple 
and a more stabilized voltage value. Thus, the quality of 
the output waveform is better.

When the proposed inverter operates in the five-level 
mode, the dc side switches (S1, S2, S7, S8) are kept on, and 
the bidirectional switch S0 is kept off. Then the topology 
of the proposed inverter changes into a cascaded H-bridge 
inverter.

The modulation strategy of the five-level mode of the 
proposed inverter is shown in Fig. 4a. Four carriers  (Tri1, 
 Tri3,  Tri5,  Tri7) and one reference signal (Tref) are required 
to generate original waveforms. The phase difference 
between adjacent carriers is 180°. Four sets of rectangular 
pulse signals are obtained by comparing the carriers and 
the reference signal, to control the bridge arm switches 
(S3–S6, S9–S12).

When the proposed inverter operates in the three-level 
mode, only four bridge arm switches (S3, S5, S10, S12,) par-
ticipate in the modulation process. In addition, the topol-
ogy changes into a three-level H-bridge inverter.

The modulation strategy of the three-level mode of the 
proposed inverter is shown in Fig. 4b. Two carriers  (Tri1, 
 Tri5,) and one reference signal (Tref) are required to gen-
erate original waveforms. Two sets of rectangular pulse 
signals are obtained by comparing the carriers and the 
reference signal, to control bridge arm switches (S3, S5, 
S10, S12).

3  Calculations and analysis of losses 
and current THD

As can be seen from the analysis in Sect. 2, the quality of 
output waveforms and the losses are quite different when 
the proposed inverter operates in different modes. In this 
section, the total losses and current THD of the proposed 
inverter are calculated and compared under the three modes.

3.1  Calculations of losses

The inverter losses mainly include the conduction losses, the 
switching losses and the losses of the filter inductor. Since 
a multilevel inverter has an advantage in terms of reducing 
the filter inductor, the losses of the inductor are ignored in 
this paper.

The conduction losses of the proposed inverter are 
derived first. The conduction losses of one MOSFET device 
can be approximately calculated as:

where UM is the conduction voltage drop of the MOSFET 
(V); RM is conduction resistance (Ω); and I is the current 
(A), which can be expressed as: I = Im*sin ωt.

Similarly, the conduction losses of one diode can be 
approximately calculated as:

where UD is conduction voltage drop of the diode (V); and 
RD is the conduction resistance of the diode (Ω).

The losses of the proposed inverter under the nine-
level mode are analyzed first. The number of output lev-
els changes as the modulation radio M1 varies from 0 to 
1. When M1 ∈[0.75, 1], the inverter can output a nine-level 
voltage wave. Since the output waveforms of the inverter 
have periodic symmetry, the output characteristic can be 
analyzed in the interval of [0, π/2]. Depending on the volt-
age of a waveform, three angles are defined to differentiate 
the output voltage intervals. In a modulation cycle, when the 
voltage level reaches Udc/2 for the first time, the correspond-
ing angle is defined as θ1. The definitions of θ2 and θ3 are 
similar to that of θ1. The three angles are defined as:

In the above four intervals, the duty cycles of the switches 
are different. The duty cycles D11–D14 in the four intervals 
are expressed as:

(1)
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= UMIm sin�t + RMI
2
m
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Fig. 4  Modulation strategy for: a five-level mode; b three-level mode
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Moreover, in the four intervals above, the conduc-
tion losses are different when the inverter output voltage 
changes. To calculate the conduction losses, the number 
of conductive switch devices with different output voltages 
is analyzed, as shown in Table 1.

According to (1), (2), (4) and Table 1, the conduction 
losses of a MOSFET in the nine-level mode (Pcon_M9) and 
the conduction losses of a clamp diode in the nine-level 
mode (Pcon_D9) can be obtained as:

Then the switching losses in the nine-level mode are 
calculated. The switching losses are caused by the non-
ideal state of the switch device. It takes time for the switch 

(4)

D11 = 4M1 sin�t �t ∈
[
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]
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device to go from fully on to fully off, and this process 
produces losses. The switching loss of one MOSFET in a 
single switch motion can be calculated as:

where Es is the energy of the switching loss of one switch 
motion (J); VD is the voltage stress of the switch (V); ID is 
the conduction current of the switch (A); and tS(on) and tS(off) 
are the on delay time and the off delay time of the switch (s).

When the proposed inverter operates in the nine-level 
mode, there are 12 switches participate in modulation. S1, 
S2, S7, S8 operate at the carrier frequency in one cycle. The 
bridge arm switches act only one time in one cycle, and can 
be ignored. The total switching losses can be obtained by 
summing the losses of all the switches.

where, Psw_9 is power of the switching losses (W); T is the 
modulation period (s); fs is the motion frequency of one 
switch (Hz); and fc is the carrier frequency (Hz).

To sum up (5), (6), (8), the total losses of the inverter in 
the 9-level mode is:

Similarly, the losses of the proposed inverter under the 
five-level mode is calculated. The conduction losses of the 
MOSFET (Pcon_M5) and the conduction losses of the antipar-
allel diode (Pcon_D5) can be expressed as:

The total switching losses in the five-level mode can be 
expressed as:

(7)Es =
1

2
VDID × (tS(on) + tS(off))
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Table 1  Number of conductive switches of the nine-level mode

Output voltage level Number of conductive 
MOSFET

Number of 
conductive clamp 
diode

2Udc 8 0
3Udc/2 7 1
Udc 6 2
Udc/2 5 3
0 4 4
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To sum up (10), (11), (12), the total losses of the inverter 
in the five-level mode is:

The losses of the proposed inverter under the three-level 
mode are calculated as follows. The conduction losses of the 
MOSFET (Pcon_M3) and the conduction losses of the antipar-
allel diode (Pcon_D3) can be expressed as:

The total switching losses under the three-level mode can 
be expressed as:

To sum up (14), (15), (16), the total losses of the inverter 
in the three-level mode is:
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To analyze and compare the losses under different modes, 
specific data was substituted into the equations and a func-
tion diagram was obtained, as shown in Fig. 5. To simplify 
the calculations, the parameters of the antiparallel diode and 
the clamping diode are the same. The parameters used in the 
calculation are shown in Table 2.

As can be seen from Fig. 5, the total losses increase with 
an increase of the current. When the current is the same, the 
losses of the nine-level mode are the largest, and the losses 
of the three-level mode are the lowest. The larger the current 
is, the more obvious the difference is. An increase of the 
level number leads to an increase of the losses.

3.2  Calculations of current THD

Total harmonic distortion (THD) plays an important role 
in the detection and evaluation of a power system. It is an 
important index to evaluate the characteristics of an inverter. 
It is not easy to calculate the current THD by its definition. 
However, the output current of an inverter can be seen as a 
combination of the current fundamental wave and the cur-
rent ripple. Therefore, the current ripple can be approxi-
mately regarded as the sum of harmonic currents. Thus, the 
current THD is approximately expressed by the ratio of the 
current ripple to the fundamental wave as:

where ∆IRMS is the RMS value of the current ripple (A); 
∆Im is the peak–peak value of the current ripple wave (A); 
and IM is the peak value of the output current fundamental 
wave (A).

When the proposed inverter operates in the nine-level 
mode, the current ripple in different intervals is calculated 
first. Following the rules in Sect. 2.1, interval [0, π/2] is 
divided into four parts. Thus, the peak–peak values of the 
current ripple in the four intervals are:

(17)P3 = Pcon_M3 + Pcon_D3 + Psw_3

(18)THD ≈
ΔIRMS

I1
=

√
2ΔIm

2
√
3IM
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Fig. 5  Total losses of the three modes

Table 2  Parameters used in the calculations

Parameters Value Parameters Value

L 0.3 mH ω 314 rad/s
T 0.02 s fc 1 kHz
UI 2.09 V RI 0.16 Ω
Uf 2.1 V RD 0.025 Ω
Ic 10.7 A Vcc 650 V
ts(on) 10 ns ts(off) 67 ns
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RMS values of the current ripple are obtained by integrat-
ing the peak–peak values of the current ripple in the four 
intervals. Thus, the RMS values of the current ripple in the 
nine-level mode are expressed as:

Hence, the current THD of the proposed inverter in the 
nine-level mode is obtained as:

Similarly, when the inverter operates in the five-level 
mode, the interval [0, π/2] is divided into two parts. In addi-
tion, the peak–peak value of the current ripple in the two 
intervals are:

The RMS value of the current ripple in the five-level 
mode can be obtained as:

Thus, the current THD of the proposed inverter in the 
five-level mode is expressed as:

In a similar way, when the inverter operates in the three-
level mode, the peak–peak value of the current ripple in the 
interval [0, π/2] is:

The RMS values of the current ripple in the three-level 
mode is calculated as:

(19)
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The current THD of the proposed inverter in the five-level 
mode is expressed as:

To intuitively analyze the difference of the current THD 
in the three modes, specific data was substituted into the 
above equations. Take a grid-connected application as an 
example, ‘Uout’ in (19), (22) and (25) is replaced with ‘Em 
sinωt’, and its value is 311 V. For comparison purposes, 
Udc in both the nine-level mode and the five-level mode is 
200 V; and Udc in the three-level mode is 400 V. The other 
parameters used in the calculations are shown in Table 2. 
Figure 6 shows different current THDs under the three oper-
ation modes. As can be seen from Fig. 6, the current THD 
decreases along with the increase of the current. When the 
current is the same, the current THD of the nine-level mode 
is the lowest, and that of the three-level mode is the highest.
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Fig. 6  Current THD of the three modes

Table 3  Simulation and experimental parameters

Parameters Values

dc source/V 60
Capacitor/μf 2200
Load resistance/Ω 25
Load inductance/mH 18
Switching frequency/Hz 1000
Modulation frequency/Hz 50
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4  Simulation and experimental results

4.1  Simulation results

To verify the correctness and feasibility of the proposed 
inverter, simulation models are established on a MATLAB/
Simulink platform. The parameters used in the simulations 
are shown in Table 3.

The steady-state performance of the inverter under each 
mode was simulated first. The proposed inverter has three 
modes. Simulation results of the nine-level mode are shown 
in Fig. 7. Figure 7b shows the current waveform with a 25 Ω 
resistive load and an 18mH inductive load. It can be seen 
from Fig. 7 that the inverter can output a nine-level voltage 
waveform with a frequency of 50 Hz as required.

Simulation results of the five-level mode are shown in 
Fig. 8. Figure 8b shows the output current with the same 
load as the nine-level mode. The inverter can output a five-
level voltage waveform and the switching frequency of the 
output voltage is halved when compared with Fig. 7a.

Simulation results of the three-level mode are shown in 
Fig. 9. Comparing the above three simulation results, the 

quality of the output current under the nine-level mode is the 
best, and the quality of the output current under the three-
level mode is the worst. Simulation results can confirm the 
theoretical analysis in this paper.

When the inverter works in the nine-level mode, the 
capacitor voltage must be balanced. Figure 10 shows the 
voltage waveforms of the four capacitors. The obtained 
simulation results indicate that the voltages of the four 
capacitors are well balanced under the modulation strategy 
proposed in this paper.

The dynamic performance of the proposed inverter was 
also simulated. Figure 11 shows the simulation results of 
the online transition process with different modes. With 
the given control signals at 0.3 s and 0.6 s, the inverter 
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changes from the nine-level mode to the five-level mode at 
0.3 s, and from the five-level mode to the three-level mode 
at 0.6 s. The output waveform is correct and good during 
the transition process.

Simulation results of THD corresponding to different 
currents are obtained by an FFT analysis. In addition, sim-
ulation results of the current THD curve are obtained, as 
shown in Fig. 12. The colored points are simulation values 
of different currents. By comparing the THD simulation 
results with the THD calculation results in Fig. 6, it can 
be seen that the simulation results are in accord with the 
calculation curves, which verifies the correctness of cal-
culations in this paper.

4.2  Experimental results

An experimental platform was implemented to further 
validate the proposed inverter and its modulation strategy. 

The parameters in the experiment are the same as those 
used in the simulation, as shown in Table 3.

Firstly, the steady-state performance of the inverter was 
tested. Experiments of the inverter working in different 
modes were conducted, and output voltage and current 
waveforms were observed. Figure 13 shows signal wave-
forms of twelve switches in the nine-level mode. It can be 
seen from this figure that the four dc side switches work at 
a high frequency and the eight bridge arm switches work 
at a low frequency. The obtained experimental signals are 
consistent with modulation signals.

Figure 14 shows output voltage waveforms and current 
waveforms of the proposed inverter in the nine-level mode. 
Figure 14a shows output waveforms with a 60 Ω resistive 
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load, and Fig. 14b shows output waveforms with a 25 Ω 
resistive load and an 18mH inductive load.

Figure 15 shows dc side capacitor voltage waveforms 
when the inverter works in the nine-level mode. It can be 
seen from this figure that the voltage of each capacitor is half 
of the dc side voltage. The voltage values are stable and the 
voltage ripple is small. This shows that the voltage balance 
strategy in this paper is effective.

Figure 16 shows switching signal waveforms of the five-
level mode. As can be seen, eight switches participated in 
the modulation. The obtained experimental switching sig-
nals are consistent with the modulation signals.

Figure 17 shows output voltage waveforms and current 
waveforms of the proposed inverter in the five-level mode. 
Figure 17a shows output waveforms with a 60 Ω resistive 
load, and Fig. 17b shows output waveforms with a 25 Ω 
resistive load and an 18 mH inductive load.

Figure 18 shows switching signal waveforms of the 
three-level mode. Four bridge arm switches participated 
in the modulation. The obtained experimental switching 
signals are consistent with the modulation signals.

Figure 19 shows output voltage waveforms and cur-
rent waveforms of the proposed inverter in the five-level 
mode. Figure 19a shows waveforms with a 60 Ω resistive 
load, and Fig. 19b shows waveforms with a 25 Ω resis-
tive load and an 18mH inductive load. It can be observed 
from Figs. 14, 17 and 19 that the inverter has the best 
output characteristics under the nine-level mode, and that 
the voltage waveform has the highest switching frequency. 
With the same load, the output characteristics under the 
three-level mode are the worst. The obtained voltage wave-
form has a lower switching frequency. These experimen-
tal results are consistent with the theoretical analysis and 
simulation results in this paper.

Then the dynamic performance of the proposed inverter 
was tested. The inverter changes its working modes online 
by given control signals. Figure 20 shows experimental 

results of an online transition between the different modes 
of the inverter.

In Fig. 20a, the inverter changes from the nine-level 
mode to the five-level mode, and t1 is the moment to give 
a switch signal. In Fig. 20b, the inverter changes from 
the five-level mode to the three-level mode, and t2 is the 
moment to give a switch signal. Since the circuit structure 
changes from cascade to parallel, the output voltage of 
the three-level mode is halved. The obtained experimental 
results are in agreement with simulation results. It can 
be seen from these results that the working modes can 
switchover online and that the output waveforms is good 
during the transition process.

5  Conclusions

To achieve a wide operational range and to reduce the 
power losses, a flexible cascaded multilevel inverter is 
proposed in this paper. According to the actual working 
conditions, the inverter can change its topology struc-
ture to work in three modes. The proposed inverter can 
reduce the number of active switch devices to decrease 
the inverter losses in the three-level mode. In addition, 
the inverter can provide more output levels to improve the 
quality of its output waveforms in the nine-level mode. 
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Furthermore, its modulation strategies and voltage balance 
method were analyzed. Simulations and experiments were 
conducted. The obtained results indicate that the topology 
and modulation strategy of the inverter are correct and 
valid. In addition, the online transition process between 
the different modes is effective and favorable. The pro-
posed inverter can achieve a wide operational range and 
decreased total losses.
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