
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/134234/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Chen, Yongping, Gan, Min, Pan, Shunqi , Pan, Haidong, Zhu, Xian and Tao, Zhengjin 2020. Application of
auto-regressive (AR) analysis to improve short-term prediction of water levels in the Yangtze estuary.

Journal of Hydrology 590 , 125386. 10.1016/j.jhydrol.2020.125386 

Publishers page: http://dx.doi.org/10.1016/j.jhydrol.2020.125386 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 

1 

Application of Auto-Regressive (AR) analysis to improve short-term 1 

prediction of water levels in the Yangtze Estuary 2 

Yongping Chen1,2, Min Gan1,2,3, Shunqi Pan3,*, Haidong Pan4,5, Xian Zhu1,2, and Zhengjin Tao1,2 3 

1 State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing 4 

210098, China 5 

2 College of Harbor, Coastal, and Offshore Engineering, Hohai University, Nanjing 210098, 6 

China 7 

3 Hydro-environmental Research Centre, School of Engineering, Cardiff University, Cardiff 8 

CF24 3AA, United Kingdom 9 

4 Key Laboratory of Physical Oceanography, Qingdao Collaborative Innovation Center of Marine 10 

Science and Technology, Ocean University of China, Qingdao, China 11 

5 Qingdao National Laboratory for Marine Science and Technology, Qingdao, China 12 

 13 

Corresponding Author: Shunqi Pan (PanS2@cardiff.ac.uk) 14 



 

2 

Highlights： 15 

1. Further identified the predictive error sources of the NS_TIDE model.  16 

2. Established the temporal correlation of the predictive errors with AR analysis. 17 

3. Applied AR analysis to correct the predictive errors from the NS_TIDE model. 18 

4. Improved the short-term water level prediction of the Yangtze estuary.  19 

 20 

Abstract 21 

Due to the complex interaction between the fluvial and tidal dynamics, estuarine tides are less 22 

predictable than ocean tides. Although the non-stationary tidal harmonic analysis (NS_TIDE) 23 

model can account for the influence of the river discharge, the predictive accuracy of the water 24 

level in the tide-affected estuaries is yet to be improved. The results from recent studies using the 25 

NS_TIDE model in the lower reach of the Yangtze estuary showed the best root-mean-square-error 26 

(RMSE) between the predicted and measured water levels being in a range of 0.22 ~ 0.26 m. From 27 

the spectral analysis of the predictive errors, it was also found that the inaccurate description of 28 

tides in the sub-tidal frequency band was the main cause. This study is to develop a hybrid model 29 

in combination of the autoregressive (AR) analysis and the NS_TIDE model in an attempt to 30 

further improve short-term (time scale of days) water level predictions in the tide-affected estuaries. 31 

The results of the application of the hybrid model in the Yangtze estuary show a significant 32 

improvement for water level predictions in the estuary with the RMSE of 24h prediction being 33 

reduced to 0.10 ~ 0.13 m.  34 

 35 
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1. Introduction 38 

In the recent decades, estuaries have been seen the most suitable places for human settlement, 39 

agriculture, transport, and ecosystem services (Savenije, 2015). The activities of engineering 40 

development such as navigation, coastal construction, and flood protection strongly rely on 41 

accurate predictions of water levels in the estuaries, which can be vital for the safety and 42 

sustainability of the economic development in estuarine communities. In the ocean and coastal 43 

waters, water level fluctuations are mainly generated by the astronomic tides and can be predicted 44 

from the classical harmonic analysis (CHA) model such as the T_TIDE model (Pawlowicz et al., 45 

2002) with a relatively high accuracy. However, when tides propagate in an estuary, the shallow 46 

water effect becomes significant, not only influencing their properties (amplitudes and phases), 47 

but also generating the shallow water tidal constituents (Gallo and Vinzon, 2005). In addition, the 48 

spatial variation of the estuarine geometry and the temporal change of the river discharge can 49 

further alter tidal properties in estuaries, making the characteristics of the estuarine tides more 50 

complicated. Therefore, applications of the CHA model, which is incapable of taking the influence 51 

of river discharge into account, will yield relatively inaccurate water level predictions in estuaries, 52 

particularly in the upper tidal reach. Jay (1991) developed a theory for river tide propagation in 53 

convergent channels with strong friction, and Kukulka and Jay (2003a, b) further derived the 54 

improved models describing the time-dependent tidal properties (amplitudes and phases) and 55 

tidally-averaged water levels through the nonlinear interaction of river discharge and tides. 56 

Subsequently, based on the works of Kukulka and Jay (2003a, b) and Jay et al. (2011), Matte et al. 57 

(2013) developed a non-stationary tidal harmonic analysis software package, known as NS_TIDE 58 

model. Matte et al. (2014) used the NS_TIDE model to analyse the temporal and spatial variation 59 



 

5 

of tidal-fluvial dynamics in the St. Lawrence fluvial estuary. Their results showed that the model 60 

coefficients of the NS_TIDE model are location specific, but can be interpolated for other locations. 61 

Pan et al. (2018) compared the performance of the NS_TIDE model with the Empirical Model 62 

Decomposition method and their results revealed that the NS_TIDE model is less efficient in 63 

representing the sub-tidal water level fluctuations. Gan et al. (2019) explored the applicability of 64 

the NS_TIDE model to the tides in the Yangtze estuary and markedly improved its accuracy by 65 

including more sub-tidal components in the non-stationary harmonic analysis, but the predictive 66 

accuracy was found to be compromised by the additional degrees of freedom introduced in the 67 

analysis processes. 68 

The results of Pan et al. (2018) and Gan et al. (2019) also clearly elucidated that the errors 69 

from the NS_TIDE model have strong subtidal (low-frequency) variation, with the periods longer 70 

than one or two days, indicating that the predictive errors in a short period of the past (days or 71 

months) may influence its future predictions of the low-frequency tides. In fact, the predictive 72 

errors of the NS_TIDE model, which are temporally varying, are found to have strong correlation 73 

in the time series, i.e. the future variations can be closely related to the past behaviour.  74 

The AR analysis is expected to establish the auto-regressive (cause-and-effect) relationship 75 

between the recent and past values in the same time series, and uses the established correlation to 76 

predict the future possible values, which can be adopted to correct the tide predictions (Carbajal-77 

Hernández et al., 2012). To account for the dynamic nature of the physical processes in engineering 78 

applications, the AR model is always linked to the Moving-Average (MA) to form the 79 

Autoregressive Moving Average (ARMA) model, which has been widely used in the areas of 80 

hydrology and oceanography. For example, Petaccia et al. (2006) used a non-linear version of the 81 
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ARMA model to forecast the sea level under high water events at Venice in Italy. Li et al. (2015) 82 

used the AR model to correct the forecast results of river discharge predicted from hydrological 83 

model and presented the potential problems exited in the application of the AR model. Similarly, 84 

Turki et al. (2015) used the ARMA model to forecast the sea level and fill the sea level gaps in 85 

oceans and coastal areas. Moreover, by considering the sea level pressure, Turki et al. (2015) 86 

improved the predictive accuracy of sea level under the surge conditions. More recently, Chen and 87 

Boccelli (2018) applied the seasonal AR model in the forecast of water demands. The ARMA 88 

models were also successfully used for other purposes such as the short-term forecast of ocean 89 

waves (Ge and Kerrigan, 2016), following the works for the spectral estimation of ocean waves 90 

(Mandal et al., 1992) and the forecast of drifting object trajectories in ocean (Minguez et al., 2012).  91 

As shown in previous applications for a promising predictive capability, the AR model is 92 

particularly suitable for processes having a strong “memory” of the past events (Li et al., 2015). 93 

Considering the non-stationary nature of the tides in estuaries, it is proposed in this study that the 94 

AR method is to be implemented along with the NS_TIDE model as a practical tool to improve 95 

the water level predictions in an estuarine environment. Therefore, the objectives of this study are: 96 

1) to analyse the predictive errors from the NS_TIDE model applied in the Yangtze estuary as an 97 

example to understand and establish their auto-regressive relationship; 2) to develop a practical 98 

NS_TIDE&AR hybrid model to correct the predictions from the NS_TIDE model; and 3) to 99 

examine the predictive accuracy of the NS_TIDE&AR hybrid model with the hourly measured 100 

data at several hydrometric stations along the Yangtze estuary. It should be noted that due to the 101 

regressive nature of the NS_TIDE model, the hybrid model developed in this study excludes the 102 

applicability from predicting the water levels at storm scales, where the short-term rapidly varying 103 
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factors such as meteorological influence may play an important role. 104 

 105 

2. Model description  106 

2.1 Nonstationary tidal harmonic analysis (NS_TIDE) model 107 

In the framework of CHA model for astronomical tides, the tidal amplitudes and phases are 108 

assumed to be constant. However, for the tides in estuaries, their properties (amplitudes and phases) 109 

can be strongly affected by the river discharge, and vary with both the upstream river discharge 110 

and downstream tidal range due to the nonlinear interaction between river discharge and tides. To 111 

provide the capability of achieving a better analytic accuracy than CHA model, based on the 112 

T_TIDE model (Pawlowicz et al., 2002), the NS_TIDE model takes account for both external 113 

forces (upstream river discharge and ocean tide) and their nonlinear interactions with the following 114 

equations as suggested by Matte et al. (2013, 2014):   115 

 𝜂(𝑡) = 𝜂0 + ∑ 𝐴𝑘 𝑐𝑜𝑠( 𝜎𝑘𝑡) + 𝐵𝑘sin⁡(𝜎𝑘𝑡)
𝑛
𝑘=1  (1) 116 

where 𝜂(𝑡) is the water level in estuary; n is the number of tidal constituents; k is the index of 117 

tidal constituents; 𝜎𝑘 is the kth tidal frequency; and t is time. In Eq.(1), 𝜂0 describes the tidally-118 

averaged water levels (frequency less than diurnal tides), commonly known as the stage model 119 

part of the NS_TIDE model and the other terms at the right-hand side represent the water level 120 

fluctuations whose frequency is equal to or higher than diurnal tides, known as the tidal-fluvial 121 

model part, as:    122 

 𝜂0 = 𝑐0 + 𝑐1𝑄
𝑝𝑠(𝑡 − 𝑡𝑄) + 𝑐2

𝑅𝑞𝑠(𝑡−𝑡𝑅)

𝑄𝑟𝑠(𝑡−𝑡𝑄)
 (2) 123 

 𝐴𝑘 = 𝑑0,𝑘
𝑐 + 𝑑1,𝑘

𝑐 𝑄𝑝𝑓(𝑡 − 𝑡𝑄) + 𝑑2,𝑘
𝑐 𝑅

𝑞𝑓(𝑡−𝑡𝑅)

𝑄
𝑟𝑓(𝑡−𝑡𝑄)

⁡  (3) 124 



 

8 

 𝐵𝑘 = 𝑑0,𝑘
𝑠 + 𝑑1,𝑘

𝑠 𝑄𝑝𝑓(𝑡 − 𝑡𝑄) + 𝑑2,𝑘
𝑠 𝑅

𝑞𝑓(𝑡−𝑡𝑅)

𝑄
𝑟𝑓(𝑡−𝑡𝑄)

 (4) 125 

where the subscripts s & f denote the stage model and tidal-fluvial model, respectively; (𝑝𝑠, 𝑞𝑠, 126 

𝑟𝑠) & (𝑝𝑓, 𝑞𝑓, 𝑟𝑓) are unknown exponents in the stage and tidal-fluvial models, which can be 127 

determined by the iterative process using fmincon function in MATLAB; 𝑄(𝑡) is the low-passed 128 

river discharge at the upstream reference location; 𝑅(𝑡)  is the tidal range at the downstream 129 

reference location which takes the greater diurnal tidal range in the cases of the semi-diurnal tide 130 

regimes; 𝑡𝑄 & 𝑡𝑅 are the estimated time lags of the river discharge from the upstream reference 131 

location and the tide wave from the downstream reference location propagating to a given location 132 

where water levels are modelled by the NS_TIDE model, respectively; 𝑐𝑖 & 𝑑𝑖,𝑘 (i= 0-2) are 133 

unknown parameters which can be determined by the iteratively reweighted least-square analysis 134 

approach (Codiga, 2011; Holland and Welsch,1977; Leffler and Jay, 2009). The time-dependent 135 

amplitude (𝐷𝑘) and phase (𝛼𝑘) of the kth tidal constituent are calculated as,  136 

 Dk = √Ak
2 + Bk

2⁡ and⁡ 𝛼𝑘 = 𝑡𝑎𝑛−1 (
𝐵𝑘

𝐴𝑘
) (5) 137 

2.2 Auto-regressive (AR) analysis 138 

The AR analysis is to establish the temporal correlation between the stochastic events in a 139 

time series, so to improve the predictions by taking account of the past behaviour of the variable. 140 

With the AR analysis being described in Torres et al. (2005) and Carbajal-Hernández et al. (2012), 141 

the temporal relationship of a variable, taking the difference of the water level computed by the 142 

NS_TIDE model and the measurements 𝛥𝜂(𝑡) as an example in this study, can be expressed as: 143 

 Δ𝜂(𝑡) = 𝜀𝑡 + ∑ 𝜙𝑖Δ𝜂(𝑡 − 𝑖)𝑝
𝑖=1  (6) 144 

where, 𝜀𝑡  is a random disturbance series following the stochastic process of white noise; 145 
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𝜙1, 𝜙2, 𝜙3, . . . , 𝜙𝑝 are the autoregressive coefficients, which can be determined by the least-square 146 

method; and p is the model order of the autoregressive process. 147 

In Eq. (6), the AR analysis order p should be sufficiently large to fairly represent the stochastic 148 

process, but a larger p will increase the degree of freedom which may on the other hand increase 149 

the instability of the model. Therefore, a criterion needs to be introduced to determine the optimal 150 

model order. To achieve the right balance of model performance and the order of freedom, in 151 

practice, the Akaike’s Information Criterion (AIC) (Shibata, 1976; Torres et al., 2005) has been 152 

commonly used in determining the model order p, which can be expressed as,  153 

 AIC = ln[σ̂a
2(p)] + 2

(p+1)

N
 (7) 154 

where 𝜎̂𝑎
2(𝑝)  is the model variance and N is the number of samples. The model variance 155 

represents the model performance during the fitting period, while the model order reflects the 156 

degree of freedom of the model. With a larger p, the model variance may become smaller, but 157 

model’s degree of freedom would increase. Conversely, when p is smaller, the model variance may 158 

become larger, but model’s degree of freedom will reduce. Lower model’s degree of freedom can 159 

make the model more stable and help deal with over-fitting problem. In determining the optimal 160 

combination of model performance and model stability, the smallest AIC number as expressed in 161 

Eq. (7) is to be sought. Smallest AIC number indicates that the AR model has the best balance 162 

between the performance and the degree of freedom of the model.  163 

In addition, to use the AR analysis, the time series of the variable should also be ascertained 164 

to be stationary, where the time series of the variable should have no significant upward or 165 

downward variation trends and they have consistent statistical characteristics such as the mean 166 

value or variance. Therefore, the data stationarity test (Kwiatkowski et al., 1992) should be 167 
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conducted prior to the model construction. In this study, the Augmented Dickey-Fuller Unit Root 168 

Test (Cavaliere and Georgiev, 2007) is used to test the stationarity of the temporal variation of the 169 

errors from the NS_TIDE model. Should the stationarity test fail, the difference method (Peters et 170 

al., 1998) will have to be applied to ensure the stationarity of the data set.  171 

 172 

3. Study site & Field data  173 

3.1 Yangtze estuary 174 

Yangtze estuary is located in the middle east coast of China where the Yangtze River meets the 175 

East China Sea (Fig. 1). The river discharge into the Yangtze estuary has a significant seasonal 176 

variation pattern. Usually, the flood season is from May to October and the dry season starts from 177 

November and ends in April in the following year (Lu et al., 2015). Based on the recorded data, 178 

the yearly mean river discharge in dry seasons is about 10,000 ~ 20,000 m3/s, while in flood 179 

seasons, it is about 45,000 ~ 60,000 m3/s (Guo et al., 2016). The tides at the mouth of the Yangtze 180 

estuary are predominately the semi-diurnal tides, with the mean tidal range being approximately 181 

2.65m (Chen et al., 2016).  182 
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 183 

Fig. 1. Map of the low reach of Yangtze River and locations of hydrometric stations (modified from Gan et 184 

al., 2019) 185 

3.2 Field Data  186 

Hourly measurements of river discharge at Datong (DT) station and water levels at Nanjing 187 

(NJ), Zhenjiang (ZJ), Sanjiangying (SJY), Jiangyin (JY), Xuliujing (XLJ), Wusong (WS) stations 188 

over the period from 2014 to 2017 are available for this study. The longitudinal distance from each 189 

station to the reference location (WS station), which is the most downstream hydrologic station in 190 

the estuary, is also illustrated in Fig. 1. Fig. 2 shows the time series of the measured water levels 191 

at all stations and river discharge at the most upstream station DT. It can be clearly seen that the 192 

variation of the water levels in the estuary in Fig. 2(A) is strongly modulated by the upstream river 193 

discharge as shown in Fig. 2(B), particularly at the upper reach of the estuary, such as ZJ and NJ 194 

stations. Except for WS station, where the water levels are least affected by the river discharge, 195 

the measured water levels at all other stations in the estuary exhibit a strong non-stationarity. 196 

Therefore, WS station is used as the reference location for ocean tides together with DT station 197 
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being used as the reference location for river discharge in this study. 198 

 199 

Fig. 2. Measured water levels at 6 stations along the Yangtze estuary (A) (see Fig. 1 for their locations); 200 

and River discharge measured at DT station (B)   201 

4. NS_TIDE model and Predictive errors 202 

To create a framework for inter-comparison and assessment of the improvement of the newly 203 

proposed method, the NS_TIDE model, which is similar to that used in the work of Gan et al. 204 

(2019), is applied to the study site over the entire 4-year period of the available measurements 205 

(January 2014 - December 2017). Within the measurement period, the measured water levels over 206 

8785 hours (i.e. 8785 hourly measurements) are used to regress the model coefficients of the 207 

NS_TIDE model. To account for the seasonality of the river discharge and dynamic nature of the 208 

tides, those coefficients are renewed regularly after a certain period of time (D hours), which is 209 

360 hours in this study, in considering the neap-spring tidal cycles.  210 
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It should be noted that when the regression procedure can be carried out over a sufficiently 211 

long period of the measurements that covers the all (low and high) river flow conditions, updating 212 

the NS_TIDE model parameters may not be necessary as suggested by Matte et al. (2013). 213 

However, as can be seen from Fig. 2(B), the measurements available to this study only cover a 214 

period of low flow years (2014 - 2015) and a period of high flow years (2016 – 2017), and the 215 

regression procedure can only cover part of the entire measurement period, it therefore becomes 216 

necessary to update the model parameters regularly as aforementioned in this study to better 217 

capture the seasonal variation of the river discharge and improve the model performance. However, 218 

updating the model parameters of the NS_TIDE model sometimes may also incur discontinuity in 219 

the model parameters, but this was found to be rather minor in the present study. 220 

To further illustrate the applicability of the NS_TIDE model in the Yangtze estuary with the 221 

proposed settings, the results from T_TIDE, NS_TIDE with theoretical exponents, and the 222 

NS_TIDE model with the optimised exponents in this study are compared. As the NS_TIDE model 223 

is developed on the frameworks of Kukulka and Jay (2003a, b), it is assumed that similar or even 224 

smaller magnitude of the tidal discharge relative to the river discharge, and a moderate estuarine 225 

shape convergence. Although at the downstream reach of Yangtze estuary, the mean tidal prism 226 

can be around10 times larger than the mean river discharge, which may partly limit the 227 

applicability of the NS_TIDE model, the iterative method to determine the exponents in Eqs. (2~4) 228 

would be the effective way to relax this requirement in the assumptions. In terms of the geometry 229 

of the estuary, the very low reach of the Yangtze estuary (from estuary mouth to JY) covers about 230 

200 km and the channel width decreases from nearly 20 km to 3 km toward the upstream, while 231 

in the upstream reach of the estuary (JY - DT), it keeps nearly uniform width though with the 232 
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presence of meanders (Guo et al. 2015). Therefore, it can be reasonably assumed that the variation 233 

of the channel width meets the requirement of the NS_TIDE model, which was also indicated in 234 

the studies of Zhang et al. (2012) and Cai et al. (2014). The results of Gan et al (2019) also 235 

illustrated the applicability of the NS_TIDE model in the Yangtze estuary with confidence. For the 236 

NS_TIDE model with theoretical exponents, the following values as suggested by Kukulka and 237 

Jay (2003a, b) are used: (𝑝𝑠 = 2/3 , 𝑞𝑠 = 2 , 𝑟𝑠 = 4/3)  & (𝑝𝑓 = 1 , 𝑞𝑓 = 2 , 𝑟𝑓 = 1/2 ). From 238 

the tests carried out during the period between 2014 and 2017, the RMSE values for all 3 models 239 

are compared in Fig. 3. The results show that the NS_TIDE model with the iteratively optimized 240 

exponents as used in this study preforms better than the NS_TIDE model with the theoretical 241 

exponents and the classical harmonic analysis (T_TIDE) model (Pawlowicz et al. 2002), with the 242 

RMSE values being in the range of 0.20 – 0.25 m. At XLJ station, which is closest to the estuary 243 

mouth where the effect of the river discharge on the water level is expected to be the least, the 244 

classical harmonic analysis (T_TIDE) model would perform better. The results further illustrate 245 

the applicability of the NS_TIDE model in the Yangtze estuary.  246 
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 247 

Fig. 3. Comparison of the RMSE values of the T_TIDE model and the NS_TIDE model with 248 

theoretical and iteratively optimized exponents.   249 

With the applications of the NS_TIDE model, Fig. 4 shows the analysed tidal amplitudes and 250 

phases at ZJ station from the NS_TIDE model. As shown in Fig. 4, during the period from 2014 251 

to 2017, there are 4 flood-dry seasonal variations as indicated by the river discharge measured at 252 

DT station. The tide analysis shows a clear modulation of the seasonal river discharge variations 253 

on the tidal amplitudes and phases of M2 and S2 tidal constituents. The tidal amplitudes of M2 and 254 

S2 tidal constituents decrease with the increase of river discharge, while their phases increase with 255 

the increase of river discharge. The variation of the tidal amplitudes and phases of M2 and S2 tidal 256 

constituents reflects the effect of frictional dissipation and retardation of river discharge on the 257 

propagation of tidal waves. In addition, it should be noticed that the variation of the tidal 258 

amplitudes and phases of M2 and S2 tidal constituents presents fortnightly variation patterns. The 259 

annual and fortnightly variation cycles of the amplitudes and phases of M2 and S2 tidal constituents 260 
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correspond to the annually-varied upstream river discharge at the DT station and fortnightly-varied 261 

(neap-spring cycle) tidal ranges at WS station, which is reflected in the Eq. (1). Comparing the 262 

decreased tidal amplitudes for M2 and S2 during the annual peak river discharges (Fig. 4) with the 263 

increased total water levels at those peaks shown in Fig. 2, clearly indicates that the lower 264 

frequency tidal constituents can make a considerable contribution to the total water level, which is 265 

a key aspect to be investigated in the following sections. 266 

  267 

Fig. 4. The influence of the river discharge on: (A) tidal amplitudes; and (B) phases of M2 and S2 tidal 268 

constituents at ZJ station.  269 

To obtain the predictive errors of the NS_TIDE model relative to the field measurements, the 270 

water levels between January 2015 and December 2017 are predicted at 5 stations: XLJ, JY, SJY, 271 

ZJ and NJ and the root-mean-square-error (RMSE) values of the predicted values relative to the 272 

measurements are calculated. Fig. 5 shows the predictive errors of the NS_TIDE model at ZJ 273 

station superimposed on their low-passed values. The low-passed filtering process is to filter the 274 
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fluctuation whose frequency is larger than 1 cycle per day (cpd). The results show that the 275 

predictive errors are mainly between ±0.5 m with the RMSE value being about 0.25 m. However, 276 

there are considerable low-frequency fluctuations of the predictive errors (Fig. 5), which indicates 277 

the inaccuracy of the NS_TIDE model in predicting the water levels with longer period than 278 

diurnal period. In other words, the predictive errors of the NS_TIDE model have strong variation 279 

at the subtidal frequency bands.  280 

 281 

Fig. 5. Predictive errors of the NS_TIDE model and its related low-passed values at ZJ station. 282 

To further show the energy distribution of the predictive errors of the NS_TIDE model, 283 

spectral analysis is also applied. Fig. 6 shows the spectral energy distribution of the predictive 284 

errors of the NS_TIDE model at the 5 stations along the Yangtze estuary. In the frequency domain, 285 

the results show that the predictive errors of the NS_TIDE model has the peak spectral energy in 286 

the subtidal (D0) band. In D0 band, at the frequency around 0.07 cpd (neap-spring cycle), there is 287 

a general increasing trend with the decrease of frequency. This means the predictive errors of the 288 

NS_TIDE model in D0 band partly come from inaccurately presenting the neap-spring cycles of 289 
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estuarine tides. This also justifies the need of updating the model coefficients of the NS_TIDE 290 

model after each neap-spring cycle (D=360 points) adopted in this study. The spectral peaks are 291 

also found at diurnal (D1), semi-diurnal (D2), and quarter-diurnal (D4) tides, but relatively smaller 292 

than the tides in D0 band. This implies that the NS_TIDE model preforms relatively worse in 293 

modelling the tides from subtidal band than the tides in diurnal or higher frequency tidal bands. 294 

 295 

Fig. 6. Spectral energy distribution of the predictive errors of the NS_TIDE model at XLJ (A), JY (B), SJY 296 

(C), ZJ (D), and NJ (E) stations. 297 

5. AR analysis 298 

As shown in Figs. 5 and 6, the predictive errors of the NS_TIDE model is found mainly in 299 

the subtidal (low-frequency) band. This feature therefore makes the AR analysis more suited to be 300 

applied. To this end, this study is to introduce the AR analysis through relating the temporal 301 

correlation of the predictive errors of the NS_TIDE model to the current or further predictive errors 302 
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for the NS_TIDE model by treating the predictive errors as a stochastic process, so that the tide 303 

predictions from the NS_TIDE model can be improved, particularly in the low-frequency subtidal 304 

bands.  305 

The AR analysis as illustrated in Fig. 7 consists of two stages: Stage 1 is to determine the 306 

parameters required for the AR analysis and optimal model order from the results of the NS_TIDE 307 

model and the measurements, and Stage 2 is to apply AR analysis with the NS_TIDE model (as 308 

the NS_TIDE&AR hybrid model) to examine the improvement of the water level predictions. 309 

Specifically, in Stage 1, a period of N points (hours) of the results is used to determine the model 310 

order p which is optimised by the AIC criterion; and in Stage 2 the constructed AR analysis is used 311 

to correct the predictions of the NS_TIDE model over the second part of the data (say L points), 312 

which can be regarded as the test period.  313 

 314 

Fig. 7. Conceptual diagram of the NS_TIDE&AR hybrid model 315 

For the AR analysis in this study, there are 2 key parameters that should be determined. One 316 

is the upper limit of the model order p, and the other is the number of samples N for the regression 317 

of the model coefficients. Usually, the model order p is determined from the partial autocorrelation 318 

function of time series with constant sample number. However, in this study, the sample is 319 

considered dynamically changing. Therefore, an upper limit of the model order p in this study is 320 

initially specified before the determination of the optimal model order p. The upper limit of the 321 

model order p is determined by preliminary numeric experiments. The determination the upper 322 
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limit of p uses 720 hours data points from the NS_TIDE model, which covers a period of one 323 

month for 2 spring-neap tide cycles. Model order p is initially set to 5 and increased to 100. The 324 

optimal upper limit of p is then determined when the AIC value reaches a stable value. Fig. 8 325 

shows the variation of the AIC values of AR analysis with different model order p at XLJ and ZJ 326 

stations as examples. It can be seen that there are 2 sharp decreases of the AIC values at p equalling 327 

to 12 and 25. Those two locations appear to be corresponding to 2 spectral peaks around D2 and 328 

D1 in Fig. 6. Compared with Fig. 6, Fig. 8 further indicates the 2 spectral peaks may be related to 329 

both semi-diurnal and diurnal tides whose periods are around 12h and 25h such as M2 (or N2), and 330 

O1 tidal constituents. When p is further increased, the AIC value continues to decrease and reach 331 

to a stable state at p=40. However, when p is larger than 40, the performance of AR analysis is no 332 

longer significantly improved at both locations. Therefore, in this study, the upper limit of p at 333 

each station is set to 40.  334 

  335 

Fig. 8. Numerical experiment for determining the optimal upper limit of the model order p at: XLJ (A); 336 

and ZJ (B) 337 

Once the upper limit of the model order p is determined, the optimum number of samples (N) 338 

is another key parameter in the AR analysis to calculate the autoregressive coefficients. For the 339 
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steady cases, N can be regarded as constant following the works of Torres (2005) and Mirzavand 340 

and Ghazavi (2015). However, for gradually unsteady processes, such as the water levels in this 341 

study, the model’s number of samples should be considered as dynamic and requires to be renewed 342 

periodically. In this study, tests are carried out with the hybrid NS_TIDE&AR model with varying 343 

number of samples (N=360-1800) over different predictive durations (L=12-48 hours). Fig. 9(A-344 

E) shows the RMSE values of the predictions of the water levels from the hybrid NS_TIDE&AR 345 

model against the measurements for those tests. Overall, the RMSE values show a decreasing trend 346 

with the increase of N and the results become stable in almost all cases when N is greater than 347 

1200 (hours). However, with a large N, the computational costs will also become higher and 348 

fluctuations of the RMSE values may occur at some stations due to the over-fitting. To balance the 349 

model accuracy and computational costs, the number of samples of the NS_TIDE&AR model at 350 

all stations are set to 1440 (corresponding to 1440 hours), which is equivalent to a 2-month period. 351 

Fig. 9(F) shows the comparison of RMSE values when N=1440 for different predictive durations, 352 

illustrating a high consistency and a slight increasing trend when the predictive duration increases 353 

from 12 to 48 hours, but all within a range of 0.08 to 0.16 m. 354 

  355 
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 356 

Fig. 9. Variation of the RSME values of the NS_TIDE&AR model with the number of samples (N) at: XLJ 357 

(A), JY (B), SJY (C), ZJ (D) and NJ (E) stations; and the comparison of the RMSE values when 358 

N=1440(F), for different predicting durations.  359 

When the predictive errors of the NS_TIDE model are dynamically modelled by the AR 360 

model, the non-stationarity tests are conducted on the samples prior to constructing the AR model. 361 

It is found from the tests that the field data at this study mostly conforms the required stationarity. 362 

However, while larger temporal variations are discovered in the measurement data, the temporal 363 

gradients of the predictive errors are calculated and used in the AR analysis, and then an additional 364 

inverse transformation is used.     365 

Following the construction of the AR model in Stage 1, it can now be applied as illustrated in 366 

Fig. 7 (Stage 2). Taking the predictive errors of the NS_TIDE model in September 2016 (flood 367 
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season) and January 2017 (dry season) at ZJ station as examples, Fig. 10 shows the comparisons 368 

of the predictive errors from the NS_TIDE model and those estimated by the AR model. It can be 369 

clearly seen that the errors estimated by the AR analysis agree well with those from the NS_TIDE 370 

model. The errors in general are modulated by the tides and are larger during the flooding phase 371 

and lower during the ebbing phase. The envelope curve of the predictive errors of the NS_TIDE 372 

model in Fig. 10 indicates the seasonal pattern for the predictive errors, which reflects its longer 373 

period variations. This can also be seen as the spectral peak at D0 band in Fig. 6. The results clearly 374 

illustrate that the AR analysis is capable of estimating the predictive errors from the NS_TIDE 375 

model once it is calibrated and trained up a high level of accuracy, which provides an effective 376 

remedy for the NS_TIDE model in increasing its accuracy in water level predictions.  377 

 378 
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Fig. 10. Comparison of the predictive errors from the NS_TIDE model and those estimated by the AR 380 

analysis over flood (A) and dry (B) seasons at ZJ station 381 

To examine the overall performance, the hybrid NS_TIDE&AR model is applied to the study 382 

site over the entire period between March 2015 and December 2017, where the measurements are 383 

available. For the 24-h (L=24) prediction, Fig. 11(A) compares the predicted water levels from 384 

both the NS_TIDE and the hybrid NS_TIDE&AR models with the observed water levels in 2016 385 

at ZJ station and Fig. 11(B) shows the corresponding difference for the sake of clarity. The 386 

predicted water levels at ZJ station from both models agree well with the measurements in general, 387 

but their differences shown in Fig. 11(B) clearly indicate that the hybrid NS_TIDE&AR model 388 

outperforms the NS_TIDE model with a significant improvement. The predictive errors associated 389 

with the seasonal variation pattern from the NS_TIDE model are largely eliminated by the hybrid 390 

model, and therefore overall accuracy of the predictions is significantly improved.  391 

  392 
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 393 

Fig. 11. Comparison of all the observed water levels in 2016 and the water levels predicted by the 394 

NS_TIDE and NS_TIDE&AR models (A) and their predictive errors (B) at ZJ station. 395 

For the purpose of flood protection, water level prediction during the flood seasons is 396 

particularly important. Therefore, Fig. 12 further shows the comparison of the predicted water 397 

levels by the NS_TIDE and NS_TIDE&AR models with the measurements at ZJ station during 398 

two flood seasons in 2016 and 2017. The predicted water levels from the NS_TIDE&AR model 399 

are found to match much better with the measurements than those from the NS_TIDE model in 400 

flood seasons, where the over- and under- predictions of the water level from the NS_TIDE model 401 

are largely corrected. 402 
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  403 

Fig. 12. Comparison of the water levels predicted by the NS_TIDE and NS_TIDE&AR models with the 404 

measurements at ZJ station during flood seasons of 2016 (A) and 2017 (B). 405 

Fig. 13 shows the scatter plots of the predicted water levels from both the NS_TIDE and 406 

NS_TIDE&AR models against the measurements at all stations: XLJ, JY, SJY, ZJ and NJ for the 407 

24-h prediction duration. The results clearly show that the predicted water levels from the 408 

NS_TIDE&AR model agree better with the measurements than those from the NS_TIDE model 409 

at all stations. At NJ and ZJ stations, the improvement of the NS_TIDE&AR model over the 410 

NS_TIDE model is similar for all waters, but at SJY, JY and XLJ stations, the improvement is seen 411 

progressively less significant particularly at the mean water level, as the tide forcing strengthens 412 

towards the estuary mouth as expected. Although, there are occasional outliers from the hybrid 413 
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model from the perfect fit (45° line), the overall performance of predicting the water levels by the 414 

NS_TIDE&AR model at all 5 stations, nevertheless, is significantly improved in comparison with 415 

the NS_TIDE model. 416 

 417 

Fig. 13. Scatter plots of the water levels predicted by the NS_TIDE and NS_TIDE&AR models with the 418 

measurements at: XLJ (A), JY (B), SJY (C), ZJ (D) and NJ (E) stations. 419 

6. DISCUSSION 420 

To further understand the performance of the hybrid NS_TIDE&AR model, the hourly water 421 

levels are predicted by the hybrid model at all stations over a range of short-term prediction 422 

durations, namely 12, 24, 36 and 48 hours ahead. Fig. 14(A) compares the RMSE values of the 423 

predicted water levels from the hybrid NS_TIDE&AR and NS_TIDE models against the 424 

measurements respectively. Since the RMSE values of the predicted water levels by the NS_TIDE 425 

model for durations of 12, 24, 36, and 48 hours are almost the same, therefore, only one value is 426 

presented at each station in the figure. The results clearly show that the hybrid model significantly 427 
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reduced the RMSE values in call cases. Taking the 24-hour prediction as an example, the hybrid 428 

model significantly reduces the RMSE values of the NS_TIDE model from 0.22 ~ 0.26 m to 0.10 429 

~ 0.13 m. Even for the 48-hour prediction, the longest in the tests, the RMSE values from the 430 

hybrid model are all less than 0.16 m. 431 

Fig. 14(B) shows the RMSE values for the high tides, which are important when considering 432 

the flood protection in the estuary. The performance of the hybrid model is also much improved in 433 

comparison with the NS_TIDE model, although the overall RMSE values are slightly higher than 434 

those shown in Fig. 14(A), but all within 0.02 m. For navigation, where accurate low water level 435 

predictions are as important as the high water levels, the RMSE values of the low water level 436 

predictions are presented in Fig. 14(C). The predictive accuracy of the low water level prediction 437 

of the NS_TIDE&AR model is even better than that for the high water levels shown in Fig. 14(B). 438 

In summary, the NS_TIDE&AR model significantly improves the predictive accuracy of the 439 

NS_TIDE model for both hourly water levels, high water levels, and low water levels. 440 

  441 
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 442 

Fig. 14. RMSE values of the predicted water levels by the NS_TIDE and NS_TIDE&AR models over 443 

durations (L) of 12, 24, 36 and 48 hours for: all water levels (A); high water levels (B); and low water 444 

levels (C)  445 

Spectral analysis is also conducted on the time series of the predictive difference of the hybrid 446 

model to the measurements in the frequency domain. Fig. 15 shows the spectral energy density of 447 

the predictive errors of the hybrid NS_TIDE&AR model at all 5 stations in comparison with that 448 

of the NS_TIDE model as shown in Fig. 6. It can be seen that the peaks of the spectral energy 449 

density of the NS_TIDE&AR model are now much smaller in the D0 frequency band than that of 450 

the NS_TIDE model, which means the NS_TIDE&AR model achieves a significant improvement 451 

over the NS_TIDE model in predicting the water level in the subtidal D0 band. In the D1, D2 and 452 

D4 tidal bands, the spectral peaks of the NS_TIDE&AR model are also found to be relatively 453 

smaller than those from the NS_TIDE model.  454 
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 455 

 456 

Fig. 15. Spectral energy distribution of the predictive errors of the NS_TIDE&AR and NS_TIDE models 457 

at: XLJ (A), JY (B), SJY (C), ZJ (D) and NJ (E) stations. 458 

7. CONCLUSIONS 459 

In this study, the auto-regressive (AR) analysis is developed and implemented with the 460 

existing NS_TIDE model for predicting the short-term water levels in the Yangtze estuary. The 461 

results show that by treating the predictive errors of the NS_TIDE model as a stochastic process, 462 

the AR analysis is capable of correlating robustly the predictive errors over short time periods (~48 463 

hours), which can be used to effectively correct the predictions of water levels from the NS_TIDE 464 

model or possibly any other tide-prediction models. For the 24-h prediction, the RMSE values of 465 

the predicted water levels are less than 0.13 m, in comparison with those of 0.22 ~ 0.26 m of the 466 

NS_TIDE model without implementing the AR analysis. Spectral analysis indicates that the main 467 
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improvement of the NS_TIDE&AR model over the NS_TIDE model is in describing the subtidal 468 

tides. Therefore, using AR analysis to estimate the predictive errors of the NS_TIDE model can 469 

significantly improve the short-term predictions of the water levels in estuary under the influence 470 

of strong river discharge, such as those in the Yangtze estuary.   471 

 472 

CRediT authorship contribution statement 473 

Yongping Chen: Conceptualization, Methodology, Writing - Original Draft, Writing - Review & 474 

Editing, Funding acquisition, Supervision. Min Gan: Conceptualization, Methodology, Software, 475 

Writing - Original Draft, Writing - Review & Editing, Validation, Formal analysis, Investigation, 476 

Funding acquisition. Shunqi Pan: Conceptualization, Methodology, Writing - Original Draft, 477 

Writing - Review & Editing, Funding acquisition, Supervision. Haidong Pan: Resources, 478 

Investigation. Xian Zhu: Data Curation, Investigation. Zhengjin Tao: Data Curation, 479 

Visualization. 480 

 481 

Declaration of interests 482 

The authors declare that they have no known competing financial interests or personal 483 

relationships that could have appeared to influence the work reported in this paper. 484 

 485 

Acknowledgements 486 

This work was partly supported by the National Key R&D Program of China [Grant No: 487 

2017YFC0405401], the Fundamental Research Funds for the Central Universities of China [Grant 488 

Nos: 2017B20214 and 2018B635X14] and the Postgraduate Research & Practice Innovation 489 



 

32 

Program of Jiangsu Province [Grant No: KYCX18_0602]. The second author also would like to 490 

acknowledge the financial support from the China Scholarship Council (CSC) under PhD 491 

exchange program [201906710022] with Cardiff University. The authors would also like to thank 492 

Pascal Matte for providing the NS_TIDE model software package.  493 

 494 

References 495 

Cai, H., Savenije, H. H. G., & Toffolon, M. (2014). Linking the river to the estuary: influence of 496 

river discharge on tidal damping. Hydrol. Earth Syst. Sci., 18, 287-304, doi: 10.5194/hess-497 

18-287-2014. 498 

Carbajal-Hernández, J.J., Sánchez-Fernández, L.P., Carrasco-Ochoa, J.A. & Martínez-Trinidad, 499 

J.F. (2012). Assessment and prediction of air quality using fuzzy logic and autoregressive 500 

models. Atmospheric Environment, 60, 37-50, doi:10.1016/j.atmosenv.2012.06.004. 501 

Cavaliere, G. & Georgiev, I. (2007). Testing for Unit Roots in Autoregressions with Multiple 502 

Level Shifts. Econometric Theory, 23, 1162-1215, doi: 10.1017/S0266466607070466 503 

Chen, J.C. & Boccelli, D.L. (2018). Forecasting hourly water demands with seasonal 504 

autoregressive models for real-time application. Water Resources Research, 54, 879–894, 505 

doi: 2017WR022007.  506 

Chen, W., Chen, K., Kuang, C.P., Zhu, D.Z., He, L.L., Mao, X.D., Liang, H.D., & Song, H.L. 507 

(2016). Influence of sea level rise on saline water intrusion in the Yangtze River Estuary, 508 

China. Applied Ocean Research, 54, 12-25, doi:10.1016/j.apor.2015.11.002.  509 

Codiga, D.L. (2011). Unified tidal analysis and prediction using the UTide Matlab functions, 510 

Technical Report 2011-01. Graduate School of Oceanography, University of Rhode Island, 511 

Narragansett, RI. 59pp. [Available online at 512 



 

33 

ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf.] 513 

Gallo, M.N. & Vinzon, S.B. (2005). Generation of overtides and compound tides in Amazon 514 

estuary. Ocean Dynamics, 55, 441-448, 10.1007/s10236-005-0003-8. 515 

Gan, M., Chen, Y., Pan, S., Li, J., & Zhou, Z. (2019). A modified nonstationary tidal harmonic 516 

analysis model for the Yangtze estuarine tides. J. Atmos. Ocean. Technol., 36, 513-525, 517 

doi:10.1175/JTECH-D-18-0199.1. 518 

Ge, M. & Kerrigan, E.C. (2016). Short-term Ocean Wave Forecasting Using an Autoregressive 519 

Moving Average Model. 11th International Conference on Control (CONTROL), Belfast, 520 

UK, doi: 10.1109/CONTROL.2016.7737594. 521 

Guo, L.C., Wegen, M.V. D., Jay, D.A., Matte, P., Wang, Z.B., Roelvink, D., & He, Q. (2015). 522 

River-tide dynamics: Exploration of nonstationary and nonlinear tidal behavior in the 523 

Yangtze River estuary. J. Geophys. Res. Oceans, 120, 3499-3521, 10.1002/2014JC010491. 524 

Guo, L.C., Wegen, M.V. D., Wang, Z.B., Roelvink, D., & He, Q. (2016). Exploring the impacts 525 

of multiple tidal constituents and varying river flow on long-term, large-scale estuarine 526 

morphodynamics by means of a 1-D model. J. Geophys. Res. Oceans, 121(5):1000-1022, 527 

10.1002/2016JF003821. 528 

Holland, P. W. & Welsch, R.E. (1977). Robust regression using iteratively reweighted least-529 

squares. Communications in Statistics-Theory and Methods, 6(9), 813-827, 530 

doi:10.1080/03610927708827533. 531 

Jay, D. A. (1991). Green’s law revisited: Tidal long-wave propagation in channels with strong 532 

topography. J. Geophys. Res., 96(C11), 20 585–20 598, doi: 10.1029/91JC01633. 533 

Jay, D. A., Leffler, K., & Degens, S. (2011). Long-Term Evolution of Columbia River Tides. J. 534 

ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdfd


 

34 

Waterw. Port Coastal Ocean Eng., 137, 182-191, doi:10.1061/(ASCE)WW1943-535 

5460.0000082. 536 

Kukulka, T. & Jay, D.A. (2003a). Impacts of Columbia River discharge on salmonid habitat: 1. A 537 

nonstationary fluvial tide model. J. Geophys. Res. Ocean, 108, 3293, 538 

doi:10.1029/2002JC001382. 539 

Kukulka, T. & Jay, D. A. (2003b). Impacts of Columbia River discharge on salmonid habitat: 2. 540 

Changes in shallow-water habitat. J. Geophys. Res. Ocean., 108, 3294, doi: 541 

10.1029/2003JC001829 542 

Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of 543 

stationarity against the alternative of a unit root. How Sure Are We That Economic Time 544 

Series Have Unit Root? Journal of Econometrics, 54, 159-178, doi: 10.1016/0304-545 

4076(92)90104-Y. 546 

Leffler, K.E. & Jay, D. A. (2009). Enhancing tidal harmonic analysis: Robust (hybrid L1/L2) 547 

solutions. Cont. Shelf Res., 29, 78-88, doi:10.1016/j.csr.2008.04.011. 548 

Li, M., Wang, J.Q., Bennett, J.C., & Robertson, D. E. (2015). A strategy to overcome adverse 549 

effects of autoregressive updating of streamflow forecasts. 19, 1–15, doi: 10.5194/hess-19-550 

1-2015. 551 

Lu, S., Tong, C.F., Lee, D., Zheng, J.H., Shen, J., Zhang, W., & Yan, Y.X. (2015). Propagation of 552 

tidal waves up in Yangtze Estuary during the dry season. J. Geophys. Res. Ocean., 120, 553 

6445-6473, doi:10.1002/2014JC010414. 554 

Mandal, S., Witz, J.A., & Lyons, G.J. (1992). Reduced order ARMA spectral estimation of ocean 555 

waves. Applied Ocean Research, 14, 303-312, doi: 10.1016/0141-1187(92)90034-H. 556 



 

35 

Matte, P., Jay, D.A., & Zaron, E.D. (2013). Adaptation of Classical Tidal Harmonic Analysis to 557 

Nonstationary Tides, with Application to River Tides. J. Atmos. Ocean. Technol., 30, 569-558 

589, doi:10.1175/JTECH-D-12-00016.1. 559 

Matte, P., Secretan, Y., & Morin, J. (2014). Temporal and spatial variability of tidal-fluvial 560 

dynamics in the St. Lawrence fluvial estuary: An application of nonstationary tidal 561 

harmonic analysis. J. Geophys. Res. Oceans, 119, 5724-5744, doi:10.1002/2014JC009791. 562 

Minguez, R., Abascal, A.J., Castanedo, S., & Medina, R. (2012). Stochastic Lagrangian 563 

trajectory model for drifting objects in the ocean. Stoch Environ Res Risk Assess, 26:1081-564 

1093, doi: 10.1007/s00477-011-0548-7.  565 

Mirzavand, M. & Ghazavi, R. (2015). A stochastic modelling technique for groundwater level 566 

forecasting in an arid environment using time series methods. Water Resources 567 

Management, 29, 1315-1328, doi:10.1007/s11269-014-0875-9. 568 

Pan, H.D., Guo, Z., Wang, Y.Y., & Lv, X.Q. (2018). Application of the EMD method to river 569 

tides. J. Atmos. Ocean. Technol., 35, 809–819, doi:10.1175/JTECH-D-17-0185.1. 570 

Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including 571 

error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929-937, 572 

doi:10.1016/S0098-3004(02)00013-4. 573 

Petaccia, P., Serravall, R., & Pellicano, F. (2006). Improved method of sea level forecasting at 574 

Venice (Northern Adriatic Sea). Communications in Nonlinear Science and Numerical 575 

Simulation, 11, 281-296, doi: 10.1016/j.cnsns.2004.11.008. 576 

Peters, T.C., Kar, T.R., Jamas, P.F., Knight, R., & Easterlin, D. (1998). First difference method: 577 

Maximizing station density for the calculation of long-term global temperature change. J. 578 



 

36 

Geophys. Res. Atmospheres., 103, 967-974, doi: 10.1029/98JD01168. 579 

Savenije, H.H.G. (2015). Prediction in ungauged estuaries: An integrated theory. Water Resour. 580 

Res., 51, 2464-2476, doi:10.1002/2015WR016936. 581 

Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike's information 582 

criterion. Biometrika, 63, 117-126, doi: 10.2307/2335091. 583 

Torres, J.L., García, A., Blas, M. D., & Francisco, A. D. (2005). Forecast of hourly average wind 584 

speed with ARMA models in Navarre (Spain). Solar Energy, 79, 65–77, doi: 585 

10.1016/j.solener.2004.09.013. 586 

Turki, I., Laignel, B., Kakeh, N., Chevalier, L., & Costa, S. (2015). A new hybrid model for 587 

filling gaps and forecast in sea level: application to the eastern English Channel and the 588 

North Atlantic Sea (western France). Ocean Dynamics, 65(4), 509-521, doi: 589 

10.1007/s10236-015-0824-z. 590 

Zhang, E. F., Savenije, H. H. G., Chen, S.L., & Mao, X.H. (2012). An analytical solution for tidal 591 

dynamics in the Yangtze Estuary, China. Hydrol. Earth Syst. Sci. Discuss., 9, 2213–2244, 592 

doi: 10.5194/hessd-9-2213-2012. 593 


