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The effects of a uniform axial magnetic field directed towards an oscillating wall in
a semi-infinite viscous fluid (or Stokes layer) is investigated. The linear stability and
disturbance characteristics are determined using both Floquet theory and via direct
numerical simulations. Neutral stability curves and critical parameters for instability
are presented for a range of magnetic field strengths. Results indicate that a magnetic
field directed towards the boundary wall is stabilizing, which is consistent with that
found in many steady flows.
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1. Introduction
Many industrial processes rely on the application of magnetic fields in order to

control the stability of the system. Electromagnetic stirring, the casting of liquid
metals and the growing of crystals (Organ & Riley 1987; Hicks & Riley 1989) are
just a few examples where magnetic fields play a crucial role. In the case of the
rotating-disk boundary layer, which occurs when a disk of infinite radius rotates
beneath a stationary incompressible viscous body of fluid, several studies have shown
that magnetic fields can greatly influence the instability characteristics. For a uniform
magnetic field directed towards the disk surface, Jasmine & Gajjar (2005) have
concluded that a small magnetic field is all that is required to dramatically reduce the
instability of the boundary layer.

Oscillatory fluid flows also occur in many processes and the paradigm example for
investigating the disturbance characteristics of this class of flows is the flat Stokes
layer. Its principal attraction lies in the fact that it is one of the few exact solutions
to the unsteady Navier–Stokes equations and so many experimental and theoretical
studies have been directed towards understanding its properties: a review of some
of these is given by Davis (1976). More recently, studies have been carried out to
assess the influence other effects may have on time-periodic flows. Gao & Lu (2006a)
proved that the imposition of suction is stabilizing, while it is also known that the
presence of a surfactant can stabilize the Stokes layer as the critical Froude number
is increased and the bandwidth of unstable modes shrinks (Gao & Lu 2006b). It is
in this spirit that here we make the first investigation of the effect of a magnetic field
on the stability of the Stokes layer.
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A Stokes layer is generated when an infinitely long rigid plate oscillates sinusoidally
in its own plane beneath a semi-infinite layer of incompressible viscous fluid that is at
rest far away from the plate surface. It is characterized by two quantities as follows:
the boundary-layer thickness δ ∼

√
2ν/ω and the wall velocity U0 cos ωt , where ω is

the frequency of the oscillating plate and U0 is the maximum speed of the boundary.
Combining these with the fluid viscosity, ν, yields the Reynolds number

R =
U0δ

2ν
=

U0√
2νω

, (1.1)

which may be used to delineate the location for the onset of instability.
The linear stability of time-periodic flows may be determined using Floquet theory,

which asserts that infinitesimal perturbations can be expressed in the form exp(µ∗t)f ,
where f is a 2π-periodic function in time. The net growth or decay of a disturbance
over a period is thereby subsumed in the real part of the Floquet exponent µ∗; if
this is positive then instability is present. The first successful application of Floquet
theory to a fluid-stability problem was made by Seminara & Hall (1976) who were
concerned with the stability of a torsionally oscillating cylinder in an unbounded
region of viscous fluid. When the technique was applied to the Stokes layer, Hall
(1978) was unable to find any unstable modes for R < 160 which was unexpected
given the success of the method for the torsional cylinder flow. A related study by
von Kerczek & Davis (1974) considered the linear stability of the Stokes layer in a
finite domain when a stationary lid was placed at a distance 8δ above the oscillating
wall. They were able to take R up to 400, but again could not detect any instability.
This result is consistent with outcomes of some direct numerical simulations (DNSs)
performed by Akhavan, Kamm & Shapiro (1991) for R � 500.

These findings contradicted numerous experiments (Clamen & Minton 1977;
Eckmann & Grotberg 1991) which show conclusively that in practice a flat Stokes
layer certainly becomes unstable at sufficiently large R. The calculations mentioned
above were limited by computational restrictions, but advancements in technology
and numerical methods enabled Blennerhassett & Bassom (2002) to extend the studies
to much larger R. They were able to predict a critical Reynolds number for instability
of Rc ≈ 708 and traced out a portion of the neutral stability curve. Subsequent studies
(Blennerhassett & Bassom 2006, 2007) extended their investigation to oscillatory flow
in channels and circular pipes. In these papers, the Floquet approach was abandoned
in favour of pseudospectral methods based on the schemes outlined in Fornberg
(1996) and Trefethen (2000). Reassuringly, at appropriately large channel widths the
earlier results of Blennerhassett & Bassom (2002) were retrieved and it was found
that, in the case of the oscillating pipe, the critical R could be lowered to about 564
for a pipe of optimal radius. Some of the predictions of the stability of the oscillatory
flow in a channel have been confirmed by initial value calculations by Luo & Wu
(2010), while simulations carried out by Thomas et al. (2010) have verified the results
of Blennerhassett & Bassom (2002) for the semi-infinite Stokes layer.

In some flows (e.g. the Stokes layer), Floquet theory methods predict critical values
of R considerably larger than that observed in experiments. This discrepancy can
occasionally be resolved by study of a quasi-steady limit in which the flow is thought
of as frozen in time and an instantaneous growth rate of a disturbance calculated.
This potentially can produce a transition mechanism at lower R than predicted by
Floquet theory. However, a rigorous justification of quasi-steady theory is often far
from straightforward due to an underlying contradiction in the assumptions; on the
one hand effectively freezing the basic flow requires R � 1, while the determination
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of a critical Reynolds number requires R = O(1). Rather than discuss quasi-steady
theory further here, we note that Hall (2003) used the technique to suggest that the
Stokes layer is linearly stable in the R → ∞ limit.

Here we apply both the Floquet and DNS methods to the unsteady flow that arises
when a uniform axial magnetic field is directed towards a Stokes layer. In § 2, the
Floquet method is described and applied to the current magnetic field problem, while
in § 3 neutral curves and critical parameters for instability are presented. We conclude
with a few remarks in § 4.

2. Formulation
We consider a semi-infinite layer of electrically conducting viscous fluid confined

by a flat plate located at y = 0. The plate oscillates sinusoidally in its own plane along
the x-direction with a velocity U0 cos ωt , while a uniform magnetic field B = B0 j is
applied to the system, where j is the unit vector in the y-direction. The dimensional
Navier–Stokes equation that governs the fluid flow is given by

∂U
∂t

+ U · ∇U = − 1

ρ
∇P + ν∇2U +

1

ρ
J × B, (2.1a)

where the final term – the Lorentz force – takes into account the magnetic field effects.
Denoting the electrical conductivity of the fluid by σ and taking ρ to be its density,
the current density J = σ (E + U × B) for an electric field E and fluid velocity U .
Coupling (2.1a) to

∂ B
∂t

= ∇ × (U × B) +
1

σµ0

∇2 B, (2.1b)

∇ · J = 0, ∇ × E = −∂ B
∂t

, ∇ · B = 0, (2.1c)

leads to the full system of governing equations for the present magnetohydrodynamic
problem; here µ0 specifies the magnetic permeability. The system is non-
dimensionalized by scaling all lengths upon the Stokes layer thickness, δ, velocities on
U0 and putting τ = ωt . This throws up the magnetic Reynolds number Rm = 2σµ0νR.
In the subsequent modelling, the effects of the electric field are treated as negligible
and it is supposed that Rm 
 R so that the magnetic field is not affected by the
motion of the fluid. This latter assumption is not particularly restrictive and holds
true for many liquid metals. As a simple example, if we consider the case of mercury
at room temperature, σ = 106 S m−1, µ0 = 4π × 10−7 N A−2 and ν = 1.2 × 10−7 m2 s−1

implying that the ratio of the fluid Reynolds number to the corresponding magnetic
Reynolds number is O(107).

Under these assumptions, (2.1a) yields the undisturbed basic dimensionless flow as
simply

U = {UB(y, τ ), 0, 0} =
{

e−Aycos
(
τ − y

A

)
, 0, 0

}
, (2.2)

where

A2 =
√

m2 + 1 + m, (2.3)

for a parameter m ≡ B2
0σ/ρω that gives the appropriate measure of the strength of

the applied magnetic field.
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The linear stability of the flow (2.2) is found by considering a disturbed flow of the
form

U = (UB, 0, 0) + ε

(
∂Ψ

∂y
, −∂Ψ

∂x
, 0

)
, (2.4)

where ε 
 1 and Ψ denotes the stream function of a two-dimensional disturbance.
Squire’s theorem has been successfully applied to non-conducting unsteady flows (von
Kerczek & Davis 1974), and it may easily be shown using standard methods that
it can be extended to the current magnetic fluid flow. The upshot is that the above
perturbation is sufficient for locating critical conditions for linear stability for the
most unstable mode will be two-dimensional. The disturbance stream function, Ψ , is
then written in exponential form

Ψ = eµτ+iaxψ(y, τ ) + c.c., (2.5)

where a is the wavenumber, ψ(y, τ ) is taken to be 2π-periodic in τ with any
exponential growth or decay of Ψ incorporated in the Floquet exponent µ and
c.c. denotes the complex conjugate of the preceding expression. The corresponding
vorticity perturbation is then expressed as eµτ+iaxζ (y, τ ) + c.c., whereupon
the governing stream function–vorticity equations, when linearized in ε, may be
reduced to

∂ζ

∂τ
=

1

2

(
∂2

∂y2
− a2

)
ζ − µζ − iaRUBζ − m

∂2

∂y2
ψ + iaRU ′′

Bψ, (2.6a)

ζ =

(
∂2

∂y2
− a2

)
ψ . (2.6b)

This system needs to be solved subject to the boundary conditions

ψ = ψ ′ = 0 on y = 0; ψ, ψ ′ → 0 as y → ∞, (2.6c)

where a prime denotes differentiation with respect to y. In this formulation, a is
real-valued, while the eigenvalue µ is complex although its imaginary part µi can be
restricted to the range 0 � µi � 0.5 (Blennerhassett & Bassom 2002).

The unknown stream function is decomposed into harmonics

ψ =

n=∞∑
n=−∞

ψn(y)exp{inτ}, (2.7)

so that equating coefficients of harmonics in (2.6a,b) generates the infinite system of
ordinary differential equations[

L 2 − 2{µ + in}L − 2mD2
]
ψn = iaR

[
e−(A+i/A)yM−ψn−1 + e−(A−i/A)yM+ψn+1

]
,

(2.8)

where

L ≡ ∂2

∂y2
− a2, D2 ≡ ∂2

∂y2
and M± ≡ L − A2 + A−2 ± 2i. (2.9)

The system (2.8) was solved numerically using the pseudospectral techniques
described by Fornberg (1996) and Trefethen (2000). Such methods were detailed
in Blennerhassett & Bassom (2006) so we only provide very brief details of the
numerical techniques involved here. The differential operators appearing in (2.8) were
replaced by their respective pseudospectral matrix approximations and each ψn(y)
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cast as a vector ψn of its function values on a Chebyshev mesh. We introduce the
matrix operators

L → L, D2 → D2,
1

2

(
∂4

∂y4
− 2a2 ∂2

∂y2
+ a4

)
→ V, (2.10a)

M =
1

2
L−1e−(A+i/A)y

(
L − {[A2 − A−2] + 2i}I

)
, (2.10b)

which allow us to rearrange the general governing (2.8) as

−iaRM̃ψn+1 + (L−1{V − mD2} − inI)ψn − iaRMψn−1 = µψn, (2.11)

where I is the identity matrix and M̃ is the complex conjugate of M. A finite system of
equations is obtained by truncating the Fourier series (2.7) for ψ and setting ψn ≡ 0
for all |n| > N . The system (2.11) can now be written as the algebraic eigenvalue
problem

Aφ = µφ, (2.12)

where A is a sparse matrix and the vector φ is given by

φT =
(
ψT

N ψT
N−1, . . . , ψ

T
0 , . . . , ψT

−N

)
. (2.13)

3. Results
Solutions to the eigenvalue problem (2.12) were obtained using the sparse-matrix

eigenvalue routines that are available in Matlab. Several checks were conducted to
ensure that the computed eigenvalues and eigenvectors possessed at least five decimal
place accuracy. Of critical importance is the determination of the value N that
governs the point at which the Fourier series (2.7) is truncated. If N is too small
the computed values are inaccurate, but if it is too large then the calculations are
lengthy and inefficient. It was found empirically that the choice N ≈ 0.8aR works
well, while at least K =50 data points were required in the y-direction to ensure
satisfactory behaviour. If either N or K were less than these values, the predicted
growth rate tended to be over-estimated and so gave a misleading representation
of the disturbance behaviour. Figure 1 displays the neutral stability curves in the
wavenumber–Reynolds number (a, R)-plane for several magnetic parameters within
the range m ∈ [0, 0.2]. The solid lines illustrate the results obtained using the Floquet
eigenvalue method; values were accurately computed at neutral points (aj , R(aj ))
separated by a wavenumber increment �aj = 0.01 and then interpolation used to
infer the remainder of the curve. It is apparent that a magnetic field is stabilizing;
furthermore only a modest field is necessary to have a significant effect, since as m

is increased from 0 to 0.2, the corresponding critical Reynolds number more than
doubles. In the context of mercury at room temperature, forced to oscillate at 1 Hz,
we have ρ = 1.35 × 104 kg m−1 and then a magnetic field strength B0 = 0.052 T would
be required to achieve the stabilizing effects observed for m =0.2.

We remark in passing that the smoothed neutral curves in figure 1 are a slight
simplification of the actual curves. In their study of the non-conducting Stokes
layer, Blennerhassett & Bassom (2002) showed that strictly the neutral curves are
punctuated by small spikes which represent disturbances that are stationary relative
to the underlying basic flow (i.e. µ = 0). In many regards, these spikes are incidental to
the overall structure of the neutral curves for they protrude a distance less than unity
in Reynolds number space. These spikes also exist in our current problem, but the
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Figure 1. Neutral stability curves for m= 0, 0.05, 0.1, 0.15 and 0.2. The lowest curve
corresponds to the zero magnetic field and increases in m move the curves upwards in
the obvious manner. The lines mark the results obtained using Floquet theory, while points
indicated with � show corresponding DNS predictions.

resulting changes in critical R and wavenumber would be insignificant and certainly
not visible on the scale of figure 1.

As a check on our results a velocity–vorticity formulation of the fully linearized
Navier–Stokes equations was employed. This scheme is based on the methods
described by Davies & Carpenter (2001) and uses Chebyshev discretization in the
normal-to-wall direction together with a Fourier spectral scheme in the x-direction
and combined with semi-implicit methods for the time-stepping procedure. Time
histories of the disturbance evolution are obtained that allow the growth or decay of
a perturbation to be calculated, which in turn is used to determine critical stability.
A detailed description of the DNS implementation may be found in Thomas et al.
(2010).

Selected points on the stability curves in figure 1 were re-calculated using these
DNS methods and the results are denoted by the � symbols in figure 1. A time-
dependent impulsive forcing was used to initiate perturbations containing a spectrum
of frequencies and then that with the greatest growth rate evolved and dominated the
remainder. Accurate results were obtained by implementing time steps �τ = 0.1/R

and using 100 Chebyshev polynomials, while the net growth or decay rate, µr , of
a disturbance was estimated by calculating ln|ζ (τ + 2π)/ζ (τ )|/2π, where ζ is the
characteristic size of the vorticity perturbation on the wall. Critical points along the
neutral stability curve were then estimated by linear interpolation on a pair of closely
spaced points (µ±

r , R±(a)) for a fixed wavenumber a and µ±
r < 0.02. The DNS results

are plotted at wavenumber intervals �a = 0.05 and these predictions are seen to be in
a very good agreement with those obtained using the Matlab methods. In passing, we
remark that although negative values of the magnetic parameter m can be precluded
on physical grounds, since they imply a negative electrical conductivity, they can be
used to provide further validation of the two numerical methods. The Floquet and
DNS results agree in predicting that if m < 0 there would be a destabilization of the
flow at lower Reynolds numbers.
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Figure 2. Contours of the vorticity perturbation, ζ , taken over three cycles of oscillation
with magnetic parameter m= 0.1, wavenumber a = 0.4 and (a) R = 1075, (b) R = 1085 and
(c) R = 1095. Positive contours are represented by solid lines, while negative contours are
indicated by dotted lines.

Vorticity perturbation contours in (y, τ/2π) space obtained via DNS, are displayed
in figure 2. The disturbance evolution is plotted over three periods for the magnetic
field m =0.1, a wavenumber a = 0.4 and the three Reynolds numbers R = 1075, 1085
and 1095. The three simulations display similar features: there is one source of
vorticity per cycle, which originates near the plate surface and develops along the
y-axis, eventually decaying at a sufficiently far distance from the wall. However,
as the Reynolds numbers differ, so the magnitude of the vorticity varies as time
advances. When R = 1075, temporal net decay is observed, as the vorticity shrinks
from one cycle to the next, whilst net growth is displayed for R = 1095. The eye
cannot detect net growth or decay at the intermediate R = 1085, which is consistent
with the neutral results of figure 1 that this choice is very close to critical instability.
Also it is of interest that there is strong amplification of vorticity into regions where
the shear stress decays to zero. On the face of it, this is somewhat surprising, but such
behaviour has been observed by Healey (2006) for the steady rotating-disk boundary
layer; furthermore he suggested a mechanism by which sustained growth could occur
in a region with no Reynolds stress.

The strongly stabilizing effect of an axial magnetic field is further emphasized in
figure 3. Here the solid line illustrates the behaviour of the critical Reynolds number
against m, while the dashed curve displays the change in the critical wavenumber.
For m = 0.3, Rc ≈ 2236, which is more than three times that of the case corresponding
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Figure 3. Critical results for the Reynolds number (solid line) and wavenumber (dashed
line) as a function of the magnetic field parameter, m.

to a zero magnetic field. The figure also illustrates the less pronounced effect on the
critical wavenumber, which reduces as m is increased.

4. Final remarks
In this study, we have endeavoured to characterize the effects resulting from the

imposition of an axial magnetic field on the classical flat Stokes layer. The dramatic
stabilization induced by the magnetic field has been confirmed using both Floquet
theory methods implemented using pseudospectral schemes and the DNS strategy
developed by Davies & Carpenter (2001). The neutral curves and critical parameters
for instability prove that an axial magnetic field is stabilizing. As with the rotating-
disk boundary layer, the magnetic field has the effect of reducing the boundary-layer
thickness, and thus only small increments in the magnetic parameter, m, are required
to greatly alter the stability characteristics of the Stokes layer. Hence, the effect is
qualitatively similar to that due to mass suction, which may also be used to suppress
instability (Gao & Lu 2006a).

This work was supported by the Australian Research Council grant DP0880463.
We are grateful to the referees for several suggestions which have led to a much
improved paper.
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