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In today’s highly connected cyber-physical environments, users are becoming more and more concerned 
about their privacy and ask for more involvement in the control of their data. However, achieving effective 
involvement of users requires improving their privacy decision-making. This can be achieved by: (i) raising 
their awareness regarding the direct and indirect privacy risks they accept to take when sharing data with 
consumers; (ii) helping them in optimizing their privacy protection decisions to meet their privacy requirements 
while maximizing data utility. In this paper, we address the second goal by proposing a user-centered multi-
objective approach for context-aware privacy management in connected environments, denoted 𝜹-𝑹𝒊𝒔𝒌 . 
Our approach features a new privacy risk quantification model to dynamically calculate and select the best 
protection strategies for users based on their preferences and contexts. Computed strategies are optimal in that 
they seek to closely satisfy user’s requirements and preferences while maximizing data utility and minimizing 
the protection cost. We implemented our proposed approach and evaluated its performance and effectiveness 
based on several use cases. Results show that 𝜹-𝑹𝒊𝒔𝒌: (1) handles privacy reasoning in real-time, which makes 
it able to support the user in various contexts, including ephemeral ones; and (2) always provides the user 
with at least one best strategy per context.
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1 INTRODUCTION

Advances in the fields of ubiquitous computing (e.g., Internet of Things), sensing technologies, and
Big Data have allowed the fast evolution of smart connected environments. These environments
are defined as physical infrastructures that host Cyber-Physical Systems (CPS), such as sensor
networks, interconnected using various communication technologies. These systems are capable
of collecting data that could be later processed to provide advanced services. Current CPS-based
applications are impacting numerous application domains including healthcare (e.g. patient and
elderly monitoring), building/housing (e.g., optimizing energy consumption, occupants’ comfort),
environmental (e.g., monitoring air and water pollution levels), etc.
Sharing data in exchange for goods and services presents an opportunity for users to improve

their quality of life, however, it also exposes them to many privacy risks. In fact, processing
and analyzing generated sensor data (e.g., location of individuals, patient’s vital signs), which
are spatio-temporal in nature [1], can lead to disclose many privacy-sensitive information about
users [2, 3], such as health conditions, performed/daily activities, habits, preferences, etc. This
disclosure may be intentional if users are aware of it and have entered into agreements with relevant
providers. However, it can be harmful if the data/information of users is misused by providers, sold
to interested third parties without user consent, or stolen by cybercriminals as providers are often
victims of cyber-attacks that lead to data breaches.

Hence, involving users in the control of their privacy protection is currently receiving extensive
attention on both legal and technical aspects [4–9]. Nonetheless, existing legal frameworks for data
protection (e.g., GDPR [4]) might not necessarily deter data consumers from abusing, intentionally
or unintentionally, the data of users. The Facebook-Cambridge Analytica [10] and Exactis [11]
scandals are only few examples of a long series of data breach scandals that happened despite the
existence of appropriate data protection laws. Moreover, these laws vary among countries, with
some providing more protection than others (e.g., GDPR [4] for the European Union, CCPA [5] for
the state of California). This makes it more difficult to manage and preserve the privacy of users,
especially when users, providers, and third parties are located in different countries governed by
different data protection laws. Therefore, all these constraints emphasize the need for user-centric
technical solutions that guarantee the same level of privacy protection in all countries.

Current approaches of user-centric privacy preserving [6, 7, 9] have mostly relied on preference
specification and policy enforcement, where users specify their privacy preferences and accept
policies that enforce these preferences. However, they all share the following limitations:

(1) lack of user awareness. The user may not be completely aware of the direct and indirect privacy
risks associated with sharing his data with providers to correctly specify his preferences in
the first place. He may simply not know what sensitive information can be revealed from his
data when data pieces are analyzed in isolation or combined with each other or/and with
side information about the user or his surroundings (e.g., information acquired from external
sources such as social networks).

(2) lack of context-based privacy decision making. The data sharing/protection decisions are often
made/accepted by the user in a static way. This means that they remain unchanged regardless
of the user-context changes. However, the sensitivity of data may vary from a context to
another [2, 12], i.e., new privacy risks may emerge as others may lose their significance.
This makes static decisions over-protective in some contexts, causing an unnecessary loss of
data utility, which can downgrade the accuracy of associated services; or under-protective,
which might lead to privacy breaches. Consequently, the user must be able to make dynamic
adjustments to his privacy decisions according to the evolution of his context.
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The objectives of our research work is to design an appropriate solution that addresses these
limitations, and provides a complete Privacy by Design framework capable of: (i) sensitizing the
user about the privacy risks involved in sharing his data with consumers; (ii) assisting the user in
optimizing his privacy decisions according to his context and preferences; and (iii) securing a full
life-cycle protection of the user’s privacy. To overcome the first limitation, we proposed in a previous
work [2] a context-aware privacy risk inference approach that provides users with a dynamic
overview of the privacy risks they take as their contexts evolve. The computed risk overview
is intuitive enough to allow users to understand the implicit, direct and indirect implications of
sharing their data with consumers. This paves the way for users to make informed adaptations of
their privacy decisions. However, users might not always know the appropriate data protection
measures to apply in their context. That is, over-protective measures limit the utility of shared data
to eliminate the risks, but could also downgrade the accuracy of services. On the other hand, under-
protective measures may improve the accuracy of services, but might also lead to privacy breaches.
Hence, determining the optimal protection measure that answers the requirements of the user
while maximizing the utility of shared data remains challenging. In addition, what makes it even
more challenging is that user-decisions must be fast (i.e. in real-time). Therefore, the optimization
solution must be simple (i.e. not complex for the user), fast to support the user in real-time, and
scalable according to user preferences and context.
To cope with these challenges, and to answer the second limitation, this paper proposes a new

user-centered, context-aware and multi-objective privacy management approach, denoted 𝜹-𝑹𝒊𝒔𝒌 .
The proposed approach assists the user in optimizing his privacy decisions, by providing him
with dynamic and best protection strategies that could be adopted in his context. Each of these
strategies minimizes the risks inferred in the present context to meet the privacy requirements
of the user while maximizing the utility of data and minimizing the protection cost. A delivered
strategy is composed of the best combination of protection levels to be assigned to shared attributes
according to the user’s preferences and context. To validate our proposal, we developed a Java-
based prototype that performs real-time reasoning and generates dynamic/contextual protection
strategies. We evaluated the performance of the 𝜹-𝑹𝒊𝒔𝒌 process by considering several use cases,
and we formally studied its effectiveness. Results show that 𝜹-𝑹𝒊𝒔𝒌: (1) handles reasoning in
real-time, which makes it able to support the user in various contexts, including ephemeral ones
(i.e. contexts with small timescale); (2) always identifies all possible appropriate strategies that
answer the data utility/privacy protection trade-off; (3) delivers the best strategies to the user; and
(4) provides the user with at least one best strategy per context.

The remainder of this paper is organized as follows. Section 2 introduces a scenario that motivates
our proposal and identifies the challenges to tackle. Section 3 presents our Privacy Oracle framework,
and provides formal definitions of the key concepts used in the paper. Section 4 details the 𝜹-𝑹𝒊𝒔𝒌
approach. Section 5 outlines the experiments and tests performed. Section 6 highlights the Privacy by
Design standard and discusses existing context-aware privacy preserving approaches in connected
environments. Finally, Section 7 concludes the paper and discusses future research directions.

2 MOTIVATING SCENARIO

To motivate our proposal, we investigate a real-life scenario to showcase some of the privacy
risks that might be resulted from sharing data with consumers, and to emphasize the need for
dynamic/contextual adaptations of the user-privacy decisions. Fig.1 illustrates the proposed scenario.
Assume that Alice is a COPD (Chronic Obstructive Pulmonary Disease) patient. She pursues her
medical treatment remotely using an NIV (Non-Invasive Ventilation) device deployed at home.
Consider that Alice shares fine-grained data with the following service providers:
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• Electricity provider: Alice shares the energy consumption of her home through a deployed
smart energy meter. In return, the provider offers Alice personalized recommendations to
reduce her energy consumption and bills.

• Healthcare provider: Alice shares her real-time location through a mobile application to
benefit from an emergency care system. This system provides smart healthcare services, such
as a smart ambulance service, that she would use in case of respiratory distress.

The trust relationship between Alice and the providers is not static. It varies depending on
her context, the parties with which the provider is communicating Alice’s data, etc. For example,
assume that both providers have signed contracts with third parties interested in exploiting the
data of Alice for different purposes, including marketing companies and government agencies.
Marketing companies could be interested in exploiting consumption data to analyze the lifestyle of
Alice in order to send her targeted advertisements (e.g., advertisement about appliances that she
owns or does not own). Government agencies could be interested in identifying users involved in
wrongdoing (e.g., fraud, crimes, etc.).

Fig. 1. Motivating Scenario

Even though Alice is notified, through agreed policies, about consumers who have access to her 
data, she might not be necessarily aware of the privacy risks involved with this sharing. These 
risks may vary between: (i) mono-source risks, that might be generated from analyzing data pieces 
in isolation; and (ii) multi-source risks, more complex risks that might be generated from analyzing 
combined data pieces together or/and with other background knowledge information acquired 
from external data sources.
For instance, analyzing the energy consumption data (see the signature in Fig. 2) can entail 

various mono-source risks for Alice, such as the risks of disclosing her presence/absence hours 
at home, waking/sleeping cycles, some of her habits and activities (e.g., cooking, TV watching, 
sports activity using a treadmill) [13]. Moreover, existing works (e.g., [3]) show that consumption 
signatures can be mined to identify the use of specific appliances (e.g., medical devices). This would 
reveal the health condition of Alice if the use of her NIV machine was identified. The analysis of 
location data can also involve significant mono-source risks for Alice such as the risks of disclosing 
her habits, behaviors and health conditions by analyzing her trajectory patterns (cf. Fig. 3). For 
example, if Alice is located twice per week in a pulmonary rehabilitation center for COPD patients, 
then she is very likely to be a COPD patient.



𝜹-𝑹𝒊𝒔𝒌 : Towards context-aware multi-objective privacy management in connected environments 5

On the other hand, consumers can also exchange the data of Alice between them (cf. Fig.1),
which may imply further multi-source risks for her. For example, assume that Alice has unlawfully
certified that she is living alone to be eligible for a welfare program when she submitted her
application. A marketing company having access to both location and consumption data can infer
this fraud (it suffices to identify the usage of some specific devices such as microwaves and TVs
while Alice is located outside her home).

Fig. 2. Energy consumption signature Fig. 3. Location data pattern

After alerting Alice of the risks involved in her context, adapting her privacy protection measures
becomes essential. Nonetheless, such an adaptation can be difficult for her, especially as it may
impact the utility of shared data, and thus the accuracy of associated services, including important
services for Alice. Assume that the services offered by the healthcare provider are important for
Alice. She may want to minimize her risks when being located in the pulmonary rehabilitation
center, but without completely losing the healthcare services. In this case, Alice may not know
the appropriate amount of protection to assign to her shared attributes, as she may not know
the impact of this protection on associated risk values. This raises the need for a system that can
support Alice in real-time to optimize her privacy decisions while keeping the process simple to
her. However, building this dynamic context-dependent system requires to address the following
scientific challenges:

• Challenge 1. Privacy Risk Quantification: The privacy risks are associated to the data
shared by the user in his context. This means that protecting these data will lead to minimize
the risk values. Hence, quantifying privacy risks becomes an important challenge to address
in order to study the impact of data protection levels on the risk values.

• Challenge 2. User-centric Privacy: Users may have different levels of expertise to express
their requirements/preferences. Therefore, the proposed solution must be simple and user-
friendly, in that it assists the user based on his level of expertise, while masking the complexity
of correlations that exist among user preferences, contexts, and protection measures.

• Challenge 3. Optimal Protection Strategies: The strategies to be delivered to the user
depend on his context and preferences. Therefore, the proposed solution should be able
to monitor the evolution of the user context, and dynamically identify and select the best
protection strategies that satisfy the preferences of the user while maximizing data utility
and minimizing the protection cost.
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3 PRIVACY ORACLE: PRIVACY BY DESIGN FRAMEWORK FOR CONTEXT-AWARE
PRIVACY MANAGEMENT IN CONNECTED ENVIRONMENTS

In order to stress the usage of the 𝜹-𝑹𝒊𝒔𝒌 approach, we present in this section an overview of our
Privacy by Design framework for context-aware privacy management in connected environments.
We start by explaining the functioning of the solution, and formally defining the key concepts used
in the paper. Then, we briefly describe the framework modules.

The aim of our framework is to build-up a user-centered and context-aware reasoning system,
denoted Privacy Oracle, that can assist the user in controlling and managing his privacy protection
(cf. Fig. 4). This system can be embedded on a user device as middleware between the user and
the connected providers, such that it manages the user’s data before being released to providers.
To do so, the user starts by specifying: (1) the list of attributes that are currently shared with data
consumers; (2) his preferences, which vary between mandatory and optional preferences (user
preferences are detailed in Section 4). The system captures these information pieces from its side and
begins to collect the data flow of attributes. Besides, the system continuously gathers background
knowledge information that describe the user or/and his surrounding physical environment from
the user’s Web environments (e.g., social networks). This information gathering process is ensured
by the use of Bots that continuously monitor and analyze the Web environments of the user.

Fig. 4. Privacy Oracle Framework

Let 𝒖 denotes the user of interest.

Definition 1 (Data-Exchange Node). Let 𝑫𝑬𝑵 be the set of data-exchange nodes {𝒅𝒏1, ..., 𝒅𝒏𝒏}

responsible for exchanging data of 𝒖 (i.e. generate or receive the data of 𝒖). 𝒅𝒏 can be the source
from which the data is collected (e.g., sensor, social network), or the data consumer with which the
data is shared (i.e. service provider or third party). 𝒅𝒏 ∈ 𝑫𝑬𝑵 is formalized as follows:

𝒅𝒏 : ⟨ 𝒅𝒆𝒔𝒄 ; 𝒊𝒅 ⟩ , where:

• 𝒅𝒆𝒔𝒄 is the textual description of 𝒅𝒏 (e.g., gps-sensor, heart-rate-sensor, facebook)

• 𝒊𝒅 denotes the identity of 𝒅𝒏, expressed as an IP address or a uniform resource identifier
(URI) □
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Definition 2 (Physical Environment). Let 𝑬𝒖 be the set of physical environments {𝒆𝒏𝒗1, ..., 𝒆𝒏𝒗𝒏}
controlled by 𝒖, or where 𝒖 is/was located. 𝒆𝒏𝒗 ∈ 𝑬𝒖 is formalized as follows:

𝒆𝒏𝒗 : ⟨ 𝒅𝒆𝒔𝒄 ; 𝒔𝒛 ; 𝑺𝒚𝒔𝒕𝒆𝒎 ⟩ , where:
• 𝒅𝒆𝒔𝒄 denotes the textual description of 𝒆𝒏𝒗 (e.g., home, office, mall)

• 𝒔𝒛 expresses the spatial zone of 𝒆𝒏𝒗 (cf. Definition 4)

• 𝑺𝒚𝒔𝒕𝒆𝒎 is the set of systems (e.g., sensor, device) deployed in 𝒆𝒏𝒗, 𝑺𝒚𝒔𝒕𝒆𝒎 ⊑ 𝑫𝑬𝑵 □

Definition 3 (Spatial Zone). A spatial zone, 𝒔𝒛, is defined as a geographical surface bounded by a
set of locations, such that:

𝒔𝒛 : ⟨ 𝒍𝒐𝒄1 ; 𝒍𝒐𝒄2 ; ... ; 𝒍𝒐𝒄𝒏 ⟩ , where:
• 𝒍𝒐𝒄 is a location instance defined as 3-tuple 𝒍𝒐𝒄 : ⟨ 𝒍𝒐𝒏𝒈 ; 𝒍𝒂𝒕 ; 𝒂𝒍𝒕 ⟩, such that:
– 𝒍𝒐𝒏𝒈 denotes the longitude of 𝒍𝒐𝒄
– 𝒍𝒂𝒕 denotes the latitude of 𝒍𝒐𝒄
– 𝒂𝒍𝒕 denotes the altitude of 𝒍𝒐𝒄 □

Example 1. The home of Alice can be defined as follows:

ℎ𝑜𝑚𝑒 :
- 𝑑𝑒𝑠𝑐 : home of Alice
- 𝑠𝑧 : ℎ𝑜𝑚𝑒𝑍𝑜𝑛𝑒 : ⟨ 𝑙𝑜𝑐1 ; 𝑙𝑜𝑐2 ; 𝑙𝑜𝑐3 ; 𝑙𝑜𝑐4 ⟩
𝑙𝑜𝑐1 : 𝑙𝑜𝑐2 : 𝑙𝑜𝑐3 : 𝑙𝑜𝑐4 :
- 𝑙𝑜𝑛𝑔 : -1.52308 - 𝑙𝑜𝑛𝑔 : -1.52222 - 𝑙𝑜𝑛𝑔 : -1.51503 - 𝑙𝑜𝑛𝑔 : -1.51534
- 𝑙𝑎𝑡 : 33.0585 - 𝑙𝑎𝑡 : 33.0884 - 𝑙𝑎𝑡 : 34.1381 - 𝑙𝑎𝑡 : 34.1431
- 𝑎𝑙𝑡 : 200.03 - 𝑎𝑙𝑡 : 205.14 - 𝑎𝑙𝑡 : 216.57 - 𝑎𝑙𝑡 : 218.13
- 𝑆𝑦𝑠𝑡𝑒𝑚 = {𝑠𝑒𝑛𝑠𝑜𝑟1 : ⟨ 𝑑𝑒𝑠𝑐 : energy-consump-sensor ; 𝑖𝑑 : 46.193.0.164 ⟩}

Physical environments may be interdependent (i.e. spatial dependency), making the associated
information interdependent. For instance, the system may receive information describing the home
and city of the user, where home is located inside the city, making the information collected on
the two environments interdependent. At this stage, we do not consider the interdependency of
environments, and we reason on each environment in isolation.

Definition 4 (Attribute). Let 𝑺𝑨 be the set of attributes {𝒂1, 𝒂2, ..., 𝒂𝒏} that 𝒖 might share with
data consumers. 𝒂 ∈ 𝑺𝑨 is an attribute whose data flow can be controlled and managed by the
system. 𝒂 is formalized as follows:

𝒂 : ⟨ 𝒅𝒆𝒔𝒄 ; 𝒔𝒐𝒖𝒓𝒄𝒆 ; 𝑫𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓 ; 𝒆𝒏𝒕 ; 𝑳𝒐𝒈 ⟩ , where:
• 𝒅𝒆𝒔𝒄 denotes the textual description of 𝒂 (e.g., location, energy-consump, heart-rate)

• 𝒔𝒐𝒖𝒓𝒄𝒆 expresses the system (e.g., sensor, device) fromwhich the data values of 𝒂 are captured,
such that 𝒔𝒐𝒖𝒓𝒄𝒆 ∈ 𝑫𝑬𝑵

• 𝑫𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓 represents a set of data consumers with whom 𝒂 is shared, such that:
𝑫𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓 = { 𝒅𝒄1 ; 𝒅𝒄2 ; ... ; 𝒅𝒄𝒏 } ∪ ⊥ , where:

– 𝒅𝒄 𝒊 is a data consumer, such that 𝒅𝒄 𝒊 ∈ 𝑫𝑬𝑵

– 𝑫𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓 = ∅ indicates that data consumers are unknown
– 𝑫𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒓 = ⊥ denotes that 𝒂 is a public attribute (i.e. shared with everyone)
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• 𝒆𝒏𝒕 represents the entity described by 𝒂, which can be 𝒖 or a physical environment controlled
by 𝒖 (i.e. environment containing 𝒔𝒐𝒖𝒓𝒄𝒆). 𝒆𝒏𝒕 is defined as follows:

𝒆𝒏𝒕 ∈ {𝒖 , 𝒆𝒏𝒗} | 𝒆𝒏𝒗 ∈ 𝑬𝒖 and 𝒔𝒐𝒖𝒓𝒄𝒆 ∈ 𝒆𝒏𝒗.𝑺𝒚𝒔𝒕𝒆𝒎

• 𝑳𝒐𝒈 = {⟨ 𝒓𝒗 ; 𝑴 ⟩} is the set of data values of 𝒂 (e.g., spatio-temporal data stream). 𝑳𝒐𝒈 can
be seen as the log file of 𝒂, such that:
– 𝒓𝒗 is a raw data value
– 𝑴 denotes the set of metadata characterizing 𝒓𝒗 (e.g., time of capture, location of capture,
data-type, data-unit) □

Example 2. Alice’s shared attributes can thus be represented as follows:
𝑎1 : 𝑎2 :
- 𝑑𝑒𝑠𝑐 : energy consumption - 𝑑𝑒𝑠𝑐 : location
- 𝑠𝑜𝑢𝑟𝑐𝑒 : sensor1 - 𝑠𝑜𝑢𝑟𝑐𝑒 : 𝑠𝑒𝑛𝑠𝑜𝑟2 : ⟨𝑑𝑒𝑠𝑐 : GPS ; 𝑖𝑑 : 46.89.1.47⟩
- 𝐷𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 : prov-1 - 𝐷𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 : prov-2
prov-1: ⟨𝑑𝑒𝑠𝑐 : elect-prov ; 𝑖𝑑 : 58.17.37.23⟩ prov-2: ⟨𝑑𝑒𝑠𝑐 : health-prov ; 𝑖𝑑 : 64.31.3.12⟩
- 𝑒𝑛𝑡 : home - 𝑒𝑛𝑡 : 𝑢
- 𝑙𝑜𝑔 : - 𝑙𝑜𝑔 :
⟨ 89 ;

{
𝑡𝑐𝑎𝑝𝑡𝑢𝑟𝑒 : 21 :05 :00 ; 𝑑𝑢𝑛𝑖𝑡 : 𝑘𝑊𝐻

}
⟩ ⟨ (−33.0534, 16.3103) ;

{
𝑡𝑐𝑎𝑝𝑡𝑢𝑟𝑒 : 11 :00 :00

}
⟩

⟨ 115 ;
{
𝑡𝑐𝑎𝑝𝑡𝑢𝑟𝑒 : 21 :15 :00 ; 𝑑𝑢𝑛𝑖𝑡 : 𝑘𝑊𝐻

}
⟩ ⟨ (−36.0534, 17.4401) ;

{
𝑡𝑐𝑎𝑝𝑡𝑢𝑟𝑒 :: 11 :01 :00

}
⟩

Definition 5 (Background Knowledge Information). Let 𝑩𝑰 be a set of background knowledge
information {𝒃1, 𝒃2, ..., 𝒃𝒏} describing 𝒖 or/and his surrounding physical environment. 𝒃 ∈ 𝑩𝑰
is a piece of information that cannot be controlled or managed by the system. It can be publicly
available on theWeb through user profiles on social networks, public databases (e.g., voting/medical
records), etc. 𝒃 is formalized as follows:

𝒃 : ⟨ 𝒅𝒆𝒔𝒄 ; 𝒔𝒐𝒖𝒓𝒄𝒆 ; 𝒆𝒏𝒕 ; 𝒗𝒂𝒍𝒖𝒆 ⟩ , where:
• 𝒅𝒆𝒔𝒄 denotes the textual description of 𝒃 (e.g., age, marital-status)

• 𝒔𝒐𝒖𝒓𝒄𝒆 expresses the Web environment source from which 𝒃 is captured (e.g., social network,
public database), such that 𝒔𝒐𝒖𝒓𝒄𝒆 ∈ 𝑫𝑬𝑵

• 𝒆𝒏𝒕 represents the entity described by 𝒃 , which can be 𝒖, or a physical environment where 𝒖
is/was located (e.g., home, mall, street). 𝒆𝒏𝒕 ∈ {𝒖 ∪ 𝒆𝒏𝒗} | 𝒆𝒏𝒗 ∈ 𝑬𝒖

• 𝒗𝒂𝒍𝒖𝒆 : ⟨ 𝒓𝒗 ; 𝑴 ⟩, such that:
– 𝒓𝒗 expresses the raw data value
– 𝑴 denotes the set of metadata characterizing 𝒓𝒗 (e.g., time of capture, location of capture,
data-type, data-unit) □

Example 3. Assume that the system has captured the following background knowledge information
about Alice from her Facebook account:

𝑏1 :
- 𝑑𝑒𝑠𝑐 : marital-status
- 𝑠𝑜𝑢𝑟𝑐𝑒 : socialAccount1: ⟨ 𝑑𝑒𝑠𝑐 : facebook ; 𝑖𝑑 : https://www.facebook.com/Alice ⟩
- 𝑒𝑛𝑡 : 𝑢
- 𝑣𝑎𝑙𝑢𝑒 : ⟨ single ;

{
𝑡𝑐𝑎𝑝𝑡𝑢𝑟𝑒 : 12 :00 :00 ; 𝑑𝑡𝑦𝑝𝑒 :𝑆𝑡𝑟𝑖𝑛𝑔

}
⟩
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The Privacy Oracle system models acquired context information, reasons over it while relying on
imported privacy rules (cf. Definition 8) in order to infer the privacy risks (cf. Definition 10) involved
in the actual context. If no risk is inferred, the system keeps releasing the data values of attributes
to consumers without adding any extra protection. Otherwise, it alerts the user by providing him
with a clear overview of his risks, and a list of best protection strategies that could be adopted in
his context. Meanwhile the system stops sharing data with consumers and waits for the user’s
response. When the user selects the strategy to be implemented in his context, the system protects
the attribute data accordingly before communicating it to consumers. The system continues to
apply the same protection strategy to data flows until a new context emerges (cf. Definition 6). At
this stage, the system examines the similarity between consecutive contexts (cf. Definition 7). If
contexts are similar, the system keeps applying the same protection strategy, otherwise the entire
reasoning process is relaunched. Therefore, the risk inference and strategy identification process is
executed by default once per consecutive similar contexts.

Definition 6 (User Context). A user context, 𝒄 , is a spatio-temporal context in which 𝒖 shares a
fixed set of attributes with data consumers, and the system has a fixed set of background knowledge
information describing 𝒖 and his environments. 𝒄 is formalized as follows:

𝒄 : ⟨ 𝒕 ; 𝒔 ; 𝑪𝑰 ⟩ , where:
• 𝒕 denotes the time period of 𝒄 , which can be a time instant or a time interval. A time interval,
𝒕 𝒊, is defined as 2-tuple 𝒕 𝒊 : ⟨ 𝒕𝒔𝒕𝒂𝒓𝒕 ; 𝒕𝒆𝒏𝒅 ⟩ , where 𝒕𝒔𝒕𝒂𝒓𝒕 and 𝒕𝒆𝒏𝒅 are two time instants
expressing respectively the lower and upper boundaries of 𝒕 𝒊

• 𝒔 expresses the spatial zone of 𝒄 (cf. Definition 3)

• 𝑪𝑰 represents the set of context information characterizing 𝒄 . 𝑪𝑰 is composed of the fixed set
of shared attributes in 𝒄 , 𝑺𝑨𝒄 , combined with the fixed set background knowledge information
known about the user and his environments in 𝒄 , 𝑩𝑰𝒄 , such that: 𝑪𝑰 = 𝑺𝑨𝒄 ∪ 𝑩𝑰𝒄

A context-change takes place if at least one of the context parameters varies. □

Definition 7 (Context Similarity). Let 𝒄1, 𝒄2 be two contexts. The context similarity of 𝒄1 and 𝒄2 is
determined by computing the similarity between the two sets of context information characterizing
these contexts. The similarity score is computed as follows:

𝒔 𝒊𝒎(𝒄1, 𝒄2) = 𝒔 𝒊𝒎(𝑪𝑰𝒄1 , 𝑪𝑰𝒄2) → [0; 1], where:
• 𝒔 𝒊𝒎 is a unit similarity function comparing the two sets 𝑪𝑰𝒄1 , 𝑪𝑰𝒄2 based on their instances
and their parameters’ values. 𝒔 𝒊𝒎 returns a score between [0;1], where 0 expresses a total
divergence and 1 a complete similarity.

Therefore, 𝒄1 and 𝒄2 are said to be similar contexts only if 𝒔 𝒊𝒎(𝒄1, 𝒄2) = 1 □

Performing rule-based reasoning to infer the risks involved in the user context requires relying
on a reference schema that introduces a list of pre-defined privacy rules.

Definition 8 (Privacy Rule). Let 𝑷𝑹 be the set of privacy rules {𝒑𝒓1, 𝒑𝒓2, ..., 𝒑𝒓𝒏} that define
the risks to be detected by the system (i.e. mono-source and multi-source risks). A privacy rule,
𝒑𝒓 ∈ 𝑷𝑹, is a reasoning rule that indicates what attribute, or combination of attributes together
or/and with other background knowledge information, if processed, leads to reveal what privacy-
sensitive information 𝒑𝒔𝒊 ∈ 𝑷𝑺𝑰 (cf. Definition 9) about 𝒖. Therefore, 𝒑𝒓 should include at least one
attribute. 𝒑𝒓 ∈ 𝑷𝑹 is formalized as follows:

𝒑𝒓 : 𝑨∧ 𝑩 → 𝒑𝒔𝒊 , where:



10 K. Bou-Chaaya, R. Chbeir, et al.

• 𝑨 = 𝒂1 ∧ ... ∧ 𝒂𝒏 denotes the combined attributes such that: 𝑨 ⊑ 𝑺𝑨 and 𝒎𝒊𝒏|𝑨| = 1
• 𝑩 = 𝒃1 ∧ ... ∧ 𝒃𝒏 denotes the combined background knowledge information, 𝑩 ⊑ 𝑩𝑰

• 𝒑𝒔𝒊 ∈ 𝑷𝑺𝑰 expresses the privacy-sensitive information to be disclosed by this combination □

Definition 9 (Privacy-Sensitive Information). A privacy-sensitive information, 𝒑𝒔𝒊 ∈ 𝑷𝑺𝑰 , is a
personal information about the user, that if disclosed, could be harmfully used against him. 𝒑𝒔𝒊
is a sensitive information that might be revealed when processing and analyzing the knowledge
acquired about 𝒖 and his surroundings. 𝒑𝒔𝒊 has a primitive data type of String and belongs to a
controlled set 𝑷𝑺𝑰 , such that:

𝑷𝑺𝑰 = { 𝒑𝒔𝒊1 ; 𝒑𝒔𝒊2 ; ... ; 𝒑𝒔𝒊𝒏 }

The National Institute of Standards and Technology (NIST) guidelines for smart grid cybersecurity
[13] has identified several 𝒑𝒔𝒊 instances, including: (i) User-profile information (e.g., disease, salary),
(ii) user habits (e.g., daily activities), (iii) behaviors, (iv) preferences, (v) presence/absence, (vi)
sleep/wake cycles, (vii) appliances and medical devices used, and (viii) fraud □

Example 4. A privacy rule 𝑝𝑟1 states that processing the energy consumption of the user’s home can
lead to reveal the presence/absence of the user at home. 𝑝𝑟1 can be represented as follows:

– Let 𝑎3 : ⟨ 𝑑𝑒𝑠𝑐 : energy-consump ; 𝑒𝑛𝑡 : home ⟩ and 𝑝𝑠𝑖1= presence/absence at home
⇒ 𝑝𝑟1 : 𝑎3 → 𝑝𝑠𝑖1

Definition 10 (Privacy Risk). A privacy risk, 𝒓 , is defined as the probability of disclosing a privacy-
sensitive piece of information 𝒑𝒔𝒊 ∈ 𝑷𝑺𝑰 about 𝒖. 𝒓 is linked to a pre-defined privacy rule 𝒑 𝒓 ∈  𝑷 𝑹. 
It is generated when the associated 𝒑𝒓 is satisfied in the user context, and remains valid for the 
entire time period of the context. 𝒓 is probabilistic with a value between [0, 1], where 0 indicates 
that 𝒓 is eliminated and 1 the highest risk level. The default value of 𝒓 when inferred is 1. 𝒓 is 
formalized as follows:

𝒓 = 𝑷 (𝒑𝒔𝒊)𝒑𝒓 | 𝒓 ↔ 𝒑𝒓 ∈ 𝑷 𝑹, 𝒓 ∈ [0, 1]

The number of risks to infer in a single iteration is fix, it depends on the number of imported 
privacy rules. Moreover, it is possible to have several risks 𝒓 𝒊 mapped to the same 𝒑𝒔𝒊 in cases 
where the 𝒑𝒔𝒊 could be disclosed through various possible combinations of information defined by 
different privacy rules. □

Example 5. Assume that when launching the reasoning process, the rule 𝑝𝑟1 is satisfied in the context 
of Alice. Therefore, one risk, 𝑟1, is inferred for Alice:

𝑟1 = 𝑃 (𝑝𝑠𝑖)𝑝𝑟1 = 𝑃 (presence/absence at home) = 1

3.1 Privacy Oracle Framework Modules
As illustrated in Fig.4, Privacy Oracle relies on a modular framework comprised of three modules: 
information management module, privacy risk inference module, and privacy risk management 
module. These modules are detailed in what follows.

3.1.1 Information Management. Inferring context-aware risks requires first to build up a global 
view of the user context. This is done by gathering information describing the user of interest and 
his surrounding cyber-physical environment. Hence, this module is responsible for managing (i.e., 
capturing and modeling) context information. It comprises the following components: (i) context 
acquisition, in charge of capturing context information (i.e. shared attributes and background
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knowledge) from the user and his Connected/Web environments; (ii) user preferences, responsible
for managing the preferences of the user; and (iii) context modeling, liable for modeling acquired
information and the relationships that exit among them, which helps in better understanding
the user context. We explored the context modeling component in previous work [2], where we
proposed a generic and modular ontology for Semantic User Environment Modeling, entitled
SUEM. In fact, adopting a semantic data model that maintains a flexible data structure becomes a
fundamental requirement, especially as: (1) collected information can be heterogeneous (i.e., they
have different data types and formats); (2) information can be captured from different types of data
sources that could derive from both Connected environments (e.g., IoT sensor networks), and Web
environments such as social networks, or any other public data source (e.g., public voting records,
medical records); (3) gathered information may have different levels of granularity (i.e., different
levels of precision); and (4) performing in a dynamic environment that cannot be controlled in
advance makes the system unable to control or predict the knowledge to receive, nonetheless, it
must be always capable of modeling it. The SUEM ontology introduces concepts and properties to
represent the context information received about users, domains of interest, and environments.
SUEM is extensible and can be adapted to various domain particularities. Full documentation of
the SUEM ontology can be found at: http://spider.sigappfr.org/SUEMdoc/index-en.html.

3.1.2 Privacy Risk Inference. Responsible for inferring the risks involved in the user context. To
achieve this, this module includes two components. First, the privacy rules component, which
handles the definition/import of privacy rules that specify the risks to be detected by the system.
The rules are defined according to the given syntax in Definition 8, and they are used as a reference
schema for the reasoning process. This schema is regularly updated by the privacy community,
and the rule updates are imported by the system when relaunching the risk inference process. It
is important to state that the accuracy of the risk inference process depends from the quality of
the defined rules. Consequently, we assume in this study that the privacy rules, defined by experts
from the privacy community, are optimal. Second, the privacy risk reasoner component, which
provides a semantic rule-based reasoning engine proposed in [2]. This engine performs continuous
reasoning over modeled information to dynamically infer the risks involved in the user context.

3.1.3 Privacy Risk Management. The user might change progressively his preferences. This change
can occur due to the risks incurred in his context or the sensitivity of the context (e.g., private
meeting, located in a sensitive environment). Consequently, this module is responsible for: (1)
managing the risks inferred based on the privacy requirements and interests of the user, and
delivering optimized and meaningful strategies to the user; (2) protecting the spatio-temporal data
values of attributes according to the protection strategy selected by the user. In order to achieve
this, the module is comprised of three components: (i) protection strategies, in charge of identifying
the best protection strategies to be proposed to the user in his context according to his preferences
and context; (ii) protection functions, contains the list of available protection functions (cf. Definition
13); and (iii) privacy protection service, responsible for selecting the most appropriate protection
functions to be linked to attributes in the relevant context, and to execute the selected functions on
the attributes’ data before being released to consumers. This paper explores the protection strategies
component by introducing a new privacy risk management model detailed in the following section.

4 𝜹-𝑹𝒊𝒔𝒌: TOWARDS CONTEXT-AWARE MULTI-OBJECTIVE PRIVACY
MANAGEMENT IN CONNECTED ENVIRONMENTS

Empowering the user to make quick, effective and meaningful adaptation of his privacy decisions
to cope with the evolution of his context remains challenging. In that regard, we propose in

http://spider.sigappfr.org/SUEMdoc/index-en.html
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the following a new user-centered, context-aware and multi-objective privacy risk management
approach, denoted 𝜹-𝑹𝒊𝒔𝒌 . 𝜹 is a privacy parameter specified by the user to express the maximum
level of risk that he accepts to take in his context. The aim of this approach is to assist the user in
optimizing his privacy decisions, so that to meet his requirements and preferences while maximizing
data utility and minimizing the protection cost. To do so, 𝜹-𝑹𝒊𝒔𝒌 provides the user with at least one
best protection strategy to adopt in his context. In addition to his privacy preferences, the approach
considers also the interests of the user (e.g., what services are important to him), thereby making
the strategies provided not only optimal but also meaningful.

Fig. 5. 𝜹-𝑹𝒊𝒔𝒌 Approach

Fig. 5 illustrates an overview of the solution. 𝜹-𝑹𝒊𝒔𝒌 receives as input the preferences of the
user and the context features, and outputs the best strategies that might be adopted in these
circumstances. The user selects accordingly one protection strategy to be implemented on his data,
and this strategy remains valid as long as there is no change in the entries. The 𝜹-𝑹𝒊𝒔𝒌 principle
is defined as follows: the global risk level to maintain in a user context should not bypass the
threshold 𝜹 specified by the user (i.e. ⩽ 𝜹). We discuss in what follows the input parameters.

Context Features:
• The set of attributes shared by 𝒖 in 𝒄 , i.e., 𝑺𝑨𝒄 = {𝒂1, 𝒂2, ..., 𝒂𝒎} (cf. Definition 4).

• The overview of privacy risks in 𝒄 , represented by 𝑹𝒄 =
{

®𝒓 ; 𝒗
}

, where:
– ®𝒓 =

[

𝒓1 𝒓2 ... 𝒓𝒏
]

is a risk vector composed of the privacy risks inferred in 𝒄 , where 𝒏
denotes the number of risks inferred.

– 𝒗 denotes the global risk level in 𝒄 , that is used to interact with the risk threshold specified
by the user (i.e. 𝜹). The challenge of how to quantify the global risk level is addressed in
the following subsection.

• The costs of selected protection functions (cf. Definition 13), 𝒄𝑷𝑭 = {𝒄1, 𝒄2, ..., 𝒄𝒎}, to be
executed on attributes {𝒂1, 𝒂2, ..., 𝒂𝒎} of 𝑺𝑨𝒄 . The selection process of protection functions is
managed by the privacy protection service component, and their costs are provided accordingly.

• The impact matrix of shared attributes on the risks inferred,𝑾𝒄 .
Definition 11 (Impact Matrix). Let 𝑾𝒄 be the impact matrix of attributes {𝒂1, 𝒂2, ..., 𝒂𝒎} of
𝑺𝑨𝒄 on risks {𝒓1, 𝒓2, ..., 𝒓𝒏} of 𝑹𝒄 .®𝒓 . 𝑾𝒄 is automatically calculated by the privacy risk reasoner
component during the risk inference process, such that:

𝑾𝒄 =

















𝝎11 𝝎12 ... 𝝎1𝒎
𝝎21 𝝎22 ... 𝝎2𝒎

... ... ... ...

𝝎𝒏1 𝝎𝒏2 ... 𝝎𝒏𝒎

















, where 𝝎𝒊𝒋 =
{

0 if 𝒓 𝒊 ↔ 𝒑𝒓 ∈ 𝑷𝑹 and 𝒂𝒋 ∉ 𝑨𝒑𝒓

1 if 𝒓 𝒊 ↔ 𝒑𝒓 ∈ 𝑷𝑹 and 𝒂𝒋 ∈ 𝑨𝒑𝒓
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The impact 𝝎𝒊𝒋 of attribute 𝒂𝒋 on risk 𝒓 𝒊 is equal to 1 only if 𝒂𝒋 is included in the set of combined
attributes (i.e. 𝑨) when defining the privacy rule 𝒑𝒓 to which 𝒓 𝒊 is linked. □

User Preferences:
• Privacy preferences:
(1) Risk threshold 𝜹 , which is the only mandatory parameter for 𝒖. 𝜹 has a value between 0

and 1, where 0 indicates that 𝒖 does not accept to take any risk, and 1 means that 𝒖 wants
to share fine-grained data to preserve the full accuracy of related services.

(2) Enforced protection levels for specific attributes, 𝒆𝑷 , which is an optional parameter for 𝒖.
In fact, 𝒖 might enforce specific protection levels to be assigned to particular attributes
regardless of his context (e.g., resulting from agreements with service providers). These
protection levels must be respected when computing the strategies.

• Service preferences:
The user can state which services are important to him (optional parameter). Accordingly, the
system calculates the weights to assign to attributes. This process, detailed in the following,
is managed by the user preferences component of the framework.
Let ®𝒘𝑨 =

[

𝒘1 ... 𝒘𝒎
]

be the vector of weights assigned to attributes {𝒂1, ..., 𝒂𝒎} of 𝑺𝑨𝒄 .
Let 𝑺 be the set of available services 𝒔1, 𝒔2, ..., 𝒔𝒏 offered by the providers to 𝒖 in exchange of
his data, such that: ∀ 𝒔 ∈ 𝑺, 𝒔 : ⟨ 𝑨 ; 𝒍 𝒊 ⟩, where:
– 𝑨 represents the set of attributes associated to 𝒔, such that 𝑨 ⊑ 𝑺𝑨𝒄

– 𝒍 𝒊 expresses the level of importance of 𝒔 to the user. 𝒍 𝒊 is Boolean with a value of 1 if 𝒔 is
important, and 0 if not

Therefore,𝒘𝒊 of ®𝒘𝑨 is equal to the number of important services to which 𝒂𝒊 is associated.
This can be represented as follows:

∀ 𝒘𝒊 ∈ ®𝒘𝑨 : 𝒘𝒊 =
𝒏
∑

𝒍=1

𝒔𝒍 .𝒍 𝒊 | 𝒂𝒊 ∈ 𝒔𝒍 .𝑨 (1)

Specifying a value for 𝜹 might be challenging as it depends on the level of expertise of the user.
Therefore, as our objective is to keep the privacy management process simple to the user, we define
three profiles that express the level of expertise of the user: beginner, intermediate, and advanced.

Fig. 6. User Profiles

The aim here is to assist the user in specifying the 𝜹 value. To do so, the user starts by selecting
his profile according to his level of expertise. Consequently, the system dynamically suggests a
value for 𝜹 based on his profile and context. Advanced users are experts in managing their privacy,
which means they do not require assistance to specify 𝜹 . Beginner users are non-savvy users, i.e.,
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they require more critical assistance than intermediate users. This makes the suggestion of 𝜹 more
critical for beginners. The choice of 𝜹 depends on the number of risks inferred in the user context,
i.e., the value of 𝜹 decreases with the increase in the number of risks as shown in Fig.6. If no risk
is inferred, the suggested 𝜹 value is 1 (i.e. keep sharing fine-grained data). Once a risk is inferred
(with a total number of risks less than 5), the suggested 𝒅𝒆𝒍𝒕𝒂 value is automatically reduced by
half (i.e. 50% protection) for both profiles (i.e. beginner and intermediate). Then, the suggested 𝜹
decreases by 0.2 for beginner, and by 0.1 for intermediate, with the increase of the risk number. The
lowest value to suggest by the system (i.e. 0.1 for beginner and 0.3 for intermediate) is achieved
when the number of risks exceeds 10. It is important to mention that the system keeps the choice
for the user to select the suggested value or to manually specify a value for 𝜹 .

Once 𝜹 is specified, the system calculates the best strategies to propose to the user in his context.
To do so, the 𝜹-𝑹𝒊𝒔𝒌 process consists of two operations, namely protection strategy identification
and best strategy selection. Before detailing the process, we start by defining what constitutes a
protection strategy, protection function and best strategy.

Definition 12 (Protection Strategy). A protection strategy, ®𝒑 ∈ 𝑷𝒄 , is a vector composed of an
appropriate combination of protection levels 𝒑1, 𝒑2, ..., 𝒑𝒎 to be assigned to attributes 𝒂1, 𝒂2, ..., 𝒂𝒎
shared by the user in his context. Appropriate means a combination that meets the user’s privacy
requirements (i.e. 𝜹 and 𝒆𝑷 ) while maximizing the data utility of attributes. A protection strategy
can be represented as follows:

®𝒑 =
[

𝒑1 𝒑2 ... 𝒑𝒎
]

| 𝒑𝒋 ∈ [0, 1] ∀ 𝒋 ∈ [1, 𝒎]

A protection level, 𝒑𝒋 of ®𝒑, is probabilistic with a value between [0, 1], where 0 indicates that 𝒂𝒋 is
shared without any protection (default value), and 1 means stop sharing 𝒂𝒋 . A value between 0 and
1 expresses the level of protection that must be reached when executing a protection function on 𝒂𝒋 .
Knowing that the way to achieve this level depends on the selected protection function. □

Definition 13 (Protection Function). A protection function, 𝒇 ∈ 𝑷𝑭 , expresses a selected protec-
tion method to be executed on the data flow of an attribute 𝒂 ∈ 𝑺𝑨𝒄 . 𝒇 is a local function stored in
the system. A protection function is formalized as follows:

𝒇 : ⟨ 𝒏𝒂𝒎𝒆 ; 𝒕𝒚𝒑𝒆 ; 𝒄𝒐𝒔𝒕 ; 𝑷𝒂𝒓𝒂𝒎 ⟩, where:
• 𝒏𝒂𝒎𝒆 denotes the name of 𝒇 (e.g., random noise, differential privacy)

• 𝒕𝒚𝒑𝒆 represents the protection type to which 𝒇 belongs, such that:

𝒕𝒚𝒑𝒆 ∈ {𝒏𝒐𝒊𝒔𝒆𝑨𝒅𝒅𝒊𝒕 𝒊𝒐𝒏 ; 𝒂𝒏𝒐𝒏𝒚𝒎𝒊𝒛𝒂𝒕 𝒊𝒐𝒏 ; 𝒂𝒄𝒄𝒆𝒔𝒔𝑪𝒐𝒏𝒕𝒓𝒐𝒍 ; 𝒆𝒏𝒄𝒓𝒚𝒑𝒕 𝒊𝒐𝒏}

• 𝒄𝒐𝒔𝒕 expresses the cost of 𝒇 in terms of processing time and memory overhead

• 𝑷𝒂𝒓𝒂𝒎 represents the set of input parameters of𝒇 , including at least the following parameters:
– 𝒂, denotes the attribute on which 𝒇 will be executed

– 𝒑, expresses the desired protection level to reach for the data values of 𝒂 □

Definition 14 (Best Protection Strategy). A best protection strategy, 𝒃®𝒑 ∈  𝑩𝑷𝒄 , is an appropriate 
strategy 𝒑® ∈ 𝑷𝒄 , that most satisfies user preferences (i.e. 𝒘®𝑨), and has the best combination of 
protection functions (i.e. lowest protection cost). These constraints are expressed by the ranking

score assigned to 𝒑®. Therefore, 𝒑® is said to be a best protection strategy 𝒃®𝒑 only if it has the highest 
ranking score. This can be formalized as follows:
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∀ ®𝒑 𝒊 ∈ 𝑷𝒄 : ®𝒑 𝒊 |= ®𝒃𝒑 𝒐𝒏𝒍𝒚 𝒊𝒇 ∀ ®𝒑𝒋 ∈ 𝑷𝒄 , 𝒔𝒄𝒐𝒓𝒆( ®𝒑𝒋) ≤ 𝒔𝒄𝒐𝒓𝒆( ®𝒑 𝒊)

where:
• 𝒔𝒄𝒐𝒓𝒆 denotes the ranking score that is calculated and assigned to the protection strategy

®𝒑 ∈ 𝑷𝒄 after executing the ranking function 𝑹𝒂𝒏𝒌 . □

As shown in Fig.7, the first 𝜹-𝑹𝒊𝒔𝒌 operation consists of identifying all possible strategies that
meet the user’s privacy preferences (i.e. 𝜹 and 𝒆𝑷 ) while maximizing the data utility of attributes
{𝒂1, 𝒂2, ..., 𝒂𝒎} of 𝑫𝑬𝑵 . If no strategies result from this operation, this means that the combination
of the 𝜹 value and the enforced protection levels 𝒆𝑷 is inconsistent (cf. Definition 15). In this case,
the system asks the user to change one of his privacy preferences and assigns a timeout period for
this query: (1) if the user fails to respond before the timeout expires, the system sets the value of
𝜹 to 0, which leads to stop sharing all attributes and thus eliminates all risks; (2) elsewhere, the
system receives the adjustments and the process is re-launched. If the first operation generates
protection strategies, the second operation focuses on ranking the resulting strategies in order to
select the 𝑲-best strategies to be proposed to the user. The ranking function, 𝑹𝒂𝒏𝒌 , considers the
service preferences of the user (i.e. ®𝒘𝑨) and the costs of selected protection functions (i.e., 𝒄𝑷𝑭 ).

Fig. 7. 𝜹-𝑹𝒊𝒔𝒌 Process

The 𝜹-𝑹𝒊𝒔𝒌 process is by default executed once per consecutive similar contexts (cf. Definition
7). However, the user might change his preferences while being in the same context, which requires
recalculating new best strategies. To handle this, the system locally stores the protection strategies
identified from the first operation as long as the newly emerged contexts are similar. Therefore,
if ®𝒘𝑨 has been changed, only the ranking operation will be re-executed to select the new best
strategies that meet these changes. Otherwise, the entire 𝜹-𝑹𝒊𝒔𝒌 process will be re-launched.

Example 6. Assume that the first operation has generated the following 2 appropriate strategies:

𝑃 =

[
®𝑝1
®𝑝2

]
=

[
0 0.6
0.6 0

]
Assume that attributes 𝑎1 and 𝑎2 has the same weight, and the cost of the protection functions to
execute on 𝑎1 and 𝑎2 are respectively 2 and 1. When executing the ranking function (detailed in Section
4.3), ®𝑝2 will have a score higher than ®𝑝1, and thus will be selected as the best strategy. ®𝑝2 suggests
applying 60% protection on 𝑎1 and sharing 𝑎2 without any protection.
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Determining appropriate combinations of protection levels requires first to quantify a privacy
risk in order to study the impact of a protection level on the risk value (cf. Challenge 1). Then, to
quantify the global risk level to ensure that the resulting strategies satisfy the risk threshold 𝜹
specified by the user. Therefore, we begin by formally quantifying a privacy risk and a global risk
level, and then detail the two operations of the 𝜹-𝑹𝒊𝒔𝒌 process.

4.1 Privacy Risk & Global Risk LevelQuantification

A privacy risk is linked to one or more shared attributes. This means that protecting impacting
attributes will lead to minimize the risk value. Therefore, a risk 𝒓 𝒊 of ®𝒓 depends from the levels of
protection {𝒑1, 𝒑2, ..., 𝒑𝒎} assigned to attributes {𝒂1, 𝒂2, ..., 𝒂𝒎} of 𝑺𝑨𝒄 having impact on 𝒓 𝒊 . This
can be represented as follows:

®𝒓 = F(𝑾𝒄 , ®𝒑) , where: (2)

• F is a function that takes as parameters an impact matrix and a protection vector, and returns
a risk vector comprised of the calculated risk values.

















𝒓1
𝒓2

...

𝒓𝒏

















= F(

















𝝎11 𝝎12 ... 𝝎1𝒎
𝝎21 𝝎22 ... 𝝎2𝒎

... ... ... ...

𝝎𝒏1 𝝎𝒏2 ... 𝝎𝒏𝒎

















,

















𝒑1
𝒑2

...

𝒑𝒎

















)

Before exploring the risk quantification function (F), we define the assumptions to consider:

(1) A privacy risk has at least one impacting attribute 𝒂𝒋 ∈ 𝑺𝑨𝒄 . This means that:

∀ ®𝒘𝒊 ∈ 𝑾𝒄 ,
𝒎
∑

𝒋=1

𝝎𝒊𝒋 ≠ 0

(2) If no protection assigned to attributes impacting 𝒓 𝒊 , the risk value is 1 (i.e. highest level).

(3) If the full protection is assigned to attributes impacting 𝒓 𝒊 , 𝒓 𝒊 is eliminated.

(4) The higher is a protection level 𝒑𝒋 applied on an attribute 𝒂𝒋 impacting 𝒓 𝒊 , the lower is the
value of 𝒓 𝒊

Let ˜𝑾𝒄 denotes a normalized version of𝑾𝒄 such that:

˜𝑾𝒄 =

















˜𝝎11 ˜𝝎12 ... ˜𝝎1𝒎
˜𝝎21 ˜𝝎22 ... ˜𝝎2𝒎

... ... ... ...

˜𝝎𝒏1 ˜𝝎𝒏2 ... ˜𝝎𝒏𝒎

















, where ˜𝝎𝒊𝒋 =
𝝎𝒊𝒋

∑𝒎
𝒋=1 𝝎𝒊𝒋

∀𝒊 ∈ [1, 𝒏], 𝒋 ∈ [1;𝒎] (3)

A privacy risk is therefore quantified as follows:

®𝒓 = F(𝑾𝒄 , ®𝒑)

®𝒓 = 1 − (˜𝑾𝒄 × ®𝒑) (4)
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𝒓1
𝒓2

...

𝒓𝒏

















= 1 − (

















˜𝝎11 ˜𝝎12 ... ˜𝝎1𝒎
˜𝝎21 ˜𝝎22 ... ˜𝝎2𝒎

... ... ... ...

˜𝝎𝒏1 ˜𝝎𝒏2 ... ˜𝝎𝒏𝒎

















×

















𝒑1
𝒑2

...
𝒑𝒎

















)

Example 8. According to Example 7, the best strategy delivered to Alice in her context is ®𝑏𝑝 =
[
0.6 0

]
.

Once adopted by the user, the risk values will be therefore minimized to:
𝑟1
𝑟2
𝑟3
𝑟4

 = 1 − (


1 0
1/2 1/2
1/2 1/2
1 0

 ×
[
0.6
0

]
)

𝑟1 = 1 − 0.6 = 0.4 ; 𝑟2 = 1 − 0.3 = 0.7 ; 𝑟3 = 1 − 0.3 = 0.7 ; 𝑟4 = 1 − 0.6 = 0.4

After quantifying a privacy risk, we now focus on how to measure the global risk level in a user
context, i.e. 𝑹𝒄 .𝒗. Once the user specifies the value of 𝜹 , this means he does not accept taking any
risk above the specified threshold. In that respect, the global risk level will be equal to the maximal
risk value in the relevant context. 𝑹𝒄 .𝒗 is quantified as follows:

𝑹𝒄 .𝒗 = 𝒎𝒂𝒙

















𝒓1
𝒓2

...

𝒓𝒏

















| 𝑹𝒄 .𝒗 ∈ [0, 1] (5)

4.2 Protection Strategy Identification

We discuss in this section the first 𝜹-𝑹𝒊𝒔𝒌 operation. This operation consists of identifying
appropriate combinations of protection levels that meet the user’s privacy requirements (i.e. 𝜹 , 𝒆𝑷 )
while maximizing the data utility of attributes (cf. Challenge 3). To answer this challenge, we rely
on the proposed risk quantification model and the 𝜹-𝑹𝒊𝒔𝒌 principle, such that:

𝑹𝒄 .𝒗 ⩽ 𝜹

⇒ 𝒎𝒂𝒙

















𝒓1
𝒓2

...

𝒓𝒏

















⩽ 𝜹 ⇒

















𝒓1
𝒓2

...

𝒓𝒏

















⩽ 𝜹

Nonetheless, maximizing the utility of data requires assigning the lowest acceptable protection
levels to related attributes, i.e., the lowest protection that satisfies the 𝜹-𝑹𝒊𝒔𝒌 principle. This can be
achieved by preserving the maximum possible risk values, which means 𝑹𝒄 .®𝒓 = 𝜹 . Consequently,
the best-case scenario for data utility/privacy protection consists of identifying appropriate combi-
nations of protection levels that satisfy 𝑹𝒄 .®𝒓 = 𝜹 . This gives rise to the following linear system of
𝒏 equations with 𝒎 unknowns:
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𝑹𝒄 .®𝒓 =

















𝒓1
𝒓2

...

𝒓𝒏

















= 𝜹 ⇒ 1 − (

















˜𝝎11 ˜𝝎12 ... ˜𝝎1𝒎
˜𝝎21 ˜𝝎22 ... ˜𝝎2𝒎

... ... ... ...

˜𝝎𝒏1 ˜𝝎𝒏2 ... ˜𝝎𝒏𝒎

















×

















𝒑1
𝒑2

...
𝒑𝒎

















) = 𝜹

⇒





















˜𝝎11.𝒑1 + ˜𝝎12.𝒑2 + ... + ˜𝝎1𝒎 .𝒑𝒎 = 1 − 𝜹
˜𝝎21.𝒑1 + ˜𝝎22.𝒑2 + ... + ˜𝝎2𝒎 .𝒑𝒎 = 1 − 𝜹

... ... ... ... ...

˜𝝎𝒏1.𝒑1 + ˜𝝎𝒏2.𝒑2 + ... + ˜𝝎𝒏𝒎 .𝒑𝒎 = 1 − 𝜹

(6)

In order to solve the resulted system, we use the Gauss-Jordan Elimination (GJE) method, an
implicit pivoting strategy that performs row operations to convert a matrix into a reduced row
echelon form [14]. This method has been widely used in various domains such as traffic control
management [15], image change and climate prediction [16, 17], cluster and grid computing [18, 19],
and location privacy [20]. Solving the system using the GJE method can result in three possible
cases: (1) system is inconsistent, i.e., the 𝜹/𝒆𝑷 combination is inconsistent, which generates no
solution; (2) system independent, which generates exactly one solution; and (3) system dependent,
which generates an infinite number of solutions.

In fact, the constraint presented in case (1) could result if the system contains an equation that
includes only enforced protection levels. This will result in one possible 𝜹 value and will therefore
entail an inconsistency if the user-specified 𝜹 value does not match the acceptable value. This can
be formalized as follows:

Definition 15 (𝛿/𝑒𝑃 Inconsistency). Let 𝒑1, 𝒑2 be the protection levels to be assigned to attributes
{𝒂1, 𝒂2} ⊑ 𝑺𝑨𝒄 . Assume that risk 𝒓 𝒊 of ®𝒓 depends only from {𝒂1, 𝒂2}. This means that the linear
system will include the following equation:

˜𝝎11.𝒑1 + ˜𝝎12.𝒑2 = 1 − 𝜹

Therefore, the combination 𝜹/𝒆𝑷 is said to be inconsistent only if:

{𝒑1, 𝒑2} ⊑ 𝒆𝑷 𝒂𝒏𝒅 𝜹 ≠ 1 − (˜𝝎11.𝒑1 + ˜𝝎12.𝒑2) □

In what follows, we detail the proposed reasoning algorithm for the first 𝛿-𝑅𝑖𝑠𝑘 operation.

Algorithm 1. presents the protection strategy identification operation that takes as input the
impact matrix𝑊𝑐 , the 𝛿 value, and the set of enforced protection levels 𝑒𝑃 . It outputs the set
of identified strategies 𝑃𝑐 . The process starts first by checking the value of 𝛿 . If equal to 0, this
means that the user does not accept to take any risk and the protection levels must be at their
highest levels. Hence, the process calls the 𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑢𝑙𝑙𝑃𝑟𝑜𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 function that creates the full
protection strategy ®𝑝 =

[
1 1 ... 1

]
. If 𝛿 is 1, this means that the user wants to share fine-grained

data and the protection levels must be at their default values. The process calls consequently the 
𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑒 𝑓 𝑎𝑢𝑙𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 function that assigns the enforced value to 𝑝 𝑗 if 𝑝 𝑗 ∈ 𝑒𝑃 , or a value of 0 
if not. If 𝛿 is between 0 and 1, this means that the user wants to preserve the utility of the data 
but without taking any risk above the threshold 𝛿 . Hence, the process builds the linear system by 
calling the 𝑏𝑢𝑖𝑙𝑑𝑆𝑦𝑠𝑡𝑒𝑚 function, and then calls the 𝑐ℎ𝑒𝑐𝑘𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 function to check the 𝛿/𝑒𝑃 
constraint (cf. Definition 15). This function returns a Boolean value stored in 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.
If 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is false (i.e. system is consistent), the process solves the system using the 
GJE method by executing the 𝑠𝑜𝑙𝑣𝑒𝑆𝑦𝑠𝑡𝑒𝑚𝐺 𝐽 𝐸 function, which returns a reduced row echelon
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form stored in 𝑀 . To check the state of dependency of the resulted matrix, the process calls the
𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 function that returns a Boolean value saved in 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦. If 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 is
𝑓 𝑎𝑙𝑠𝑒 , this means that the attributes are independent, and the system has a unique solution that
leads to create one strategy composed of the resulting constant values, where each is linked to
an unknown 𝑝 𝑗 item. This procedure is done by the 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 function, and the
process is ended. If 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 is 𝑡𝑟𝑢𝑒 , this means that the attributes are dependent, and the system
has an infinite number of possible solutions. The process calls the 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠
function, which start first by identifying existing dependencies among the 𝑝 𝑗 items. Then, as our
objective is to handle the data utility/privacy protection trade-off, the process executes a double
iteration procedure on each dependent 𝑝 𝑗 item. The first iteration prioritizes the selected 𝑝 𝑗 item,
and assigns it a 0 value, which corresponds to the minimal protection that could be assigned to
the dependent attribute. The second iteration assigns a value of 1 to 𝑝 𝑗 (i.e. highest protection),
which prioritizes the other dependent 𝑝 items. Next, both iterations calculate the remaining 𝑝 items
that are dependent from 𝑝 𝑗 . The procedure identifies several appropriate strategies that satisfy the
trade-off, where each emphasizes at least one dependent attribute, and the process is ended.

If 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 is 𝑡𝑟𝑢𝑒 , the system notifies the user and asks him either to assign the acceptable
value to 𝛿 (cf. Definition 15), or to release one of the impacting 𝑝 ∈ 𝑒𝑃 . And the steps that follow
are previously detailed in the process description.

Algorithm 1: Protection Strategy Identification
Input:𝑊𝑐 , 𝛿 , 𝑒𝑃 ;
Output: 𝑃𝑐 ;
Variables: System, M, inconsistency, dependency;
begin

if (𝛿 = 0) then
// user requests the full protection, i.e. stop sharing data;
𝑃𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑢𝑙𝑙𝑃𝑟𝑜𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (1);

else if (𝛿 = 1) then
// user accepts to share fine-grained data;
𝑃𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑒 𝑓 𝑎𝑢𝑙𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (0, 𝑒𝑃); // strategy created with default values of protection levels;

else
𝑆𝑦𝑠𝑡𝑒𝑚 ← 𝑏𝑢𝑖𝑙𝑑𝑆𝑦𝑠𝑡𝑒𝑚(𝑊𝑐, 𝛿, 𝑒𝑃); // build the linear system;
𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 ← 𝑐ℎ𝑒𝑐𝑘𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝑆𝑦𝑠𝑡𝑒𝑚); // returns true if 𝛿/𝑒𝑃 combination is inconsistent;
if (𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑓 𝑎𝑙𝑠𝑒) then

𝑀 ← 𝑠𝑜𝑙𝑣𝑒𝑆𝑦𝑠𝑡𝑒𝑚𝐺𝐽𝐸 (𝑆𝑦𝑠𝑡𝑒𝑚); // solves the system using the GJE method;
𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 ← 𝑐ℎ𝑒𝑐𝑘𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 (𝑀); // returns true if system is dependent;
if (𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 = 𝑓 𝑎𝑙𝑠𝑒) then

// attributes are independent (unique solution);
𝑃𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝑀, 𝑒𝑃);

else
// attributes are dependent (infinite number of solutions) ;
𝑃𝑐 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 (𝑀, 𝑒𝑃);

else
𝑛𝑜𝑡𝑖 𝑓 𝑦𝑈𝑠𝑒𝑟 (); // user has to change either 𝑑𝑒𝑙𝑡𝑎 or the relevant 𝑝 ∈ 𝑒𝑃 ;

It is important to note that this paper describes only the pseudo-code of the main process due to
space limitations. Nonetheless, the pseudo-codes of the aforementioned functions are detailed in
the prototype source code provided in Section 5.1.
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4.3 Best Strategy Selection
In case the number of strategies identified by the first operation is greater than 1 (

∑

®𝒑 ∈ 𝑷𝒄 >1),
ranking these strategies and selecting the 𝑲-best strategies to be proposed to the user becomes a
need. According to Definition 14, 𝑲 expresses the number of strategies with the highest ranking
score. Nonetheless, fixing the maximal value of 𝑲 remains challenging. Especially as many factors
may contribute to perceived choice overload, including the number of options, time constraints,
user expertise [21]. On this basis, as the user has to make quick decisions in real-time, the system
fixes the following default values for 𝒎𝒂𝒙 (𝑲) with respect to the defined user profiles in Section 4:
1 for beginner, 3 for intermediate, and 5 for advanced user. The choice of 𝒎𝒂𝒙 (𝑲) can be manually
changed by the user.
The best strategies must satisfy the most the user’s preferences and interests. To achieve this,

the second 𝜹-𝑹𝒊𝒔𝒌 operation consists of ranking the resulting strategies (i.e. 𝑷𝒄 ) according to the
service preferences (i.e. ®𝒘𝑨) and the costs of selected protection functions (i.e. 𝒄𝑷𝑭 ). This process is
provided through the function 𝑹𝒂𝒏𝒌 (), which operates on the basis of the following principle: the
highest ranking score corresponds to the strategy with the shortest distance to ®𝒘𝑨 and the lowest
cost of protection. In what follows, we present the reasoning algorithm for the 𝑹𝒂𝒏𝒌 () function.

Algorithm 2: Best Strategy Selection - 𝑅𝑎𝑛𝑘 () function
Input: 𝑃𝑐 ,𝑤𝐴, 𝑐𝑃𝐹 ;
Output: 𝐵𝑃𝑐 ;
Variables: sortedWA, A, minP, Score, maxScore, CostPc;
begin

𝑠𝑜𝑟𝑡𝑒𝑑𝑊𝐴← 𝑠𝑜𝑟𝑡𝐴𝑛𝑑𝐹𝑖𝑙𝑡𝑒𝑟 (𝑤𝐴); // sorts 𝑤𝐴 in a descending sequence and removes redundant values;
for 𝑖 ← 0 to 𝑠𝑜𝑟𝑡𝑒𝑑𝑊𝐴.𝑙𝑒𝑛𝑔𝑡ℎ − 1 do

𝐴← 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑊 𝑖𝑡ℎ𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑒𝑖𝑔ℎ𝑡 (𝑤𝐴, 𝑠𝑜𝑟𝑡𝑒𝑑𝑊𝐴[𝑖]);
// the set A will include the indexes of attributes with same weight 𝑠𝑜𝑟𝑡𝑒𝑑𝑊𝐴 [𝑖 ];
for 𝑗 ← 0 to 𝐴.𝑙𝑒𝑛𝑔𝑡ℎ − 1 do

// for each attribute having the weight 𝑠𝑜𝑟𝑡𝑒𝑑𝑊𝐴 [𝑖 ];
𝑚𝑖𝑛𝑃 ← 𝑔𝑒𝑡𝑀𝑖𝑛𝑃 (𝑃𝑐,𝐴[ 𝑗]); // the minimal protection level to be assigned to attribute 𝑎 𝑗 ;
𝑆𝑐𝑜𝑟𝑒 ← 𝑎𝑑𝑑𝑆𝑐𝑜𝑟𝑒 (𝑃𝑐,𝑚𝑖𝑛𝑃,𝐴[ 𝑗],𝑤𝐴); // add the weight of 𝑎 𝑗 to strategies including𝑚𝑖𝑛𝑃

𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝑀𝑎𝑥𝑆𝑐𝑜𝑟𝑒 (𝑆𝑐𝑜𝑟𝑒); // returns the maximal 𝑠𝑐𝑜𝑟𝑒 assigned to strategies
for 𝑘 ← 0 to 𝑆𝑐𝑜𝑟𝑒.𝑙𝑒𝑛𝑔𝑡ℎ − 1 do

if (𝑠𝑐𝑜𝑟𝑒 [𝑘] [1] !=𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒) then
𝑃𝑐 ← 𝑑𝑒𝑙𝑒𝑡𝑒𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 (𝑘); // keep only strategies with the highest score

for 𝑖 ← 0 to 𝑃𝑐.𝑙𝑒𝑛𝑔𝑡ℎ − 1 do
for 𝑗 ← 0 to 𝑃𝑐 [0] .𝑙𝑒𝑛𝑔𝑡ℎ − 1 do

if (𝑃𝑐 [𝑖] [ 𝑗] != 0) then
𝐶𝑜𝑠𝑡𝑃𝑐 [𝑖] [1] = 𝐶𝑜𝑠𝑡𝑃𝑐 [𝑖] [1] + 𝑐𝑃𝐹 [ 𝑗]; // calculate the cost of protection of each strategy

𝑆𝑐𝑜𝑟𝑒 ← 𝑎𝑑𝑑𝐶𝑜𝑠𝑡𝑇𝑜𝑆𝑐𝑜𝑟𝑒 (𝑆𝑐𝑜𝑟𝑒,𝐶𝑜𝑠𝑡𝑃𝑐); // add the calculated cost to the 𝑠𝑐𝑜𝑟𝑒 of strategies
𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝑀𝑎𝑥𝑆𝑐𝑜𝑟𝑒 (𝑆𝑐𝑜𝑟𝑒);
𝐵𝑃𝑐 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 (𝑃𝑐, 𝑆𝑐𝑜𝑟𝑒,𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒);
// 𝐵𝑃𝑐 includes only strategies with the highest 𝑠𝑐𝑜𝑟𝑒

Algorithm 2. outlines the ranking function, 𝑅𝑎𝑛𝑘 (), takes as input the set of identified strategies 
(𝑃𝑐), the vector of weights assigned to attributes (𝑤𝐴), and the set of costs of selected protection 
functions (𝑐𝑃𝐹 ). It outputs the set of 𝐾−best protection strategies, 𝐵𝑃𝑐 . The function starts first by 
identifying the strategies with the shortest distance to 𝑤𝐴. To do so, the first step is to identify the
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number of different weight values and sort them in a descending sequence (i.e. from the most to the
least important). This number will constitute the default number of iterations for this step. This step
is done by calling the 𝑠𝑜𝑟𝑡𝐴𝑛𝑑𝐹𝑖𝑙𝑡𝑒𝑟 function. Then, for each distinct weight value, we check the
number of attributes having this weight through the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑊 𝑖𝑡ℎ𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑊𝑒𝑖𝑔ℎ𝑡 function. In
fact, having several attributes with the same weight requires considering strategies that prioritize
each of them separately. Therefore, for each of these attributes, we check which strategy includes
the corresponding minimal protection value, and we add the weight of the attribute to the score of
the strategy. Thereafter, we filter the resulting set of strategies to consider only strategies with the
highest score. This will ultimately lead to strategies that include the minimum possible protection
levels assigned to attributes based on their level of importance. These strategies have therefore
the shortest distance to𝑤𝐴. After, the function calculates the costs of the resulting strategies. The
cost of a strategy is equal to the sum of costs of the protection functions which are only linked to
the attributes protected by this strategy (i.e. attributes with protection levels higher than 0). The
calculated costs are added consequently to the scores of relevant strategies, and only strategies
with the highest ranking score are selected and added to the set 𝐵𝑃𝑐 .

5 EXPERIMENTAL VALIDATION & EVALUATION
In this section, we illustrate the use of the proposed prototype, we evaluate the performance of the
approach and we formally study its effectiveness.

5.1 Approach Validation: Java-based Prototype
In order to validate our approach and implement the 𝜹-𝑹𝒊𝒔𝒌 mechanism, we developed a Java-based
prototype, and we embed it on the user device as middleware between the user and the connected
providers (cf. Fig.8). This prototype performs real-time reasoning on the user context and generates
dynamic strategies according to the user’s preferences and the context particularities. The source
code of the proposed 𝜹-𝑹𝒊𝒔𝒌 system is accessible on the following link: http://spider.sigappfr.org/
research-projects/delta-risk/.

Fig. 8. 𝜹-𝑹𝒊𝒔𝒌 implementation

The objective is to illustrate the use of the approach. Hence, we consider the scenario provided 
in Section 2 as the current context of Alice (cf. Fig.8).
We execute the privacy risk inference prototype1 proposed in our previous work [2], to infer 

the privacy risks involved in this context. Fig.9 describes the overview of risks provided to Alice. 
Assume that after being alerted, she decided to decrease the value of 𝜹 to 60%. The Energy-consump 
attribute (𝑎1) impacts risks 1,2,3,4,6,7; the Location attribute (𝑎2) impacts risks 5,6. Consequently,
1The source code of the risk inference prototype is available here: http://spider.sigappfr.org/research-projects/privacy-oracle/

http://spider.sigappfr.org/research-projects/delta-risk/
http://spider.sigappfr.org/research-projects/delta-risk/
http://spider.sigappfr.org/research-projects/privacy-oracle/
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the 𝛿-𝑅𝑖𝑠𝑘 process is executed, and generates the following best strategy that suggests applying
40% protection on Energy-consump and 40% protection on Location (cf. Fig.10).

Fig. 9. Risks inferred for Alice Fig. 10. Best strategy proposed to Alice

5.2 Experimental Protocol
The objectives of our experimental protocol are to (i) evaluate the ability of the approach to reason
in real-time, and to prove that the approach: (ii) always identifies all possible appropriate strategies
that answer the data utility/privacy protection trade-off; (iii) always delivers the best strategies to
the user; and (iv) always provides the user with at least one best strategy per context. To achieve
the first objective, we evaluate the performance of the 𝜹-𝑹𝒊𝒔𝒌 mechanism. Then, we formally study
the effectiveness of our approach in order to prove the aforementioned three concepts.

5.2.1 Performance Evaluation.

To evaluate the performance of the 𝜹-𝑹𝒊𝒔𝒌 mechanism, we consider four use cases to study
the impact of the following five metrics on the system’s performance: (i) number of risks inferred
(𝑹𝒄 .®𝒓 ); (ii) number of attributes shared (𝒄.𝑺𝑨), while considering complex scenarios (i.e. dependency
level of attributes is equal to 4); (iii) the dependency level of attributes (𝑾𝒄 ); and (iv) the variation
of the user’s service preferences ( ®𝒘𝑨) and the costs of protection functions (𝒄𝑷𝑭 ). The system’s
performance is evaluated by considering two evaluation criteria: (1) total execution time of one
iteration; and (2) memory overhead. The tests were conducted on a machine equipped with an
Intel i7 2.80 GHz processor and 16 GB of RAM. The chosen execution value for each scenario is an
average of 10 sequenced values.

Case 1:We vary the number of privacy risks inferred in a user context. We fix the number of shared
attributes at 4, the 𝛿 value at 0.6, the vector ®𝑤𝐴 =

[
1 2 1 2

]
, and the costs of the selected

protection functions 𝑐𝑃𝐹 = {1, 3, 1, 1}. We aim in these experiments to consider complex scenarios, 
so we consider that the four attributes are dependent and impact all risks. We ran the process 
seven times such that: the first run reasons over 10 risks, the second 50, the third 100, the fourth 
500, the fifth 1000, the sixth 5000, and the last one reasons over 10000 risks. Fig. 11 shows the 
impact of increasing the number of risks on the algorithm’s execution time. We notice that the 
total execution time is quasi-linear. The system can handle real-time reasoning with an average 
execution time of less than 2s per iteration up to 1000 risks, and less than 13s up to 10000 risks. 
When considering RAM usage Fig. 12, it remains quasi-constant up to 1000 risks, then follows 
a linear evolution until achieving 5000 risks. Therefore, the system is not significantly impacted 
by the number of risks considered during the reasoning process. Especially as in real scenarios, 
the number of risks inferred will not practically exceed 1000 for a single user. This highlights the 
importance of using the GJE method to solve the linear system.
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Fig. 11. Execution Time Fig. 12. Memory Usage

Case 2:We vary the number attributes shared by the user. We fix the number of risks at 30, the
𝛿 value at 0.6, the vector ®𝑤𝐴 =

[
1 2 1 2

]
, and the costs of the selected protection functions

𝑐𝑃𝐹 = {1, 3, 1, 1}. We also fix the dependency level of attributes at 4. We ran the reasoning process
eight times such that: the first run reasons over 5 attributes, the second 10, the third 15, the fourth
20, the fifth 25, the sixth 30, the seventh 50, and finally 100 in the last run. According to Fig. 13,
the evolution of the execution time remains quasi-linear until 50 attributes with an average of
less than 5s, and then tends to be exponential where it reaches a value of 940s for 100 attributes.
The evolution is also similar for the memory usage (cf. Fig. 14). We notice that even in complex
scenarios where the dependency level of attributes is high, the system maintains good performance
and support reasoning in real-time for a number of attributes, shared at once, less than 50, which
practically corresponds more to real scenarios.

Fig. 13. Execution Time Fig. 14. Memory Usage

Case 3:We vary the dependency level of attributes (i.e.𝑊𝑐 ). We fix the number of risks at 30, the 𝛿
value at 0.6, the number of attributes at 12, the vector ®𝑤𝐴 =

[
1 2 1 2

]
, and the costs of the

selected protection functions 𝑐𝑃𝐹 = {1, 3, 1, 1}. We ran the reasoning process six times such that: in
the first run, the dependency level is 1 (i.e. attributes are independent), 2 in the second run, 4 in the
third, 6 in the fourth, 8 in the fifth, and 10 in the last run. As shown in Fig. 15, the execution time
remains quasi-constant with an average value of less than 1s until the dependency level exceeds 6,
where the execution time tends to be exponential (e.g., reaches a value of 1227s for a dependency
level of 10). Same evolution for RAM usage as illustrated in Fig.16. However, having a combination
of more than six attributes that leads to reveal a 𝑝𝑠𝑖 about a user that cannot be revealed otherwise
does not seem a possible scenario. Hence, for a dependency level less or equal to 6, the system
supports real-time reasoning with good performance.
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Fig. 15. Execution Time Fig. 16. Memory Usage

Case 4: In this case, we focus on varying the vector of weights ®𝑤𝐴 and the costs of protection
functions. The aim here is to highlight the importance of storing the appropriate strategies identified
by the first 𝛿-𝑅𝑖𝑠𝑘 operation while being in the same context. We considered the variation of both
metrics in the same use case as they both produced the same performance results. Hence, we fixed
the number of risks at 30, the 𝛿 value at 0.6, the number of attributes at 20, and the dependency level
at 4. We ran only the second 𝛿-𝑅𝑖𝑠𝑘 operation while considering several changes in the weights and
costs. As shown in Fig. 17, the execution time remains quasi-constant with an average execution
time of less than 500ms. Similar for the RAM usage (cf. Fig.18). Therefore, if within the same context,
the user tends to adjust his service preferences, or the availability/cost of protection functions vary,
the process will be able to respond quickly and select new best strategies in less than 500ms.

Fig. 17. Execution Time Fig. 18. Memory Usage

Discussion. The experiments conducted show that, within an average time of 2s, 𝜹-𝑹𝒊𝒔𝒌 can 
handle up to 1000 risks, 20 attributes (with a dependency level of 4), and a maximum attribute-
dependency level of 6. Moreover, 𝜹-𝑹𝒊𝒔𝒌 can manage, in the same context, variations in service 
preferences and availability/costs of protection functions within an average time of 500ms.

5.2.2 𝜹-𝑹𝒊𝒔𝒌 Effectiveness.

We present in the following a formal study of the approach’s effectiveness.

THEOREM 1. The 𝜹-𝑹𝒊𝒔𝒌 process is always able to identify all possible appropriate strategies 𝒑®
that meet the best-case scenario for data utility/privacy protection (i.e. 𝑹𝒄 .𝒓® = 𝜹).

PROOF. The proof consists of two cases, namely a simple and a generic case.
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SIMPLE CASE.We consider that the user shares only one attribute, such that 𝒄.𝑺𝑨 = {𝒂1}. Whatever
the number of inferred risks is, according to Assumption 1 stated in Section 4.2.1, all risks are linked
to attribute 𝒂1, i.e.,𝑾𝒄 is a vector with values equal to 1. Consequently, the system formed will
consist of a single equation 𝒑1 = 1 − 𝜹 (cf. Equation 21). This generates one protection strategy
®𝒑 =

[

𝒑1
]

=
[

1 − 𝜹
]

, which will constitute the best strategy to be delivered, ®𝒃𝒑 = ®𝒑 =
[

1 − 𝜹
]

.

GENERIC CASE. Assume that the user shares 𝒎 attributes in his context, i.e., 𝒄.𝑺𝑨 = {𝒂1, ..., 𝒂𝒎},
and the number of risks inferred is 𝒏 (𝑹𝒄 .®𝒓 =

[

𝒓1 ... 𝒓𝒏
]

).𝑾𝒄 will therefore be a 𝒏 ×𝒎 matrix
of {0,1} values expressing the impact 𝝎𝒊𝒋 of attributes 𝒂𝒋 ∈ 𝒄.𝑺𝑨 on risks 𝒓 𝒊 of 𝑹𝒄 .®𝒓 . According
to Equation 21, this will lead to build a linear system of 𝒏 equations with 𝒎 unknowns (i.e.,
[

𝒑1 ... 𝒑𝒎
]

):
• If 𝜹 = 0, this means that the user does not accept to take any risk, i.e., all risks inferred
in the present context must be eliminated, such that 𝑹𝒄 .®𝒓 =

[

𝒓1 ... 𝒓𝒏
]

=
[

0 ... 0
]

.
Hence, the protection levels to apply on attributes must be at their highest level, i.e., leading,
according to Equation 19, to the full protection strategy ®𝒃𝒑 = ®𝒑 =

[

1 ... 1
]

.
• If 𝜹 = 1, this means that no protection is to be applied on shared attributes and that the
user wants to share fine-grained data to preserve the full quality of the received services in
exchange. Consequently, no additional protection is needed, and the protection levels must
be at their default values. The output will therefore consist of the following strategy:

®𝒃𝒑 = ®𝒑 =
[

𝒑1 ... 𝒑𝒎
]

| 𝒑𝒋 =
{

0 if 𝒑𝒋 ∉ 𝒆𝑷
𝒗 if 𝒑𝒋 ∈ 𝒆𝑷 , where 𝒗 is the enforced value

• If 𝜹 ∈ ]0; 1[, this means that the user wants to preserve the utility of the data but without
taking any risk above the threshold 𝜹 . According to Equation 21, the approach will identify
all possible appropriate strategies that satisfy the best-case scenario 𝑹𝒄 .®𝒓 = 𝜹 using the
Gauss Jordan Elimination method to solve the linear system, such that:

















˜𝝎11 ˜𝝎12 ... ˜𝝎1𝒎 1 − 𝜹
˜𝝎21 ˜𝝎21 ... ˜𝝎2𝒎 1 − 𝜹

... ... ... ... ...

˜𝝎𝒏1 ˜𝝎𝒏1 ... ˜𝝎𝒏𝒎 1 − 𝜹

















→ 𝑴 =

















𝜶11 𝜶12 ... 𝜶1𝒎 𝒗1
𝜶21 𝜶22 ... 𝜶2𝒎 𝒗2

... ... ... ... ...

𝜶𝒏1 𝜶𝒏2 ... 𝜶𝒏𝒎 𝒗𝒎

















The process results in two possible cases:

(1) Attributes {𝒂1, ..., 𝒂𝒎} ⊑ 𝒄.𝑺𝑨 are independent, and the system has a unique solution, such
that:

𝑴 =

















1 0 ... 0 𝒗1
0 1 ... 0 𝒗2

... ... ... ... ...

0 0 ... 1 𝒗𝒎

















This leads to identify only one strategy that satisfies the best-case scenario, which will
therefore constitute the best strategy to deliver, ®𝒃𝒑 = ®𝒑 =

[

𝒗1, 𝒗2, ..., 𝒗𝒎
]

.

(2) Attributes {𝒂1, ..., 𝒂𝒎} ⊑ 𝒄.𝑺𝑨 are dependent, and the system has an infinite number of
solution, such that:
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𝑴 =

















𝜶11 𝜶12 ... 𝜶1𝒎 𝒗1
𝜶21 𝜶22 ... 𝜶2𝒎 𝒗2

... ... ... ... ...

𝜶𝒏1 𝜶𝒏2 ... 𝜶𝒏𝒎 𝒗𝒎

















| ∃ ®𝜶𝒍 ∈ 𝑴 , {𝒋, 𝒌} ∈ [1, 𝒎] : 𝜶𝒍𝒋 × 𝜶𝒍𝒌 ≠ 0

Nonetheless, as our goal is to address the data utility/privacy protection trade-off, we focus
only in this step on assigning dependent attributes (i.e. 𝒂𝒋/𝒂𝒌 ) with the minimum acceptable
protection. Hence, the process executes a double iteration process on each dependent𝒑𝒋/𝒑𝒌

item. The first iteration prioritizes the selected 𝒑𝒋/𝒑𝒌 item, by assigning it a value of 0,
which corresponds to the minimum protection to be implemented on attribute 𝒂𝒋/𝒂𝒌 . The
second iteration assigns a value of 1 to 𝒑𝒋/𝒑𝒌 (i.e. highest protection), which prioritizes
the other dependent 𝒑 items. Then, both iterations calculate the remaining dependent 𝒑
items based on the matrix of dependencies𝑴 . This procedure identifies several appropriate
strategies ®𝒑 ∈ 𝑷 that meet the trade-off, where each emphasizes at least one dependent
attribute.

Therefore, for all 𝜹 values, the process is always capable of calculating all possible appropriate 
strategies that satisfy the best-case scenario for data utility/privacy protection ■

THEOREM 2. The 𝜹-𝑹𝒊𝒔𝒌 process always delivers the best strategies to the user.

PROOF. The process calculates always all possible appropriate strategies. However, in case the 
first operation generates more than one strategy, the process executes the ranking function, 𝑹𝒂𝒏𝒌 , 
to select only the best strategies. This function ranks the resulting vectors according to user 
preferences (i.e. 𝒘®𝑨) and costs of selected protection functions (i.e., 𝒄𝑷 𝑭 ). It assigns the highest 
ranking score to the strategy with the shortest distance to 𝒘®𝑨 and the lowest cost of protection. 
Therefore, for every 𝜹 value, if the first operation outputs only one appropriate strategy, this latter 
constitutes the best strategy. If not, the process always selects the best strategies that most closely 
satisfy the user’s preferences while maximizing data utility and minimizing the protection cost ■

THEOREM 3. For every 𝜹 value, the approach always provides the user with at least one best 
strategy per context.

PROOF. It is easy to see that for every 𝜹 value, and for any context particularities, the process 
always delivers at least one best strategy to the user ■

6 LITERATURE
6.1 Privacy by Design

Privacy by Design (PbD) has brought a new vision for privacy protection to cope with the increasing 
complexity and interconnectedness of information technologies. Instead of reactively addressing 
privacy breaches after-the-fact, PbD approaches privacy proactively and tends to prevent privacy-
invasive events before they happen by making privacy the default setting [22]. In 2010, PbD has been 
unanimously adopted as an international privacy standard in the 32nd International Conference of 
Data Protection and Privacy [23]. Nowadays, PbD is incorporated as a legal requirement in the 
General Data Protection Regulation (GDPR) [4], and globally recognized as an ISO standard, being 
developed by ISO/PC 317 Committee for Consumer Protection [24]. Since our global objective is 
to ensure an effective and meaningful involvement of user in the management of his privacy, we 
adopt the foundational PbD principles as criteria to compare the referenced works:
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(1) Proactive not Reactive; Preventative not Remedial. The approach includes proactive measures
to anticipate and prevent privacy violations, i.e., to prevent privacy risks from materializing.

(2) Privacy as the Default Setting. The approach protects the user’s privacy by default without
requiring user intervention.

(3) Privacy Embedded into Design. Privacy must be an essential component of the core function-
ality provided by the approach.

(4) Full Functionality: Positive-Sum, not Zero-Sum. The approach seeks to accommodate all inter-
ests and objectives in a positive-sum (i.e. win-win manner). We focus here on two sub-criteria:

(a) Privacy Protection 𝒗𝒔. Data Utility. The approach is able to manage the privacy protec-
tion/data utility trade-off in a positive-sum.

(b) Hybrid Protection. The approach supports combination of several protection functions.
(5) End-to-End Security: Full Lifecycle Protection. The approach guarantees privacy protection

throughout the entire data lifecycle. Nonetheless, as the sensitivity of data may vary from
one context to another, ensuring full protection requires considering context-awareness.

(6) Visibility and Transparency: Keep it Open. The approach aims to ensure that the data/service
exchange is operating according to the stated promises and objectives. The operations must
remain visible and transparent to users and providers alike.

(7) Respect for User Privacy: Keep it User-Centric. The approach empowers user-friendly options
by considering user preferences, and offering measures such as strong privacy defaults and
appropriate notice. Hence, we divide this criterion into five sub-criteria in order to cover all
user-centered privacy dimensions:

(a) User Awareness: Informed Decision-making. The approach raises the user’s awareness of his
privacy risks through appropriate notifications, which helps him making informed privacy
protection decisions.

(b) User Privacy Requirements. The approach takes into account the privacy requirements of
the user (e.g., desired protection level, risk level to maintain).

(c) User Interests. The approach considers the interests of the user (e.g., important services).
(d) User Privacy Management. The approach empowers the user by enabling him to control

and manage his privacy protection.

6.2 Related Work
6.2.1 Context-aware Privacy Preserving in Connected Environments.

Several works were proposed in the literature to address the challenges of security and privacy
in connected environments and secure context awareness. Neisse et al. [25] introduced a context-
aware security and privacy approach for smart city applications. This approach defines the context
by relying on four parameters, namely time, location, network, and speed. It provides a context-
based security policy management to control access to the data of users based on a set of Event-
Condition-Action (ECA) rules. It also provides a privacy mechanism based on pseudonymization
and delayed message delivery. Hence, the access to data could be accepted, denied, modified
(using pseudonymization), or delayed. Matos et al. [26] presented an overview of their context-
aware security approach, that provides authentication, authorization, access control, and privacy-
preserving to fog and edge computing environments. However, the authors did not detail the
components of their architecture, as they did not explain how privacy is approached in their work.
Gheisari et al. [27] proposed a context-aware privacy-preserving approach for IoT-based smart city
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using Software Defined Networking. The authors showed that the privacy is preserved through
splitting sensitive data and sending split parts via a secure route. The decision made by the SDN
controller is based on data sensitivity (context) and routes credits. Sylla et al. presented in [28]
a global vision of their context-aware security and privacy as a service (CASPaaS) architecture
by briefly discussing the role of each module. They mentioned that the privacy module will be
able to continuously analyze the user context and inform the user if there is a proven risk to
his privacy. However, they have not yet explored any of the architecture modules. Alagar et al.
[29] introduced a Context-Sensitive Role-based Access Control (CRBAC) scheme for healthcare
application. This approach defines two types of access control: open access, for authenticated
clients/medical devices; and closed Access, for non-member clients/devices. CRBAC is user-centric,
where the privacy requirements are included as context-sensitive rules to be enforced whenever
patient health information are shared by things.

PbD
Principles

Proactive
&

Preventative

Privacy as
Default
Setting

Privacy in
the Design

Full Functionality Context-aware
Security

Visibility
&

Transparency

User-friendly Options
Privacy
vs. Utility

Hybrid
Protection

User
Awareness

User Privacy
Requirements

User
Interests

User Privacy
Management

Nesse et al. [25] Yes Yes Yes Yes No Yes Yes No No No No
Matos et al. [26] Yes Y/N Yes Y/N No Yes No No No No No
Gheisari et al. [27] Yes Yes Yes Yes No Yes Y/N No No No No
Sylla et al. [28] Yes Y/N Yes Y/N No Yes Y/N Yes Yes No Yes
Alagar et al. [29] Yes Yes Yes Yes No Yes Y/N No Yes No Yes

a Y/N means that the referenced work did not approach this concept.

Table 1. Privacy preserving approaches comparison

Discussion. As shown in Table 1, none of the existing approaches cover all PbD principles. More-
over, the proposed frameworks are dedicated to specific application domains. Therefore, we intro-
duce in this paper a new Privacy by Design framework for context-aware privacy management in
connected environments. Our framework is generic and can be re-usable in different application
domains. Table 2 details how PbD principles are satisfied by our framework.

PbD Principles Privacy Oracle Framework
Proactive
& Preventative

Privacy Oracle implements a proactive reasoning process to infer the risks involved before being materialized,
and thus to adapt the protection measures before releasing data to consumers.

Privacy as the
Default Setting

Privacy Oracle protects the user’s privacy by default. In fact, the system keeps transmitting the user’s data to
consumers at their default protection condition as long as no risk occurs. However, once a risk is inferred, the
system switches automatically to the highest level of protection (i.e. it stops sharing data) until one protection
strategy is selected by the user, which leads to optimizing the protection.

Privacy in the Design The core functionality of the framework is the context-aware privacy management.

Full
Functionality

Privacy
vs. Utility

Privacy Oracle is fully functional, it treats the privacy protection/data utility trade-off in a positive-sum.
The protection strategies are always optimized in such a way that closely satisfy user’s privacy requirements
and preferences while maximizing data utility.

Hybrid
Protection

Computed strategies support the combination of multiple protection functions in order to achieve the desired
privacy level while minimizing the protection cost.

Context-aware
Security

The user data are protected before being transmitted to data consumers. This makes the user’s privacy
guaranteed for the entire data lifecycle. The system handles context-awareness, it performs a dynamic
adaptation of protection measures to cope with context-sensitivity.

Visibility
& Transparency

Privacy Oracle ensures continuous monitoring and dynamic updating of privacy policies according to the
context-based strategies adopted by the user.

User-friendly
Options

User
Awareness

Privacy Oracle improves the awareness of the user by providing him with a dynamic overview of privacy risks
according to the evolution of his context.

User Privacy
Requirements

Privacy Oracle considers the following user privacy requirements: the maximum level of risk to retain in
his context, the enforced protection levels to maintain for specific attributes.

User Interests Privacy Oracle considers the service preferences of the user.
User Privacy
Management

Privacy Oracle enables the user to control his privacy protection and make informed and optimal protection
decisions based on his preferences and contexts.

Table 2. Framework responsiveness to PbD principles

6.2.2 Privacy Risk Inference & Quantification.

Alerting users about their privacy risks constitutes a key step towards improving their privacy 
decision-making. Hence, the privacy risk inference and quantification fields have received extensive
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attention over the last decade. Christin et al. [30] investigated mechanisms to warn users about
potential privacy risks of sharing personal information. Their results show that more than 70% of
the participants would change their settings after experiencing picture-based warnings. Important
to underline that this approach did not incorporate any privacy risk inference system. Similarly,
Bal et al. [31] introduced a novel privacy risk communication system that provides the user with
more meaningful privacy information based on the actual behavior of smartphone apps. Hatamian
et al. [32] proposed an informed decision-making supporter, called beacon alarming, to inform
users of the data accessed by different smartphone applications. They also suggested expanding the
functionality of the alarming system by employing fuzzy logic in order to assess the privacy risk
scores of installed applications. Zhang et al. [33] provided a formal privacy quantification model for
location-based services (LBS) that uses the Bayes conditional risk as a privacy metric. This model
employs a general definition of conditional privacy regarding the adversary’s estimation error to
compare the LBS privacy metrics. Banerjee et al. [34] studied the privacy threats resulting from the
deviations of data collectors practices from what they promise in their privacy policies, as opposed
to the user’s needs. Ngoc et al. [35] introduced a new metric to quantify privacy for users in social
networking sites, based on probability and entropy theory.

7 CONCLUSION
This paper presents a user-centered context-aware approach for privacy management in connected
environments, denoted as 𝜹-𝑹𝒊𝒔𝒌 , that assists users in optimizing their privacy decisions. To do so,
𝜹-𝑹𝒊𝒔𝒌 features a new privacy risk quantification model to dynamically calculate and select the best
protection strategies for users based on their preferences and contexts. Computed strategies are
optimal in that they seek to closely satisfy user’s requirements and preferences while maximizing
data utility and minimizing the protection cost. We implemented our approach and evaluated its
performance and effectiveness based on several use cases. Results show that 𝜹-𝑹𝒊𝒔𝒌: (1) handles
privacy reasoning in real-time, which makes it able to support the user in any context, including
ephemeral contexts; and (2) provides always the user with at least one best strategy per context.

As future work, we would like to study the dependencies between contexts. In fact, at this stage,
the privacy oracle reasons on each context apart without considering historical contexts/risks.
Nonetheless, contexts can be connected, which can affect the current risks or even generate new
risks for users. Therefore, we want to tackle the challenges of cross-context dependencies while
considering both logical and spatio-temporal aspects. We also want to address the challenge of
measuring the impact of attributes on risks. In fact, this impact is probabilistic and attributes may
have different impact values on risks. Finally, we aim to explore the privacy protection service
component of our framework and study the related research problems, including: how to select the
most appropriate protection functions to be executed on attributes’ data, what metrics to consider,
and how to measure system vulnerabilities in accordance with this selection.
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