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Abstract

MRI-derived brain measures offer a link between genes, the environment and behav-

ior and have been widely studied in bipolar disorder (BD). However, many neuroimag-

ing studies of BD have been underpowered, leading to varied results and uncertainty

regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis

(ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discov-

eries, generate consensus findings and inform future hypothesis-driven studies of

BD. Through this effort, over 150 researchers from 20 countries and 55 institutions

pool data and resources to produce the largest neuroimaging studies of BD ever con-

ducted. The ENIGMA Bipolar Disorder Working Group applies standardized
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processing and analysis techniques to empower large-scale meta- and mega-analyses

of multimodal brain MRI and improve the replicability of studies relating brain varia-

tion to clinical and genetic data. Initial BD Working Group studies reveal widespread

patterns of lower cortical thickness, subcortical volume and disrupted white matter

integrity associated with BD. Findings also include mapping brain alterations of com-

mon medications like lithium, symptom patterns and clinical risk profiles and have

provided further insights into the pathophysiological mechanisms of BD. Here we dis-

cuss key findings from the BD working group, its ongoing projects and future direc-

tions for large-scale, collaborative studies of mental illness.

K E YWORD S

bipolar disorder, cortical surface area, cortical thickness, ENIGMA, mega-analysis, meta-analysis,

MRI, neuroimaging, psychiatry, volume

1 | INTRODUCTION

1.1 | Overview

Bipolar disorder (BD) is a severe mental disorder characterized by epi-

sodic alterations in mood and activity levels including depression,

hypomania and mania. It is a leading cause of disability and affects

�1% of the world's population (Merikangas et al., 2011; Vieta

et al., 2018). As a chronic illness, BD can lead to long-term functional

impairments and reduced quality of life for both patients and care-

givers (Oldis et al., 2016; Perlick, Rosenheck, Clarkin, Raue, &

Sirey, 2001; Vigo, Thornicroft, & Atun, 2016), which confer significant

societal costs (Ekman, Granstrom, Omerov, Jacob, & Landen, 2013).

Challenges remain in identifying robust and reproducible biomarkers

to better understand the neurobiology, nosology, diagnosis and

targeted treatments that are needed to improve patient outcomes in BD.

Mental health professionals continue to rely on a phenomenology-based

diagnostic system as opposed to validated biological markers1 to diag-

nose and treat BD. This is reflected in current diagnostic classification

systems, namely the DSM-5 (APA, 2013) and ICD-10 (WHO, 1993;

https://apps.who.int/iris/handle/10665/246208), which use the number

and profile of symptoms to delineate the unique and overlapping clinical

features of mental disorders, and allow individuals to be categorized

based on threshold criteria (BD diagnosis criteria provided in Supplemen-

tal Materials). While such approaches have improved the reliability of

diagnosing BD, misdiagnosis remains common, and hence biomarkers

such as those recently accepted for other disorders such as Alzheimer's

disease (Jack Jr. et al., 2018) are urgently needed for BD. To date, there

are still no valid biomarkers for the diagnosis of any mental disorder,

including BD (Quevedo & Yatham, 2018; Vieta et al., 2018; Vieta &

Phillips, 2007).

Non-invasive, in vivo measures of brain structure and function

derived from magnetic resonance imaging (MRI) have shed light on

the underlying brain alterations associated with BD. However, factors

such as clinical heterogeneity, high costs of data acquisition, variable

processing and analysis protocols, underpowered and generally cross-

sectional research designs, post analysis hypothesizing and publication

bias have resulted in variable findings and hindered the discovery of

validated biomarkers (Figure 1).

1.2 | Key challenges facing the use of
neuroimaging to study bipolar disorder

Neuroimaging has been used as a powerful, non-invasive tool to study

mental disorders such as BD for several decades, ever since early

studies revealing enlarged ventricles in patients with schizophrenia

(Johnstone, Crow, Frith, Husband, & Kreel, 1976). A key goal of

psychiatric neuroimaging research is to use MRI measures of brain

structure and function as a link between phenomenology, course, out-

come, treatment response, genetics and behavior. Unlike behavioral

outcome measures, MRI-derived brain measures have been proposed

to serve as an “endophenotype” – or a marker more closely related to

the underlying biology of a disorder. Such markers may have a simpler

genetic architecture or be more tractable to study compared to

behavioral phenotypes. There is mounting evidence that these in vivo

brain endophenotypes may help define the causal pathways between

heterogeneous behavioral alterations and genetic factors associated

with a given mental disorder (Bigos & Weinberger, 2010; Glahn,

Thompson, & Blangero, 2007; Gottesman & Shields, 1973, 1976; Hol-

land et al., 2020; Le & Stein, 2019).

A large body of both structural and functional neuroimaging

research has associated BD with abnormalities in the neural circuitry

of emotion and reward processing (Phillips & Swartz, 2014). Structural

studies have shown BD-related variation in cortical regions including

prefrontal, anterior temporal and insula cortices (Ganzola &

Duchesne, 2017; Hajek et al., 2013; Rimol et al., 2012) as well as

alterations in subcortical structures such as the hippocampus, thala-

mus and amygdala in individuals with BD compared to healthy con-

trols (HC) (Hajek et al., 2009; Hajek, Kopecek, Hoschl, & Alda, 2012;

Rimol et al., 2010). Studies of white matter in individuals with BD

using diffusion MRI (dMRI) have found disruptions in fronto-limbic
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white matter (WM) regions important to emotion regulation and

reward processing (Phillips & Swartz, 2014). Functional neuroimaging

studies have tied altered prefrontal, amygdala, temporal and ventral

striatum activity during emotion and reward tasks to BD (Phillips &

Swartz, 2014; Sepede et al., 2012, 2015, 2020).

However, while prior meta-analyses have found relative consen-

sus across studies (Ganzola & Duchesne, 2017), conflicting results are

not uncommon in neuroimaging studies of BD. For example, reports

of both larger and smaller structural volumes in participants with BD

versus HC are widely cited in the literature (Phillips & Swartz, 2014).

Such discrepancies can be traced to a core set of challenges facing

neuroimaging studies of BD (Figure 1; see Supplemental Materials for

further details on these challenges).

First, BD is a broad diagnostic category with varied clinical char-

acteristics likely including related underlying subtypes (i.e., biotypes

that subdivide or stratify conventional diagnostic categories). These

subtypes likely vary in underlying genetic and environmental risk,

treatment response, psychiatric/medical comorbidity, clinical course,

prognosis and pathophysiology (Duffy, Vandeleur, Heffer, & Preisig,

2017). Even the most carefully designed studies of BD will likely

include participant heterogeneity, as we do not fully understand the

underlying neurobiological stratification. We discuss the challenges of

linking current categorical diagnostic constructs of BD to underlying

biological measures in the Supplemental Materials. Study participant

heterogeneity in key variables affecting brain measures (e.g., diagnos-

tic method, age at scan, age of onset, illness duration, medication

status, etc.) adds noise to the already complicated task of detecting

the subtle effects of the disorder on MRI-derived brain metrics.

Second, the high cost of MRI data collection can restrict study sample

sizes (most studies collect data from fewer than 100 participants),

which may limit the statistical power to detect neurobiological effects

or model complex factors modulating BD symptoms. Third, variable

processing and analysis techniques for MRI make results hard to com-

pare across studies (Botvinik-Nezer et al., 2020). The power of tradi-

tional literature-based meta-analyses in BD neuroimaging studies is

somewhat limited by a lack of such standardized techniques (see the

following section for more detail). Fourth, most research studies are

cross-sectional, which limits analyses to static brain traits as opposed

to potential brain alterations over the course of illness in BD. Fifth,

underpowered and heterogeneous study samples may yield false posi-

tives or overestimate effects – a situation known as the “winner's

curse” (Button et al., 2013). Lastly, many studies suffer from post anal-

ysis hypothesizing or publication bias. All these challenges degrade

the reliability of findings, mandating the design of more replicable and

generalizable studies.

Under current diagnostic criteria, BD patient heterogeneity

(Charney et al., 2017; Stahl et al., 2019; Wolfers et al., 2018) can

affect study power depending on sample size (Button et al., 2013). In

smaller samples, patient heterogeneity can dilute the overall effect of

interest, either making it harder to detect subtle BD alterations or

overestimating true BD effects. In larger consortium studies with

increased statistical power, patient heterogeneity can lead to a more

“ecologically valid” sample that represents a larger fraction of the

patient space. While this heterogeneity in large samples can lead to

more replicable findings that apply more widely to BD in the general

population, subtle biological effects relevant to particular patient

F IGURE 1 Major challenges facing neuroimaging studies of BD and how the ENIGMA BD Working Group meets these challenges
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subgroups may be obscured, requiring data-driven, post-hoc stratifica-

tion. Smaller, well-controlled studies that are able to implement

deeper phenotyping and novel analysis methods may be equipped to

isolate the underlying pathophysiology associated with particular

patient subgroups or symptom profiles, as long as the sample sizes are

still adequately powered to detect the effects.

Current structural and functional neuroimaging measures may

only account for a limited proportion of the overall variance in a com-

plex phenotypic trait such as BD diagnosis (Paulus & Thompson,

2019). Larger research samples may overcome the power limitations

of smaller studies and improve sensitivity to subtle brain signatures

(Westlye, Alnaes, van der Meer, Kaufmann, & Andreassen, 2019).

They may also offer a greater opportunity to model factors that

contribute to complex phenotypes such as BD. For example, some

medications commonly used to treat BD have shown morphometric

effects on MRI-derived brain metrics (Abe et al., 2015; Abramovic

et al., 2016; Hajek et al., 2014; Haukvik et al., 2020; Lyoo et al., 2010;

Moore et al., 2009; Moore, Bebchuk, Wilds, Chen, & Manji, 2000;

Sarrazin et al., 2019), including gray matter increases with lithium and

atrophic effects of anticonvulsants (Hibar et al., 2018). These

medication-related brain changes may be critical in the treatment of

BD, but they may also make brain alterations in the disorder harder to

detect, as most are highly confounded with illness status or severity.

The modeling of complex factors, such as medication history, can be

greatly improved in larger, pooled study samples.

These core challenges have contributed to the “replication crisis”

affecting much of biomedical research (Button et al., 2013; Dumas-

Mallet, Button, Boraud, Gonon, & Munafo, 2017; Ioannidis, 2008,

2011, 2017). To address these challenges, and to contribute to a

recent shift in psychiatry toward large consortium efforts, the

ENIGMA Bipolar Disorder Working Group was formed to pool data,

expertise and computational resources to discover factors that reliably

affect brain structure and function in BD.

Importantly, clinical symptoms (either categorical or dimensional)

remain the most useful metrics available to clinicians treating patients

with BD. While some of the research tools presented in this article

may one day improve BD care, these tools and methods must be rig-

orously validated and standardized if they are ever to be truly useful

in a clinical setting. In the following sections, we discuss how large-

scale efforts provide a path forward, and serve as an example of the

power of team science in pooling existing data and expertise to tackle

the core challenges facing BD research and treatment.

1.3 | The ENIGMA consortium: Large-scale,
collaborative studies of brain structure and function

An increasing number of common variants throughout the human

genome have been associated with risk for BD. The Psychiatric Geno-

mics Consortium (PGC) spearheaded a global effort to discover these

risk loci by coordinating large-scale psychiatric genetics studies

(https://www.med.unc.edu/pgc/). Many early genetic studies prior to

the PGC found associations between polymorphisms in candidate

genes and brain measures that later failed to replicate in larger indepen-

dent samples (Farrell et al., 2015). Genome-wide analyses have now

revealed hundreds of common genetic variants that are reliably associ-

ated with psychiatric disorders (Bipolar Disorder and Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2018;

Schizophrenia Working Group of the Psychiatric Genomics Consortium,

2014; Stahl et al., 2019; Wray et al., 2018), as well as discovered signifi-

cant genetic overlap between major disorders (Brainstorm et al., 2018;

Gandal et al., 2018).

As the PGC has done for genetics, large-scale, collaborative neu-

roimaging studies offer the power to answer new questions and

address prior inconsistencies in the literature. The ENIGMA Consor-

tium, launched in 2009, aimed to identify genetic variants that are

consistently associated with brain structure and function by per-

forming genome-wide association studies (GWAS) on measures from

brain MRI. To overcome the statistical power limitations of GWAS

(as most genetic polymorphisms associated with brain measures

account for less than 1% of the overall variance in any given brain

measure), the initial ENIGMA projects recruited samples with both

MRI and genetic data and implemented standardized processing and

analysis methods. These protocols enabled highly powered, prospec-

tive meta-analyses on a scale not previously possible (i.e., 99% power

to detect genetic loci explaining at least 1% of the variance in a given

brain trait). These initial studies identified new genetic variants associ-

ated with variability in brain volumes such as the hippocampus (Hibar

et al., 2015; Stein et al., 2012). More recently, collaborations between

ENIGMA and other large-scale international consortia, such as

CHARGE, were able to replicate initial findings in larger independent

samples and provided new insights into the genetic mechanisms

influencing brain structure (Adams et al., 2016; Grasby et al., 2020;

Hibar et al., 2017; Satizabal et al., 2019), function (Smit et al., 2018),

and development (Brouwer et al., 2017).

The success of the initial ENIGMA multi-site GWAS led to the

formation of over 50 collaborative ENIGMA Working Groups devel-

oping or using standardized protocols and studying a wide range of

neurodegenerative, neurodevelopmental and psychiatric disorders.

Working in parallel, and sharing standardized tools, the ENIGMA clini-

cal working groups published the largest neuroimaging studies of BD

(Hibar et al., 2016; Hibar et al., 2018), MDD (Schmaal et al., 2016;

Schmaal et al., 2017), schizophrenia (SCZ) (van Erp et al., 2016; van

Erp et al., 2018), obsessive compulsive disorder (OCD) (Boedhoe

et al., 2017; Boedhoe et al., 2018), attention deficit hyperactivity dis-

order (ADHD) (Hoogman et al., 2017, 2019), autism spectrum disorder

(ASD) (van Rooij et al., 2018), epilepsy (Whelan et al., 2018), sub-

stance use disorders (Mackey et al., 2019), PTSD (Dennis et al., 2019;

Logue et al., 2018) and 22q11.2 deletion syndrome (Ching

et al., 2020; Sun et al., 2018; Villalon-Reina et al., 2019). A more thor-

ough review of efforts across the ENIGMA Consortium may be found

in several recent articles (Bearden & Thompson, 2017; Thompson

et al., 2014; Thompson et al., 2020).

The ENIGMA Consortium offers a number of advantages com-

pared to previous smaller-scale neuroimaging studies. ENIGMA takes

advantage of existing data sets, reviving smaller samples that have
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often concluded data collection and primary publications. To date, the

ENIGMA consortium has incorporated over 70,000 scans from a

range of disorders and healthy individuals. ENIGMA currently includes

over 2,000 scientists from over 340 institutions, spanning 45 coun-

tries. By taking advantage of existing data and using parallel comput-

ing power across the world, ENIGMA has leveraged research

resources that benefit the wider research community at a relatively

modest study cost.

In the conventional, retrospective, literature-based meta-analysis,

summary statistics including effect sizes, confidence intervals and

standard errors are extracted from published studies (which have

often used different processing and analysis pipelines). These are then

combined mathematically to estimate an overall effect (e.g., regional

brain volume differences between BD and HC). A key strength of the

ENIGMA approach over more traditional meta-analyses is the imple-

mentation of standardized processing and analysis protocols to per-

form coordinated, prospective meta- and mega-analyses. These

protocols, which are publicly available (http://enigma.ini.usc.edu/

protocols), serve several purposes: 1) ENIGMA-standardized protocols

make it possible to efficiently and consistently extract measures from

MRI data and to perform robust quality assessment and statistical

modeling across tens to hundreds of international research centers

with varying neuroimaging expertise, 2) standardized processing and

analysis leads to more unbiased investigations of brain measures not

possible via traditional meta-analyses that combine published effect

sizes derived from varied processing and analysis protocols

(e.g., regions of interest combined with whole brain analyses, mass-

univariate combined with multivariate analyses, etc.), 3) pooling data

can overcome publication bias and boost statistical power by including

cohorts that may have been underpowered on their own to detect

effects on particular brain measures or associations with symptom

constructs, 4) harmonized protocols using standardized and publicly

available pipelines promote “open science” by increasing transparency

and encouraging replication, 5) it makes large-scale, post-hoc sub-

group explorations possible and lastly, 6) it allows for the direct com-

parison of large-scale, standardized data across ENIGMA Working

Groups to better understand common and distinct patterns that span

traditional diagnostic boundaries.

Importantly, and as previously mentioned, large-scale ENIGMA BD

Working Group efforts do not replace well-designed, smaller-scale neu-

roimaging studies, but rather complement one another. While the initial

ENIGMA studies were well powered to capture generalizable effects

across study samples, they can miss subtle, subtype-specific effects that

may be better captured by smaller well-controlled studies focusing on

particular subtypes or symptom patterns in BD, or with targeted deeper

phenotyping not economically feasible in large-scale studies. While the

large samples pooled through ENIGMA increase sensitivity to smaller

effect sizes, and are arguably more generalizable to the wider population,

potential lurking confounds or artifacts (e.g., head motion see Pardoe,

Hiess, & Kuzniecky, 2016; Yao et al., 2017) that may span independently

collected study samples must be carefully considered and modeled.

Lastly, the international coordination of ENIGMA studies requires

consensus and cooperation across a large number of centers worldwide.

In our experience, one of the more important steps to starting a

successful ENIGMA Working Group is to be pragmatic about the initial

studies carried out by the group. Focusing early efforts on a core set of

available variables and feasibly derived brain measures lowers the bar

for participation and helps to incorporate the greatest number of Work-

ing Group members. These early studies, while not necessarily applying

the most novel of brain metrics (e.g., volumes) or analysis models

(e.g., general linear models) are more feasible to accomplish while

simultaneously providing important consensus building findings in the

literature. The trust and infrastructure formed through these initial

pragmatic studies and publications helps build momentum toward more

ambitious projects using more advanced metrics (e.g., vertex-wise

measures, connectivity measures using graph theory, etc.) and more

advanced analyses (e.g., multivariate analysis, machine learning, struc-

tural covariance analysis, etc.).

2 | THE ENIGMA BIPOLAR DISORDER
WORKING GROUP

The ENIGMA Bipolar Disorder Working Group was formed in 2012 to

address some of the core limitations in BD research and foster collab-

orative discoveries using the wider ENIGMA Consortium research

model. The Working Group consists of an international team of over

150 clinicians, neuroscientists, bioengineers, and geneticists who pool

research resources from 20 countries and 55 institutions to conduct

large-scale neuroimaging studies of BD. The group has combined mul-

timodal neuroimaging data from 46 study cohorts which include

�3,500 BD participants and � 8,500 healthy controls, making it the

largest neuroimaging consortium effort to study BD (Figure 2). In the

following sections we discuss the Bipolar Disorder Working Group

and its contributions to understanding brain alterations in BD, includ-

ing guiding principles, current findings, ongoing projects and future

directions that aim to advance neurobiological research of BD and

other mental disorders.

2.1 | Goals and guiding principles

The primary research goals of the Bipolar Disorder Working Group

are to:

1. Make reliable discoveries that improve our understanding of the

pathophysiological mechanisms of BD.

2. Provide clinically relevant information to help improve BD nosol-

ogy, diagnosis, mechanistically-directed interventions and treat-

ment outcomes.

To accomplish these goals, the Bipolar Disorder Working Group

implemented ENIGMA-standardized protocols using open-source and

widely available processing platforms such as FreeSurfer (Fischl

et al., 2002) and FSL (Smith et al., 2006), as well as tools specifically

developed for large-scale, multisite projects (Figure 2).
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The BD Working Group operates under a set of simple guiding

principles (Figure 3). First, primary data sharing is not required to par-

ticipate in the working group; meta-analysis is always the encour-

aged/default analysis framework. This helps garner the greatest

number of participating samples and mitigates many data sharing chal-

lenges (Zugman et al., 2020). Working Group projects operate on an

“opt-in” principle, where members retain full ownership and control

over their data and are free to decide which project proposals they

wish to participate in. Furthermore, members can withdraw their data

or resources from a project at any time prior to publication.

New Working Group members are asked to sign a Memorandum

of Understanding (MOU) that has been standardized across the

ENIGMA Working Groups and sets a basic framework to protect par-

ticipating sites' data privacy, facilitate data sharing, encourage aca-

demic productivity, ensure appropriate publication credit and

authorship. It also provides a system to track and archive data,

analyses and publications related to the BD Working Group (http://

enigma.ini.usc.edu/ongoing/enigma-bipolar-working-group/ Figure 3).

The Working Group's scientific initiatives and basic policies are over-

seen by two Chairs, Dr. Ole A. Andreassen and Dr. Christopher R. K.

Ching, who are responsible for ensuring that working group studies

are carried out in accordance with appropriate ethical guidelines.

Working group members are provided an equal opportunity to

propose a project analysis plan. Analysis plans are developed and sub-

mitted in a standardized format with the help of the Working Group

Chairs and then presented to the full Working Group membership via

email and conference calls. Project leaders pitch their analysis plans to

the Working Group and each member reviews and decides whether

to contribute their data sample to the proposed projects (opt-in). Most

analysis plans earn widespread participation from the BD Working

Group members, resulting in large-scale studies that could not have

been accomplished independently.

F IGURE 2 (a) ENIGMA
Bipolar Disorder Working Group
sites across the world including
over 150 researchers from
20 countries and 55 institutions.
(b) Schematic of ENIGMA Bipolar
Disorder Working Group as it fits
into the larger ENIGMA
Consortium network. rsfMRI,

resting-state functional MRI;
tbfMRI, task-based functional
MRI; WM, white matter; DTI,
diffusion tensor imaging; MDD,
major depressive disorder; PTSD,
post-traumatic stress disorder;
OCD, obsessive–compulsive
disorder; CNVs, copy number
variants; Familial Risk, relatives of
individuals with psychiatric illness
(including bipolar disorder and
schizophrenia)

CHING ET AL. 9

http://enigma.ini.usc.edu/ongoing/enigma-bipolar-working-group/
http://enigma.ini.usc.edu/ongoing/enigma-bipolar-working-group/


The BD Working Group's initial goal was to demonstrate the

power and feasibility of large-scale, collaborative neuroimaging ana-

lyses by establishing minimal bureaucratic barriers for participation

and using standardized and publicly available processing and analysis

protocols (Figures 2 and 3). To date, the BD Working Group has publi-

shed five peer-reviewed studies and currently coordinates over

18 active and ongoing analysis projects led by Working Group mem-

bers from around the world.

3 | f PUBLISHED STUDIES

3.1 | Overview

The ENIGMA Bipolar Disorder Working Group has published five

peer-reviewed studies, each representing the largest neuroimaging

studies of their kind and helping to answer the question of which

brain structures are reliably associated with BD, its subtypes, and

other clinical measures such as illness duration, severity, genetic risk,

and common medications. Overall, these studies point to a diffuse

pattern of brain alterations including smaller subcortical volumes,

lower cortical thickness and altered white matter integrity in groups

of individuals with BD compared to healthy controls. Small to moder-

ate effect sizes are observed for ENIGMA-standardized brain mea-

sures, in line with prior reports from the BD literature. Common

medications such as lithium appear to have a normalizing effect on

gray and white matter structures, whereas other treatments such as

anticonvulsants appear to have the opposite effect. Standardized,

ROI-based cortical and subcortical brain measures were useful in pars-

ing differences between patients and non-affected relatives as well as

providing above chance predictive accuracy in classifying BD individ-

uals from controls using common machine learning techniques.

3.2 | Alterations to subcortical volumes and
associations with common pharmacological
treatments

The ENIGMA BD Working Group's first study was a meta-analysis of

subcortical gray matter brain volumes in 1,710 BD participants and

2,594 HC from 20 international sites, to identify effects of the disor-

der on regional morphometry, and rank structural brain metrics for

case–control differences. On average, higher bilateral ventricular vol-

umes and lower hippocampal, amygdala and thalamic volumes were

F IGURE 3 (a) Outline of the
ENIGMA BD Working Group guiding
principles. (b) Flow diagram showing
working group logistics including
memorandum of understanding,
participation in and development of
new research proposals, data sharing,
etc. Ethics/IRB: The ENIGMA BD
Working group is experienced with

navigating international research
ethics and institutional review
boards, which may require additional
approval depending on project
specifics. More information on the
ENIGMA BD Working group
including the Memorandum of
Understanding can be found online
(http://enigma.ini.usc.edu/ongoing/
enigma-bipolar-working-group/)
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detected in BD versus HC (Figure 4a) (Hibar et al., 2016). Importantly,

all case–control effect sizes were small to moderate and varied to

some degree across the 20 study samples. When combining the

effects across sites meta-analytically, clearer patterns emerged

(Figure 4b). The group differences may reflect either accelerated atro-

phy in BD with potential disease-related neuroprogression, chronic

effects of the illness, or medication. Alternatively, smaller volumes

may represent a potential risk factor for BD arising in early stages of

development. Importantly, prior meta-analyses were either unable to

detect case–control differences in amygdala volume or reported vari-

able effects (Altshuler et al., 2000; Chang et al., 2005).

No structural brain differences were detected between BD sub-

types (BD-I, BD-II and BD-NOS). Lithium treatment was associated

with larger thalamic volumes compared to non-treated individuals

F IGURE 4 Findings from Subcortical volumetric
abnormalities in bipolar disorder (Hibar et al., 2016).
(a) Cohen's d effect size estimates for subcortical
differences between individuals with BD versus
healthy controls (HC) using ENIGMA-standardized
FreeSurfer volumes. Statistical model accounts for
age, sex, and intracranial volume. Error bars indicate
mean effect size ± standard error of the mean.
Results passing study-wide significance threshold
are indicated by (*) including the amygdala which
showed a trending effect. (b) Forest plots displaying
the effect size estimates (adjusted Cohen's d) for
each of the 20 study sites in the comparison of
individuals with BD versus HC at each subcortical
structure along with the overall inverse variance-
weighted random-effects meta-analysis results
(RE Model)
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with BD. Compared to HC, individuals with BD not on lithium treat-

ment had smaller hippocampal and thalamic volumes, on average, and

larger lateral ventricles. Participants with BD taking anticonvulsants

had smaller hippocampal volumes compared to non-treated partici-

pants with BD. As discussed in the published study, these cross-

sectional results should be interpreted cautiously as medication status

is confounded to some extent with illness characteristics (such as

symptom severity). Furthermore, a simple binary coding (prescribed/

not prescribed) was used to determine medication status at the time

of scan. Current studies are investigating such medication factors as

treatment history, dose, and serum level, to better model interactions

between different pharmacological agents – polypharmacy is common

in BD – and their associated effects on brain structure (see Ongoing

and Future Studies section below and Supplemental Materials).

3.3 | Widespread cortical thickness alterations in
BD and associations with pharmacological treatment

Prior meta-analyses reported lower cortical thickness in the anterior

cingulate, paracingulate, superior temporal gyrus and prefrontal

regions associated with BD (Hanford, Nazarov, Hall, & Sassi, 2016;

Phillips & Swartz, 2014). Surface area findings have been more vari-

able – some larger studies detected no differences between BD and

HC (Rimol et al., 2010). In our second study, again the largest of its

kind, we focused on cortical structure (2,447 BD and 4,056 HC),

examining ENIGMA-standardized measures of cortical thickness and

surface area in an expanded ENIGMA BD sample including 28 interna-

tional sites (Hibar et al., 2018). Compared to controls, individuals with

BD exhibited a widespread pattern of thinner cortex (Figure 5a). Inter-

estingly, and in agreement with previous large sample studies, no

case–control differences were detected for cortical surface area. Lon-

ger illness duration was associated with a pattern of lower cortical

thickness but not with surface area alterations. As in the subcortical

study, no significant differences were detected between BD clinical

subtypes.

With regard to medication status, we found significantly higher

cortical thickness in participants with BD also taking lithium at the

time of scan, with the largest effects in the left paracentral gyrus (-

Figure 5b). Anticonvulsant treatment was associated with lower corti-

cal thickness, with the greatest effects in bilateral occipital gyri

(Figure 5C). Atypical “second-generation” antipsychotics were associ-

ated with lower cortical surface area in the rostral middle frontal

gyrus, whereas typical “first-generation” antipsychotics were associ-

ated with higher surface area in the left inferior parietal gyrus.

The cortical findings were largely in line with prior reports of thin-

ner frontal and temporal cortices in BD. Notably, regions with the

largest BD versus HC differences included the ventrolateral prefrontal

cortex, an area long implicated in BD pathophysiology. Important new

contributions include the observation of lower thickness in inferior

parietal, fusiform, and inferior temporal regions in adults with

BD. Structural deficits in these regions have been tied to disruptions

in sensorimotor integration (Caspers, Zilles, Laird, & Eickhoff, 2010)

and language (Vigneau et al., 2006), and may relate to altered emotion

perception and rapid mood changes in BD. Further studies are needed

to probe the functional relevance of regional cortical differences, and

how these effects may be interrelated (e.g., using structural covari-

ance analysis).

3.4 | Multi-site machine learning using brain MRI
to identify bipolar disorder

Differential diagnosis of BD remains a challenge, with mis-diagnosis

leading to delays in effective treatments. In an effort to improve diag-

nostic accuracy and, ultimately, personalize treatments, machine

learning can be used to find complex patterns in neuroimaging data

that predict diagnostic categories, or prognosis. In our first such study,

the Bipolar Working Group evaluated the capacity of a linear support

vector machine classifier to predict the diagnosis of BD using stan-

dardized cortical and subcortical ROI-based brain features from

853 individuals with BD and 2,167 HC acquired from 13 international

F IGURE 5 Findings from Cortical abnormalities in bipolar disorder: an MRI analysis of 6,503 individuals from the ENIGMA Bipolar Disorder
Working Group (Hibar et al., 2018). (a) A widespread pattern of thinner cortex in adult individuals with BD versus HC. Cohen's d effect sizes
plotted in regions passing correction for multiple comparisons. (b) Thicker cortex in adult individuals with BD taking lithium medication at time of
scan. (c) Thinner cortex in adult individuals with BD associated with anticonvulsant treatment at time of scan
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sites (Nunes et al., 2018). Under appropriate cross-validation proce-

dures, diagnosis of BD was classified with a sensitivity of 0.66 (95%

CI [0.63, 0.69]), a specificity of 0.65 (0.62, 0.67) and an area under the

receiver operating characteristic (ROC) curve of 0.71 (0.69, 0.74) (-

Figure 6). Informative features were in agreement with previous find-

ings, including the importance of hippocampus, amygdala (Hajek

et al., 2009, 2012), and cortical regions such as inferior frontal and

precentral gyri (Hibar et al., 2018).

When interpreting these results, we considered several issues.

BD and its clinical subtypes are difficult to diagnose leading to noise

in the target labels (i.e., derived brain measures). In addition, the illness

shows marked clinical and neurobiological heterogeneity. Many brain

alterations in BD are likely secondary to illness burden, presence or

absence of comorbid conditions (Hajek et al., 2014; Hajek, McIntyre, &

Alda, 2016), or treatments (Hibar et al., 2018; Van Gestel et al., 2019).

Since these secondary changes are not found in all participants and

reflect factors beyond the diagnosis, they cannot be used diagnosti-

cally. Last but not least, we worked with regional brain measures, not

raw/voxelwise data. This approach involves information loss in the

feature engineering process and using raw data could improve classifi-

cation accuracy. While clinician judgment for BD diagnosis and treat-

ment continues to outperform robust machine learning methods such

as those studied here, the accuracy observed in this study provides a

realistic and fair estimate of classification performance, which can be

achieved in a large, ecologically valid, multisite sample of individuals

with BD based on regional brain structure measures.

Our study provided further clues about the impact of data han-

dling on classification performance. Performing the machine learning

analyses on data pooled across the sites yielded a much better perfor-

mance than meta-analysis of site level results – the typical analytic

method in multisite collaborations. Thus, future multisite brain-

imaging machine learning studies should attempt to move toward

sharing of individual, raw data, not only site-level results. Developing

an ethico-legal framework to facilitate safe sharing of raw data is a

key and critical component of advancing medical machine learning

(Passos et al., 2019).

3.5 | Diffuse white matter alterations challenging
the existing models of bipolar disorder

Diffusion tensor imaging (DTI) studies of BD implicate widespread

white matter (WM) alterations within and beyond the fronto-limbic

regions that appear to precede emotional instability (Phillips &

Swartz, 2014). Limbic and non-limbic tract disruptions have been

reported (Canales-Rodriguez et al., 2014) but inconsistencies exist in

the literature and are likely due to the aforementioned research chal-

lenges. In our first DTI project, we aimed to identify generalizable

WM microstructural alterations with a standardized processing and

analysis framework (Jahanshad et al., 2013; Smith et al., 2006) to

study case–control differences, as well as associations with clinical

characteristics in BD. The project pooled data from 1,482 individuals

with BD and 1,551 HC from 26 research samples across 12 countries.

We used both meta- and mega-analyses to form the largest multicen-

ter DTI study of BD to date. Fractional anisotropy (FA) – a measure of

white matter directionality, coherence and integrity – was lower, on

average, in participants with BD across 29 out of 44 WM regions of

interest, with strongest effects in the corpus callosum and cingulum

(Figure 7). Higher FA was associated with later disorder onset and

shorter illness duration. Lithium treatment was associated with higher

FA, both globally and in a number of regions of interest including the

corona radiata, posterior thalamic radiation and internal capsule

(Favre et al., 2019). No significant FA alterations were detected

between BD subtypes (BD-I and BD-II diagnosis) or associated with

antidepressant use, illness severity (measured by number of mood epi-

sodes/duration of illness) or history of psychotic symptoms.

Unlike prior studies, we reported widespread FA alterations in BD –

a pattern similar to results from the ENIGMA Schizophrenia

F IGURE 6 Findings from Using structural MRI to identify bipolar disorders - 13 site machine learning study in 3020 individuals from the ENIGMA
Bipolar Disorders Working Group (Nunes et al., 2018). (a) Support vector machine (SVM) classifier performance trained on each site independently,
including mean and 95% confidence intervals for accuracy, area under the receiver operating curve (ROC-AUC), sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV). (b) Receiver operating curves from aggregate individual-level analysis with dashed line
indicating chance performance, blue line indicating mean ROC and gray lines indicating ROC curves from individual folds
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Working Group DTI study (Kelly et al., 2018). This suggests that a

global pattern of microstructural abnormalities may span both disor-

ders. Altered WM microstructure in the cingulum, a major limbic path-

way, is in agreement with prior reports of disrupted fronto-limbic

connectivity in BD (Mahon, Burdick, & Szeszko, 2010; Phillips &

Swartz, 2014). However, the role of the corpus callosum in BD is not

clear. WM alterations in individuals with BD with psychotic symptoms

have been reported (Sarrazin et al., 2014), but the role of the corpus

callosum in emotion processing or mood switching is not fully under-

stood (Linke et al., 2013; Wang et al., 2008). Lower corpus callosum

F IGURE 7 Findings from Widespread white matter microstructural abnormalities in bipolar disorder: evidence from mega- and meta-analyses
across 3,033 individuals (Favre et al., 2019). Mega-analysis fractional anisotropy (FA) differences between BD and HC across 43 white matter
(WM) tracts and the whole-brain skeleton with R squared effect sizes and confidence intervals ranked by increasing order of magnitude for the
regions showing significant group differences. R, right; .L, left; CC, corpus callosum; BCC, body of the corpus callosum; GCC, genu of the corpus
callosum; CGC, cingulum; SCC, splenium of corpus callosum; FX, fornix; PTR, posterior thalamic radiation; EC, external capsule; ACR, anterior
corona radiata; SLF, superior longitudinal fasciculus; UNC, uncinate fasciculus; CR, corona radiata; SS, sagittal stratum; IFO, inferior fronto-
occipital fasciculus, SFO, superior fronto-occipital fasciculus; Average FA, average FA across full skeleton; PCR, posterior corona radiata; ALIC,
anterior limb of the internal capsule; FXST, fornix (cres) / stria terminalis
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FA was reported in the ENIGMA DTI meta-analysis of SCZ (Kelly

et al., 2018) and MDD (van Velzen et al., 2019), suggesting over-

lapping pathophysiology in psychosis and affective disorders

(Koshiyama et al., 2019). Further studies are needed to evaluate the

extent to which the corpus callosum might be differentially affected in

these related disorders. Preliminary data suggest that disruption of

interhemispheric connectivity is a disease marker rather than a vulner-

ability marker to BD (Chepenik et al., 2010; Linke et al., 2013). None-

theless, we identified extensive FA-related WM abnormalities, which

challenges current pathophysiological models of BD. Future models

should not be limited to fronto-limbic networks, and should consider

interhemispheric dysconnectivity as a feature of interest in BD.

An important limitations of the study was the focus on the most

commonly used DTI measure, FA, as opposed to including other scalar

measures such as mean, axial, and radial diffusivity derived from the

tensor model. The tensor, the most common method of modeling dif-

fusion MRI, while robust and widely used, has well documented limi-

tations such as inability to resolve crossing fibers – which are present

in a large proportion of brain white matter – or to disentangle the

intra- and extra-axonal compartments. As detailed below, ongoing

studies from the ENIGMA BD Working Group are currently applying

more advanced analysis techniques to model white matter. Further-

more, future BD research will likely benefit from new diffusion MRI

methods to model white matter tissue microstructure such as Neurite

Orientation Dispersion and Density Imaging (NODDI) (Zhang,

Schneider, Wheeler-Kingshott, & Alexander, 2012), which has been

used to highlight the impact of lithium on neurite density (Sarrazin

et al., 2019).

3.6 | Mapping familial risk to brain structure across
bipolar disorder and schizophrenia

Most neuroimaging studies to date have compared individuals with

BD to HC. The interpretation of case–control findings is complicated

by many of the aforementioned study limitations. An alternative

approach is to study first-degree family members (i.e., offspring, sib-

lings, parents or co-twins), as they are at higher risk for the disorder

but are otherwise healthy and unmedicated. As first-degree relatives

share, on average, half of the genes with their ill relative (except for

monozygotic co-twins who share all their genes), a family design pro-

vides a unique angle from which to study the effect of BD risk on

brain structure and function.

The ENIGMA-Relatives Working Group has taken a cross-disorder

approach to the study of BD and SCZ relatives, motivated by over-

lapping clinical symptoms, including delusions, hallucinations, mania,

depression and anxiety, as well as shared genetic and epidemiological

risk (Cross-Disorder Group of the Psychiatric Genomics Consortium,

2013; Kempf, Hussain, & Potash, 2005; Pearlson, 2015). While BD and

SCZ do show distinct symptom patterns and clinical course (Bora, 2015;

Correll, Penzner, Frederickson, et al., 2007; Murray & Sham, 2004), it

remains unclear whether they represent discrete entities shaped by dis-

tinct etiology and pathogenesis, or if they represent a spectrum of

mood-psychosis disorders. The ENIGMA-Relatives Working Group has

aimed to identify overlapping and distinct features of SZ and BD in first-

degree relatives of patients with these disorders.

In the largest study to date, standardized subcortical and global

brain measures were meta-analyzed across healthy first-degree

relatives of individuals with either BD (FDRs-BD) or SZ (FDRs-SZ)

(de Zwarte, Brouwer, Agartz, et al., 2019). A total of 6,008 participants

from 34 family cohorts, including 1,228 FDRs-SZ, 852 FDRs-BD, 2,246

HC, 1,016 participants with SZ and 666 with BD were included. The

main findings included: 1) FDRs-BD had larger average intracranial vol-

umes (ICV), whereas FDRs-SZ showed smaller thalamic volumes com-

pared with HC, 2) in FDRs-BD, ICV explained the larger brain volumes

in other regions, whereas in FDRs-SZ, brain volumes and thickness

effect sizes became significantly smaller compared to HC after statisti-

cal correction for ICV, 3) brain alterations differed between the relative

types, but no clear pattern was detected, and 4) findings were not con-

founded by other psychiatric diagnoses in the relatives (Figure 8).

When considering the finding of larger ICV in FDRs-BD but not

FDRs-SZ, as well as prior reports indicating a diverging pattern of ICV

volume for individuals with BD and SCZ (i.e., significantly smaller ICV

in SZ but not BD) (Hibar et al., 2016; van Erp et al., 2016), the

ENIGMA-Relatives Working Group recently investigated whether dif-

ferences in Intelligence Quotient (IQ) or educational attainment could

explain the findings in SZ and BD relatives. These most recent findings

are detailed in de Zwarte et al. from this issue.

4 | ONGOING AND FUTURE STUDIES

Building on these initial studies, the ENIGMA BD Working Group has

a growing list of ongoing projects to: (a) more finely map the initial

ROI-based findings of altered cortical/subcortical gray matter and

WM alterations in BD by using advanced, high-definition brain

morphometric features including vertex- or voxel-wise analysis, (b) improve

classification and individual-level prediction using data driven cluster-

ing/biotyping with more advanced machine learning techniques,

(c) investigate the impact of polygenic risk and gene expression

markers on large-scale standardized brain measures, (d) empower

future mega-analyses that allow more sophisticated designs than

meta-analyses, and (e) study how individual symptoms, functional

domains and risk factors map onto measures of brain structure and

function that cross classic diagnostic boundaries, revealing shared and

distinct brain markers of mental illness. Further details of the ongoing

Bipolar Disorder Working Group projects may be found in the Supple-

mental Materials.

4.1 | Finer mapping of BD-related brain variation

The ENIGMA Bipolar Working Group is currently applying advanced

techniques that model subcortical shape morphometry, hippocampal

subfield volumes, WM connectivity, neurometabolites, longitudinal

brain change and brain aging across thousands of individuals with BD
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and HC. These methods, now standardized for multisite studies, aim

to better characterize the spatial distribution of BD-related alterations

across the brain, track the longitudinal trajectory of such brain

changes across the course of illness, and determine the extent to

which those changes may interact with normal brain aging processes.

4.2 | Machine learning for better classification and
individual-level prediction

Most ENIGMA projects to date have applied relatively simple mass

univariate analysis methods when studying brain features. Combining

multiple imaging modalities will likely improve predictions of diagnosis

and prognosis. In addition to classical multivariate approaches, machine

learning models are being applied to neuroimaging data across a variety

of ENIGMA BD projects to predict diagnostic groups, treatment

response, and to characterize subtypes or clusters within groups of

individuals diagnosed with BD. Our initial efforts in the diagnostic clas-

sification of BD showed promise (Nunes et al., 2018), but accuracy is

likely to improve with the addition of functional neuroimaging mea-

sures (Han, De Berardis, Fornaro, & Kim, 2019; Phillips & Vieta, 2007),

as well as techniques that merge multimodal structural, functional,

vertex-wise metrics and in-depth clinical information. The BD Working

Group is tackling new challenges that arise when using higher-

dimensional data and when fitting complex models to provide improved

individual-level predictions.

4.3 | Large-scale direct comparisons of brain
measures across psychiatric disorders

A key question in psychiatric neuroimaging is the extent to which brain

variations are shared or differentiate major psychiatric disorders. Many

mental illnesses overlap in symptomatology, response to medication

F IGURE 8 Findings from The
association between familial risk
and brain abnormalities is disease-
specific: an ENIGMA–Relatives
study of schizophrenia and bipolar
disorder (de Zwarte et al., 2019).
Top: Cohen's d effect sizes
comparing BD and SCZ relatives
and healthy controls across global

brain measures. Bottom: global
effect sizes adjusted for total
intracranial volume (ICV).
*Nominally significant (p < .05
uncorrected); **q < .05 corrected
for multiple comparisons
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and underlying genetic risk. Examples include known intersections

between BD and MDD and SCZ (Pearlson, 2015; Rink, Pagel, Frank-

lin, & Baethge, 2016). Whether shared clinical features reflect similar

underlying brain structure and function is poorly understood. As

many clinically-focused ENIGMA Working Groups have completed

studies of cortical and subcortical structure, direct comparison of

brain measures for tens of thousands of participants is now possible.

The resulting data set represents the largest collection of psychiatric

neuroimaging data ever amassed using standardized processing tech-

niques, and the largest samples of BD, MDD, and SCZ neuroimaging

data ever analyzed.

The initial case–control studies from the ENIGMA clinical working

groups (Figure 9) suggest overlapping and distinct patterns of brain

alterations across disorders. Notably, ENIGMA SCZ case–control cor-

tical effects were more widespread and greater in magnitude than

those found in BD and MDD. In line with prior hypotheses regarding

underlying biological correlates of BD versus MDD, frontal lobe sys-

tems showed greater deficits in ENIGMA BD cases, whereas limbic

regions tended to show greater deficits in ENIGMA MDD cases.

Smaller hippocampal volume is another common finding across publi-

shed ENIGMA psychiatric studies. Preliminary analyses, correlating

effect sizes across published ENIGMA psychiatric working group stud-

ies, indicate significant correlations between cortical and subcortical

MRI alterations across disorders, which may be partially explained by

common underlying genetic markers (Ching et al., 2020).

For pragmatic reasons, and to help incorporate the greatest

number of Working Group sites in initial analyses, the first ENIGMA

BD Working Group studies tended to include a limited number of

essential variables such as age, sex, diagnosis, age of illness onset,

binary (yes/no) medication status at the time of scan, and simple

severity measures. The next phase of ENIGMA cross-disorder ana-

lyses is tackling the challenges of deeper phenotyping and the het-

erogeneity across samples. The ENIGMA BD Working Group is

collecting in-depth clinical and demographic information in a har-

monized effort with the ENIGMA SCZ and MDD Working Groups

from over 200 data sets. Metrics of interest include education,

socioeconomic status, IQ, body mass index, number of psychiatric

hospitalizations, number of episodes (depressive, manic, psychotic),

substance use disorder, comorbid psychiatric disorders, current/

lifetime medication treatment, medication dose, medication serum

level, and detailed behavioral/symptom information. These mea-

sures will provide the basis for comparisons not dependent on clas-

sic diagnostic categorizations. Work is underway to find

overlapping scales and measures and to resolve clinical/behavioral

measurement harmonization and empower analyses more in line

with the Research Domain Criteria (RDoC) framework (Insel, 2014).

Clinical information will also allow for analyses such as network

modeling of individual symptoms (Borsboom & Cramer, 2013) and

thus a more detailed characterization than traditional diagnostic

categories. Such modeling can also be done in combination with

F IGURE 9 Cortical thickness differences across ENIGMA working groups. Cohen's d effect sizes comparing cases versus healthy controls
(HC) plotted across 34 bilateral cortical ROIs from ENIGMA-standardized FreeSurfer protocol (http://enigma.ini.usc.edu/protocols/). Warmer
colors indicate lower thickness in cases/patients, whereas cooler colors indicate greater thickness in cases/patients versus HC. Results derived
from published ENIGMA studies: bipolar disorder (N = 4,419, 28 sites, Hibar et al., 2018), major depressive disorder (N = 10,105, 15 sites,
Schmaal et al., 2017), schizophrenia (N = 9,572, 39 sites, van Erp et al., 2018), attention deficit hyperactivity disorder (ADHD N = 4,180, 36 sites,
Hoogman et al., 2019), obsessive–compulsive disorder (OCD N = 3,665, 27 sites, Boedhoe et al., 2018) and autism spectrum disorder (ASD
N = 3,222, 49 sites, van Rooij et al., 2018)
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brain and other biological measures, as in recent studies of MDD

(Fried et al., 2019; Hilland et al., 2019).

Advanced supervised and unsupervised machine learning tech-

niques are being applied to examine the extent to which BD, MDD

and SCZ can be discriminated on the basis of ENIGMA-standardized

brain measures. Of particular interest is whether multivariate, machine

learning techniques can discriminate between alternative patient

groupings and cluster individuals according to duration of illness,

symptom severity, presence of depressive and/or psychotic symp-

toms, substance use, treatment response and other characteristics

that might improve individual-level predictive accuracy.

4.4 | Linking genetic risk and gene expression to
brain alterations across psychiatric disorders

The ENIGMA bipolar disorder working group is uniquely positioned to

study how genetic risk loci affect brain structure and function. In col-

laboration with the Psychiatric Genomics Consortium Working Group

on Bipolar Disorders (PGC-BD), we are deriving polygenic risk scores

(PRS) across participating ENIGMA BD Working Group sites using

recent discoveries from the PGC-BD group (Bipolar Disorder and

Schizophrenia Working Group of the PGC, 2018; Stahl et al., 2019).

The ENIGMA PRS protocol is freely available online (http://enigma.

ini.usc.edu/protocols/) and is empowering projects to map BD-PRS

vulnerability across brain structures, as well as genetic risk for

other psychiatric disorders. This effort aims to both identify brain

regions at risk in BD as well as construct overlapping genotype–

phenotype risk maps across common psychiatric disorders, which

may reveal more mechanistic models of shared and unique disease

processes.

A key challenge in neuroimaging is bridging the gap between

in vivo MRI and ex vivo histology (Paus, 2018). To address this, several

ENIGMA working groups applied a “virtual histology” approach, where

profiles of structural brain metrics, namely group differences in cortical

thickness, are related to gradients in cell-specific gene expression using

data from the Allen Human Brain Atlas (Hawrylycz et al., 2012; Patel

et al., 2018; Shin et al., 2017). Inter-regional profiles of group differ-

ences in cortical thickness have been generated meta-analytically

across over 12,000 cases and 15,000 HC from the ENIGMA BD, ASD,

ADHD, OCD, MDD and SCZ Working Groups. Associations of a given

cell type with a profile of group differences in cortical thickness are cor-

related with cell-specific gene expression to better characterize shared

and unique gene expression potentially driving cortical alterations

across these major neuropsychiatric disorders.

5 | FUTURE PERSPECTIVES:
REPLICATION, BIG DATA AND SHIFTING THE
PARADIGM IN PSYCHIATRIC RESEARCH

BD is a complex illness where individual factors confer a small propor-

tion of the overall risk. The ENIGMA Bipolar Disorder Working Group

is focused on applying innovative, big data approaches to provide reli-

able new discoveries on the biological underpinnings of BD, and to

generate clinically relevant findings to improve diagnosis and

treatment.

The current psychiatric research paradigm, which seeks markers

that link high-level, behavioral-based diagnostic labels to underlying

biology, is slowly changing. Neuroimaging may not provide the larger

BD-related effect sizes once proposed by the “endophenotypes”

hypothesis, but the combination of large-scale neuroimaging data sets

has led to a better understanding of the brain regions that mediate the

link between genetic risk and the behavioral manifestations of BD.

Several limitations to the ENIGMA Bipolar Disorder Working

Group approach must be discussed. First, Working Group sites col-

lected data independently and used a range of tools and methods that

can differ with respect to MRI scanner (hardware and software),

biospecimen collection, behavioral assessment, study inclusion/exclu-

sion criteria and overall data quality. While ENIGMA studies deploy

standardized processing and analysis techniques that reduce the vari-

ance across site measurements, true data harmonization is only possi-

ble through prospective data collection. Second, the ENIGMA Bipolar

Working Group consists of fairly Eurocentric data samples. Future

efforts must be made to incorporate additional data sets from all cor-

ners of the world to garner an even more ecologically valid sample of

BD phenotypes. Third, early ENIGMA studies initially deploy prag-

matic analysis plans, using only the most common measures across

Working Group sites (e.g., binary medication status at time of scan,

primary diagnosis, etc.) and applying mass univariate analysis methods

(e.g., BD case vs. HC differences assessed by multiple linear regres-

sion). While this approach has led to the incorporation of many stan-

dardized data sets and has helped to clarify basic brain structure

alterations in BD, group-level results only allow for broad generaliza-

tions about individuals with BD and have limited clinical applications

when assessing and treating individual patients. Fourth, all of the pub-

lished studies from the Bipolar Disorder Working Group have so far

used a cross-sectional design. There is increasing evidence that BD is

a neuroprogressive disorder – our own results indicate associations

between duration of illness and brain structure (Favre et al., 2019;

Hibar et al., 2018) – which requires a longitudinal design that may

inform better clinical staging and treatment of the illness (Salagre

et al., 2018). Longitudinal studies that include participants with vary-

ing ages of onset may also help to address whether brain alterations

are indeed inherent markers of BD or are a consequence of factors

associated with illness duration. Longitudinal studies in the context of

therapeutic trials will also clarify the effect of interventions on the

brain, although there are many challenges in integrating such data

across sites.

With these limitations in mind, the ENIGMA Bipolar Disorder

Working Group has several future research goals:

1. Incorporate advanced and standardized multimodal measures. Com-

bining multimodal biological measures that encompass genetic,

neurochemical, neuroimaging and behavioral factors will likely lead

to more clinically relevant biomarkers for improved patient-level
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predictions and a better understanding of BD pathophysiology.

Innovative standardized protocols now being applied in the

ENIGMA Bipolar Disorder Working Group include white matter

connectivity, resting and task-based fMRI, spectroscopy, vertex-

wise shape morphometry, longitudinal brain change and deeper

clinical and behavioral phenotyping.

2. Advance novel, big data techniques. We are currently applying

advanced machine learning models to predict classic diagnostic

groups, as well as potential patient subgroup stratification along

behavioral and treatment measures. New multivariate GWAS

methods are helping to reveal more of the hidden genetic risk for

BD (e.g., the MOSTest, see van der Meer et al., 2019) and are

being applied through our collaboration with the PGC. These

genetic findings further empower the ENIGMA Bipolar Working

Group's ability to map genetic risk to brain structure and function.

3. Cross-disorder studies. Large-scale, transdiagnostic efforts such as

those being carried out between the ENIGMA BD, MDD, and SCZ

working groups will help us understand the common and unique

neurobiological factors underlying mental illnesses.

4. Hypothesis-driven prospective analyses. Our international collabora-

tions are driving future prospective studies with more harmonized

data collection. Lessons learned from ongoing gross neuroimaging

analyses inform future micro- and ultrascale studies of cellular

morphometry, distribution, and synaptic structure and function,

which may provide a more mechanistic link between genes and

behavior in BD (Le & Stein, 2019). A centrally coordinated, long-

term study of a large cohort of individuals with BD across the

lifespan is desperately needed. Such a study, collecting neuroimag-

ing, cellular, molecular and other deeper phenotyping measures

akin to studies such as UK Biobank and other longitudinal cohorts

(McInnis & Greden, 2016; Miller et al., 2016; Yatham, Kauer-San-

t'Anna, Bond, Lam, & Torres, 2009), and integrated with pharmaco-

logical and behavioral treatment interventions would provide an

ambitious path forward to addressing many of the key challenges

facing BD research.

The ENIGMA BD Working Group has demonstrated that large-

scale, international collaborations can empower replicable and gener-

alizable studies of BD. To the goal of more open and reproducible sci-

ence, the ENIGMA Consortium is building an Organic Data Science

(ODS) tool to facilitate complex and dynamic working group activities

via a systematic information system. Based on Semantic MediaWiki,

ENIGMA-ODS provides cross-working group data queries and project

tracking to improve study reproducibility and help to overcome bar-

riers to efficiency that are inherent in large-scale projects (Jahanshad

et al., 2015). Furthermore, the use of publicly available and standard-

ized processing and analysis protocols may empower future “living

studies” or continuously updated research findings (e.g., associations

with subcortical volume and psychotic symptoms), with semi-

automated addition of future cohorts to an ever-increasing ENIGMA-

standardized research sample.

Engaging patients is vital to ensure that biomedical research, and

the subsequent interventions and tools, meet the needs of individuals

living with BD. The Milken Institute and the Depression and Bipolar

Support Alliance recently surveyed over 6,000 individuals living with

MDD and BD to better understand research priorities from individuals

living with these illnesses (Altimus, 2019). Survey respondents identi-

fied the ability to be independent or act according to one's own will as

the top wellness priority, while only 20% of individuals identified the

lack of symptoms of acute MDD or BD as a measure of wellness. Fur-

thermore, 54% of respondents reported experiencing both MDD and

BD symptoms, contrary to a discrete diagnosis given by clinicians.

These discrepancies in both wellness priorities and manifestation of

the disorder demonstrate that the most pressing needs of individuals

with BD may not align with the goals of researchers. Moving forward,

the ENIGMA BD working group aims to actively engage user groups

to help focus our research goals and engage new participants in future

studies.

The ENIGMA BD Working Group is actively recruiting new

research collaborators and the infrastructure allows for new groups to

be efficiently incorporated into ongoing and future analyses. Groups

interested in joining, contributing data, and starting their own research

proposal using the largest neuroimaging data set in BD research are

encouraged to contact the Working Group Chairs.

The ENIGMA Bipolar Working Group will continue to be

guided by the collective expertise of a strong network of neurosci-

entists, psychiatrists, data scientists, bioengineers and geneticists

(Guglielmi, 2018). Big data consortia efforts offer the opportunity to

work cohesively on related research questions, bringing diverse infor-

mation to bear on neuroscientific problems, and will continue to pro-

vide valuable discoveries, revealing consensus findings and informing

future hypothesis-driven studies of BD and other neuropsychiatric

disorders.

All images taken from original publications are approved for

reprint under creative commons licensing.
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