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ABSTRACT

Context. As recently demonstrated, high-z submillimetre galaxies (SMGs) are the perfect background sample for tracing the mass
density profiles of galaxies and clusters (baryonic and dark matter) and their time-evolution through gravitational lensing. Their
magnification bias, a weak gravitational lensing effect, is a powerful tool for constraining the free parameters of a halo occupation
distribution (HOD) model and potentially also some of the main cosmological parameters.
Aims. The aim of this work is to test the capability of the magnification bias produced on high-z SMGs as a cosmological probe. We
exploit cross-correlation data to constrain not only astrophysical parameters (Mmin, M1, and α), but also some of the cosmological
ones (Ωm, σ8, and H0) for this proof of concept.
Methods. The measured cross-correlation function between a foreground sample of GAMA galaxies with spectroscopic redshifts in
the range 0.2< z< 0.8 and a background sample of H-ATLAS galaxies with photometric redshifts >1.2 is modelled using the tradi-
tional halo model description that depends on HOD and cosmological parameters. These parameters are then estimated by performing
a Markov chain Monte Carlo analysis using different sets of priors to test the robustness of the results and to study the performance
of this novel observable with the current set of data.
Results. With our current results, Ωm and H0 cannot be well constrained. However, we can set a lower limit of >0.24 at 95% confi-
dence level (CL) on Ωm and we see a slight trend towards H0 > 70 values. For our constraints on σ8 we obtain only a tentative peak
around 0.75, but an interesting upper limit of σ8 . 1 at 95% CL. We also study the possibility to derive better constraints by imposing
more restrictive priors on the astrophysical parameters.

Key words. galaxies: high-redshift – submillimeter: galaxies – gravitational lensing: weak – cosmological parameters

1. Introduction

Magnification bias is the apparent excess number of high redshift
sources seen near low redshift structures, and it can be quantified
using the cross-correlation between high and low redshift galax-
ies. Light rays coming from a distant source are deflected by
the intervening gravitational field so that the apparent area of a
given region of sky is stretched. The increased area decreases the
apparent surface density of any background sources. The deflec-
tions also amplify the flux of the background sources, increasing
their chances of being included in a flux-limited sample. The net
effect is known as magnification bias, and it has been extensively
described in the literature (see e.g. Schneider et al. 1992).

The cross-correlation between two source samples with
non-overlapping redshift distributions is an unambiguous man-
ifestation of magnification bias. The occurrence of such corre-
lations has been tested and established in several contexts: an
8σ detection of cosmic magnification from the galaxy-quasar
cross-correlation function (Scranton et al. 2005); a simultaneous

detection of gravitational magnification and dust reddening
effects due to galactic halos and large-scale structure (galaxy-
quasar cross-correlation; Ménard et al. 2010); and a 7σ detec-
tion of a cross-correlation signal between z ∼ 3−5 Lyman-break
galaxies and Herschel sources (Hildebrandt et al. 2013), among
others.

The strength of the magnification bias depends on the size of
gravitational deflection as light passes near low redshift galaxies,
and since the deflection depends on the cosmological distances,
and on the galaxy halo properties, we can use these measure-
ments to set constraints on cosmological parameters. The aim
of our current analysis is to investigate how our measurements
of magnification bias can constrain parameters in the standard
cosmological model.

The current standard cosmological model successfully
accounts for anisotropies in the CMB (e.g. Hinshaw et al.
2013; Planck Collaboration XIII 2016; Planck Collaboration VI
2020), the accelerating expansion of the Universe observed from
SNIa (e.g. Betoule et al. 2014), and Big Bang nucleosynthesis
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(e.g. Fields & Olive 2006), and also predicts some important
features of large-scale structure (LSS) in the distribution of
galaxies (e.g. Peacock et al. 2001) including baryon acoustic
oscillations (BAOs; e.g. Ross et al. 2015). This means that inde-
pendent and complementary constraints on the model param-
eters can be obtained by measuring such observables (e.g.
Peacock & Dodds 1994). The consistency between different
probes is a key reason that the model is considered to be so suc-
cessful. However, with the increase in the quality and quantity
of the measurements, some tensions and small-scale issues have
arisen, such as the missing satellite problem (Moore et al. 1999;
Klypin et al. 1999) and the cusp-core problem (Wechsler et al.
2002), that might indicate the necessity of modifications of the
ΛCDM model.

One of the main tensions is in the value of the Hubble con-
stant, H0: local estimates suggest a relatively high value (74.03±
1.42 km s−1 Mpc−1, Riess et al. 2019), whereas CMB and BAOs
analysis advise a relatively low value (67.4 ± 0.5 km s−1 Mpc−1

Planck Collaboration VI 2020). Another important inconsistency
lies in the usually degenerate relationship between the Ωm and
σ8 parameters. Constraints from local observables, such as LSS
in the galaxy distribution, tend to prefer lower values compared
to those derived from high redshift observables such as the CMB
(e.g. Heymans et al. 2013; Planck Collaboration XXIV 2016;
Hildebrandt et al. 2017). This ∼2σ tension is discussed in Planck
Collaboration VI (2020). With this in mind, any method that
constrains cosmological parameters using a new set of observ-
ables is worth pursuing in the effort to resolve the tensions. At
the moment our constraints from the magnification bias are rel-
atively weak, but the use of new independent observables makes
it a valuable new technique.

In this paper we use the cross-correlation function between
low and high redshift galaxy samples to measure magnification
bias. An optimal choice of foreground and background samples
can enhance the cross-correlation signal, and in particular some
features of the submillimetre galaxies (SMGs) make them close
to the optimal background sample for lensing studies. Some of
their most important characteristics, related to their exploitation
in magnification bias studies, are summarised below.

Firstly, data collected before the advent of the European Her-
schel Space Observatory (Herschel; Pilbratt et al. 2010) and the
South Pole Telescope (SPT, Carlstrom et al. 2011) suggested
that the number density of SMGs drops off abruptly at rela-
tively bright submillimetre flux densities (∼50 mJy at 500 µm),
indicating a steep luminosity function and a strong cosmic
evolution for this class of sources (e.g. Granato et al. 2004).
Several authors have argued that the bright tail of the submil-
limetre number counts may contain a significant fraction of
strongly lensed SMGs (Blain 1996; Negrello et al. 2007). The
Herschel Multi-tiered Extragalactic Survey (HerMES; Oliver
et al. 2010) and the Herschel Astrophysical Terahertz Large
Area Survey (H-ATLAS; Eales et al. 2010) are wide-field sur-
veys (∼380 deg2 and ∼550 deg2, respectively) conducted by the
Herschel satellite. Thanks to their sensitivity and frequency cov-
erage both surveys have led to the discovery of several lensed
SMGs (Negrello et al. 2017, and references therein). The selec-
tion of strongly lensed galaxies at these wavelengths is made
possible by the (predicted) steep number counts of SMGs (Blain
1996; Negrello et al. 2007); in fact, almost all of those galax-
ies whose flux density has been boosted by an event of lensing
can be observed above a certain threshold, namely ∼100 mJy at
500 µm (see Negrello et al. 2010; Wardlow et al. 2013).

Next, with Herschel data, Negrello et al. (2010) produced the
first sample of five strongly lensed galaxies (SLGs) by means of

a simple selection in flux density at 500 µm. Preliminary source
catalogues derived from the full H-ATLAS were then used to
identify the submillimetre brightest candidate lensed galaxies for
follow-up observations with both ground-based and space tele-
scopes to measure their redshifts (see Negrello et al. 2017, and
references therein) with 80 SLG candidates and confirm their
nature (Negrello et al. 2010; Bussmann et al. 2012, 2013; Fu
et al. 2012; Calanog et al. 2014).

Using the same methodology, i.e. a cut in flux density at
500 µm, Wardlow et al. (2013) have identified 11 SLGs over
95 deg2 of HerMES (Oliver et al. 2010), while more recently
Nayyeri et al. (2016) have published a catalogue of 77 galaxy
candidates at lenses with F500 ≥ 100 mJy extracted from the
HerMES Large Mode Survey (HeLMS; Oliver et al. 2012) and
the Herschel Stripe 82 Survey (HerS; Viero et al. 2014) over
an area of 372 deg2. Altogether, the extragalactic surveys car-
ried out with Herschel delivered a sample of more than a hun-
dred submillimetre bright SLGs, which, as argued by González-
Nuevo et al. (2012, 2019), might increase to over a thousand if
the selection is based on the steepness of the luminosity function
of SMGs (Lapi et al. 2011) rather than that of the number counts.
Similarly, at millimetre wavelengths, the SPT survey has already
discovered several tens of lensed galaxies (e.g. Vieira et al. 2013;
Spilker et al. 2016) and other lensing events have been found in
the Planck all-sky surveys (Cañameras et al. 2015; Harrington
et al. 2016).

The properties of SMGs have been very well quanti-
fied by these previous analyses, and SMGs can be consid-
ered solid targets to be studied with lensing. In particular, the
(sub)millimetre SLGs are very faint in the optical, whereas most
foreground lenses are passive ellipticals (Auger et al. 2009;
Negrello et al. 2010), essentially invisible at submillimetre wave-
lengths. This means that the foreground lens is “transparent” at
(sub)millimetre wavelengths, i.e. it does not confuse the mea-
surements of the background source and vice versa. In this way,
the (sub)millimetre selection shares with spectroscopic searches
the capability of detecting lensing events with small impact
parameters, with the added advantage that in most cases there
is no need to subtract the lens contribution to recover the source
images within the effective radii of the lenses. A further advan-
tage given by (sub)millimetre selection is that the typical source
redshifts are above z > 1−1.5, and so the samples probe ear-
lier phases of galaxy evolution, which typically have higher
lensing optical depths. This makes the SMGs the perfect back-
ground sample for tracing the mass density profiles of galaxies
and clusters, including baryonic and dark matter, and their time-
evolution, using gravitational lensing.

A first attempt at measuring lensing-induced cross-
correlations between Herschel/SPIRE galaxies and low-z galax-
ies was carried out by Wang et al. (2011), who found convincing
evidence of the effect. With much better statistics, this possi-
ble bias was studied in detail in González-Nuevo et al. (2014)
by measuring the angular cross-correlation function between
selected H-ATLAS high-z sources, z > 1.5, and two optical sam-
ples with redshifts 0.2 < z < 0.8, extracted from the Sloan Dig-
ital Sky Survey (SDSS; Ahn et al. 2012) and Galaxy and Mass
Assembly (GAMA, Driver et al. 2011) surveys. The observed
cross-correlation function was measured with high significance,
>10σ. Moreover, based on realistic simulations, it was con-
cluded that the signal was entirely explained by a magnification
bias produced by the weak lensing effect of low redshift cosmic
structures (galaxy groups and clusters with halo masses in the
range 1013.2−1014.5 M�) signposted by the brightest galaxies in
the optical samples.
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González-Nuevo et al. (2017) used updated catalogues cov-
ering a wider area to make more accurate measurements of the
cross-correlation function, with S/N > 5 above 10 arcmin and
reaching S/N ∼ 20 below 30 arcsec. Thanks to the better statis-
tics it was possible to split the sample into different redshift bins
and to perform a tomographic analysis (with S/N > 3 above
10 arcmin and reaching S/N ∼ 15 below 30 arcsec). Moreover,
a halo model was implemented to extract astrophysical infor-
mation about the background galaxies and the deflectors that
produce the lensing that links the foreground (lenses) and back-
ground (sources) samples. In the case of the sources, typical
mass values were found to be in agreement with previous studies
(1012.1−1012.9 M�, Xia et al. 2012; Cooray et al. 2010; Mitchell-
Wynne et al. 2012; Wilkinson et al. 2017). However, the lenses
are massive galaxies or even galaxy groups and clusters, with
minimum mass of Mlens ∼ 1013.06 M�, confirming the interpre-
tation from González-Nuevo et al. (2014). The halo modelling
also helped to identify a strong lensing contribution to the cross-
correlation for angular scales below 30 arcsec. This interpreta-
tion is supported by the results of basic but effective simulations.

Following on from this, Bonavera et al. (2019) were able to
measure the magnification bias produced by a sample of quasi-
stellar objects QSOs acting as lenses, 0.2 < z < 1.0, on the
SMGs observed by Herschel at 1.2 < z < 4.0, by applying the
traditional cross-correlation function approach and the Davis-
Peebles estimator through a stacking technique. Using the halo
modelling of the cross-correlation function it was possible to
estimate the halo mass where the QSOs acting as lenses are
located: it was found to be greater than Mmin > 1013.6+0.9

−0.4 M�,
also confirmed by the mass density profile analysis (M200c ∼

1014 M�). These mass values indicate that we are observing the
lensing effect of a cluster size halo signposted by the QSOs.

In the rest of this paper, we describe our first attempts to
estimate cosmological parameters using the cross-correlation
function and data from González-Nuevo et al. (2017), and
demonstrate the powerful potential of magnification bias as a
cosmological tool. In particular, we focus on the estimation
of the parameters Ωm, σ8, and H0 in order to quantify what
can actually be done with magnification bias, and what will be
needed in the future to improve our cosmological analysis.

The work is organised as follows. In Sect. 2 the background
and foreground samples are described and in Sect. 3 the method-
ology is presented, both for auto- and cross-correlation measure-
ments. Our results and conclusions are discussed in Sects. 4
and 5, respectively. In Appendix A we show how the varia-
tions in the astrophysical and cosmological parameters affect the
model behaviour and we compare the model with the data.

2. Data

2.1. Background sample

The background sample was selected from the H-ATLAS data
set, the largest extra-galactic survey carried out by the Herschel
space observatory (Pilbratt et al. 2010): its two instruments the
Photodetector Array Camera and Spectrometer (PACS, Poglitsch
et al. 2010) and the Spectral and Photometric Imaging REceiver
(SPIRE, Griffin et al. 2010) cover about 610 deg2 between 100
and 500 µm. The survey consists of five different fields: three
located on the celestial equator (GAMA fields or Data Deliv-
ery 1 (DR1); Valiante et al. 2016; Bourne et al. 2016; Rigby
et al. 2011; Pascale et al. 2011; Ibar et al. 2010) covering
a total area of 161.6 deg2 and two centred on the north and
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Fig. 1. Redshift distributions of the background H-ATLAS sample (red)
and the foreground GAMA sample (blue).

south galactic poles (NGP and SGP fields or DR2; Smith et al.
2017; Maddox et al. 2018) covering 180.1 deg2 and 317.6 deg2,
respectively.

We selected our background sample from the sources
detected in the three GAMA fields, covering a total area of
∼147 deg2, and the part of the SGP that overlaps with the fore-
ground sample (∼60 deg2, see Sect. 2.2). This leads to ∼207 deg2

of common area between the two samples.
It should be noted that an implicit 4σ detection limit at

250 µm (∼S 250 > 29 mJy) was applied to both H-ATLAS DRs.
At this frequency the estimated 1σ source detection total noise
level (both instrumental and confusion) is 7.4 mJy for both DR1
and DR2 catalogues (Valiante et al. 2016; Maddox et al. 2018).
In addition, a 3σ limit at 350 µm was introduced (González-
Nuevo et al. 2017) to increase the robustness of the photometric
redshift estimation.

In order to avoid overlap in the redshift distributions of lenses
and background sources, only background sources with photo-
metric redshift 1.2< z< 4.0 were taken into account. Such red-
shifts were estimated with a minimum χ2 fit of a template SED to
the SPIRE data (using PACS data when possible). The adopted
template is the SED of SMM J2135-0102 (“the Cosmic Eyelash”
at z = 2.3; Ivison et al. 2010; Swinbank et al. 2010), proven to
be the best overall template with ∆z/(1 + z) = −0.07 and disper-
sion of 0.153 (Ivison et al. 2016; González-Nuevo et al. 2012;
Lapi et al. 2011). In the end, we are left with 57930 sources that
correspond approximately to 24% of the initial sample.

Figure 1 shows the redshift distribution of the background
sample in red, being 〈z〉 = 2.2+0.4

−0.5 the mean redshift of the sample
(the uncertainty indicates the 1σ limits). This redshift distribu-
tion is the estimated p(z|W) of the galaxies selected by our win-
dow function (i.e. a top hat for 1.2< z< 4.0). It takes into account
the effect of random errors in photometric redshifts on the red-
shift distribution, as done in González-Nuevo et al. (2017).

2.2. Foreground sample

As detailed in González-Nuevo et al. (2017), the foreground
sources were drawn from the GAMA II (Driver et al. 2011;
Baldry et al. 2010, 2014; Liske et al. 2015) spectroscopic survey.
Moreover, both H-ATLAS and GAMA II surveys were coordi-
nated in order to maximise the common area coverage overlap.
In particular, the three equatorial regions at 9, 12, and 14.5 h
(referred to as G09, G12, and G15, respectively) were observed
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by both surveys, and the SGP region surveyed by H-ATLAS was
partially covered by GAMA II. We are then left with a com-
mon area of about ∼207 deg2 between the two surveys, which
has been surveyed down to a limit of r ' 19.8 mag.

Our main sample consists of a selection of all GAMA II
galaxies with reliable redshift measurements between
0.2< z< 0.8. This main sample comprises a total of
∼150 000 galaxies, whose median redshift, zspec,med = 0.28,
is significantly lower than that of the background sample, as
shown by the blue histogram in Fig. 1.

The lower limit was chosen because we do not expect a rel-
evant gravitational lensing effect from mater density distribution
at z< 0.2 for the background sample (see e.g. Lapi et al. 2012).
For a similar reason, we can safely neglect any possible magni-
fication bias affecting the lens sample: the lensing optical depth
declines steeply for sources below z < 0.5.

3. Methodology

3.1. Halo occupation distribution (HOD)

Nowadays the power spectrum of the galaxy distribution is
parametrised by the sum of a two-halo term, related to the corre-
lation between different halos that dominates on large scales, and
a one-halo term, more important on small scales, that depends on
the distribution of galaxies within the same halo.

All halos above a minimum mass Mmin host a galaxy at their
centre, while any remaining galaxy is classified as satellite and
such satellites are distributed proportionally to the halo mass
profile (see e.g. Zheng et al. 2005). Halos host satellites when
their mass exceeds the M1 mass, and the number of satellites is
a power-law (α) function of halo mass.

Therefore, the central galaxy occupation probability can be
parametrised as a step function

Ncen(Mh) =

{
0 if Mh < Mmin

1 otherwise
(1)

and the satellite galaxies occupation as

Nsat(Mh) = Ncen(Mh) ·
( Mh

M1

)αsat

, (2)

where Mmin, M1, and αsat are the free-parameters of the model.

3.2. Foreground angular auto-correlation function

In order to have an independent estimation of the HOD parame-
ters that correspond to the foreground galaxies acting as lenses,
we perform an auto-correlation analysis on the GAMA sample.

3.2.1. Estimation methodology

For this auto-correlation analysis, we focus on the three largest
fields: G09, G12, and G15. They constitute ∼63% of the whole
GAMA survey and they are the only fields with complete over-
lap with the H-ATLAS fields. We expect no relevant differences
in their correlation properties compared to the rest of the sur-
vey. Moreover, we perform a further reduction in the foreground
sample by selecting the normalising redshift quality (catalogue
column labelled “NQ”) greater than 2 and the spectroscopic red-
shift (catalogue column labelled “Z”) in the range 0.05 < zspec <
0.6. The resulting median redshift of the sample of sources is
zmed = 0.23.

Table 1. Number density of sources in the three selected GAMA fields,
with the cuts described in the text.

Field ng [Mpc−3] σng [Mpc−3]

G09 1.528e−3 6.095e−6
G12 1.052e−3 4.023e−6
G15 1.180e−3 4.601e−6
med 1.217e−3 6.095e−6

10 1 100 101 102

[arcmin]
10 3

10 2

10 1

100

101

w
AC

best fit
1 halo
2 halo
auto-correlation

Fig. 2. Measured angular auto-correlation function of the foreground
sample (red circles). The best-fit halo model prediction is shown as a
comparison (total, blue solid line; one-halo term, red dotted line; two-
halo term, green dashed line).

We estimate the number density of sources by comput-
ing the volume of each field as Vfield = Afield · ∆dC, where
∆dC = dC(zmax)−dC(zmin) is the difference in comoving distance
between the maximum and minimum redshift selected. The area
of the field is computed as Afield = dhav(RA) · dhav(Dec), where
dhav(RA) and dhav(Dec) are the haversine distances

dhav/r = arcsin
(√

sin
(
φ2 − φ1

2

)
+ cos φ1 cos φ2

(
λ2 − λ1

2

))
(3)

along the RA and Dec directions, respectively.
In Table 1 we show the measures obtained for the three dif-

ferent selected fields with the cuts described above. The last row
of the table shows the median value of ng and maximum error
value, σng , among the three fields.

We compute the angular correlation function ω(θ) in each
field by applying the modified Landy-Szalay estimator (Landy
& Szalay 1993)

w(θ) =
DD(θ) − 2DR(θ) + RR(θ)

RR(θ)
(4)

and estimate the error on this measure by dividing each field into
128 bootstrap samples (see Fig. 2).

3.2.2. Model

The traditional halo modelling (see e.g. Cooray & Sheth 2002)
allows us to obtain estimates of the average surface density of
sources and of the angular correlation function at a given red-
shift. The surface density is given by

ng(z) ≡
∫ Mmax

Mmin

〈Ng〉(Mh)n(Mh, z) dMh, (5)
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Fig. 3. Cross-correlation data computed on Herschel SMGs (as back-
ground sample) and GAMA galaxies (as lenses sample). The grey
points are exactly the results obtained in González-Nuevo et al. (2017).
The red data set (obtained using the same binning as in González-Nuevo
et al. 2017) and the blue data set (obtained using same the binning, but
half-size bin shifted with respect to González-Nuevo et al. 2017) are
the cross-correlation results computed for this work, exploiting a larger
area. The solid lines represent the best fit with flat priors to the astro-
physical and cosmological parameters using the default binning (red)
and the shifted binning (blue). The green line is the best fit to the red
case, but adopting Ωm = 0.3.

where Ng(Mh) = Ncen(Mh) + Nsat(Mh) and where n(Mh, z) is the
Sheth & Tormen mass function (Sheth & Tormen 1999). The
angular correlation function is given by

ω(θ, z) =

∫
dz

dV(z)
dz
N

2(z) w[rp(θ, z), z], (6)

where w[rp, z] is the projected two-point correlation function
obtained using the Limber approximation, dV(z)

dz is the comoving
volume unit, andN (z) is the normalised redshift distribution of
the target population. If we assume that w(rp, z) is approximately
constant in the redshift interval [z1, z2], we can then write

ω(θ, z) ≈
[∫ z2

z1

dz
dV(z)

dz
N

2(z)
]
·w[rp(θ), z)] = A·w[rp(θ), z)] (7)

so that the normalisation factor, A, can be accounted for by
adding another parameter to the model.

3.3. Angular cross-correlation function

For the cross-correlation measurements we use the data
described in Sect. 2 and applied the same approach as in
González-Nuevo et al. (2017) with slight changes, as described
in the following section.

3.3.1. Estimation method

We use a modified version of the Landy & Szalay (1993) esti-
mator (Herranz 2001),

wx(θ) =
D1D2 − D1R2 − D2R1 + R1R2

R1R2
, (8)

where D1D2, D1R2, D2R1, and R1R2 are the normalised data1-
data2, data1-random2, data2-random1, and random1-random2
pair counts for a given separation θ.

In this work we do not apply exactly the same procedure
used by González-Nuevo et al. (2017) and Bonavera et al.
(2019). Instead, we follow the original estimation procedure of
González-Nuevo et al. (2014), which divides the total common
area between the two samples into several square mini-regions
with minimal overlap. Therefore, the estimated cross-correlation
function in each mini-region can be assumed to be statistically
independent. In this way we can use the full available area
(maximising the data statistics) without leaving portions of the
mini-areas with no sources, as would be the case for the circu-
lar regions used by González-Nuevo et al. (2017). Taking into
account the shape of the H-ATLAS areas (related with the satel-
lite scanning strategy), we adopt square mini-regions of ∼4 deg2.
This division provided us with 62 usable almost independent
mini-regions (15 in each GAMA field and 17 in the SGP field).
We verified that using bigger square mini-regions (∼16 deg2)
leads to results that are compatible within the uncertainties on
large scales, but with higher uncertainties at intermediate scales
due to the higher cosmic variance effect with only 16 indepen-
dent mini-regions.

The estimated cross-correlation function is shown in Fig. 3
(red circles). Each measurement corresponds to the mean value
of the cross-correlation functions estimated in each individual
mini-region for a given angular separation bin. The uncertainties
correspond to the standard error of the mean, i.e. σµ = σ/

√
n

with σ the standard deviation of the population and n the number
of mini-regions. For the cross-correlation represented by the red
circles, the binning was chosen in the same way as in González-
Nuevo et al. (2017), being the circle in Fig. 3 placed at the centre
of the corresponding bin. This is the main data set, which can
be directly compared with that used in González-Nuevo et al.
(2017; shown in Fig. 3 as grey circles). The main difference
between the two estimations are the two latest points at large
angular scales that are slightly higher in the González-Nuevo
et al. (2017) case. The much higher number of independent mini-
regions makes us more confident in the current estimation with
a more realistic uncertainties. In addition, we estimate again the
cross-correlation function using the same procedure described
above, but with a half-bin displacement (i.e. by using the same
binning size as in González-Nuevo et al. 2017, but the bin cen-
tre is now shifted of half-bin size with respect to the previ-
ous measurement, shown in red). The cross-correlation measure-
ments are shown as blue circles in Fig. 3. This additional set of
results will provide us the opportunity to study potential depen-
dence of our final results produced by the binning choice (impor-
tant at large angular scales due to the much lower number of
pairs in excess with respect to the random case and the cosmic
variance).

3.3.2. Model

Similar to the auto-correlation case, and as described in
González-Nuevo et al. (2017) and summarised in Bonavera et al.
(2019), in order to interpret a foreground-background source
cross-correlation signal we adopt the halo model formalism from
Cooray & Sheth (2002). We define halos as spherical regions
whose mean overdensity with respect to the background at any
redshift is given by its virial value, which is estimated following
Weinberg & Kamionkowski (2003) assuming a ΛCDM model
with Ωm + ΩΛ = 1. The density profile adopted is the one by
Navarro et al. (1996; hereafter NFW) with the concentration
parameter given in Bullock et al. (2001).

Weak lensing provides the connection between the low red-
shift galaxy-mass correlation and the cross-correlation between
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the foreground and background sources. The mass density field
traced by the foreground galaxy sample causes weak lensing; the
weak lensing field is imprinted onto the number counts of the
background galaxy sample through magnification bias. Follow-
ing mainly Cooray & Sheth (2002; see González-Nuevo et al.
2017, for details), we compute the correlation between the fore-
ground and background sources adopting the standard Limber
(Limber 1953) and flat-sky approximations (see e.g. Kilbinger
et al. 2017, and references therein). It can be evaluated as

wfb = 2(β − 1)
∫ zs

0

dz
χ2(z)

dNf

dz
W lens(z)

×

∫ ∞

0

ldl
2π

Pgal−dm(l/χ2(z), z)J0(lθ), (9)

where

W lens(z) =
3
2

H2
0

c2 E2(z)
∫ zs

z
dz′

χ(z)χ(z′ − z)
χ(z′)

dNb

dz′
(10)

with E(z) =
√

Ωm(1 + z)3 + ΩΛ, dNb/dz, and dNf/dz as the unit-
normalised background and foreground redshift distribution, and
zs the source redshift. Because β is the logarithmic slope of the
background sources number counts, N(S ) = N0S −β, and χ(z)
is the comoving distance to redshift z. It is common to assume
β = 3 as that leads to the largest gravitational lensing effect in
general, and the magnification bias in particular (Lapi et al. 2011,
2012; Cai et al. 2013; Bianchini et al. 2015, 2016; González-
Nuevo et al. 2017; Bonavera et al. 2019). In the model β is a
globally defined constant, but small variations in its value are
almost completely compensated by changes in the Mmin param-
eter. For example, an increase of 15% in β reduces log Mmin in
∼1%.

The halo model formalism for the cross-correlation function
implies that both the low and high redshift galaxy samples trace
the same dark matter distribution. The foreground galaxies at
the lenses redshift (z ∼ 0.4) directly trace the dark matter dis-
tribution, and the background galaxies (z > 1) indirectly trace it
through the weak lensing effects. Following on from this consid-
eration, the one-halo term relates to the subhalo correlation (by
both samples) in the same halo and the two-halo term describes
the correlation between one halo by the foreground galaxies and
one halo by the background sources.

3.4. Estimation of parameters

To estimate the different sets of parameters, we performed a
Markov chain Monte Carlo (MCMC) analysis using the open
source emcee software package (Foreman-Mackey et al. 2013).
It is an MIT licensed pure-Python implementation of Goodman
& Weare (2010) Affine Invariant MCMC Ensemble sampler. In
this analysis we generated at least 10 000 posterior samples to
ensure a good statistical sampling after convergence.

The estimation of parameters in the foreground auto-
correlation function analysis relies on the code1 by Ronconi et al.
(2020). We sampled the space of the model-defining parameters
using MCMC to maximise a likelihood built as the sum of the
χ2 of the two measures we wanted to fit, namely the two-point
angular correlation function at a given redshift, ω(θ, z), and the

1 https://ui.adsabs.harvard.edu/abs/2020ascl.
soft02006R/abstract

average number of sources at a given redshift, ng(z):

logL ≡ −
1
2

(
χ2
ω(θ,z) + χ2

ng(z)

)
. (11)

In the cross-correlation function analysis, we took into
account both the astrophysical HOD parameters, and the cos-
mological parameters. The astrophysical parameters to be esti-
mated are Mmin, M1, and α. The cosmological parameters we
want to constrain are Ωm, σ8, and h. With the current samples,
we do not have the statistical power to constrain ΩB, ΩΛ, and
ns in our analysis, and we keep them fixed to Planck cosmol-
ogy, ΩB = 0.0486, ΩΛ = 0.6911, and ns = 0.9667 (see Planck
Collaboration VI 2020). A traditional Gaussian likelihood func-
tion was used in this case.

It should be noted that only the cross-correlation data in
the weak lensing regime (θ ≥ 0.2 arcmin) are being taken into
account for the fit since we are in the weak lensing approx-
imation (see Bonavera et al. 2019, for a detailed discussion).
Moreover, the foreground galaxy density ng is not included in
the cross-correlation analysis as an additional constraint.

3.5. Priors of parameters

The emcee package allows us to impose priors on the parameters
to be estimated with MCMC, i.e. it allows MCMC to explore
just the regions delimited by given boundaries. This is usually
done in order to avoid spending computing time in searching
physically unacceptable parameter space. In this work we want
to study both a prior-free case (by imposing flat priors) and more
constrained parameters regions (by applying Gaussian priors).

As for the auto-correlation method performed on the GAMA
sample (see Sect. 3.2), we apply relatively extensive priors to
the parameters in order to keep this analysis independent from
the one with cross-correlation. In particular, the priors are set to
log (Mmin/M�) and log (M1/M�) between 9 and 15, α between
0.1 and 1.5, and A between −5 and −1.

As for the cross-correlation method (see Sect. 3.3), we set
the priors of the astrophysical parameters to min-max values (in
the flat priors case) and mean-σ values (in the Gaussian priors
case) in agreement with information available in the literature. In
particular, after a review of the available literature on the fore-
ground sample characteristics we extract the following flat (FPA)
and Gaussian (GPA) priors for our astrophysical parameters.

As described above, the astrophysical parameters involved
in our estimations are Mmin, M1, and α. In particular, we rely on
Sifón et al. (2015) for Mmin, on both Viola et al. (2015) and Sifón
et al. (2015) for M1, and on Viola et al. (2015) for α.

As for Mmin, our choice of Sifón et al. (2015) is based on the
fact that their sample is similar to ours: it consists of the 100 deg2

overlapping region between KiDS and GAMA surveys, with a
redshift range of 0−0.5 and an average of 0.25. In their work the
average galaxy halo mass is determined for a sample of satellite
galaxies in massive galaxy groups (M > 1013 h−1 M�). In par-
ticular, in their Fig. 2 (top right panel) the satellite distributions
of stellar mass to the BCG are shown. Since M? are the satellite
masses, they are a proxy of the minimum mass (galaxies with
no satellites), but it has to be expressed in terms of halo mass in
order to be considered a limit on Mmin. We translate these stellar
masses in the corresponding mass of the halo using the recipe by
Pantoni et al. (2019) to switch from log M?(h−1 M�) to log Mh.
Sifón et al. (2015) gives values of log M?(h−1 M�) between 9.5
and 11.5, which correspond to the range log Mh = 11.6−13.6.
So, we use these values to set our flat priors on log Mmin.
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Table 2. Estimated parameter values and uncertainties with the auto-
correlation data analysis.

Param Priors Autocorrelation

F[a,b] µ σ Peak
±68 CL 68 CL

log(Mmin/M�) F[9,15] 12.362+0.002
−0.007 0.007 12.36

log(M1/M�) F[9,15] 13.64+0.03
−0.09 0.07 13.56

α F[0.1,1.5] 1.17+0.06
−0.05 0.1 1.18

A F[−5,−1] −3.08+0.05
−0.05 0.07 −3.14

3.3 3.2 3.1 3.0 2.9
A

13.52

13.68

13.84

lo
gM

1

0.9

1.05

1.2

1.35

1.5

12.352 12.368 12.384
logMmin

3.3

3.2

3.1

3

2.9

A

13.52 13.68 13.84
logM1

0.901.051.201.351.50

Fig. 4. Posterior distributions for the model parameters in the auto-
correlation data analysis. The contours for these plots are set to 0.393
and 0.865 (see text for details).

In order to apply a more constraining range on the allowed
values, we also investigate the case with Gaussian priors by
relying again on the work by Sifón et al. (2015). In particular,
we focus on their Table 1; it gives values of log 〈M?〉(h−1 M�)
between 10.36 and 10.81, the lowest possible value being in
Bin 1 (taking into account the lower error) and the highest
possible value in Bin 3 (taking into account the upper error).
Such stellar masses translate (using Pantoni et al. 2019) into
log Mh(M�) between 12.3 and 12.5. So, we choose a mean value
of µ = 12.4 and a dispersion of σ = 0.1 for the Gaussian pri-
ors. In this way the log Mmin priors stay in the Sifón et al. (2015)
more restrictive findings within the 68% confidence level (CL).

It should be noted that these flat and Gaussian priors are in
agreement with Aversa et al. (2015). In particular, their Fig. 28
shows values of log Mh(M�) between 11.5 and 13.5, and in their
Fig. 5 they gave a value of log M?(M�) = 10.5 that translates to
log Mh(M�) = 12.3.

Concerning M1, we rely on Viola et al. (2015; see their
Fig. 16) to set the wide flat priors to log M1(M�) = 13−14.5. In
order to limit this parameter to a more restricted range, we con-
sider again Sifón et al. (2015) instead. The Gaussian priors are
obtained using the information in their Table 2: we choose the
range log Mhost(h−1 M�) = 13.51−14.8, which spans from the

lowest possible value (i.e. the one for Bin 1 including the lower
error) and the highest possible value (i.e. the one for Bin 3 taking
into account the upper error). By writing in the units we are using
in this work, we get a typical halo mass with at least one satel-
lite in the range log M1(M�) = 13.66−14.33. To set the Gaussian
priors based on these values, we take the mean µ = 13.95 of this
range and a dispersion of σ = 0.3, so that the Sifón et al. (2015)
value corresponds to the 68% CL of our priors. We can argue
that even smaller Gaussian priors can be set by only relying on
their results for Bin 1 (in Sifón et al. 2015, Table 2). The choice
of this bin is justified because we are looking for the minimum
mass to have at least one satellite. However, we decided to use a
less constraining prior in order to be more conservative.

With respect to α, we derive our priors by comparing our
Eq. (2) to the expression for α in Viola et al. (2015) (Eq. (40)).
From this comparison, we obtain a value of α = 0.92± 0.15. So,
we set the Gaussian priors with mean µ = 0.92 and dispersion
σ = 0.15. To define the flat priors, we consider instead a 3σ
range around the mean value, obtaining α = 0.5−1.37. We also
perform an additional analysis relying on the auto-correlation
results, by setting the Gaussian priors to the µ andσ rounded val-
ues in Table 2. Finally, we set common flat priors for the Cosmo-
logical parameters: 0.1−0.8 for Ωm, 0.6−1.2 for σ8, and 0.5−1.0
for h.

4. Results

To gather as much information as possible about the derived cos-
mological constraints and their robustness, first we fix the cos-
mology to the Planck one and study the behaviour of the astro-
physical parameters. We decide to use a non-informative, or uni-
form/flat, priors for our free astrophysical parameters and we
perform the analysis for both data sets (the default and the shifted
binning). Then we also allow the cosmological parameters to
vary using flat priors for three different astrophysical parame-
ter assumptions: (a) flat priors from the literature, (b) Gaussian
priors from the literature, and (c) Gaussian priors from the auto-
correlation analysis described in Sect. 3.2.

4.1. Astrophysical parameters

4.1.1. Auto-correlation data analysis

The posterior distributions for the model parameters (see
Sect. 3.2.2) derived from the estimated auto-correlation function
(see Sect. 3.2) through the MCMC analysis (see Sect. 3.4) are
shown in Fig. 42. For this analysis we fix the cosmology to the
Planck values: Ωm = 0.3089, σ8 = 0.8159, and h = 0.6774.

The mean values at 68% CL, standard deviations, and peak
values are summarised in Table 2. The auto-correlation function
calculated using the best-fit parameter values is also shown in
Fig. 2. The model parameters are well constrained and they pro-
vide a good fit to the observed auto-correlation function, obtain-
ing a χ2

ω of 8.836 for 11 degrees of freedom (d.o.f.; correspond-
ing to a reduced χ2

ω of 0.803) and a χ2
ng

of 0.001 (0.0001). The
value for the χ2

ng
is so small because we estimated just one single

value and this helps in its correct recovery.
Moreover, the values obtained for log(Mmin/M�) and

log(M1/M�) (12.362+0.002
−0.007 and 13.64+0.03

−0.09, respectively) are con-
sistent with what can be found in the literature, as discussed

2 The relevant 1σ and 2σ levels for a 2D histogram of samples is
39.3% and 86.5%, not 68% and 95%. Otherwise, there is no direct com-
parison with the 1D histograms above the contours.
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Table 3. Results obtained from the cross-correlation data, computed in two different binnings, with flat priors on astrophysical parameters and
fixed cosmology.

Param Priors FPA FPA shifted

F[a,b] µ σ Peak µ σ Peak
±68 CL 68 CL ±68 CL 68 CL

log(Mmin/M�) F[11.6,13.6] 12.42+0.20
−0.11 0.20 12.46 12.41+0.17

−0.07 0.16 12.45
log(M1/M�) F[13,14.5] – – 14.12 13.65+0.29

−0.54 0.38 13.59
α F[0.5,1.37] 0.89+0.13

−0.39 0.24 0.53 0.90+0.14
−0.40 0.24 0.50

Notes. From left to right the columns are the parameters, the priors, and the results for the default and the shifted binnings (the mean µ with upper
and lower limits at 68% CL, the σ, and the peak of the posterior distribution). Parameters without a σ value indicate that there is no constraint at
68% CL, i.e. they are unconstrained.

in Sect. 4.1 (log(Mmin/M�) = 11.6−13.6 and log(M1/M�) =
13.0−14.5 for the flat priors cases). The derived α parame-
ter (1.17+0.06

−0.05) is also in agreement with the literature values
(0.5−1.37 for the flat priors case), although slightly toward the
upper limit.

Therefore, we can conclude that the auto-correlation func-
tion analysis results can be an additional alternative set of
Gaussian parameters for the astrophysical parameters to be used
in the full cosmological analysis.

4.1.2. Cross-correlation data analysis

We perform a similar analysis as in the auto-correlation case for
the cross-correlation function. We also fix the cosmology to the
Planck values, and perform the MCMC analysis on the astro-
physical parameters only.

The mean values, CL, standard deviations, and the peak val-
ues are summarised in Table 3. The results of the MCMC runs
for the two shifted data sets are listed in the last two columns.
The posterior distributions shown in Fig. 5 give compatible
results to the auto-correlation case (summarised in Table 2), in
particular for Mmin, the only one that is well constrained.

The value of Mmin is well constrained with both data
sets (default and shifted binning) with almost identical results
(log(Mmin/M�) = 12.42+0.20

−0.11 and 12.41+0.17
−0.07, respectively) and in

agreement with the results from González-Nuevo et al. (2017)
and Bonavera et al. (2019), and to typical values in the literature,
as described in Sect. 4.1.

It is worth mentioning here that matter distribution at z <
0.2 is not significantly biasing our lens sample (because of
lensing, see Sect. 2.2). This is confirmed because the mass
we estimate with the cross-correlation for our selected GAMA
sample is in fairly good agreement with that found by the
auto-correlation in the GAMA sample (Sect. 4.1.1), where only
very few sources might be affected by lensing and the mass
determination is dominated by the unlensed sources. Since the
cross- and auto-correlation results are in agreement, it means that
cross-correlation results are also not affected by magnification
due to z < 0.2 matter distribution.

On the contrary, the M1 and α parameters are both uncon-
strained with the two data sets. The results are mostly the mean
values between the flat prior limits as expected in this situation.
However, there is a hint in the shifted data set toward a simi-
lar log(M1/M�) value (with a peak value of 13.64), but lower α
value (∼0.9) with respect to the auto-correlation case.

Figure A.1 is of great help in understanding this question.
Once the Mmin is fixed, for the flat ranges adopted for both M1

0.8 1.0 1.2

13.2

13.5

13.8

14.1

lo
gM

1

12.012.312.612.9
logMmin

0.8

1

1.2

13.213.513.814.1
logM1

FPA
FPA shifted

Fig. 5. Results obtained from the cross-correlation data with flat priors
and fixed cosmology on the cross-correlation data in the two data sets
described in Sect. 2 to obtain constraints on the astrophysical parame-
ters. Priors and results are listed in Table 3. The contours for these plots
are set to 0.393 and 0.865 (see text for details).

and α, the variation is small enough to avoid a clear constraint,
even more if we consider that both parameters are probably
degenerate to a certain degree. Moreover, focusing on M1, the
analysis based on the shifted cross-correlation function is more
constraining than the other one (see e.g. Fig. 6). What is causing
the difference between these two cases might probably be the
first cross-correlation point at θ & 0.2 arcmin which appears to
be lower in the shifted case than in the other. Looking again at
Fig. A.1, it seems that lower values of M1 predict lower ampli-
tude of the cross-correlation function at those scales.

For these reasons, we decided to consider these results sim-
ply as a self-consistency check of the astrophysical parameters
outputs. For the full cosmological analysis, we restricted our-
selves to the priors discussed before and the auto-correlation
results.

Finally, taking into account the results, we can also conclude
that they are robust against small variations in the data set used.
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Fig. 6. Results obtained from the cross-correlation data with flat priors on astrophysical and cosmological parameters, in the two data set for
the cross-correlation data. The limits on the priors for the astrophysical and cosmological parameters and the corresponding results are listed in
Table 4. The contours for these plots are set to 0.393 and 0.865 (see text for details).

4.2. Cosmological parameters

Having shown that using flat priors on astrophysical parame-
ters provides values compatible with the literature, we extend
the cross-correlation function analysis to allow for variations in
the main cosmological parameters, Ωm, σ8, and H0. We would
like to note at this point that the main aim of this work is to
exploit the cross-correlation measurements in order to constrain
these parameters using flat priors on both astrophysical and cos-
mological parameters (FPA FPC). So we first present our results
for this more general case, and then investigate the effects and

possible improvements on estimating our cosmological param-
eters when setting the astrophysical parameters to the Gaus-
sian priors derived from the literature and from auto-correlation
results.

The best-fit posterior distributions of the free parameters is
shown in Fig. 6 (red for the default binning and blue for the
shifted). The best-fit values are listed in Table 4. The solid lines
in Fig. 3 represent the halo model best fit, estimated using the
MCMC approach. In particular, the red is for the main data set,
which gives a χ2 of 8.16 for 6 d.o.f. (corresponding to a reduced
χ2 of 1.36; the d.o.f. are the 12 data points minus the 6 parameters)
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Table 4. Results obtained from the cross-correlation data with flat priors (FPA FPC; second column) on astrophysical and cosmological parameters.

Param Priors FPA FPC FPA FPC shifted

F[a,b] µ σ Peak µ σ Peak
±68 CL 68 CL ±68 CL 68 CL

log(Mmin/M�) F[11.6,13.6] 12.53+0.29
−0.16 0.27 12.61 12.50+0.23

−0.17 0.22 12.53
log(M1/M�) F[13,14.5] – – 14.39 13.74+0.42

−0.51 0.40 13.69
α F[0.5,1.37] – – 0.50 0.89+0.13

−0.39 0.24 0.50
Ωm F[0.1,0.8] 0.54+0.26

−0.08 0.16 0.67 0.52+0.28
−0.09 0.17 0.59

σ8 F[0.6,1.2] 0.78+0.07
−0.15 0.11 0.74 0.80+0.09

−0.17 0.12 0.77
h F[0.5,1.0] 0.76+0.24

−0.08 0.14 1.00 – – 0.85

Notes. From left to right, the columns are the parameters, the priors, and the results (the mean µ with the upper and lower limit at the 68% CL, the
σ, and the peak of the posterior distribution) for the default and shifted binning, respectively. Parameters without a σ value indicate that there is
no constraint at 68% CL, i.e. they are unconstrained.

Table 5. Results obtained from the cross-correlation data with Gaussian astrophysical and flat cosmological priors (GPA FPC; second column).

Param Priors GPA FPC GPA FPC shifted

G(µ,σ) µ σ Peak µ σ Peak
F[a,b] ±68 CL 68 CL ±68 CL 68 CL

log(Mmin/M�) G(12.4,0.1) 12.44+0.10
−0.09 0.09 12.43 12.43+0.09

−0.09 0.09 12.43
log(M1/M�) G(13.95,0.30) 13.92+0.29

−0.25 0.26 13.95 13.89+0.28
−0.27 0.27 13.89

α G(0.92,0.15) 0.92+0.15
−0.15 0.15 0.92 0.90+0.15

−0.15 0.15 0.90
Ωm F[0.1,0.8] 0.51+0.22

−0.16 0.17 0.57 0.52+0.23
−0.13 0.16 0.51

σ8 F[0.6,1.2] 0.84+0.10
−0.10 0.10 0.86 0.87+0.10

−0.10 0.10 0.87
h F[0.5,1.0] 0.79+0.21

−0.07 0.13 1.00 0.78+0.22
−0.07 0.14 1.00

Notes. The column information is the same as in Table 4. In the second column, we list the priors as G(µ, σ) and F[a,b] for the Gaussian and flat
priors, respectively.

and the blue is for the shifted data set, with aχ2 of 9.92 (1.65, when
taking into account the d.o.f.). The green line corresponds to the
parameters obtained running on the main data set except for Ωm
that is set equal to 0.3. In this case, we get χ2 of 13.76 (2.29).

First, the recovered astrophysical parameters are compatible
with the results of the previous section (see Table 3). This also
means that only Mmin is well constrained. Therefore, the conclu-
sion that the results are robust against small variations in the data
sets can also be extended to the cosmological case.

With respect to the cosmological parameter results, they
are not well constrained in this proof of concept, but there are
interesting conclusions that can be drawn. The H0 parameter is
unconstrained, but for σ8 there is a clear broad peak around 0.75
and its posterior distribution indicates an upper limit of <1.0
at the 95% CL. The analysis of Ωm is more complicated, but
interesting at the same time. As clearly shown by Fig. A.1, Ωm
is most sensitive to the cross-correlation measurements on the
largest scales, where the uncertainties are largest (the three last
observations are almost upper limits). This translates into a wide
posterior distribution toward higher Ωm values driven mostly by
the lower value of the last point. On the contrary, there is also
a strong constraint on the lower Ωm value. This analysis implies
that Ωm & 0.24 at the 95% CL.

In order to investigate possible improvements on the cos-
mological constraints, we perform additional analyses with
Gaussian priors on the astrophysical parameters and flat priors
on the cosmological parameters.

The first choice for the Gaussian priors is the values from
the literature described in Sect. 4.1. The priors for these runs are
listed in the second column of Table 5. The remaining columns
list the results of the MCMC for both data sets (same as Table 4).
The best-fit posterior distributions of the free parameters are
shown in Fig. 7 (red for the default binning and blue for the
shifted).

We also analyse the case with Gaussian priors on the astro-
physical parameters fixed with the auto-correlation analysis
results described in Sect. 3.2. Our findings in this case are sum-
marised in Table 6 and Fig. 8.

As expected, the astrophysical parameters are prior dom-
inated. In addition, by imposing Gaussian priors to the
astrophysical parameters the uncertainties in the cosmological
parameters are reduced. This is clearly shown by comparing the
results using the more restrictive priors from the auto-correlation
analysis with the Gaussian priors from the literature. For exam-
ple, the σ8 parameter improves from a σ8 = 0.84+0.10

−0.10 (Gaus-
sian prior from the literature) to σ8 = 0.74+0.03

−0.03 (Gaussian prior
from the auto-correlation analysis). In both cases there is also a
slight correlation between σ8 and M1 parameters as both affect
the cross-correlation function in an opposite way on intermediate
angular scales (see Fig. A.1).

Both Ωm and H0 remain almost unconstrained, as in the flat
prior case. There is slight tendency of H0 toward values above
70 km s Mpc−1, as is discussed in more detail in the next section.
The strong lower limit constraint found with the flat priors for
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Fig. 7. Results obtained from the cross-correlation data with Gaussian astrophysical and flat cosmological priors in the two shifted data sets for
the cross-correlation data. The results are listed in Table 5. The Gaussian priors are set to the µ and σ values presented by Viola et al. (2015), Sifón
et al. (2015), and Pantoni et al. (2019). The contours for these plots are set to 0.393 and 0.865 (see text for details).

Ωm is confirmed by additional analysis. Moreover, using the
auto-correlation Gaussian priors, the posterior distribution of
Ωm shows a peak around 0.41 in the shifted case. This is an
indication that reducing the uncertainties in the observed cross-
correlation function and accurate astrophysical priors can pro-
vide strong independent constraints based on the magnification
bias.

4.3. Comparison with other results

In this section we compare our findings with the cosmologi-
cal constraints obtained using a different observable: the shear
of the weak gravitational lensing. We consider both the CMB
lensing from Planck (Planck Collaboration VIII 2020) and
the cosmic shear of galaxies as measured by several surveys,

focusing on those that are the most constraining to date.
Specifically, we include results from the revised analysis of the
cosmic shear tomography measurements of the Canada-France-
Hawaii Telescope Lensing Survey presented in CFHTLenS
(Joudaki et al. 2017), the first combined cosmological mea-
surements of the Kilo Degree Survey and VIKING based on
450 deg2 data (KV450, Hildebrandt et al. 2020), the first-year
lensing data from the Dark Energy Survey (DES, Troxel et al.
(2018)), together with recent constraints from the two-point cor-
relation functions of the Subaru Hyper Suprime-Cam first-year
data (HSC, Hamana et al. 2020). It is worth noting that these
results span somewhat different redshift ranges and are affected
by completely different systematic effects with respect to the
magnification bias measurements analysed in this paper, which
thus represent a complementary probe to weak lensing.
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Table 6. Results obtained from the cross-correlation data with Gaussian (from the auto-correlation analysis) astrophysical and flat cosmological
priors (autoGPA FPC; second column).

Param Priors autoGPA FPC autoGPA FPC shifted

G(µ,σ) µ σ Peak µ σ Peak
F[a,b] ±68 CL 68 CL ±68 CL 68 CL

log(Mmin/M�) G(12.36,0.01) 12.36+0.00
−0.01 0.01 12.36 12.36+0.00

−0.01 0.01 12.36
log(M1/M�) G(13.64,0.07) 13.64+0.04

−0.04 0.07 13.64 13.64+0.04
−0.04 0.07 13.64

α G(1.2,0.1) 1.20+0.05
−0.05 0.10 1.20 1.20+0.05

−0.05 0.10 1.19
Ωm F[0.1,0.8] 0.53+0.27

−0.06 0.16 0.78 0.49+0.03
−0.16 0.16 0.41

σ8 F[0.6,1.2] 0.74+0.03
−0.03 0.06 0.74 0.76+0.03

−0.03 0.06 0.76
h F[0.5,1.0] 0.79+0.21

−0.06 0.13 1.00 0.79+0.21
−0.06 0.14 1.00

Notes. The column information is the same as in Table 5.
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Fig. 8. Results obtained from the cross-correlation data with Gaussian astrophysical priors from auto-correlation analysis and flat cosmological
priors in the two shifted data sets for the cross-correlation data. The results are listed in Table 6. The contours for these plots are set to 0.393 and
0.865 (see text for details).
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We focus on the comparison to the constraints in the Ωm–σ8
plane since weak lensing is most sensitive to these cosmological
parameters. In particular, cosmic shear approximately constrains
the combination σ8Ω0.5

m , while σ8Ω0.25
m is what is measured by

CMB lensing. These combinations identify degeneracy direc-
tions that are clearly visible in Figs. 9 and 10, where we show
the marginalised posterior contours (68% and 95% CL) for the
above-mentioned data sets. We use MCMC results that have
been publicly released by the different collaborations. It should
be noted that in these comparative figures, in order to be consis-
tent with the results shown in the literature for the experiments
mentioned above, we set the contours to 0.68 and 0.95, which
are different from the values of 0.393 and 0.865 used in the cor-
ner plots shown in the previous sections, and that actually cor-
responds to the relevant 1σ and 2σ levels for a 2D histogram of
samples. The choice of 0.68 and 0.95 contours in this subsection
is for a direct comparison with the literature; the 0.393 and 0.865
selection in the 2D histograms of the corner plots is for a direct
comparison with the 1σ and 2σ levels in the 1D histograms in
the upper part of the same corner plots.

It should be noted that different studies adopt different cos-
mological parameters priors; however, we do not attempt to
adjust them to our fiducial set-up as an in-depth comparison is
beyond the scope of this paper. For completeness, in the figures
we also show results from Planck CMB temperature and polari-
sation angular power spectra (dark blue). They have been known
to be in tension with the CFHTLenS (red) and KV450 (orange)
data, while a better agreement has instead been found with the
displayed HSC (cyan) and DES (green) constraints. For the last,
in particular, Troxel et al. (2018) made the conservative choice
of excluding the non-linear scales where modelling uncertainties
are higher. This also resulted in a reduction of the constraining
power of the data set.

The cosmological constraints derived in this paper are shown
for both of the data sets (grey filled contours and black dashed
curves). The main results, based on the flat prior for both the
astrophysical and cosmological parameters, are shown in Fig. 9.
In Fig. 10, we show how the results can be improved using Gaus-
sian priors on the astrophysical parameters. Even if our data sets
might not seem constraining, two important conclusions can be
drawn from the results. Firstly, the estimates provide a lower
bound Ωm > 0.24 at 95% CL that is robust against the choice
of priors. Secondly, our results do not show the typical degener-
acy that characterises the cosmic shear results. This means that
future more constraining magnification bias samples can offer
a complementary probe able to break the degeneracy (see e.g.
Fig. 9).

The results on Ωm can be better understood looking at
Fig. A.1, which shows how the cross-correlation function
depends on cosmological parameters. It is interesting to see how
the largest angular separations are very sensitive to the matter
density parameter, and how present data disfavour low values of
Ωm.

We note that the data in this paper alone cannot place useful
constraints on the Hubble constant, as is evident from Fig. 11.
This is usually the case even for weak lensing measurements.
However, in most of our cases there is a mild pull towards higher
H0 values.

As a comparison, we also add the vertical grey band, cor-
responding to the Riess et al. (2019) results and the Planck
constraints. However, due to our large error bars on the cross-
correlation data, our results are not competitive with those in the
recent literature and cannot give any hint on the Planck–Riess
et al. (2019) tension problem yet.
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Fig. 9. Ωm–σ8 plot comparing our results using flat priors in the astro-
physical and cosmological parameters (both cases, grey and black) with
results from Planck (blue and dark blue for the lensing only and all
Planck cases, respectively), CFHTLenS (red), KV450 (orange), DES
lensing (green), and HSC (cyan). The contours for these plots are set to
0.68 and 0.95.

4.4. Future developments

This work is meant to show that the magnification bias can
become an additional independent cosmological probe to help
to resolve the current tensions in modern Cosmology. Results
are not yet competitive with current estimation of cosmo-
logical parameters, but some improvements are expected if
smaller error-bars on the cross-correlation measurements can
be achieved, especially on larger scales where the Ωm and H0
parameters mostly affect the cross-correlation function.

First of all, it should be noted that this work is based on
just one (relatively large) redshift bin. As shown in González-
Nuevo et al. (2017), a tomographic analysis can be done with
such cross-correlation measurements. When we divide the sam-
ple into redshift bins, we reduce the sample size and we expect
the error bars to increase. This clear disadvantage might be coun-
terbalanced by easier constraining of the cosmological param-
eters, since only sources with very similar redshift and the
known evolution of the cosmological parameters are being taken
into consideration. This is a possibility that needs to be further
explored.

Regarding the reduction of the error bars, the statistics can be
increased enlarging both the lenses and the background source
samples. As for the lenses, the sample might be increased with
current data by considering sources with photometric redshifts.
On the one hand, the number of sources with photometric
redshifts is larger than that of sources with the spectroscopic
redshifts. On the other hand, photometric redshifts are less accu-
rate, and in this case the application of the cross-correlation that
needs very clearly redshift-separated samples of foreground and
background sources might not be straightforward. In the future
more precise catalogues of lens sources might be available, such
as from DES (Dark Energy Survey Collaboration 2016), the
Javalambre Physics of the Accelerating Universe Astrophysical
Survey (J-PAS, Benitez et al. 2014) and the Euclid (Laureijs et al.
2011) experiments/missions.
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Fig. 11. Posterior distributions on H0 derived using the different data
sets and assuming different priors for the astrophysical parameters. As
a comparison the result by Riess et al. (2019; grey band) and Planck are
also shown.

For the background sources, the number of SMGs might be
increased by considering the catalogue of the whole area cov-
ered by Herschel (e.g. by investigating the possibility of using
the Herschel Extragalactic Legacy Project, HELP; Shirley et al.
2019), and not just H-ATLAS data. Moreover, it will surely be
increased by catalogues of new instruments in the near-infrared,
such as the James Webb Space Telescope (JWST; Gardner et al.
2006).

5. Conclusions

The aim of this work was to test the capability of magnifica-
tion bias with high-z SMGs as a cosmological probe. As demon-
strated in González-Nuevo et al. (2017) and Bonavera et al.

(2019), magnification bias is a powerful tool for constraining
the free parameters of the HOD model. We now exploit cross-
correlation data to constrain not only astrophysical parameters
(Mmin, M1, and α), but also some of the cosmological ones. In
particular, we realised that at this early stage the ns, ΩB, and ΩΛ

parameters cannot be constrained. We thus focus our analysis on
Ωm, σ8, and H0 for this proof of concept.

With our current results Ωm and H0 cannot be well con-
strained, although we showed that magnification bias can be a
way to set constraints on these parameters, but we conclude that
the most important issue regarding the Ωm and H0 parameters is
the uncertainty on the cross-correlation data on large scales. So
our future efforts must be focused on reducing the error bars on
the data set. What we need is a larger area for the background
sources to get a wider area and achieve a better statistics.

Moreover, we do not find a degeneracy between Ωm and σ8.
If any, the correlation might be opposite to the common one (see
Fig. 10): lower σ8 implies in our case lower Ωm in order to com-
pensate the effect on large scales.

With all the cases studied in this work we can set a lower
limit of 0.24 at the 95% CL on Ωm, and we see a mild preference
towards high H0 values. Since Ωm was allowed to vary in the
range [0.1−0.8], this lower bound is a very robust conclusion
and its importance is clearly shown in the comparison with the
results from weak lensing data: our lower bound still imposes
restrictions to the other weak lensing results.

For our constraints on σ8, we obtained only a tentative peak
around 0.75 but an interesting upper limit of σ8 . 1 at 95% CL.
By imposing Gaussian priors to the astrophysical parameters,
the constraints are improved: σ8 = 0.74+0.03

−0.03 using the Gaussian
prior from the auto-correlation analysis.

Finally, our estimate of the H0 parameter is still not accu-
rate, being inclusive of the Planck and the Riess et al. (2019)
results. Better results might be obtained if better measurements
and smaller error bars for the cross-correlation points on large
scales can be achieved.
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Appendix A: Cross-correlation function sensitivity
to the model’s parameters

Figure A.1 shows the dependence of the cross-correlation func-
tion with each of the model’s parameters: Mmin, M1, α, Ωm, σ8,
and H0 (from left to right and top to bottom).

Of the astrophysical parameters, the most sensitive one is
Mmin. Considering the value ranges used in this work for M1
and α, it is clear that the variation is located only at interme-
diate angular scales and it is small compared with the obser-
vational uncertainties. This explains that both parameters are
almost unconstrained with the cross-correlation data alone.

With respect to the cosmological parameters, the most sen-
sitive one is σ8. Its effect on the cross-correlation function are

most important on intermediate angular scales, but it also has a
non-negligible effect on large angular scales. On the contrary, the
effect of Ωm is only important on large angular scales and neg-
ligible on lower angular scales. Moreover, higher values of σ8
increase the cross-correlation signal, while the opposite occurs
for Ωm. This explains how the usual Ωm–σ8 degeneracy could
be broken with the cross-correlation function once more accu-
rate observation at large angular scales are available.

Finally, the effect produced by H0 is relevant only on very
large angular scales (even larger than in the Ωm case). As cur-
rently these angular scales are those observed with the largest
uncertainties, H0 is unconstrained.
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Fig. A.1. Dependency of the cross-correlation function with each of the model’s parameters (maintaining the others fixed).
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