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Abstract

Bone scaffolds are widely used as one of the main bone substitute materials. However,

many bone scaffold microstructure topologies exist and it is still unclear which topology to

use when designing scaffold for a specific application. The aim of the present study was to

reveal the mechanism of the microstructure-driven performance of bone scaffold and thus

to provide guideline on scaffold design. Finite element (FE) models of five TPMS (Diamond,

Gyroid, Schwarz P, Fischer-Koch S and F-RD) and three traditional (Cube, FD-Cube and

Octa) scaffolds were generated. The effective compressive and shear moduli of scaffolds

were calculated from the mechanical analysis using the FE unit cell models with the periodic

boundary condition. The scaffold permeability was calculated from the computational fluid

dynamics (CFD) analysis using the 4�î4�î4 FE models. It is revealed that the surface-to-vol-

ume ratio of the Fischer-Koch S-based scaffold is the highest among the scaffolds investi-

gated. The mechanical analysis revealed that the bending deformation dominated

structures (e.g., the Diamond, the Gyroid, the Schwarz P) have higher effective shear mod-

uli. The stretching deformation dominated structures (e.g., the Schwarz P, the Cube) have

higher effective compressive moduli. For all the scaffolds, when the same amount of change

in scaffold porosity is made, the corresponding change in the scaffold relative shear modu-

lus is larger than that in the relative compressive modulus. The CFD analysis revealed that

the structures with the simple and straight pores (e.g., Cube) have higher permeability than

the structures with the complex pores (e.g., Fischer-Koch S). The main contribution of the

present study is that the relationship between scaffold properties and the underlying micro-

structure is systematically investigated and thus some guidelines on the design of bone

scaffolds are provided, for example, in the scenario where a high surface-to-volume ratio is

required, it is suggested to use the Fischer-Koch S based scaffold.
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Introduction
In recent years, due to the increased human life expectancy and the increased number of bone
diseases and traumas [1], there has been an increasing demand for organ transplantations and
consequently a high demand for new artificial tissue substitutes [2]. Porous scaffolds are con-
sidered to be one of the best candidates for bone substitute materials because macroscopically
the scaffold stiffness can be tuned to match to that of the human bones and microscopically
the porous structure can facilitate the cell behaviors [3±5]. Additionally, the emerging novel
manufacturing technologies, such as the additive manufacturing, enable the productions of
porous scaffolds with complex micro-architectures [6±8]. However, designing optimized tissue
scaffolds is still a challenging work due to the conflict in the mechanical and biological needs
of scaffolds [9]. For instance, high porosity is a desirable property in satisfying the biological
requirements, but such attribute reduces the mechanical compatibility of scaffolds, such as the
effective modulus, the failure strength and the fatigue life [10, 11].

Recent studies have showed that not only the pore size and porosity, but also the curvature
of pores, pore shape, etc. play an important role in the performance of porous scaffolds [12±
15], which makes the design of scaffold microstructure a crucial step. Because the scaffold
properties are mainly determined by the scaffold topology (i.e., the type of unit cell), the selec-
tion of an appropriate scaffold topology becomes an essential step in the relevant fields. With
regard to the scaffold topology, recent years have seen the design trend moving from the tradi-
tional type (cube, Octa, Octet, etc.) to the Triple Periodic Minimal Surface (TPMS)-based type
(Diamond, Gyroid, etc.) [16]. One of the reasons is that the traditional scaffolds have sharp
convex edges and corners, which is not preferred in the tissue growth process [17]. On the
contrary, the TPMS-based scaffolds have a mean curvature of zero [18], a high surface-to-vol-
ume ratio [19], the ease of functional grading [20] and a variable /tunable electrical/thermal
conductivity [21], which can make their properties anatomical location-specific and subject-
specific and consequently can largely increase their potentials in the applications in biomedi-
cine and relevant fields [22]. In recent years, the functionally graded scaffold and other novel
design strategy has been used to design scaffolds [23±28], because the bionic scaffolds, which
have the mechanical and biological properties similar to those of the replaced natural tissues,
can be achieved using these methods. However, when designing uniform or functionally
graded scaffolds for a specific application, it is still unclear which scaffold topology is the best
candidate among the vast TPMS scaffold topologies, e.g., Gyroid, Diamond, Schwarz P. This is
because the relationship between the scaffold properties and the underlying topologies is still
unclear.

To understand the relationships between the scaffold properties and the underlying topolo-
gies, a number of experimental and numerical studies have been performed in recent years [3,
11, 29±36]. For examples, Egan et al. (2017) compared the mechanical and permeability behav-
iors of eight traditional scaffolds (Cube, BC-Cube, Octet, etc.); Zhao et al., (2018) evaluated the
effect of tetrahedron and octahedron pore geometries on the fatigue and cell affinity behaviors
of porous scaffolds; Wang et al., (2018) investigated the effect of various diamond crystal lat-
tices on osteointegration and osteogenesis; Almeida and Bartolo (2014) evaluated the mechani-
cal behaviors of two TPMS-based scaffolds, namely the Schwarz and Schoen and Maskery
et al. (2018a) compared the mechanical behaviors of three TPMS-based scaffolds, i.e., Gyroid,
Diamond and Primitive. These studies provided valuable data for the scaffold design. How-
ever, these studies only investigated either the traditional scaffolds [30] or just several TPMS-
based scaffolds [29], or only focused on one property of the scaffolds [31, 32]. A comprehen-
sive comparison of the morphological, mechanical and permeability properties of different
TPMS-based scaffolds is still missing and the mechanism of the microstructure-driven scaffold
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properties is still unclear. This comprehensive comparison will help the selection of appropri-
ate scaffold topologies in the design of uniform or functionally graded scaffolds.

The aims of the present study were to reveal the mechanism of the microstructure-driven
performance of bone scaffolds and thus to provide the guideline on scaffold design.

Materials and methods

The finite element models of bone scaffolds
Finite element (FE) models of five widely-used TPMS-based scaffolds and three traditional
scaffolds were generated. When evaluating the mechanical properties of the scaffolds, the scaf-
fold unit cell model with the periodic boundary condition was used. The unit cell (one repre-
sentative periodic microstructure) models of the TPMS-based scaffolds were generated
following the methodology presented in the literature [37, 38]. In brief, the software of
K3DSurf developed by Abderrahman Taha (http://k3dsurf.sourceforge.net) was used to gener-
ate the surface models of the unit cell with the dimension of 2.5� 2.5� 2.5 mm3 (Fig 1A).
Afterwards, the unit cell surface models were imported into SolidWorks 2017 (Dassault Sys-
temes SolidWorks Corporation, Waltham, MA) to generate the TPMS network solid model,
where the domain to one side of the TPMS represents the solid material and the other side

Fig 1. Workflow for analyzing the mechanical properties and permeability of TPMS-based scaffolds: (a) and (b) generation of
the solid model of the TPMS unit cell, (c) calculation of the effective compressive and shear moduli of the scaffolds using unit
cell model with periodic boundary conditions, (d) calculation of the scaffold permeability using the computational fluid
dynamics analysis, (e) and (f) design and additive manufactured scaffold, and (g) mechanical testing of the scaffold.

https://doi.org/10.1371/journal.pone.0238471.g001
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represents the void domain (Fig 1B). The geometric models were then imported into ABAQUS
(Version 6.13, Dassault Systems SIMULIA Ltd, Providence, RI), where the FE meshes were
generated and the FE calculations were performed (Fig 1C). To facilitate the application of
periodic boundary condition, the void domain within the unit cell model was also discretized
into FE meshes. The unit cell model, including the solid and the void domains, was meshed
using the second-order three-dimensional (3D) tetrahedral elements (C3D10) (Fig 1C). The
unit cell models of the traditional scaffolds with the same dimension, i.e., 2.5� 2.5� 2.5 mm3,
were generated in ABAQUS by giving the dimensions of the struts (i.e., height, width, and
diameter).

When evaluating the permeability of the scaffolds, the unit cell model was assembled to
form the 4� 4� 4 FE models in ANSYS Workbench (Release 15.0.3, ANSYS Inc., Cannonsburg,
PA) (Fig 1D). The number of repetition of the unit cell was selected based on the criterion that
the computational time should be efficient and the errors induced by the boundary conditions
should be minimal [39]. A sensitivity study showed that the relative difference between the
permeability calculated from the 4� 4� 4 and the 5� 5� 5 FE models was as small as 0.1% (i.e.,
the boundary effect has been removed). Therefore, the 4� 4� 4 FE model was used in the pres-
ent study.

In the present study, the TPMS models of Diamond, Gyroid, Schwarz P, Fischer-Koch S
and F-RD were created (Fig 2), because they are the basic TPMS unit cells [12] and are of high
interest in the biomedicine and relevant fields [29, 31, 32]. The approximated periodic nodal
equations for the five TPMS scaffolds are presented inTable 1and different scaffold porosities
can be obtained by changing the constant (C) in the TPMS nodal equations. The traditional
scaffolds of Cube, FD-Cube and Octa were created (Fig 2), because they have representative
mechanical and permeability behaviors compared to other traditional scaffolds [30].

The morphological, mechanical and permeability properties of scaffolds
The scaffold porosity (; ) and the surface-to-volume ratio (��� ) were calculated to describe the
morphological properties of scaffolds. Scaffold porosity was calculated as the value using the
scaffold void volume divided by its nominal volume (i.e., the volume of the cube encompassing

Fig 2. Unit cell models of five TPMS-based (left) and three traditional (right) scaffolds analyzed in the present study.

https://doi.org/10.1371/journal.pone.0238471.g002

Table 1. The periodic nodal equation for the TPMS structures investigated in the present study.

TPMS
structures

Nodal equations (� ,� and � are the nodal coordinates and C is a constant)

Diamond � � = sin(� )sin(� )sin(� ) + sin(� )cos(� )cos(� ) + cos(� )sin(� )cos(� ) + cos(� )cos(� )sin(� )ÐC

Gyroid � 	 = cos(� )sin(� )+cos(� )sin(� )+cos(� )sin(� )ÐC

Schwarz P � � = cos(� ) + cos(� ) + cos(� )ÐC

Fischer-Koch S � 
 = cos(2� )sin(� )cos(� ) + cos(2� )sin(� )cos(� ) + cos(2� )sin(� )cos(� )ÐC

F-RD � � = 8cos(� )cos(� )cos(� ) + cos(2� )cos(2� )cos(2� )-cos(2� )cos(2� ) + cos(2� )cos(2� )+cos(2� )cos
(2� )±C

https://doi.org/10.1371/journal.pone.0238471.t001
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the scaffold) and��� was calculated as the value using the scaffold inner surface area divided
by the nominal volume.

The normalized effective compressive (� ) and shear moduli (	 �) were calculated to
describe the mechanical behaviors of scaffolds. When evaluating the effective elastic moduli,
the base material of Ti-6Al-4V was chosen for the scaffold. Therefore, a Young's modulus of
110.0 GPa [40] and a Poisson's ratio of 0.34 were defined for the solid domain and no nonlin-
ear mechanical properties were defined because of the linear elastic simulation. In the FE unit
cell model, a Young's modulus of 1.0 MPa and a Poisson's ratio of 0.45 [41] were defined for
the void domain to facilitate the definition of periodic boundary condition, because in some
unit cell models, the scaffold solid phase finished at one exterior surface and there were no cor-
responding elements in the opposite surface. Using the FE unit cell model, the effective elastic-
ity tensor for each scaffold was first derived by solving the material constitutive equations,
established by defining three individual loading, i.e.,��� = 0.01,��� = 0.01,���� = 0.01 [42, 43].
The reason for defining three individual loading is that all the scaffolds investigated have three
nonzero constants in the elasticity matrix and can be regarded as the structure with a cubic
symmetry [42]. In the loading scenarios, while one strain component was applied, other strain
components were left free. The effective compressive (� � ) and shear moduli (	 � ) of scaffold
were then calculated from the elasticity tensors [44]. To eliminate the influence of the base
material, the effective compressive (� � ) and shear moduli (	 � ) were normalized to the com-
pressive and shear moduli of Ti-6Al-4V, respectively. The normalized effective compressive
(� ) and shear moduli (	 �) were formulated as below:

�  ˆ � � =� �� …1†

	 � ˆ 	 � =	 �� …2†

where,� � and	 � are the effective compressive and shear moduli of the scaffold;� �� (110.0
GPa) and	 �� (41.05 GPa) are the elastic and shear moduli of Ti-6Al-4V. When calculating the
mechanical properties, a mesh convergence study was performed to ensure that the influence
of the mesh size on the FE predicted compressive and shear moduli was less than 0.5%
(regarded as converged) (Fig 3) and the element size of approximately 0.1 mm was used,

Fig 3. Demonstration of the influence of mesh size on the scaffold mechanical property (mesh convergence) using the Gyroid with the porosity of 0.5.

https://doi.org/10.1371/journal.pone.0238471.g003
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which resulted in approximately 0.06 million elements for the Fischer-Koch S unit cell model
with the porosity of 0.55.

The scaffold permeability (� ) was calculated to evaluate the biological behaviors of the scaf-
folds. The FLUENT module in ANSYS Workbench was used to perform the Computational
Fluid Dynamics (CFD) analysis. When calculating the permeability, the scenario of unidirec-
tional fluid flow going through the scaffold was simulated and the FE model of the void spaces
within the solid scaffold was created. The void domains were meshed using the tetrahedral ele-
ment with the size of approximately 0.2 mm, which resulted in approximately 0.64 million ele-
ments for the Fischer-Koch S scaffold with the porosity of 0.55. The following boundary
conditions were defined when calculating the scaffold permeability: walls were placed around
the four sides of the model and in the areas which were in contact with the solid scaffold, to
represent a flow channel (Fig 3C); the fluid with a velocity of 0.1 mm/s was assigned to the
inlet of the scaffold; zero gauge pressure was adopted on the outlet, and no-slip conditions was
imposed [45]. The fluid was modeled as the incompressible water with a viscosity of 0.001 Pa
and a density of 998.2 kg/m3 [45] and the scenario of laminar flow was simulated. The scaffold
permeability (� ) was determined using the Darcy's relationship [45, 46] as follows:

� ˆ
� m�
� D�

…3†

where,� is the fluid flow rate,� is the dynamic fluid viscosity,� is the length of the cubic scaf-
fold, � is the cross-sectional area of the scaffold and�ï� is the pressure drop (units of Pa). The
pressure drop was calculated by using the average pressure at the inlet (the pressure at the out-
let was zero) and then the scaffold permeability was calculated using Eq (3).

Additionally, for comparison, the scaffold permeability was calculated based on the
Kozeny-Carmen's empirical formula [47]:

� � ˆ
; 3

1

2�2
…4†

where,; 1 is the scaffold porosity and� is the ratio of the inner pore surface area to the total vol-
ume of the sample.

The relationships between the mechanical properties of the scaffold and the scaffold poros-
ity and between the permeability and the scaffold porosity were investigated. Regarding the
mechanical property, to reflect the underlying physical phenomena, the relationship between
the relative elastic compressive modulus and the scaffold volume fraction were described using
the exponential function proposed by Gibson and Ashby [31, 32]:

� � ˆ � 1r
� ‡ � 0 …5†

where,� is the relative volume fraction of the scaffold (� = 1� ; ), � 0 is the offset of the elastic
modulus,� 1 and� are the material constants. The values of� 1, � and� 0 were obtained by fit-
ting Eq (5) to the relationship curve of the scaffold elastic modulus and the volume fraction. It
is reported in the literature that the value of the prefactor� 1 is in the range from 0.1 to 4.0, the
value of� is approximately 2.0 when the deformation of the cellular struts is bending-domi-
nated and� is approximately 1.0 when the deformation is stretching-dominated [31, 32]. In
this paper, the values of� 1, � and� 0 were determined and then the deformation features for
different scaffolds were discussed. Regarding the scaffold permeability and the surface-to-vol-
ume ratio, the statistical regression equations (quadratic or other forms) and the coefficient
of determinations (R2) were computed for the relationships between them and the scaffold
porosity. The reasons for deriving these statistical regression equations are to enable the
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interpolation of the data points to the full scaffold porosity range and to facilitate the scaffold
design by using these relations. In the present study, for each type of scaffold, five FE models
with different porosities were created, the corresponding mechanical and permeability proper-
ties were obtained and then the values at other porosities were worked out by the interpolation
using the derived fitting equations.

Validation of the predictions of the FE models of scaffolds
The compressive elastic modulus of the scaffold predicted from the FE simulation was vali-
dated using the mechanical testing data. The Gyroid and Diamond-based scaffolds were
selected and three scaffold porosities between 50% and 80% per TPMS type were designed.
The dimension of the unit cell model was 2.5� 2.5� 2.5 mm3 and the dimension of the scaffold
sample was 17.5� 12.5� 12.5 mm3 (7� 5� 5 unit cells) (Fig 1E). The designed Gyroid and Dia-
mond-based scaffolds were produced using the additive manufacturing method of Selective
Laser Melting (SLM) (Renishaw AM250, Renishaw plc., Gloucestershire, UK) with the scan-
ning speed of 0.04 m/s, the laser power of 350.0 W and the hatch angle of 90 degrees (Fig 1F).
The defected scaffolds, i.e. the deviation of the porosity from the design value is larger than
5%, were disposed and five samples per scaffold porosity were selected. Then the scaffolds
were placed on the MTS Landmark1 Servohydraulic Test Systems (MTS Systems Corpora-
tion, Eden Prairie, MN) and the quasi-static testing was performed, where the crosshead speed
was 0.5 mm/min (Fig 1G). The effective compressive moduli were calculated from the
mechanical testing and used to validate the predictions from the FE analysis.

Results

Validation of the FE models of scaffolds
A representative stress-strain curve from the mechanical testing of scaffold is presented inFig
4. The effective compressive moduli of the Gyroid and Diamond-based scaffolds predicted
from the FE analysis were compared to those obtained from the experimental testing
(Table 2). For both the Gyroid and Diamond based scaffolds, the differences between the FE
and experimental values (using the experimental data as the reference) are within 10%
(Table 2).

The effective compressive and shear properties of scaffolds
The relationships between the normalized effective compressive modulus and the porosity,
between the normalized effective shear modulus and the porosity are plotted inFig 5. The
compressive moduli of the Schwarz P and Cube-based scaffolds are the highest, followed by
the FD-Cube, the Octa, the Fischer-Koch S, the Gyroid, the F-RD and the Diamond-based
scaffolds. The shear moduli of the Diamond-based scaffold are the highest, followed by the
F-RD, the Gyroid, the Fischer-Koch S, the Octa, the FD-Cube, the Schwarz P and the Cube-
based scaffolds (Fig 5B).

For each type of scaffold, the normalized shear modulus is highly linearly correlated with
the normalized compressive modulus (R2 > 0.99) (Fig 5C). The slopes of all the linear regres-
sion lines are larger than one. The slope for the Diamond-based scaffold is the highest (	 � =
3.16�  + 0.03), followed by the F-RD (	 � = 2.73�  + 0.02), the Gyroid (	 � = 2.25�  + 0.03),
the Fischer-Koch S (	 � = 2.51�  + 0.03), the Octa (	 � = 1.65�  + 0.07), the FD-Cube (	 � =
2.73�  + 0.02), the Schwarz P (	 � = 1.59� Ð0.09) and the Cube (	 � = 1.64� Ð0.17) based
scaffolds. On the other hand, except for the cube-based scaffold, almost all the points investi-
gated in the present study lies in the upper side of the diagonal line (i.e.,	 � = � ).
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The values of� 1, � and� 0 for different scaffolds are presented inTable 3. The values of� 1,
� and� 0 for the Diamond, Gyroid and Fischer-Koch S based scaffolds agree well with the val-
ues reported in literature [31, 32]. The values of the parameter C1 for all the scaffolds are
between 0.1 and 4.0, which is also in good agreement with the literature [31, 32]. The values of
� for the Diamond, the Gyroid, the F-RD and the Fischer-Koch S based scaffolds are close to
2.0, while they are close to 1.0 for the Schwarz P, Cube, the FD-Cube and the Octa based
scaffolds.

Fig 4. A representative stress-strain curve obtained from the mechanical testing of additively manufactured
scaffold.

https://doi.org/10.1371/journal.pone.0238471.g004

Table 2. Comparison of the effective compressive moduli of the TPMS-based scaffolds predicted from the finite element analysis with the experimental testing data
(presented as the mean� standard deviation, 5 samples per porosity per topology).

Porosity = 0.51 Porosity = 0.67 Porosity = 0.76

Gyroid Experiment (n = 5) 19.84� 0.81 GPa 8.39� 0.72 GPa 3.98� 0.62 GPa

FE prediction 21.59 GPa 9.09 GPa 4.37 GPa

Difference (%) 8.82% 8.30% 9.73%

Porosity = 0.54 Porosity = 0.66 Porosity = 0.79

Diamond Experiment (n = 5) 15.78� 0.73 GPa 8.07� 0.62 GPa 3.17� 0.51 GPa

FE prediction 16.51 GPa 8.71 GPa 3.42 GPa

Difference (%) 4.63% 7.93% 7.89%

https://doi.org/10.1371/journal.pone.0238471.t002
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The surface-to-volume ratio and permeability properties of scaffolds
The relationship between the surface-to-volume ratio (��� ) of the scaffolds and the porosity is
presented inFig 6. For all the scaffolds except the Octa-based one, the surface-to-volume ratio
is not a monotonic function of the porosity and the surface-to-volume ratios are the highest
when the porosity is 0.5, and start to decrease when the porosity is away from 0.5, the reason
for which could be that the overlapped inner surfaces increase when the porosities get lower
and there are fewer inner surfaces with the increase of the scaffold porosity. The surface-to-

Fig 5. Comparison of the compressive and shear properties of scaffolds: (a) the relationship between the normalized effective compressive modulus and
scaffold porosity, (b) the relationship between the normalized effective shear modulus and scaffold porosity, and (c) the relationship between the normalized
effective shear and compressive moduli.

https://doi.org/10.1371/journal.pone.0238471.g005
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volume ratio of the Fischer-Koch S-based scaffold is the highest, followed by the F-RD, the
FD-Cube, the Diamond, the Gyroid, the Cube and the Schwarz P-based scaffolds. Quadratic
relationships were found between the surface-to-volume ratio and the porosity (Table 4) and
all the fits have R2 > 0.99. The interpolated values using the fitted quadratic relationships and
the comparison of the surface-to-volume ratio in the porosity range from 0.3 to 0.7 are pre-
sented inFig 6B.

The relationship between the scaffold permeability (calculated from Darcy's law) and the
porosity is presented inFig 7A. The permeability of the Cube-based scaffold is the highest, fol-
lowed by the Schwarz P, the Gyroid, the Diamond, the FD-Cube, the Octa, the F-RD and the
Fischer-Koch S-based scaffolds. Quadratic relationships are not always the best to describe the
relationships between the scaffold permeability and the scaffold porosity. To achieve a high
coefficient of determination (R2), different relationships have to be used for different

Table 3. Gibson-Ashby parameters for different scaffolds; all fittings have R2 > 0.99.

Scaffold type � � � � �

Diamond The present study 0.743 2.081 0.0021 Bending

Maskery et al., 2018a 0.750 2.102 0.0032

Gyroid The present study 0.919 2.131 -0.0011 Bending

Maskery et al., 2018a 1.020 2.405 0.0021

Schwarz P The present study 0.950 0.863 -0.2193 Stretching

Maskery et al., 2018a 0.920 1.001 -0.1724

F-RD The present study 0.955 1.920 -0.0472 Bending

Fischer-Koch S The present study 0.918 2.322 0.0242 Bending

Cube The present study 0.672 1.216 0.0001 Stretching

FD-Cube The present study 0.689 1.361 -0.0002 Stretching

Octa The present study 0.523 1.474 0.0002 Stretching

https://doi.org/10.1371/journal.pone.0238471.t003

Fig 6. Relationship between the surface-to-volume ratio of the scaffold and the scaffold porosity: (a) comparison in the full range of the scaffold porosity and (b) the
interpolated values and comparison in the range of scaffold porosity from 0.3 to 0.7.

https://doi.org/10.1371/journal.pone.0238471.g006
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topologies as presented inTable 4and all the fits have R2 > 0.99. Regarding whether the scaf-
fold permeability correlates with its deformation mechanism (i.e., whether the stretching
deformation dominated structures have a higher permeability than the bending deformation
dominated structures, or vice versa), no trend is found in the present study.

The relationship between the permeability calculated from the Kozeny-Carman's relation
and that calculated from the Darcy's law is presented inFig 7B. All the points lies in the upper
side of the diagonal line (� � = � ). When the scaffold permeability increased (i.e., porosity
increased), the points moved further away from the diagonal line. Corresponding to the per-
meability calculated from Darcy's law, the one calculated from Kozeny-Carman's relation is
the highest for the Schwarz P-based scaffold, followed by the Gyroid, Diamond, the Fisher-
Koch S, the Octa, the FD-Cube and the Cube based scaffolds (Fig 7B).

Discussion
In the present study, the morphological, mechanical and permeability properties of five com-
monly used TPMS-based scaffolds and three traditional scaffolds were analyzed using the
finite element analysis for the aim to provide some guidelines on the design of bone scaffold.

The validation of the FE predictions is necessary, because the scaffolds are produced using
the additive manufacturing technique (SLM), in which process the properties of the scaffolds
can be influenced by the build orientation, the un-melted powders, the discrepancy between
the produced scaffold geometry and the nominal Computer-aided Design (CAD) input, etc.
[48, 49]. Therefore, the validation is to assure that the FE models developed in the present
study can well predict the mechanical behavior of additively manufactured scaffolds. Neverthe-
less, an acceptable discrepancy of within 10.0% is found between the FE predictions and the
experimental results, which is in the same order as that reported in the literature [48]. In the
present study, the experimentally measured compressive elastic moduli are smaller than the
FE predicted results, which could be caused by the partially melted and imperfectly bonded
powders in the produced scaffolds. The permeability predicted from the CFD analysis per-
formed in the present study is not validated. However, previous studies have found a highly
linear correlation between the permeability derived from CFD analysis and the experimental
results (with a factor of approximately 0.27), concluding that the CFD analysis is a reliable tool
for estimating the scaffold permeability [50, 51]. This is confirmed by the fact that the range of
permeability (1.0� 10� 10m2 to 1.0� 10� 8 m2) predicted in the present study agrees with the
experimental data using the flow chambers [52, 53].

The analysis on the Gibson-Ashby fitting revealed that the deformations of the Diamond,
the Gyroid, the F-RD and the Fischer-Koch S based scaffolds are bending dominated, while

Table 4. The regression equations for the scaffold surface-to-volume ratio and the permeability as a function of
the scaffold porosity (denoted as; and ranged from 0.0 to 1.0).

Surface-to-volume ratio [mm-1] Permeability [10� 7 m2]

Diamond ��� = -3.87; 2 + 4.05; + 0.49 (R2 = 0.996) � = 0.01� 5.05; (R2 = 0.992)

Gyroid ��� = -3.52; 2 + 3.80; + 0.22 (R2 = 0.994) � = 0.01� 4.87; (R2 = 0.991)

Schwarz P ��� = -2.62; 2 + 2.73; + 0.24 (R2 = 0.995) � = 0.01� 5.55; (R2 = 0.992)

F-RD ��� = -6.16; 2 + 5.91; + 0.57 (R2 = 0.994) � = 0.89; 2±0.48; + 0.07 (R2 = 0.995)

Fischer-Koch S ��� = -5.98; 2 + 6.08; + 0.68 (R2 = 0.994) � = 0.59; 2±0.29; + 0.04 (R2 = 0.996)

Cube ��� = -3.26; 2 + 3.53; + 0.14(R2 = 0.995) � = 0.01� 5.47; (R2 = 0.991)

FD-Cube ��� = -4.33; 2 + 4.67; + 0.39(R2 = 0.995) � = 1.25; 4.20(R2 = 0.992)

Octa ��� = -9.02; 2 +12.13; - 2.50(R2 = 0.995) � = 0.01� 5.27; (R2 = 0.991)

https://doi.org/10.1371/journal.pone.0238471.t004
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the deformations of the Schwarz P, the Cube, the FD-Cube and the Octa based scaffolds are
stretching dominated. This mechanism can be explained by the arrangement of the scaffold
microstructure, for example, in the Schwarz P based scaffold, the main beams/structures are
aligned in the compressive/tensile loading direction and consequently its ability to resist com-
pression and tension is high. The bending or compression mechanism is also reflected in the
scaffold modulus-porosity relationship curves (Fig 5), i.e., at the same porosity, the stretching
dominated structures (e.g., Cube, Schwarz P) have higher effective compression moduli, while
the bending dominated structures (e.g., Diamond) have higher effective shear moduli. The val-
ues of� 1, � and� 0 obtained for the Diamond, the Gyroid and the Schwarz P based scaffolds

Fig 7. Comparison of the permeability of scaffolds: (a) the relationship between the scaffold permeability (calculated
from Darcy's law) and porosity, and (b) the relationship between the permeability calculated from Kozeny-Carman's
relation and that from Darcy's law.

https://doi.org/10.1371/journal.pone.0238471.g007
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agree well with the literature data [31, 32], reflecting the appropriate settings in the FE analysis
performed in the present study.

Regarding the mechanical and permeability properties of different TPMS-based scaffolds, it
is revealed that different scaffolds exhibit different properties, making them suitable for differ-
ent applications. For example, the Schwarz P-based scaffold has the straight and smoothed
structures aligned in the compressive loading direction, and consequently the compressive
modulus and the permeability of the Schwarz P-based scaffold are high and the shear modulus
is low, making it potentially suitable for the scenario where a high tension/compression is
required, such as the spinal cage. The Diamond, the Gyroid, the Fischer-Koch S and the F-RD-
based scaffolds have high shear moduli, but relatively low compressive moduli, making them
generally suitable for the applications necessitating energy absorption rather than compression
or tension stiffness [54]. The Fischer-Koch S-based scaffold has a high surface-to-volume ratio,
but a low permeability because of the curved microstructures. Therefore, the Fischer-Koch S
topology may be the most favorable one in the scenarios where nutrient is not limiting, e.g., in
the application of bone fusion. It should also be noted that an ideal scaffold is the one which
has the mechanical and biological properties similar to those of the replaced natural tissues
[55, 56]. Therefore, optimizing and tuning the microstructure of scaffolds to mimic the behav-
ior of the natural bone is the ultimate goal in scaffold design. It should be noted that the
Young's modulus of the scaffold designed in the present study can be tuned from approxi-
mately 5.50 GPa to 33.00 GPa, which make them a good candidate for mimicking the mechan-
ical properties of cortical bone (the modulus is ranged from approximately 5.00 GPa to 20.00
GPa) [57]. However, for mimicking the mechanical properties of trabecular bone (the modu-
lus is ranged from approximately 0.15 GPa± 1.65 GPa) [57], the Ti-6Al-4V scaffold is too stiff
and scaffolds made from other materials such as polymer should be used.

Regarding the comparison between the properties of the TPMS-based scaffolds and those
of the traditional scaffolds, it is revealed in the present study that at the same porosity, the
mechanical and permeability properties of the TPMS-based scaffolds are not always higher to
those of the traditional scaffolds. For example, the compressive modulus of the Cube-based
scaffold are the highest among all the scaffolds investigated, which could be due to the reason
that the Cube-based scaffold has the highest proportion of beams aligned in the compressive
loading direction. However, it should be noted that because there is no diagonal element in the
Cube scaffold, its ability to resist the shear force is low and consequently the shear modulus of
the Cube-based scaffold is the lowest. Additionally, it is revealed that the permeability of the
Cube-based scaffold is the highest, the reason for which could be that the Cube-based scaffold
has relatively straight and smooth surfaces. For clinical applications, the Cube topology is
potentially favorable in the scenarios where the shear behavior is not limiting and the inter-
connective pores and compressive modulus are desired, for example, in the application of spi-
nal cage. It should be noted that although at the same porosity, the compressive modulus and
permeability of the Cube-based scaffold are higher than those of the TPMS-based scaffolds.
The TPMS-based scaffolds have a high surface-to-volume ratio and an average surface curva-
ture of zero, which could potentially facilitate the tissue regeneration [18, 58]. However,
whether the biological behavior of the TPMS-based scaffolds is markedly superior to that of
the traditional scaffolds and how to find a compromise between the mechanical (compression,
shear, etc.) and biological (tissue regeneration, etc.) behaviors still need further investigations.

Regarding the relationship between the scaffold shear and compressive moduli, it is
revealed that the normalized shear modulus is linearly correlated with the normalized com-
pressive modulus with the slopes of all the regression lines bigger than one, implying that for
each type of scaffold, the change in the relative shear modulus is always bigger than that in the
relative compressive modulus. The slope for the Diamond-based scaffold is the highest,
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implying that it is more effective to tune the shear modulus of the Diamond-based scaffold
than tuning its compressive modulus. The fact that all the values except those for the Cube-
based scaffold lies in the upper side of the diagonal line means that for the same scaffold, the
normalized shear modulus is always higher than the normalized compressive modulus. There-
fore, when the scaffold porosity increased, relative to the properties of the base material (com-
pressive and shear moduli), the effective compressive modulus of the scaffold is reduced more
than the reduction in the effective shear modulus for most scaffolds. This phenomenon is most
obvious for the Diamond-based scaffold, implying that the Diamond-based scaffold is suitable
for the scenario where a relative high shear modulus and a relative low compressive modulus
are needed. It should be noted that when the scaffold is implanted into the long bone (e.g.,
femur), the scaffold is under the combined loading of axial compression and shear, due to the
fact the femur is tilted approximately 7 degrees under the in vivo loading scenario [59]. The
analysis on the compression and shear moduli of the scaffold could help derive the Zener
anisotropy factor and understand the anisotropic mechanical behavior of the scaffold under
the complex clinic loading scenario.

It should be noted that in the present study the scaffold permeability is used to reflect the
biological behavior of scaffold, because it is revealed in previous studies that the scaffold per-
meability has a direct effect on the cell bioactivity, and a permeable scaffold allows for the effi-
cient nutrient and oxygen diffusion and waste emission through its channels [60, 61]. It also
should be noted that the Darcy's law is based on the CFD analysis where the laminar flow is
assumed, while the Kozeny-Carman's relation is an empirical one. Because no permeability
test is performed in the present study, no calibration can be done for the numerically calcu-
lated permeability, which could be reason the permeability from the two methods significantly
differ in the high porosity region. Additionally, it should be noted that although the mechani-
cal properties of scaffolds were normalized to the modulus of the base materials, the Poisson's
ratio was fixed at that of the Ti-6Al-4V (i.e., 0.34), which may prevent the extension of the
results to the base material with a different Poisson's ratio, e.g., the polymer. Therefore, in the
future, the effect of the Poisson's ratio of the base material on the scaffold properties should
also be investigated in order to understand the behaviors of scaffolds made from biodegradable
polymers and etc. [62±64].

Several limitations related to the present study need to be discussed. First, only the elastic
behaviors of the scaffolds are investigated and the nonlinear behaviors, such as the strength
and the fatigue life, are not investigated. Indeed, the fatigue behavior is an important parame-
ter reflecting the life expectation of the scaffolds. However, the elastic modulus is also an
important parameter in the scaffold design because of its role in the load-bearing function
[65], i.e., an excessively high elastic modulus can cause the undesirable stress-shielding phe-
nomenon [66]. Furthermore, the mechanical environment (i.e., the distribution of compres-
sive and shear moduli) plays an important role in the cell activities within scaffolds, such as
cell proliferation and differentiation [67, 68]. Second, only the scaffold type of TPMS network
solid is investigated. The TPMS sheet solids have been recently suggested as scaffold designs
and showed significant potential benefits for tissue engineering [19, 69±71]. Recent studies
[72] showed that the TPMS network solid and sheet solid have very dissimilar properties.
Therefore, the investigation on the TPMS sheet solids still needs to be performed in the future.
Last but not the least, the influence of scaffold microstructure on the permeability is investi-
gated using only one set of parameters (flow rate, viscosity, etc.). Different scaffold microstruc-
tures may have a different influence on the pressure drop, and consequently the permeability
calculated from the Darcy's law may change differently when the flow rate, the scaffold length
and cross-section are changed. Therefore, in the future, the correlation between the scaffold
microstructure and permeability should be investigated using more sets of data.
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Conclusion
In conclusion, the experimental and numerical approaches have been utilized to systematically
reveal the underlying relationship between the scaffold properties and its microstructures. The
main conclusions are as below:

· The bending dominated scaffolds (e.g., Diamond, Gyroid, Schwarz P, Fischer-Koch S and
R-RD) tend to have a higher effective shear modulus. The stretching dominated scaffolds
(e.g. Schwarz P, Cube, FD-Cube and Octa) tend to have a higher effective compressive
modulus.

· The relative shear modulus of the scaffold changes faster than the relative compressive mod-
ulus, i.e., when the same amount of change in the scaffold porosity is made, the correspond-
ing change in the relative shear modulus is larger than that in the relative compressive
modulus.

· The permeability of the scaffold depends on the arrangement of the underlying microstruc-
ture, e.g., the structures with the simple and straight pores (e.g., Cube) have a higher perme-
ability than the structures with the complex pores (e.g., Fischer-Koch S).

Some guidelines on the design of bone scaffolds are provided in the present study, for
examples, the Fischer-Koch S topology is the most favorable one in the scenario where nutrient
is not limiting, and the Cube topology is potentially favorable in the scenario where the shear
behavior is not limiting.
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