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Summary

Perceptual decisions require efficient transformation of sensory information to

motor responses. Most laboratory-based research on decision-making consid-

ered discrete and over-simplified actions. This thesis focused on human perfor-

mance and electrophysiological signatures of continuous actions in response to

decisions from three aspects. First, a systematic comparison between joystick

movements and key presses showed that behavioural performance and under-

lying cognitive processes are not affected by response modality, establishing

the validity and consistency of using joystick trajectories to measure decision

responses. Second, a behavioural paradigm was developed to integrate continu-

ous circular joystick movements with perceptual decisions of coherent motion.

The signal-to-noise ratio of sensory inputs has been shown to affect the ac-

curacy and response time of ongoing actions, but its influence on movement

speed diminished after substantial training. Multivariate pattern analysis on

magnetoecephalography (MEG) data recorded during the experiment identi-

fied stable information representations that sensitive to the quality of sensory

information as well as the direction of periodic kinematics of circular move-

ments. Furthermore, pattern information of complex actions was observed

prior to movement onset, indicating the encoding of abstract preparatory ac-

tion plans. Third, this thesis investigated the MEG signatures of circular

joystick movements initiated via voluntary choices, instead of external sensory

inputs. In a novel oddball paradigm, voluntarily choosing a continuous action

built up an expectation of the statistical regularity of subsequent sensory in-

puts. Violating that expectation via incongruent sensory information resulted

in significant multivariate representation in MEG activity of the mismatch

event. Overall results presented in this thesis highlighted how ongoing actions

ix



can be influenced by, and impact on, the continuous processing of sensory

inputs in the human brain.
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Chapter 1

Introduction

1.1 What is decision-making?

Decision-making is a process of choosing an appropriate action in response

to the environmental requirements (Wolpert and Landy, 2012). A successful

survival of an animal depends on its ability to interact with the environment.

It means performing the appropriate actions based on incoming noisy sensory

inputs. For example, to avoid a predator, a mouse has to be aware of the dark

spot in the sky and direct their movement to avoid detection. Conversely, an

eagle has to detect a mouse among the vegetation and follow the movement

until the prey is caught (Chittka et al., 2009).

Humans, like other animals, constantly perform actions based on noisy sen-

sory inputs. When living in a complex environment, we need to navigate it

efficiently. Walking through a busy intersection requires to extract key clues

from a cluttered scene, e.g. missing a red light could lead to an accident.

Similar action-decision cycles are especially important in sports that require

making rapid decisions based on noisy sensory inputs and under extreme time

pressure. A rally driver has to negotiate a narrow, twisty, gravel road main-

taining up to 130 km/h. Expertly controlling a car requires a continuous,

reliable processing of the sensory input, visual and proprioceptive among oth-

ers, to cope with the situation: determining the surface lies ahead, the current

levels of grip, or the load of suspension.
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Not only animals with complex nervous system are capable of some level of

interaction with the environment. Simple non-neuronal organisms are capable

of actions incorporating multiple sources of information (Reid et al., 2015).

Slime moulds (Physarum polycephalum) have bodies around 10 to 10000 times

bigger than E. coli bacteria. Moulds use differences in nutrient gradients across

the body to provide the direction for growth. With such ability, slime moulds

are capable of performing similar irrational patterns of decisions in a gambling

task, similar to more complex organisms like bees, birds or humans (Reid et al.,

2016). E. coli bacteria like a mould, cannot plan strategic foraging. However,

their ability to move helps to explore the surroundings. E. coli can retain

the information about the nutrient concentration in the current environment,

which is then used to decide the direction of movement (Reid et al., 2015).

However interesting examples of the simple organisms reacting to the changing

environment, they do not represent the wide range of actions and flexibility of

more complex organisms (Reid et al., 2016, 2015; Perkins and Swain, 2009).

The action selection is a complex, active, and dynamic process. It is charac-

terised by a continuous loop of information fed forward to perform an action,

and fed back to inform about the result of the action (Wolpert and Landy,

2012). A great example of the flexibility in response selection is the speed-

accuracy trade-off (SAT), a relation heavily examined in human (Zhang and

Rowe, 2014; Wickelgren, 1977; Rae et al., 2014a; Heitz, 2014) and animal cog-

nition (Chittka et al., 2009). SAT refers to the trade-off between responding

fast and inaccurate or slow and accurate. For example, low light conditions re-

quire longer inspection times to obtain sufficient visual information. Thus e.g.

nocturnal bees and wasps trade off the speed for the accuracy of the flight to

accurately navigate the environment (Chittka et al., 2009). The other, longer

lasting example are male guppies. The ones grown in tanks with more preda-

tors took longer to make decisions in a maze, compared to guppies grown in less

threatening environment (Chittka et al., 2009). We can observe that the the

SAT can be solved according to various internal goals as well as environmental

pressures.

We make decisions and pick actions almost all the time, using wide range

of information to make our choices. The decision-making process became a

proxy for studying many aspects of cognition. For example, the psychophysi-
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cal paradigms were commonly used to investigate the basic principles of per-

ception. It was done by greatly simplifying the range of possible actions (e.g.

a simple button press) and introducing controlled changes in the properties of

sensory inputs (visual, auditory, tactile etc.) (Gold and Shadlen, 2007). Com-

putational principles realised as mathematical functions allowed to describe,

and predict the transition of information between sensory input and subjective

experience expressed by the action. This was enabled by the precise control

of the sensory input (the environment) and obtaining the probabilities of the

simple responses (a button press) (Krueger, 1989). Early psychophysical stud-

ies were mostly designed to examine the sensitivity of sensory systems to basic

features like e.g., contrast or motion. Observers had to report their subjective

experience over many trials and experimental conditions, from which their be-

havioural responses could be summarised. E.g., participants were instructed

to indicate the presence or the absence of the target stimulus. The proportion

of the responses (choice probability) was useful in quantifying the represen-

tation of the sensory input which led to a particular choice. In addition, the

latency between stimulus onset and response was added. It quantified the time

needed to gather enough information prior to a choice (i.e., reaction time - RT).

Choice probability and RT are the two fundamental behavioural measures in

decision-making research, which will also be the focus of this thesis (Gold and

Shadlen, 2007).

Perceptual decision-making based on random-dot motion (RDM) is a classical

psychophysical paradigm, in which the observer has to determine the global

motion direction of noisy dot patterns. The dot pattern is consisting of signal

dots, moving coherently in a certain direction and noise dots, moving randomly.

The proportion of the signal dots to the noise dots is effectively the signal to

noise ratio, which can be controlled by the experimenter (Lappin and Bell,

1976; Watamaniuk et al., 1989; Pilly and Seitz, 2009). Newsome and Pare

(1988) used the RDM to examine the role of MT/V5 area in macaque during

perceptual decisions. A chemical lesion of MT/V5 caused a decrease in motion

detection performance, while contrast detection performance remained intact,

suggesting the causal role of MT/V5 in perceptual decisions based on motion

information (Newsome et al., 1989).

Decisions are made not only using an ongoing stream of the sensory informa-
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tion, but also information stored in memory. A methodology used in basic

perceptual decision-making was used to probe memory processes. Ratcliff in

his seminal paper (1978) used a simple forced choice tasks to establish a model

of memory retrieval that takes into account reaction time and choice accuracy.

Participants were asked to make a decision based on the information retained

from the learning phase, whether or not the visual information currently pre-

sented were shown before. The model was based on an assumption that the

noisy information was sequentially sampled from the memory. Information is

accumulated until a certain threshold, after which a response is made.

Another example of harnessing the simplicity of the experimental decision-

making to probe the cognitive processes is a case of response inhibition. Some-

times the appropriate action is to maintain the current action or to not act

at all. In humans, the stop-signal task is commonly used to study response

inhibition. The particpant’s task is to rapidly respond to the a stimulus with

occasional cues to withhold a response (Logan et al., 1984; de Jong et al.,

1990). Successful inhibition of a response involves primarily a monitoring for

relevant cues and then cancelling the immediate response. This process can

be thought of as a decision between responding and withholding a response.

These aspects of action selection are often impaired in cases of e.g. addiction

or obsessive compulsive disorder (OCD) (Verbruggen and Logan, 2008). The

methodology developed studying basic perceptual decision-process allowed to

characterise the impairments of the decision process in such instances.

The experimental procedures derived from decision making studies were used

to a wide range of questions about the cognition. However informative, the

simplified, compared to real life situations, experimental settings have their

disadvantages as well. The discrete response like e.g. a button press, can limit

the understanding of the dynamic processes underlying the cognition (Spivey

and Dale, 2006; Freeman et al., 2011; Song and Nakayama, 2009). However,

if the decision process is framed as the selection of the appropriate action,

augmenting the common decision-making methodology with more complex

responses could give rise to more ecologically valid experimental designs. The

ultimate goal is to expand our tool set to understand the cognition (Freeman

et al., 2011).
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The source of the methodological tools to appropriately characterise the action

can be found in the field of motor control. The focus of motor control research

is finding principles guiding motor actions across the range of output modal-

ities (e.g.: reach, grasp (Brinkman et al., 2016), locomotion (Wagner et al.,

2016) etc.). More precisely, the main research question of motor control is to

reconcile the high degrees of freedom of the movement afforded by the human

body, with efficiently achieving the goals demanded by the task. Even in con-

strained experimental setting, the motor outputs were highly variable across

trials, still reliably achieving the same goals. On top of that a certain degree of

external perturbation unravelled levels of adaptations that allow to maintain

the efficiency in performing the action (Todorov and Jordan, 2002). Complex

motor responses in research briefly mentioned above are in a sharp contrast

with the simple, discrete, categorical choices in the experimental paradigms

for simple decisions (Freeman et al., 2011). Motor control unfolds in space

and time, and as such carry a larger amount of information, e.g. velocity,

acceleration and force, which could be useful in probing cognitive processes

(de Lange and Fritsche, 2017). The use of complex responses has been suc-

cessful in unravelling the aspects of decision-making otherwise inaccessible to

a conventional methodology utilising a simple button press (Burk et al., 2014;

Resulaj et al., 2009; Hagura et al., 2017).

1.2 Outline of the thesis

The aim of this thesis is to bridge two lines of research, perceptual decision-

making and motor control during continuous actions, which allows to extend

the current decision-making framework with a richer and more ecologically

valid response modality. The thesis focused on how we make decisions about

continuous action, and how continuous actions may affect subsequent decisions

and perception. Throughout the thesis, I used a well established experimental

paradigm for decision (i.e., RDM-based motion discrimination) and a joystick

for recording continuous actions. Below I present a brief summary of each

chapter.

In Chapter 2, I reviewed a range of theoretical and empirical accounts of
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the research on decision-making. I presented the evolution of ideas that led

to the currently used cognitive models. Then, the commonly observed be-

havioural effects were characterised and linked to the brain activity. The ev-

idence from animal electrophysiology and human neuroimaging has been re-

viewed in the context of substantial advances it brought to our understanding

of the decision-making process. Furthermore, I described several motor con-

trol theories to connect the conventional decision making process with novel

approaches using continuous response measures to improve our understanding

of decision-making process dynamics. Finally, I reviewed the methods and

analyses applied to the magnetoencephalography (MEG) data in Chapters 5

and 6.

In Chapter 3, I presented research which served as a basis for the subsequent

studies presented in this thesis. A key press, the conventional way of respond-

ing in the decision making studies, was compared with simple linear response

using joystick. I used a well established random dot motion (RDM) task and

Drift-diffusion model (DDM) to establish the validity of using a joystick as

the response instrument. Results showed that the initial stage of the joystick

trajectory was comparable in behavioural performance and underlying cogni-

tive processes to a conventional button press, thus establishing a continuous

response as a valid way to conduct decision-making research. Furthermore, it

enabled the use of more complex movements in a broader context of decision-

making.

In Chapter 4, I presented a novel task that combined continuous movements

and perceptual decisions. Participants were indicating the direction of the

RDM stimuli with clockwise or anti-clockwise movement. The direction and

quality of the stimuli were changing in the 75% of the trials, which forced

participants to adjust the action while the previous action was still ongoing.

Across four experiments, I consistently observed behavioural performance akin

to conventional decision-making studies. The noisy stimulus caused partici-

pants to became slower and less accurate in their continuous movements. The

movement speed was also affected by the stimulus quality.

In Chapter 5, the novel continuous decision-making task was used concurrently

with MEG recording. The goal was to examine the brain states elicited by the

6



experimental procedure, and how the continuous movement is represented in

the brain. The univariate analysis did not show any differences in oscillatory

power and event related fields (ERFs) across experimental conditions. Mul-

tivariate pattern analysis (MVPA) showed that the choice of action can be

decoded up to 0.5 s prior to the onset of the movement. Furthermore, the

stable movement did not form an abstract and widely generalisable pattern

but reflected the movement kinematics. Moreover, MVPA was only able to

distinguish the stimulus strength when the participants maintained the action

direction throughout the trial.

In chapter 6, I described a newly developed Action-Perception Congruency

(APC) task. The task aimed to establish a causal expectation between con-

tinuous movements in the action stage and subsequent visual stimulus in the

observation stage, and evaluate MEG signals that were sensitive to the vio-

lation of the causal expectation. Using MVPA, I identified action-perception

expectation associated with changes in multivariate data patterns in MEG

signal. Furthermore, I found MEG representations of participant’s voluntary

choices of continuous movements prior to action onset, and the multivariate

pattern of continuous movements replicated the results in Chapter 5.

Chapter 7 summarised the results and contributions presented in the thesis. I

further discussed the limitation of the presented research and possible future

directions.
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Chapter 2

Literature review

2.1 The computational principles and the neu-

robiology of decision-making

In Chapter 1 I have briefly outlined the decision-making as the ubiquitous

phenomenon in humans and animals. It is a research topic of a broad variety

and scale of investigations. For example, in political science, the involvement

in political decision-making has been shown to shape further participation

in democratic processes (Morrell, 2005). Moreover, the sources of information

that lead to the success or failure in an elections could be tracked by monitoring

the social media (Buhl, 2011). In organisational decision-making, the quality

of decisions within organisational units plays a crucial role in achieving goals

(Csaszar and Eggers, 2013). Decision making process in courtrooms has been

extensively studied (Heise, 2002; Devine et al., 2001), e.g. the jury decision-

making process could be more influenced by personal ideologies than the law

and presented evidence (Gillman, 2001; Devine et al., 2001). In emergency

medicine, the cognitive load and the time pressure heavily affect the decisions

about the medical procedure which can save or cost human lives (Laxmisan

et al., 2007).
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2.1.1 Simple decision-making as a statistical inference

problem

The decision process can be formulated as a problem of a statistical inference

(Bogacz et al., 2006; Gold and Shadlen, 2007). This view of decision-making

assumes that the representation of the momentary sensory information affects

the choice behaviour. The decision variable (DV ) combines all the available

information to render a choice. Given the evidence e obtained from sensory

inputs and two alternatives A and B as a binary decision, within the signal

detection theory (SDT) framework, a DV can be described as a ratio of two

likelihoods (Bogacz et al., 2006; Gold and Shadlen, 2007).

DV =
P (e|A)
P (e|B)

, (2.1)

P (e|A) represents the probability of observing e when A is the correct choice,

and P (e|B) represents the probability of observing e when B is the correct

choice. Here, one can apply a threshold to the DV to reach a decision. Al-

though the DV in Equation 2.1 can be used for binary decisions, the time

required to make a choice is not accounted for.

This issue can be addressed using a sequential analysis, a direct extension of the

SDT. Assuming the evidence for decision comprised of multiple observations

at time step t = 1, 2, 3, ..., n, then the DV (Equation 2.1) can be represented

as the likelihood ratio of all the pieces of evidence:

DV =
P (e1, e2, e3, ..., en|A)
P (e1, e2, e3, ..., en|B)

. (2.2)

If we further assume that the stream of evidence e1, e2, ..., en is independently

sampled over time, we could take the logarithm of the DV , then convert the

joint probability into a summation of samples of evidence.

logDV = log
P (e1, e2, e3, ..., en|A)
P (e1, e2, e3, ..., en|B)

=
n�

t=1

log
P (et|A)
P (et|B)

(2.3)

The logarithmic DV in Equation 2.3 can be used in a sequential probability

ratio test (SPRT) to represent a decision outcome (Bogacz et al., 2006; Gold
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and Shadlen, 2007). At the every time step t, a new piece of evidence et is

sampled and the log-likelihood ratio of et is added to the logDV . Which is

accumulated until the last time point. In SPRT, if the logDV is larger than a

decision threshold TA, then option A is chosen. Alternatively, if the logDV is

smaller than alternative threshold TB(TB <= TA), the option B is chosen. If

TB < logDV < TA, there is insufficient information for a decision and the test

assumes that one should continue sampling and accumulating new evidence.

The number of time steps to reach a decision threshold is equivalent to the

decision time.

2.1.2 Sequential sampling models of decision-making

The essence of the sequential analysis like SPRT is that a decision is rendered

via accumulation of evidence samples. From a statistical perspective, evidence

accumulation reduces the noise in momentary evidence and hereby affords more

accurate decisions. For example, it has been shown that SPRT is the optimal

procedure to achieve a given decision accuracy with the minimum number of

evidence samples (Bogacz et al., 2006; Gold and Shadlen, 2007).

This evidence accumulation framework underpins a large family of cognitive

models for decision making: sequential sampling models (Gold and Shadlen,

2007; Bogacz et al., 2006; Ratcliff and Smith, 2004). These models build

upon decades of psychophysical research on the statistical relations between

sensory information and behaviour (Gold and Shadlen, 2007; Bogacz et al.,

2006). They provide biologically plausible accounts of electrophysiological and

neuroimaging results in decision-making studies (Shadlen and Kiani, 2013;

Gold and Shadlen, 2007). Furthermore, as formal computational models of

a cognitive process, sequential sampling models have the ability to formalise

the hypotheses into numerical predictions and simulate the behavioural out-

comes (Kriegeskorte and Douglas, 2018; Forstmann et al., 2016; Mulder et al.,

2014). In the context of David Marr’s three levels of analysis of information-

processing systems (Marr and Poggio, 1976; Marr et al., 1979; McClamrock,

1991; Kriegeskorte and Douglas, 2018), sequential sampling models can be

classified as an algorithmic interpretation of the decision process. However,

their detailed neural implementation is also under active investigation (e.g.
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Wang, 2008).

The drift-diffusion model is a classical sequential sampling model, initially pro-

posed by Roger Ratcliff (1978; 1981; 1985; 1988) to account for the reaction

time and accuracy in memory retrial tasks (Ratcliff, 1978, 1981). The DDM

has later been applied to many other tasks with RT measures, including per-

ceptual decisions (Ratcliff and McKoon, 2008), lexical decisions (White et al.,

2010) and value-based decisions (Fontanesi et al., 2019). In the section 2.1.2,

I introduced the DDM in more detail as it was used in the Chapter 3.

In two-alternative forced choice (TAFC) tasks, observers need to respond to

(or discriminate) a certain stimulus quality (e.g. a motion direction) with two

choice alternatives. In the DDM, the noisy evidence is accumulated continu-

ously over time, until a decision threshold is reached. Apart from the DDM,

there exists a plethora of different models that can account for the accuracy

and RT in a TAFC task, and the implementation of evidence accumulation

varies among the models (Bogacz et al., 2006).

For example, the Ornstein-Uhlenbeck model (Busemeyer and Townsend, 1993)

also describes the decision process as a diffusion process The main difference

between this model and the DDM is the addition of a linear term, specifying

that the accumulation rate increases or decreases as the accumulated evidence

approaching one of the two decision boundaries. A similar model behaviour

can be implemented in an extended version of DDM with thresholds varying

in time (Bogacz et al., 2006).

Other, more complex, sequential sampling models use simple networks of com-

putational units to describe the decision process, including input units and

decision units. The input units encode the incoming evidence (i.e. leftward

or rightward visual motion) to the decision units that integrate it over time.

For example, the Leaky Competing Accumulator model for TAFC contains

two input units feeding to the two decision units which also inhibit each other.

The decision units accumulate the information with a stable continuous loss of

previously accumulated evidence (i.e., the integration is leaky). The decision

is reached when the activity of one decision unit reaches a certain threshold.

The feed-forward inhibition model assumes that decision units integrate the

information without the leakage (Shadlen and Newsome, 2001). However, they
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integrate excitatory signal from the corresponding input unit and inhibitory ac-

tivity from the input unit responsible for the alternative response. The pooled

inhibition model is more biophysically realistic (Wong et al., 2007; Wong and

Wang, 2006). It introduced an additional inhibitory unit that inhibits the

activities of decision units, mimicking the functionality of inhibitory interneu-

rons. Bogacz et al. (2006) compared the families of models mentioned above

against the DDM. The aim was to explore to what extent the models can im-

plement optimal decisions in terms of behavioural performance. Simulations

and empirical results have shown that for simple TAFC tasks, most models

can be reduced to the DDM within certain parameter spaces. However, in

practice, it has been shown that the DDM provides a better fit to behavioural

data than other competing models (Ratcliff and Smith, 2004).

The drift-diffusion model is used often as an analytic tool to describe in more

detail the behavioural results (RT and accuracy) obtained from rapid decision-

making studies (Smith and Ratcliff, 2004; Voss et al., 2004; O’Connell et al.,

2018; Forstmann et al., 2016). It was used with various stimuli and tasks.

For example, the DDM was useful in accounting for performance differences in

basic brightness discrimination task (Ratcliff, 2002). Pairing a simple choice

task with the DDM was used to highlight the speed-accuracy trade-off in a

lexical decision task (Wagenmakers et al., 2008b). A go/no-go task with the

DDM showed that the responses and non-responses engage the evidence accu-

mulation but vary in the non-decision processes (Gomez et al., 2007). Similar

tasks paired with the cognitive models found use in psychiatric research. The

model parameters help to more precisely describe the differences in perfor-

mance found across the groups and interventions and link cognitive models

with the models of the disease. The DDM was used to distinguish patients

with different levels of anxiety as a trait, in a lexical decision task with emo-

tionally loaded words (White et al., 2010). The flanker task, commonly used

to test the response inhibition, was applied in conjunction with the DDM to

uncover the mechanisms behind contradictory results between healthy and de-

pressed individuals. The results pointed towards the delayed but not poor

executive function in people suffering from depression (Dillon et al., 2015).

Most sequential sampling models assume that different samples of sensory evi-

dence are independent, i.e., the previous sample is not predictive of subsequent
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ones (Bogacz et al., 2006). This assumption may not be true in all experimen-

tal paradigms. The urgency-gating model was developed as an alternative

theory to address this issue (Cisek et al., 2009). In the case when information

samples are not independent, the urgency-gating model proposed that a subse-

quent sample should be ignored if it can be predicted from a prior sample, and

only novel samples should be used to drive the decision. Instead of continuous

accumulation of evidence, the decision process was implemented as a step func-

tion in the urgency-gating model, which also includes a motor urgency signal

with ramping up activity prior to response. The convolution of the step-wise

decision function and the motor urgency signal gives rise to the neuronal ac-

tivity observed in decision-making experiments, and hence takes into account

the non-stationary and dependent information samples. Nevertheless, when

the information samples are independent and provide stable evidence for an

alternative, the model behaves similar to an accumulation model (Cisek et al.,

2009).

The random dot motion (RDM) stimulus used in this thesis provide constant,

independent samples of information about the direction of coherent motion

(see: Section 3.2.3 for a detailed technical description and Section 2.1.4 for

an overview of decision-making research using the RDM stimulus). As such,

all experiments presented here are appropriate to be considered within the

sequential sampling framework.

The drift-diffusion model (DDM)

Sequential sampling models differ in the distribution of evidence (e.g., discrete

vs continuous), the nature of time sampling (e.g., discrete vs continuous), as

well as the model structure (e.g., the number of accumulators) (Smith, 1995;

Busemeyer and Townsend, 1993). For example, the Poisson counter model as-

sumes discrete evidence to be accumulated in discrete time steps (Rammsayer

and Ulrich, 2001). If one assumes that the evidence accumulation process is

continuous both in (evidence) space and in time (of evidence samples), the

SPRT in Equation 2.3 can be extended into a drift-diffusion model (DDM), in
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Figure 2.1: The drift-diffusion model and examples of evidence accumulation
trajectories. A positive drift rate (µ) indicates that, on average, the accumula-
tion of sensory evidence is towards the correct decision threshold (blue paths).
The non-decision time is illustrated as a gray shaded area before the evidence
accumulation starts. The RT is a sum of the non-decision time (a duration of
sensory encoding and motor function) and a decision time (a duration of the
sensory evidence accumulation)

which the dynamic of the accumulated evidence dx(t) at time t is:

dx(t) = µ · dt+ σ · dW (2.4)

The DDM can be applied to a binary decision problem between a correct and

an incorrect choice. For simplicity, we can denote positive evidence (dx(t) > 0)

to support the correct choice, and negative evidence (dx(t) < 0) to support

the incorrect choice. The momentary evidence is noisy, as represented by

the second term in Equation 2.4, a Gaussian random process with mean 0

and variance σ2. The drift rate (µ) represents the average speed of evidence

accumulation and its magnitude is determined by the strength (i.e., the signal-

to-noise ratio) of the evidence. Figure 2.1 illustrated several time courses of
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decisions predicted by the DDM. The parameter (a) indicates the distance

between the correct and incorrect decision thresholds, and it can be interpreted

as the amount of evidence needed to trigger a decision. The starting point

(z) represents the response bias towards one of the two thresholds before the

start of the accumulation process (i.e., x(0) = z. The non-decision time (Ter)

represents the latencies of non-decision processes like stimulus encoding and

motor function. The diffusion process starts at the starting point (z) until the

accumulated evidence reaches one of the two thresholds. If the accumulated

evidence reaches the correct (upper) threshold (blue trajectories), the model

predicts a correct response. Because of noise, the accumulated evidence may

reach the incorrect (lower) threshold (red trajectories) and the model predicts

an incorrect response. The predicted single-trial RT is the sum of the duration

of the evidence accumulation (decision time) and the non-decision time Ter.

2.1.3 Behavioural characteristics of decision-making pro-

cesses

This section reviewed main behavioural characteristics of decision-making and

their interpretations in the framework of sequential sampling models.

Speed-accuracy trade-off

As mentioned in Chapter 1, the speed-accuracy trade-off (SAT) demonstrates

the adaptability of the decision process to changing motivational and envi-

ronmental requirements. In humans, the experimental manipulations of the

SAT usually are delivered by explicit instructions. Participants are asked to

respond in a task as fast as possible, or as accurate as possible, which ex-

plicitely affects the outcome of the SAT. The speed emphasis usually leads to

shorter RT at the cost lower accuracy, and accuracy emphasis leads to longer

RT which allows for higher accuracy (e.g. Zhang and Rowe, 2014; Wickelgren,

1977; Rae et al., 2014a; Bogacz et al., 2010; Heitz, 2014). Moreover, the rapid

motor decisions (e.g. reach or grasp) are subject to the SAT. Movements under

the speed emphasis condition, compared to the accuracy emphasis condition,

are faster, less accurate and more variable in both action velocity and action
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trajectory (Newell, 1980; Wobbrock et al., 2008; Hancock and Newell, 1985;

Plamondon and Alimi, 1997; Battaglia and Schrater, 2007). This relation is not

only limited to simple perceptual or action decisions, but can also be observed

in complex decision-making processes, such as decisions made by a group in

the social setting of the teamwork (De Dreu et al., 2008).

The change of the RT and accuracy under varied SAT instructions are robust

(Heitz, 2014; Heitz and Schall, 2012). Theoretical (Ratcliff and Rouder, 1998;

Usher and McClelland, 2001; Brown and Heathcote, 2008) and empirical (e.g.

Ratcliff and Rouder, 1998; Forstmann et al., 2010b; Palmer et al., 2005; van

Veen et al., 2008; Ratcliff, 2002) accounts of the SAT suggested that sequen-

tial sampling models are ”selectively sensitive” to the SAT. Only the decision

threshold, the amount of evidence needed, was changing with the SAT instruc-

tion. Emphasising the speed of response would decrease the decision threshold,

which resulted in faster and more error-prone responses. However, manipula-

tions of the SAT instructions in various rapid decision tasks have shown that

both the threshold and the drift rate was affected (Rae et al., 2014a; Zhang

and Rowe, 2014). In the speed emphasis condition, the decision boundary

separation was decreased accompanied by the increase in the drift rate. This

means that SAT modulates not only the amount of evidence needed to make a

decision, but also the nature of the information processing (Rae et al., 2014a;

Starns and Ratcliff, 2014; Wagenmakers et al., 2008b). However, in case of

the perceptual learning the sensitivity of drift rate to SAT conditions was ob-

served only in the initial phase. Over the course of the learning process only the

threshold remained sensitive to the SAT conditions (Zhang and Rowe, 2014),

suggesting that the effect of SAT instructions on other model parameters is

learning-dependent.

Evidence strength

A common finding in many studies is that increasing evidence strength (or

signal-to-noise ratio) resulted in reduced RT and increased accuracy (Fine and

Jacobs, 2002). Across various experiments, the quality or the strength of the

incoming evidence was reflected in the drift rate of DDM, which links directly

to the sensitivity index d�. The more noisy, or less visible the stimulus, the
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lower the drift rate (e.g. Voss et al., 2004; Ratcliff et al., 2009; Zhang and

Rowe, 2014; Palmer et al., 2005; Szul et al., 2019). For example, in percep-

tual decisions with random-dot motion (RDM, for technical details see Section

3.2.3), the stimulus strength is explicitly manipulated by the changing motion

coherence (i.e., the proportion of the signal dots to the noise dots) (e.g. Freder-

icksen et al., 1994; Lappin and Bell, 1976; Pilly and Seitz, 2009; Ramachandran

and Anstis, 1983; Watamaniuk et al., 1989). During the learning of a motion

discrimination task using RDM, as the information processing became more

efficient over repeated sessions, the drift-rate reflected the improvement in be-

havioural performance (Eckhoff et al., 2008).

Multiple alternatives

Most experimental studies focused on binary decisions as most of the models

and theories were based on such methodology. However, in some have been

considered decisions between more than two alternatives. A comparison be-

tween a RDM-based perceptual decision task with two and four choices has

shown longer RT and lower accuracy with more choice alternatives (Church-

land et al., 2008). The original version of the DDM was intended for binary

decision problems, and other models of evidence accumulation can be used for

multi-alternative decisions (Tsetsos et al., 2011; Ditterich, 2010; McMillen and

Behseta, 2009).

An extended version of the DDM has been proposed to account for behavioural

performance in a four-alternative decisions (Churchland et al., 2008). The

model has been converted to acommodate four-alternative decisions by divid-

ing them into two stages of binary decisions. In the first stage, the choice

between two orthogonal axes was made, and in the second stage, the choice

within the axis was made. The extended DDM reproduced the RT distri-

bution and the lower response chance level in four-alternative decisions (25%

instead of 50% in binary decisions). In a recent study (Maanen et al., 2012),

the authors manipulated the number of alternatives (up to 9) and the sim-

ilarity among the alternative options in a RDM-based decision-making task.

An accumulation model fitted to the behavioural data showed a dissociation

between the similarity and the number of alternatives. Lower discriminability
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between alternatives was associated with reduced drift rate, while increasing

the number of choice alternatives was associated with reduced starting point

(Maanen et al., 2012). These results suggest that the same evidence accumu-

lation framework can be extended to complex decision problems with multiple

alternatives.

Other contextual factors

The decision process is affected by many contextual factors. These modulators

originate from external environment, or from internal factors such as goals or

bodily states (Doya, 2008). Earlier in this section, I have reviewed that exter-

nal instruction of SAT can effectively modulate the decision threshold (Heitz,

2014). There is a growing body of evidence that the history of previous deci-

sions or related actions biases subsequent decisions (Urai et al., 2018; Braun

et al., 2018; Pape and Siegel, 2016; Pape et al., 2017). Hagura et al. (2017)

showed that the physical cost of actions (i.e., the amount of energy spent)

biases the responses in perceptual decisions. Increasing the force resistance

caused participants to bias their decisions towards a choice requiring less ef-

fort. Moreover, this bias persisted when the response was changed to verbal.

Modelling analysis using the DDM showed that the starting point was sensitive

to the motor cost, suggesting that humans have the tendency to incorporate

action costs into the decision prior to accumulation of the evidence.

In addition to action cost, prior decisions themselves can also bias the subse-

quent evidence accumulation process (Urai et al., 2018). Participants making

simple decisions were likely to alter their responses based on the decision made

previously. This phenomenon has been associated with the action inhibition

regarding recently made responses (Pape and Siegel, 2016). Within the se-

quential sampling framework, the history of decisions has affected the starting

point parameter of the DDM (Larsen and Bogacz, 2010). Thus, as shown in

Hagura et al. (2017) the biases tend to affect the decision process prior to

obtaining new evidence.
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2.1.4 Neural characteristics of decision-making processes

In this section I reviewed the neural systems involved in perceptual decision

processes based on RDM.

Neural representations of sensory evidence

The sequential sampling models discussed above were developed as mathe-

matically formal ways to describe the cognitive processes of decision-making

(Ratcliff, 1979; Luce, 1986). A parallel line of research considers the neural

systems and their computational functions during decision process. Neurons

in area MT/V5 have shown to be sensitive to motion direction (Dubner and

Zeki, 1971). Therefore, area MT is thought to be mediating the perceptual

decision tasks with RDM.

Results from non-human primates supported this hypothesis. In one previous

study (Newsome and Pare, 1988), macaque monkeys were trained in two differ-

ent tasks, one to decide the coherent motion direction of RDM stimuli and the

other to discriminate orientation of stationary gratings with varied contrasts.

The animals rendered their decisions with saccadic eye movements towards a

corresponding target. When the area MT/V5 was pharmacologically disabled,

the animals’ behavioural performance in the RDM-based motion discrimina-

tion task was impaired, while their performance in the orientation discrimi-

nation task remained intact. Electric stimulation of MT neurons unravelled

that one can causally influence the decision outcome in a multiple alternative

RDM task. Stimulating a sub-region of area MT/V5 selectively responsive to

a specific motion direction biased behavioural choices towards that alternative

(Salzman and Newsome, 1994). These results showed the role of MT/V5 in

motion perceptual decisions is to encode momentary sensory evidence (Figure

2.2A) (Britten et al., 1992).

Representations of decisions in the primate brain

Although area MT/V5 encodes sensory information, neural activity in area

MT only weakly correlated with the decision outcome (i.e., responses) (Brit-
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Figure 2.2: A) Mean normalised neural responses of MT neurons under the
RDM stimulus with different motion direction. Adapted from (Britten et al.,
1996); B) Mean responses (spiking rate) of 47 neurons recorded from area LIP.
Solid line denotes a correct choice, and dashed line denotes an incorrect choice.
Colours denote the direction of the target the saccade was made towards, green
- left, red- right. Adapted from (Shadlen and Newsome, 1996)

ten et al., 1992; Shadlen et al., 1996), indicating that the evidence accumula-

tion process, as assumed by the sequential sampling models, is implemented

elsewhere.

Converging evidence from a series of monkey electrophysiological studies sug-

gested that the lateral intraparietal area (LIP) is essential for evidence accu-

mulation during perceptual decisions (Shadlen and Newsome, 2001; Roitman

and Shadlen, 2002). The LIP receives inputs from MT/V5 neurons and and

projects its outputs to eye-movement related areas such as superior colliculus

(Paré and Wurtz, 1997), and thus the LIP is able to link sensory information

with actions (here: saccades). When recording from the LIP neurons with

their receptive fields covering the saccadic targets, the neuronal firing rates

are predictive of behavioural responses irrespective of the accuracy (Figure 2.2

B). The spiking rate of the LIP neurons exhibited a characteristic ramping up

pattern after stimulus onset, reflecting the dynamics of the decision process by

which the appropriate action is being selected (Shadlen and Newsome, 1996).

The slope of the ramping up activity in LIP reflected the quality of the visual

input. The higher the stimulus strength, the steeper the slope. Moreover, the

signal related to the movement execution was consistent across the conditions

(Roitman and Shadlen, 2002).
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The MT-LIP circuit can implement the evidence accumulation computation as

described by the DDM (Ratcliff et al., 2016). Assuming the task is to decide

between one of two possible coherent motion directions of the RDM stimulus

(e.g., left vs. right). The sensory information is represented in two pools of

MT neurons responding to the two opposite motion directions (Shadlen and

Newsome, 1996; Shadlen et al., 1996). LIP neurons integrate the magnitude

of the difference between the two representations of sensory information. The

accumulation of the sensory information is terminated when the firing rate of

the LIP neurons reaches a certain threshold (Shadlen and Newsome, 2001).

Further evidence supporting the hypothesis that area LIP integrates sensory

evidence during the RDM task is available from direct behavioural and neural

intervention. Behaviourally, during the formation of a perceptual decision, a

brief pulse of motion information is added to the visual stimulus to perturb

the coherent motion. Such a brief pulse had persistent effects on the activity

of LIP neurons up to 800 ms and affected animals’ decision (Huk and Shadlen,

2005). Furthermore, microstimulation of the LIP neurons leads to faster (when

making choices towards the response fields of simulated neurons) or slower

(when making choices away from the response fields of simulated neurons)

responses (Hanks et al., 2006). These results suggest that LIP neurons are

essential in implementing the evidence accumulation process during perceptual

decisions.

Other frontal regions such as the frontal eye field (FEF) and the dorsolateral

prefrontal cortex (DLPFC) show a similar pattern of ramping up activity as the

LIP during perceptual decisions (Gold and Shadlen, 2000; Kim and Shadlen,

1999). Furthermore, after the neural activity reached a threshold and motor

output had been executed, the trace activity was maintained in FEF (Ding

and Gold, 2012). This could suggest the retention of the decision information

in the frontal cortex to be used e.g. to evaluate or monitor the action as well

as to alter the response (Resulaj et al., 2009).

Rodents as a simple animal model of decision making

Recently, rodents emerged as a viable model to investigate the decision-making

(Carandini and Churchland, 2013). To test the effect of the noise on the
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decision-making process, a new experiment design was developed with auditory

clicks played towards rats’ left and right ears (Brunton et al., 2013). The

auditory clicks were considered as the sensory evidence. The rats were trained

to indicate with nose pokes which side had received more clicks. The DDM has

been shown to account for the behavioural performance in rats. The inference

from the model parameters suggested that the auditory information at the

different temporal locations within a trial, equally contributed to the final

decision (i.e., no primacy or recency effect). Replication of the same task with

optogenetic control brought new evidence on the role of parietal and frontal

regions in decision-making in rodents (Hanks et al., 2015). The parietal cortices

were taking part in the accumulation of the evidence unlike the frontal cortex.

The frontal cortex was involved in transforming the accumulated evidence into

a categorical choice.

2.1.5 Evidence from human neuroimaging

In humans, non-invasive neuroimaging enables to examine the neural imple-

mentation of decision processes across the whole brain. Functional mag-

netic resonance imaging (fMRI) offers a good spatial resolution to localise

the decision-making network. Electroencephalography (EEG) and magnetoen-

cephalography (MEG) (for more technical details see: Section 2.3) record elec-

trical and magnetic activity of neuronal populations with a millisecond tempo-

ral resolution (Heekeren et al., 2008; Keuken et al., 2014; Kelly and O’Connell,

2015).

Sensory evidence

The early fMRI studies examined the representation of evidence for decisions

in early sensory cortices. In a visual target detection task, the BOLD (blood-

oxygen-level dependent) response in early visual cortices (V1, V2, V3) is in-

fluenced by both bottom-up sensory information, as well as top-down post-

decision signals (Ress and Heeger, 2003). In the RDM task with multiple

alternatives, a multivariate pattern classification was able to distinguish the di-

rection of coherent motion in the signal from early visual cortices (V1-V5/MT).
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The classification accuracy increased when the attention was directed towards

the stimulus. Results showed a role of attention in enhancing the brain repre-

sentation of sensory evidence for decisions (Kamitani and Tong, 2006).

Evidence accumulation

The prefrontal cortex has been suggested as the putative region for evidence

accumulation during the decision-making. The early study by Heekeren et al.

(2004) examined the role of the DLPFC in perceptual decision-making in hu-

mans. The participants had to determine whether a noisy picture is a house

or a face. The pictures were scrambled and contained both types of images

in a different proportions. The choice of categories was dictated by the fact

that they share basic visual features but a different meaning and a pattern of

brain activity. Activations in the face-selective (fusiform face area, FFA) and

house-selective (parahippocampal area, PPA) regions encoded the category-

specific information in the visual stimulus. The BOLD response in the left

DLPFC correlated with the behavioural performance. Higher the task diffi-

culty, the higher the activation in the left DLPFC. Moreover, the difference

between activity in category specific regions (FFA and PPA) was positively

correlated with the activity found in left DLPFC. These findings are in line

with sequential sampling framework of decision process.

Similar patterns of DLPFC activation were found during decisions based on

the tactile inputs (Pleger et al., 2006). Using the RDM task with two response

modalities (eye movement and button press), a fMRI study showed a motor-

agnostic pattern of activity reflecting the quality of the evidence. A further

conjunction analysis indicated that the DLPFC was involved in evaluating sen-

sory evidence across response modalities (Heekeren et al., 2006). These results

suggested a generalised accumulation-to-threshold process in the DLPFC for

the decision-making process, regardless of stimulus or response context.

Investigating the dynamic representation of decision forming requires better

temporal resolution than fMRI. An EEG study used the same face/house stim-

ului as in Heekeren et al. (2004) for a categorisation decision task and a colour

discrimination task, aiming to capture the time course of forming a decision

(Philiastides et al., 2006; Philiastides and Sajda, 2006). EEG analysis and
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the DDM fitting to behavioural data unravelled three event related potentials

(ERPs) related to the decision process (∼170ms, ∼220ms and ∼300ms). The

earliest ERP component was selective to the coherence of the face stimulus.

The second ERP component appearing ∼220ms after stimulus onset was re-

lated to the task difficulty in the faces/houses categorisation task but absent

in the colour discrimination task. The late component (∼300ms) reflected

the behavioural performance in both tasks, with its latency associated with

the RT and its amplitude associated with the drift rate of the DDM fitted to

corresponding behavioural data.

Subsequent studies using a concurrent EEG-fMRI recording localised the po-

tential sources of the decision-related ERP components (Philiastides and Sajda,

2007). The early component, related to an early sensory processing, was linked

to the BOLD responses in FFA and other visual areas. The ERP component

related to task difficulty, was associated with increased BOLD responses in

DLPFC and error monitoring areas such as anterior insula (AI) and anterior

cingulate cortex (ACC). The late component, reflecting evidence accumulation

and the final decision stage, covaried with the BOLD responses in the right

ventromedial prefrontal cortex (vmPFC). The activity pattern was interpreted

as reflecting the effort to maintain the accumulated information to select the

right response (Philiastides and Sajda, 2007; Williams et al., 2007). The deci-

sion process is characterised not only by visual inputs, but also by associated

motor outputs. The previously described house vs face discrimination task

was adapted in this study to test the results of choosing a different effector to

response in the task. The participants were instructed to respond either with

a saccade or with an arm-reaching action towards a target. The two distinct

ways of responding allowed to outline the pattern of activity reflecting a pure

decision process, regardless of the effector used to respond. A prefrontal net-

work consisting of VLPFC, DLPFC, AI and ACC was found to be associated

with the task difficulty, regardless of the way of responding. The behavioural

outcomes of the decisions like a direction of the movement and latency were

reflected in motor planning regions specific to the way of respondong (FEF for

eye movement or motor cortices for hand movements) (Tosoni et al., 2008).

The association of the anterior insular (AI) cortex with the task difficulty has

been one of the common points of the studies highlighted above. However, this
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association was found in early decision-making research. The AI was deemed

as a domain general locus of activation associated with the performance across

the visual, auditory, semantic and non-semantic rapid decisions (Binder et al.,

2004). Later studies augmenting neuroimaging data with model-based infer-

ence showed that the AI is involved in evidence accumulation during decision

making across range of cognitive domains (Ho et al., 2009; Liu and Pleskac,

2011).

MEG and EEG have been used to directly examine the dynamic of evidence

accumulation during decisions. In a MEG study with the RDM task (Donner

et al., 2009), the beta- and gamma-band activities in the motor and pre-motor

cortex were predictive of the choices. The predictability of the choices arises

over time, suggesting a gradual formation of decisions (Figure 2.3). Those

results suggested the ramping up was predictive of the motor action, which

in the conventional understanding of the decision process occurs after the ac-

cumulation of the evidence (Ratcliff et al., 2016). Vugt et al. and colleagues

(2012) conducted an EEG study with the RDM task. Ramping of theta-band

oscillatory power was observed over the course of a trial in superior parietal

channels, and the slope of the change was associated with the DDM drift rate

estimated from individual participants’ behavioural data. This result is at

odds with the MEG study (Donner et al., 2009), which beta-band activity was

observed just before the response and displayed weak associations with model

parameters. There are few factors that may be underlying this discrepancy.

First, it may stem from the fundamental difference between imaging modal-

ities. High-frequency signal may be attenuated by the skull for scalp EEG,

but less affected for MEG (da Silva (2013), see the overview of the neuronal

source of MEG in Section 2.3.1), and differences in pre-processing steps may

also render some frequency bands to be attenuated (Vugt et al., 2012; van

Vugt et al., 2007). Second, the delayed response task used in the MEG study

(Donner et al., 2009), to a certain extent, dissociated information accumula-

tion from motor responses and allowed participants to make slower decisions.

As such, beta-band activity may become salient due intentionally inhibiting

and/or delaying an action (see the overview of frequency-specific MEG activ-

ities in Section 2.3.3).
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Figure 2.3: Buildup of choice predictive activity during the stimulus
presentation. A The time courses of the frequency-specific signal localised
in dorsal pre-motor cortex (PMd) and primary motor cortex (M1) within
beta and gamma frequency bands. Activity indicates the lateralised choice
responses. B Lateralisation of the choice predictability. Adapted from Donner
et al. (2009)

Speed-accuracy trade-off

The combination of neuroimaging and sequential sampling models helped to

confirm the involvement of the striatum in modulating the SAT (Bogacz et al.,

2010). In a fMRI study with the RDM task (Forstmann et al., 2008), the par-

ticipants were instructed to trade response speed for accuracy, or vice versa.

After fitting an accumulator model to behavioural data, a caution score was

derived as the ratio between drift rate and decision threshold. The caution

score was negatively correlated with the BOLD response in the striatum and

pre-supplementary motor area (pre-SMA). Furthermore, the caution score was

also positively correlated with the strength of the structural connectivity be-

tween pre-SMA and striatum, measured by diffusion MRI and probabilistic

tractography (Forstmann et al., 2010a). These results associated striatum

with releasing the inhibition when the fast responding is needed (Ivanoff et al.,

2008; van Veen et al., 2008).

In sum, human brain imaging studies offered considerable insights into the

complex nature of the decision-making process. The decision variable pro-

posed by the sequential sampling models is likely represented by a distributed

neural activity across the fronto-parietal, motor and striatal networks. It re-

flects a wide variety of influences that the decision process can be subjected
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to (Heekeren et al., 2008; Keuken et al., 2014; Kelly and O’Connell, 2015).

2.2 Continuous motor outputs

2.2.1 Embodied cognition and the affordance competi-

tion hypothesis

Historically, cognitive science was mainly focused on the representation of the

external information but not the computations underlying those processes (En-

gel et al., 2013). With cognition to be considered as a set of sequential, mostly

unidirectional processes, actions are often simplified as an end product of cog-

nitive processing (Sternberg, 1969; Donders, 1969; Padoa-Schioppa, 2011). Al-

though this line of research has advanced our understanding of basic cognitive

processes, the embodied cognition account took an different approach with a

more action-oriented focus. Instead of creating an inner representation of the

external world, one essential function of cognition is to help an agent gener-

ate action plans and interact effectively with the environment (Clark, 1999;

O’Regan and Noë, 2001). This approach assumes action plans and their exe-

cutions to have a continuous and afferent influence on cognitive processes, and

hence the dynamic interplay between actions, sensory inputs and the wider

context of actions needs to be considered (Clark, 1999, 2013; Shepard, 1984).

The embodied cognition theory views behaviour as a result of an ongoing

process of action selection constrained by the affordances, referring to the

perceived variety of possible actions constrained by the environment (Shep-

ard, 1984). The affordance competition hypothesis (ACH, Figure 2.4), which

stems from the embodied cognition theory, has been proposed to account for

experimental results from animal and human studies of motor control and

decision-making (Cisek, 2007). The ACH assumes that the brain provides a

platform to interact with the environment and behaviour emerges on the ba-

sis of a constant competition between action plans (Cisek, 2007; Cisek and

Kalaska, 2010; Cisek, 2012).

According to the ACH (Cisek and Kalaska, 2010), during perceptual decisions,
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Figure 2.4: The affordance competition hypothesis. Proposed explana-
tion of the movement directed by the visual input based on the primate brain.
Adapted from Cisek and Kalaska (2010).
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the dorsal visual stream provides spatial information that narrow down poten-

tial action plans to interact with the current environment (e.g. potential reach

targets). The ventral visual stream provides specific information about which

actions could be chosen. Action specific information is propagated to the basal

ganglia that biases the action selection. The role of prefrontal cortex in high-

level cognition makes it a suitable hub to integrate information across the brain

and implement competitions among action plans. Specifically, the orbitofrontal

cortex (OFC) integrates the affective- and the value-related information associ-

ated with action plans. The ventrolateral prefrontal cortex (VLPFC) compiles

the motivational value with the sensory information, which is subsequently

propagated to the DLPFC and pre-motor regions to modulate action selection

(Cisek, 2012; Cisek and Kalaska, 2010; Cisek, 2007). The integration process

across information domains was akin to the sequential sampling models.

The ACH implies parallel processing, with a constant impact from sensory

and proprioceptive feedback upon ongoing actions and motor control, which

enables a continuous interaction with a changing environment. Cisek and

Kalaska (2010) argued that conventional experimental design is not suitable

to unravel those dynamic processes, because the separation of task trials and

discrete stages of stimulus with subsequent responses abolish the variability

of those parallel processes, hence undermining their identifiability (Cisek and

Kalaska, 2010).

A similar proposal was outlined in a seminal paper by Spivey and Dale (2004).

Echoing the early work on embodied cognition, the authors expanded the

proposition that the brain states or neural representations underlying cog-

nitive functions are not static, but continuously changing in time. The use

continuous response measures has been suggested as a way to unravel the dy-

namics of the cognitive processes (Spivey and Dale, 2006; Magnuson, 2005),

which I will review in the rest of this section.

30



2.2.2 Motor control of discrete and continuous move-

ments

In a contrast to the dominant use of the simple event logs for button presses in

cognitive studies, a continuously measured movement trajectory has been the

primary dependent variable in the field of motor control. One can define two

types of movements based on their movement trajectories (Hogan and Sternad,

2007; Howard et al., 2011). A discrete movement can be characterised as the

one with a single peak velocity between static periods. Examples of such

movements include a point-to-point reach. On the other hand, when multiple

peaks of velocity and periodic activity is observed, such movements can be

classified as continuous movements.

Movement trajectories highlighted different computational and neural pro-

cesses between discrete and continuous movement (Howard et al., 2011). Using

state flow analysis of dynamic systems, computational modelling showed that

discrete movements require a time keeping module to trigger the action, but

maintaining continuous movements do not (Huys et al., 2008; Drew et al.,

2004). Higher level cortical motor controllers influence the rhythmic activity

by triggering and modulating spinal cord oscillation generators, as opposed

to a direct cortical control in discrete movements (Dietz, 2003; Sasada et al.,

2010; Marder and Bucher, 2001).

In a naturalistic setting, possible movements leading to the same outcome are

highly variable, and control signals (sensory and proprioceptive) allow to coun-

teract potential disturbances. Motor control can act in a stochastic manner,

utilising variability and high degrees of freedom in a movement to approximate

the optimal solution for the current environment. The optimal strategy under

movement uncertainty is to minimise the variability relevant to the current

action plan, while maintaining the variability in redundant (task-irrelevant)

dimensions. This optimal feedback theory (Todorov and Jordan, 2002) pro-

vides a guidance for experimental designs in a laboratory setting. Instead

of designing an experiment to reduce the variability in the data, one could

leverage the variability from continuous recordings to characterise movements

underpinned by action plans and noisy sensorimotor processes (Todorov and

Jordan, 2002; Todorov, 2004; Scott et al., 2015; Scott, 2004; Tassinari et al.,
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2006; Trommershäuser et al., 2008; Wolpert and Landy, 2012).

2.2.3 Methodological advantages of continuous response

measures

Joining the above ideas led to a wider use of continuous hand and upper

limb movements as an experimental measure. The main advantage of tracking

continuous movements over time is the richness of information in recordings,

which suits especially to research questions on the dynamics of the cognitive

process. For example, continuous movements allowed to examine and challenge

the sequential models of the higher cognition (Spivey and Dale, 2006; Freeman

et al., 2011; Song and Nakayama, 2009), and have been successfully applied in

examining cognitive functions such as social interaction, language and memory

(Spivey and Dale, 2006; Freeman, 2018; Freeman et al., 2011). Here I briefly

reviewed a few key studies in perceptual decisions and actions selections with

continuous responses.

Chapman et al. (2010) used a continuous reaching task to track the dynamics

of action selection under multiple action plans. Prior to the onset of a reach-

ing target, a cue was shown to indicate several possible locations of the target.

Movement trajectories of participants’ reaching behaviour was biased by the

uncertainty of the target’s spatial locations, suggesting that multiple action

plans were formed (Gallivan and Chapman, 2014; Chapman et al., 2010). Fur-

thermore, when the timing of the target cue presentation was manipulated

(early vs late with respect to actions), movement trajectories showed evidence

of an parallel specification of action plans. Early cue limited the ability to

recover from the movement perturbation, and the uncertainty about target

locations increased the movement variability and limited the effectiveness of

the feedback. Late cue led to spatial averaging of the trajectories that is opti-

mal for reaching the target. These results suggested that the brain maintains

multiple action plans to reduce the costs of uncertain actions (Gallivan et al.,

2016).

Another successful application of continuous response measures was used to

examine the changes of mind. The competition between action plans driven
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by noisy information and can sometimes lead to an incorrect action. However,

while performing an action, new evidence might arrive to adjust or alter the

ongoing response. The changes of mind are difficult to capture using a discrete

response measures like button presses. In a RDM task (Resulaj et al., 2009),

participants were instructed to use a robotic arm to reach a target correspond-

ing to the coherent motion direction. Most of the movement trajectories were

optimal, i.e., close to the shortest path between the starting point and the tar-

get. However, some trajectories were longer and showed a deflection towards

the direction opposite to the one chosen initially, suggesting occurrences of the

change of mind. The DDM was extended to describe the underlying cogni-

tive processes of the initial decision and the deflection of movement (Figure

2.5). The extended model proposed that, even after the decision being exe-

cuted, the sequential sampling and accumulation processes were still ongoing,

which could have changed the response later in a trial. The extended model

included three decision thresholds, two for the initial binary decision as in the

conventional DDM, and the third for the change of mind. If, after the ini-

tial decision, the accumulated evidence is towards the other alternative and

reaches the threshold before a time limit, the change of mind occurs (Resulaj

et al., 2009).

Berg et al., (2016) used a similar design to relate the change of mind with

subjective ratings of confidence. Using a robotic arm, participants concurrently

reported the choice and the associated confidence. The changes of mind more

likely occurred when the confidence in the choice was low. The extended DDM

showed that the time spent on deliberating was a strong predictor of the change

of the mind. Further experiments showed that increasing the physical effort

to change actions reduced the frequency of the change of mind, which can be

explained by an increase in decision threshold in trials with high energy cost

to alternate responses. Those results suggested that the decision process can

indeed be dependent on the underlying actions as well as their energy costs

(Burk et al., 2014; Moher and Song, 2014).

The studies reviewed above demonstrated how sequential sampling models can

be extended to accommodate continuous movement measures. In either but-

ton presses or arm reaches, motor responses often have a clear beginning and

the end point, from which conventional measures such as RT and decision ac-
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Figure 2.5: A sequential sampling model extended to accommodate
the change of mind. The DDM (for more details see: Figure 2.1 was ex-
tended to take into account the observed trajectories (Hand position) and
processes of change of mind. The red lines (the trace of accumulated evidence
and hand position) represent the decision that was altered after the initial en-
gagement in the action. The model assumes that the evidence accumulation
still continues after the initial engagement. The subsequent processes have a
temporal deadline and a different bound to the initial decision. As with the
initial decision, when the accumulation trace reaches the Change-of-mind
bound, the decision is altered, which is reflected in the deflection of the hand
position. Conversely, the green trace which reaches the Change-of-mind
temporal deadline, but does not reach the Change-of-mind bound repre-
sents a confirmed decision. There is no deflection in the hand position (green
line). Adapted from Resulaj et al. (2009)
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curacy can be derived. Therefore experimental results from discrete button

presses are often generalizable to continuous movements, as demonstrated in

Chapter 3. Continuous movements also have the potential to expand our cur-

rent understanding of simple decisions. The joystick or similar devices allow

to probe decision outputs in different ways and track how decision processes

unfold in time. In Chapters 4-6, I demonstrated how continuous movements

can be used in new decision-making experiments. To bring decision-making

research closer to real life situations, a step further would be to merge con-

tinuous movements following motor control models (e.g. Wolpert and Landy,

2012) with continuous flow of non-stationary evidence (Cisek et al., 2009). In

Section 7.2 I will outline future works that may challenge the current notion

of decision process prescribed by the sequential sampling framework.

2.3 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) is a non-invasive method to measure the

magnetic fields generated by the electrical activity of neuronal populations

(da Silva, 2010; Singh, 2006). MEG can sample macroscopic neural activity

with a high temporal resolution (usually between 250 Hz and 1200 Hz and up to

30 kHz during recording) (Baillet, 2017) with an adequate spatial resolution

(∼1cm) (Goldman et al., 2002). Therefore, it is well suited to investigate

the rapid dynamic changes of cognitive processes (Hari and Salmelin, 2012;

Baillet et al., 2001; Aine, 2010) or impaired brain dynamics, e.g., in patients

with epilepsy (Nakasatp et al., 1994). This section briefly reviewed theoretical

background of MEG and analysis pipelines used in the later chapters (Chapters

5-6).

2.3.1 MEG signals

Neuronal sources of MEG signals

In the late 19th century, Polish physiologist Adolf Beck discovered the sensory

evoked and spontaneous electrical activity on the scalp and the exposed cortex
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of the animals (Coenen et al., 2014). In the beginning of the 20th century Hans

Berger made a first scalp electroencephalography (EEG) recordings in humans

(Haas, 2003). Since then, the electrophysiology has become a popular tool in

neuroscience, especially in examining cognitive functions (da Silva, 2013).

In this thesis, I used magnetoencephalography (MEG) to record electrophysi-

ological activities in the brain. Both EEG and MEG signals originated from

neural activity but from different sources. The main source of the signals mea-

sured in MEG are postsynaptic ionic currents in pyramidal neurons. Compu-

tational simulation suggested that synchronised activation from 50,000 pyra-

midal neurons is needed to obtain a noticeable difference in the MEG signal

(Murakami and Okada, 2006), which limits the spatial resolution of the MEG

signal (Baillet, 2017; Hari et al., 2010). The direction of the electric current

determines the orientation of the accompanied magnetic field, which has to

penetrate the skull to be measured by the MEG sensors. MEG is sensitive

to magnetic fields oriented tangentially to the skull (see Figure 2.6) but less

sensitive to radially oriented currents (towards or away from the scalp) (Singh,

2006; Crease, 1991; da Silva, 2013; da Silva, 2010; Malmivuo, 2012).

Although the EEG measurement is not independent, the recorded signal cap-

tures a different aspect of the same source. EEG measures the galvanic electri-

cal activity using electrodes placed on the scalp. Due to the electrodes being

placed directly on the scalp, the method can be sensitive to radial and tangen-

tial sources separately. EEG is more likely to pick up a deep sources, whereas

the sensitivity of MEG decreases with distance from the sensor. Placement

of the electrodes and obtained signal is more susceptible to the problem of

volume conductance, the differences in conductivity across the brain tissues

(e.g. cortex, dura matter, skull, skin). In contrast to EEG, MEG data does

not need to be referenced as it is a measure of the actual physical values of the

magnetic field strength (Malmivuo, 2012; da Silva, 2013; da Silva, 2010; Vrba,

2002; Vrba and Robinson, 2001).

MEG data acquisition

The magnetic field generated by brain activity is on the scale of femtoteslas

(10−15T ), much weaker the the earth’s magnetic field (2.5 to 6.5 10−5T ). As
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Figure 2.6: The orientation of the current direction and the visibility of the
magnetic field to the MEG sensors. (A) the orientation of the magnetic field
(red and blue pattern) when the direction of the current (black arrow) is aligned
tangentially, along the anterior-posterior axis. (B) the orientation of the mag-
netic field when the direction of the current is aligned on the axis left-right.
(C) the orientation of the magnetic field when the direction if the current is
tilted, magnetic field still can be measured with MEG provided the source is
close to the skull (Hillebrand and Barnes, 2002). (D) magnetic field is not
visible by the MEG sensors as the direction of the current is oriented radially,
along the ventral-dorsal line. Figure adapted from Singh (2006)

a result, MEG recording relies on very sensitive sensors (Baillet, 2017; Vrba,

2002; Vrba and Robinson, 2001) such as superconductive quantum interference

devices (SQUIDs).

However, the high sensitivity of the SQUID sensors comes at a cost. The

recording of the biomagnetic source (i.e. neuronal population) has to be

guarded from much stronger, external fields. To mitigate that, the record-

ings are performed in magnetically shielded rooms. Magnetic walls were used

to reduce the noise in 1-100 Hz range, relevant to recording of the biomagnetic

signals. Use of copper and aluminium shells further allowed to tune out the

high frequency noise (Hoenig et al., 1989).

Multiple SQUID (superconductive quantum interference device) sensors (up to

around 300) are laid out in a array around participants’ head. A helmet is used

to separate participants’ head from the SQUIDs immersed in liquid helium.

With sensitive sensors, the muscular activity has a much stronger presence

than the electrical brain activity, thus creating artifacts in the recorded signal.

(Parkkonen, 2010; Baillet, 2017). Eye movement related muscular activity is

often recorded using additional electrodes located directly around participants’
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eyes. Artifacts are needed to be removed during data pre-processing (Gramfort

et al., 2013).

To reduce the electromagnetic noise in the signal recorded by the very sensi-

tive SQUID sensors, multiple strategies are adopted. First, the MEG device is

separated from the helium storage facilities and control room by locating it in

the electromagnetically shielded chamber. Second strategy involves a special

configuration of the pick-up coils. Magnetometers, the coils which are collect-

ing the absolute value of the magnetic field strength are susceptible to the

physiological (e.g. muscle activity) and remaining environmental noise. The

addition of the gradiometers, the coils which are wound in the opposite direc-

tion to magnetometers, can cause the setup to be sensitive to the field patterns

close to those of the neural origin. The combination of the gradiometers and

the distances between the coils allow to fine tune the trade-off between the

noise rejection and sensitivity to the deeper sources (Singh, 2006; Hari and

Salmelin, 2012; Hoenig et al., 1989).

2.3.2 Common MEG pre-processing steps

This section summarised pre-processing steps commonly used in MEG research

and this thesis. The origins of the recorded MEG signal are complex, contain-

ing neural signals as well as a wide range of environmental or physiological

noise. Thus, appropriate pre-processing steps are necessary to remove arti-

facts from the MEG data and increase the signal to noise ratio. Many soft-

ware packages are available to process the MEG data like e.g. Brainstorm

(Tadel et al., 2011), Fieldtrip (Oostenveld et al., 2011), MNE-Python (Gram-

fort et al., 2014), SPM (Litvak et al., 2011). All the MEG data in this thesis

were pre-processed and analysed using MNE-Python package (Gramfort et al.,

2013, 2014).

Raw MEG recording is often acquired at > 500 Hz. The initial pre-processing

steps are to apply frequency filters to limit the signal within a frequency band

of interest (Parkkonen, 2010; Singh, 2006; Candès, 2006), and down-sample

the data to reduce the computing load. and The sampling frequency limits

the peak frequency of the data. According to the Nyquist-Shannon sampling
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theorem, for a peak frequency of (B), the sampling rate fs has to be at least

2B to maintain all the information (fs > 2B). If the power line frequency

(50 or 60 Hz) and its harmonics are included within the frequency band, the

common practice is to apply a notch filter to remove the mains interference

(Parkkonen, 2010; Singh, 2006). It is important to manually inspect the filtered

MEG data prior to further processing. The main purpose of this step is to

identify noisy channels and sudden signal jumps in the recording. Depending

on the experimental design, the affected data segments could be cut out if they

contain too much noise.

Eye movements and cardiac artifacts are the main sources of noise in MEG

data that contaminate the MEG recordings. There are many artifact correc-

tion methods available. The most basic one involves a manual inspection of

the signal and removing all epochs containing e.g. muscle artifacts from eye

movements. However, many visual paradigms involve stimuli of varied inten-

sities that may cause involuntary blinks within a trial. As such, the statistical

power of the experimental design may suffer if too many trials are to be re-

jected. In those scenarios, the removal of the contaminated epochs might not

be feasible (Parkkonen, 2010; Singh, 2006; Gross et al., 2013).

Popular tool, aiding the artifact rejection strategy is the Independent Com-

ponent Analysis (ICA), used to identify and remove noisy components. The

ICA decomposes signals into statistically separate components, assuming the

components of the observed signals are non-Gaussian and independent of each

other. The properties of the ICA render this method especially suitable to

separate brain signals from artifacts (Gonzalez-Moreno et al., 2014; Gramfort

et al., 2014; Parkkonen, 2010). The ICA has been successfully applied to re-

move artifacts related to eye movements (Jung et al., 1998), cardiac activity

(Jung et al., 1998) and cochlear implants stimulation (Gilley et al., 2006). To

identify any noise components, the time courses of all independent compo-

nents can be correlated with direct recordings of the activity of the interest

(e.g. EOG or ECG). The ones with the highest correlation coefficients are

often the noisy components to be removed (Gramfort et al., 2014). ICA was

used to not only detect noises in the signal, but also to separate distinct brain

networks across various imaging modalities (e.g. fMRI (Zuo et al., 2010), or

MEG(Brookes et al., 2011)).
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Another commonly used artifact rejection method is Signal Subspace Projec-

tion (SSP), which is based on a different way of signal decomposition - PCA.

Unlike the ICA to find independent components, the PCA yields orthogonal

components of the data that best explain the observed variance. SSP is in-

corporating the information about the the specific spatial patterns of noise

components (physiological or external), which are different than the compo-

nents reflecting neural signals. For example, the neural signals are usually

confined to a small, linear subspace, while the noise components are more ran-

domly distributed. By identifying and removing noisy components from the

data, the effects of artefacts to MEG signals are reduced (Parkkonen, 2010;

Gross et al., 2013; Gonzalez-Moreno et al., 2014; Gramfort et al., 2014).

2.3.3 MEG sensor-space analysis

Event-related fields

Evoked response fields (ERF) measures the magnetic field evoked by certain

events (Singh, 2006), which could be triggered externally (e.g., stimulus onset)

or voluntarily (e.g., response). To calculate ERFs, pre-processed MEG data

is first segmented into epochs, which were then aligned to the timing of the

events of interest. Usually, the short interval before stimulus onset was used for

baseline correction, because it is assumed to be free from the evoked response

to the event. Single-trial ERFs are often averaged across trials to improve the

signal-to-noise-ratio. The assumption here is that the noise is random across

trials and hence would be averaged out in the averaged ERFs, which reflects

the central tendency of the evoked response. It is worth noting that, although

the analysis pipeline for ERF (MEG) and EEG-based event-related potentials

are to a certain degree equivalent, one has to be cautious when comparing

ERP and ERF results, because of the difference between the modalities in

signal sources and their sensitivity to the current orientation (Virtanen et al.,

1998; Burra et al., 2017; Darvas et al., 2004).

The interpretation and the analysis of ERFs are based on the differences in

their wave-forms (i.e., amplitude and latency) between conditions. Similar to

the established ERP components from EEG data, ERF components have been
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identified as markers of of early sensory processing (N1 (Budd and Michie,

1994), Visual N1 (Wascher et al., 2009), P1 (Taylor, 2002)), attention alloca-

tion (Hopf et al., 2000), sensory mismatch (Näätänen et al., 2007), language

processing (Van Petten and Luka, 2012) and memory (Friedman and Johnson,

2000).

Time-frequency data

Because MEG signal originates from synchronised activities of large neural

populations, the synchronicity among neurons gives rise to rich frequency in-

formation in MEG recordings. MEG data in the time domain can be translated

into the frequency domain using Fourier or wavelet transformation (Singh,

2006; Pfurtscheller and Lopes da Silva, 1999). As in ERFs, MEG oscillatory

activity in different frequency bands can then be time-locked to stimulus onset

or other events (e.g. motor response). Event Related Synchronisation (ERS)

and Event Related Desynchronisation (ERD) refer to an increase or decrease

in the oscillatory power of a frequency band (Pfurtscheller and Lopes da Silva,

1999; Pfurtscheller et al., 1996; Pfurtscheller, 1992). The ERSs/ERDs provide

additional information over ERFs, since the decomposition of MEG data into

a range of the frequencies allows to observe separately the frequency-specific

changes over time (Singh, 2006).

The importance of frequency-specific information can be traced to functional

roles of neuronal oscillation (Sejnowski and Paulsen, 2006). The innate oscil-

lation of a neuronal population can retain or filter out incoming information

(Buzsáki and Draguhn, 2004), and this selectivity has been shown to be able

to amplify specific signals or coordinate information processing across popula-

tions (Uhlhaas et al., 2009). For example, cross-frequency coupling (CFC), the

statistical dependency of between multiple regions at different frequency bands,

plays a vital role in long-range information propagation across the brain dur-

ing sensory, motor and learning processes (Canolty and Knight, 2010). More

specifically, it has been proposed that the low frequency oscillations are the

signatures of the long distance information transfer, which modulates the high

frequency local processing (Canolty and Knight, 2010). CFC in phase was

observed during learning and recall during sleep (Euston et al., 2007). Phase-
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amplitude CFC was found in hippocampal (Wulff et al., 2009) and basal gan-

glia activities (Tort et al., 2008) in rodents (Wulff et al., 2009) and during

visual attention in humans (Osipova et al., 2008). Below I briefly overview the

functional significance of different frequency bands.

The alpha-band

The alpha-band oscillation refers to the activity within the frequency range of

8 to 14 Hz, which is the dominant rhythm in EEG/MEG recordings when eyes

are shut (Klimesch et al., 2007). During visual processing, strong alpha oscil-

lations can often be localized in the midline of the posterior occipital cortex

(Klimesch, 1999; Klimesch et al., 2007; Klimesch, 1999; Picazio et al., 2014).

Evidence from the macaque intracranial recordings highlighted the functional

distinction of alpha-band activity between the occipital and higher-level cor-

tices. Consistently with the alpha being a signature of the attention, the ERD

in the occipital cortex (V2, V4) was negatively correlated with behavioural

performance (i.e., the higher the alpha power the longer RT). The inverse was

true for the activity in higher level cortices (Bollimunta et al., 2008).

At the neuronal level, alpha-band activity is thought to relate to inhibition

(synchronisation) and the withdrawal of inhibition (desynchronisation), more

precisely to suppression and selective activation of the activity. This supports

a functional role of alpha-band activity in cognition, which is likely to associate

with the allocation and control of attention, suppressing areas not involved in

current cognitive demands (e.g. Klimesch, 2012; Spaak et al., 2014; Foxe and

Snyder, 2011; Snyder and Foxe, 2010; Thut et al., 2006). For example, sponta-

neous increase in alpha-band activity prior and during stimulus presentation

reduces the detection rates (Mathewson et al., 2009), and a similar effect was

observed when participants performed a working memory task with distrac-

tors (Hamidi et al., 2009). Alpha-band activity also depends on demands in

tasks requiring a sustained attention (Klimesch, 1999; Klimesch et al., 2007;

Klimesch, 1999; Jensen and Mazaheri, 2010). Moreover, the alpha-band ac-

tivity is coupled with high frequency Gamma-band oscillations (Bonnefond

and Jensen, 2015). The CFC between Alpha- and Beta-band activity was

specifically linked to the distraction blocking (Bonnefond and Jensen, 2013).
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The beta-band

Neural activity in the range of 12-30 Hz is categorised as the beta band. The

sensorimotor and motor cortices are the predominant source of beta-band ac-

tivity. During active movements, beta-band activity from the cortex exhibit

a stereotypical pattern of desynchronisation, lasting as long as the duration

of the movement (Engel and Fries, 2010; Kilavik et al., 2013; Khanna and

Carmena, 2017). Beta-band desynchronisation is insensitive to the type of

movements performed with the same part of the body (e.g. speed, direction,

or ballistic vs. continuous).

Once the movement terminates, the beta-band activity shows a relative in-

crease, known as ”beta rebound” (e.g. Gaetz and Cheyne, 2006; Erbil and

Ungan, 2007; Tan et al., 2016; Kilavik et al., 2013). It has been proposed

that beta rebound relates to the inhibition of movement in the motor and pre-

motor networks (Picazio et al., 2014), which facilitates information processing

to guide subsequent actions (Tan et al., 2016).

An additional signature in the beta-band is the decrease of power prior to the

movement, which has been attributed to motor preparation processes. For ex-

ample, when participants voluntarily lowered the beta-band power though neu-

rofeedback, subsequent movements were initiated faster (Savoie et al., 2019).

Further, beta-band activity prior to the movement is predictive of the subse-

quent performance (Kilavik et al., 2013; Haegens et al., 2011; Grabot et al.,

2019) and the certainty of the action plan (Tzagarakis et al., 2015).

Interestingly, muscle movement is not a prerequisite for beta-band desynchro-

nisation, because it can occur during a motor imagery (Nakagawa et al., 2011),

an observation of the movement (Meirovitch et al., 2015), tactile stimulation

(Gaetz and Cheyne, 2006) or a passive movement (Keinrath et al., 2006). Re-

cently, a neurofeedback study on macaque monkeys has shown that, when sub-

jects were instructed to intentionally lower their beta-band oscillatory power.

Subsequent reaching movements had faster onset time than when there was an

increase in beta power (Khanna and Carmena, 2017). Therefore, beta-band

desynchronisation during the movement is likely to be functionally tied to a

general process of motor control rather than motor outputs (Kilavik et al.,
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2013).

The Gamma-band

The frequency range of 30-90Hz is categorised as the Gamma-band. The phys-

iological origins of this signal spectrum are thought to come from temporary

synchronous neuronal firing. Gamma-band activity obtained from local field

recordings are mainly transient bursts with variable frequencies. The time

window of 10 to 30 ms (i.e., gamma-band frequency) appeared to be opti-

mal for neurons to respond to environmental changes. Neurons firing within

this window can therefore form transient assemblies that are essential to the

integration of inputs from multiple sources (Buzsáki and Wang, 2012).

On a macroscopic scale, in cognition, the Gamma-band activity is associated

with binding task-relevant information. Activity in this power band was ob-

served during conscious access to information (Melloni et al., 2007), speech

perception (Kaiser et al., 2006) and memory encoding and retrieval (Jensen

et al., 2007). All those tasks required integrating diverse sources of information

into a coherent stream or conscious representation. During self-initiated move-

ments, the increase of Gamma-band activity in the motor cortex (Muthuku-

maraswamy, 2010) was associated with the binding of the multi-sensory infor-

mation (Cheyne et al., 2008) and the integration of the motor and propriocep-

tive signals (Pfurtscheller et al., 2003) that are crucial for motor control. It has

been proposed that the synchrony of distant Gamma-band neuronal genera-

tors can be driven by fluctuations in lower frequency signals via cross frequency

coupling (Buzsáki and Wang, 2012). For example, the integration and binding

of visual information to ignore distractors was linked to the coupling between

alpha and gamma bands. (Bonnefond and Jensen, 2013, 2015).

The delta- and theta-bands

The functional roles of delta-band (0.5-4 Hz) and theta-band (4-8 Hz) activity

in human decision-making and action selection are relatively understudied. I

have included those oscillatory spectra because they reflected the experimental

conditions. In Chapter 5, I included the delta-band in the analysis because its
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frequency range overlaps with that of the continuous movements. In Chapter

6, I included a theta band in an analysis because its frequency range overlaps

with that of the visual stimulus.

The delta-band activity was predominantly a focus of in sleep research (Amz-

ica and Steriade, 1998; Dang-Vu et al., 2008). The delta waves are a distinct

pattern during slow wave sleeps, which promotes the consolidation of infor-

mation from recent awake periods (Rasch et al., 2007). Delta sleep activity is

not a coherent wide-band oscillation, but rather a mix of cortical and thalamic

oscillations that integrate activity across networks (Lu et al., 2007).

The delta band activity is also functionally relevant during awake. Ultra-low

frequency (∼0.1 Hz) is associated with the modulation of global cortical ex-

citability (Knyazev, 2012; Hamel-Thibault et al., 2018). Oscillatory power in

the delta-band was correlated with the predictability of the cue in an auditory

and a visual detection task (Ergen et al., 2008). The low frequency oscillations

can potentially modulate faster rhythms to propagate the anticipatory infor-

mation across the brain. For instance, the coupling between delta and gamma

frequency was found during naturalistic scene viewing and visual detection

(Händel and Haarmeier, 2009).

In animal studies, theta-band activity in the hippocampus has been linked

with a wide range of cognitive functions including movement and exploration

of the environment (Oddie and Bland, 1998; Bland, 1986), action selection

(Oddie and Bland, 1998), spatial navigation (Hartley et al., 2014), memory

retrieval and synaptic plasticity (Bland and Oddie, 2001). In humans, changes

in the theta-band activity (Sauseng and Klimesch, 2008) were associated with

the outcome evaluation, such as negative feedback (Cunillera et al., 2012) and

conflict of information (Bernat et al., 2007; Hsiao et al., 2009; Harper et al.,

2014). Recently, MEG and EEG theta-band activity has also been shown to be

associated with information integration during decision-making (Vugt et al.,

2012; Nácher et al., 2013) and continuous visually-guided movements (Grent-’t

Jong et al., 2014; Cruikshank et al., 2012).
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Figure 2.7: Overview of the typical steps in Multivariate Pattern Analysis
(MVPA) of neuroimaging data. A. The labels are assigned for each observation
(here: trial). Labels often reflect the different experimental conditions. Each
observation contains features in multiple dimensions (e.g., signals from MEG
sensors) B. To reduce the amount of features, PCA is applied to the data
to extract the first few principal components. Here, instead of the signal
from MEG sensors, selected principal components are used as features. Green
highlight denotes a single time point. C. A classifier (e.g., Support-vector
Machine (SVM) classifier) is used to train and test pattern separations in
the observed data, using a cross-validation test to evaluate its performance
and generalisability. The predicted labels are compared with the actual labels
yielding the classification accuracy. D. Training and cross-validating at every
single time point yields a time course of classification accuracy, representing the
ability to distinguish between experimental conditions over time on the basis of
multivariate patterns. E. Temporal generalisation (King and Dehaene, 2014).
One can use a classifier trained at one time point to test the data from another
time point. Significant classification would indicate that pattern information
maintains and generalises across time.
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2.3.4 Multivariate pattern analysis

Conventional univariate analyses make inferences on the basis of a single de-

pendent variable, such as BOLD response in one voxel or one region, or MEG

activity in one sensor or averaged from several sensors. Nevertheless, neu-

roimaging data is inherently multidimensional, and the information could be

represented in multidimensional patterns instead of uni-dimensional activity.

Multivariate Pattern Analysis (MVPA) refers to a range of methods to iden-

tify patterns of brain activity (Haxby, 2012). MVPA searches for information

represented across high-dimensional data, which have been shown to be more

sensitive than univariate analysis in localising complex information represen-

tation and computation in the brain (Kriegeskorte et al., 2006; Haynes and

Rees, 2006; Haxby et al., 2001).

Figure 2.7 illustrates the typical steps of MVPA analysis for MEG data. The

first step (Figure 2.7 A) is to prepare the data in an appropriate multidimen-

sional format. Pre-processing steps can have an impact on the MVPA results

(Poldrack et al., 2017). For example, an aggressive high-pass filter could intro-

duce artifacts in MVPA results, and modest filtering is recommended (Driel

et al., 2019; Tanner et al., 2016). Many machine learning models (e.g., support

vector machines) performs better with standardised data, with zero-mean and

unit variance in each dimension (Larsen and Marx, 2012). Each epoch (or tri-

als) for MVPA is assigned with a label, referring to the experimental condition

that is needed to be learnt.

The next step is dimensionality reduction (Figure 2.7 B). In most neuroimaging

studies, the amount of data is limited due to constraints of scanning time,

but the data often has large amount of dimensions. Here, data dimension

refers to the number of features in each observation. For MEG data, it would

be equivalent to the number of MEG sensors. In multivariate analyses, the

complexity of the statistical model increases with the data dimension, which

can lead to overfitting or poor results (Hastie et al., 2009). One solution is to

reduce the data dimension prior to further analyses. Dimensionality reduction

can be achieved by, for example, selecting a subset of features (Kriegeskorte

et al., 2006) or applying PCA to the data and selecting a subset of principal

components that explain most of the variance (Grootswagers et al., 2016).
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Figure 2.8: Temporal generalisation. The figure describes a theoretical guide-
line for the temporal generalisation results. The diagonal decoding and
temporal generalisation depict possible MVPA classification results. The
diagonal decoding highlights possible classification results when the train-
ing and testing data sets are pooled from the same time point across trials.
The temporal generalisation shows the ability to generalise a statistical
model that is trained on one time-point and classify data from all possible
time points. The diagonal of the temporal generalisation matrix is equiva-
lent to the diagonal decoding. Any significant classification performance off
the diagonal indicates a generalisation of the multivariate pattern across time
points. Adapted from King and Dehaene (2014).

The third step is to use a statistical learning model to learn and classify multi-

variate patterns in the data. In Chapters 5 and 6, I used linear support vector

machines (SVM) for this purpose. The classification step involves fitting a

chosen model to a observations. The linear SVM is a binary supervised clas-

sifier that fits a hyperplane to the multidimensional data space (see: Figure

2.7 C). The hyperplane divides the observations into one of two classes (i.e.,

labels). To evaluate classification performance, one can use a K-fold cross-

validation procedure. That is, the dataset is divided into K parts. K − 1

parts are used to train the SVM, and the remaining part is used to test the

accuracy of the trained classifier. The procedure is repeated K times, with a

different test set in each cross-validation. The classification accuracy is then

averaged from all the K cross-validation folds. This validation scheme is used

to evaluate whether the classifier enables to predict new data unseen during

training (Hastie et al., 2009). If the classification accuracy is above chance

level (50% for binary classification), the multivariate data contains substantial

information to distinguish the two classes.

For MEG data, one can implement a previously described procedure (Figures
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2.7A-C) at every time point of a trial, resulting in a time course of classification

accuracy. This evaluates whether and when multivariate MEG data patterns

can be distinguished between the two conditions (Figure 2.7D) (Kok et al.,

2019; Lewis-Peacock and Postle, 2012). One could also train a classifier with

data at time t and test its classification performance on data at a different

time point t�. A significant cross-time classification would suggest that the

multivariate representation can be generalised between the time points (Figure

2.7E). Recently, it has been proposed that the temporal generalisation pattern

can reveal the underlying behaviour of the large scale brain signals sources

(King and Dehaene, 2014; Grootswagers et al., 2016; Hebart and Baker, 2018)

(Figure 2.8).

King and Dehaene (2014) proposed an approach to link the range of neuronal

generator networks (Figure 2.8 Generators), the signal produced by the gen-

erator’s activity (Figure 2.8 Activity) with the MVPA classification results

(Figure 2.8 Diagonal decoding and Temporal generalisation). The par-

ticular generators produce distinct signal pattern of states and state occupancy

duration. The classification results show that the activity can be accurately

distinguished. However, the diagonal decoding results do not provide sufficient

amount of information to distinguish across the signals coming from different

generators. Diagonal decoding results are obtained by training and testing

the statistical model on the same time point. As shown on the Figure 2.8,

diagonal decoding produced equivalent results for generators producing chain

of unrelated states (chain generator, Figure 2.8), for generators producing the

repeating sequence of the states (reactivated generator, Figure 2.8), as well as

for the state stable in time (sustained generator, Figure 2.8).

Only the temporal generalisation (Figure 2.8) unravelled the pattern of classi-

fication enabling the qualitative distinction between the generators. Temporal

generalisation results are obtained by training the statistical model on one time

point and testing the solution on all available time points. Resulting matrix

shows how the model trained on one time point generalises over all the other

time points. The diagonal decoding results are equal to the diagonal of the

matrix. The chain of the unrelated states, has correctly shown no temporal

generalisation. As the generator produced series of distinct states, the pattern

of activity was not shared by any other time point. The temporal generalisation
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matrix accurately showed the common pattern of the repeated states produced

by the reactivated generator. Stable generator produced signal generalisable

across all the time points of the duration of the state. Despite the common

diagonal decoding results, temporal generalisation allowed to distinguish those

states.

It is worth highlighting a reversing/oscillating signal and associated classifica-

tion results patterns. Significant, below the chance level performance is caused

by the classifier reliably attributes opposite labels to the test set. It potentially

mean that the signal is inversed. The temporal generalisation pattern shows

the reactivation of the same pattern and the frequency of its occurrence.
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Chapter 3

The validity and consistency of

continuous joystick response in

perceptual decision-making

3.1 Introduction

Discrete key presses on a keyboard or button box have been the long-standing

response modality in computer-based experiments in psychology, from which

on/off responses and response time (RT) are commonly measured. Develop-

ments in computers and electronics technology have improved the accessibility

of other devices that are capable of recording continuous responses, e.g., joy-

stick, computer mouse, motion sensor and robotic arm (Koop and Johnson,

2011; O’Hora et al., 2013). In addition to the standard behavioural measures

available from key presses, continuous responses enable further inferences from

movement trajectories. However, to utilise the full capacity of continuous re-

sponse recording, we need to ensure that experimental results from these de-

vices are consistent with, or generalisable to, the findings from conventional

response modalities such as key presses. In the current chapter, I addressed this

issue by comparing the behavioural performance between joystick movements

and key presses in a perceptual decision-making task. Using computational

modelling of behavioural data, the decision-making processes from the two
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response modalities were further compared.

3.1.1 Continuous and discrete responses in experimen-

tal psychology

As argued in the previous chapter the continuous responses can offer theoret-

ical and practical advantages in experiments. First, although a discrete re-

sponse is consistent with the assumption of sequential stages of cognition and

motor outputs, a growing number of studies suggested a continuous and par-

allel flow of information between brain systems involved in sensory, cognitive

and motor processes (Cisek, 2005; Spivey et al., 2005). Continuous responses

can capture the dynamics of these multiple mental processes, as well as the

transitions between them (Resulaj et al., 2009). The embodied approach to

cognition, outlined in section 2.2.1 highlighted the action as a key aspect of

cognition when interacting with the environment (Shepard, 1984). The use of

the joystick or similar devices is offering more degrees of freedom, which brings

them closer to day-to-day interactions with the surrounding than e.g. a button

press (Freeman et al., 2011). Second, in experiments involving clinical popu-

lations, it can be difficult for patients to make discrete responses accurately

on a keyboard, especially in patients with dementia or parkinsonism. Patients

with motor function impairments (e.g., tremor, apraxia or loss of dexterity)

often omit button presses, press the button too early or too late, press wrong

buttons accidentally or are confused with response-button mapping. This lim-

itation may result in a significant amount of experiment data being rejected

in some studies (Wessel et al., 1994), while continuous response with natural

movements can be well tolerated in patients (Limousin et al., 1997; Strafella

et al., 2003).

The trajectories of continuous movements contain rich spatio-temporal infor-

mation of the action, and provide unique insights into how cognitive processes

unfold in time (Freeman et al., 2011; Song and Nakayama, 2009). In con-

tinuous reaching, movement trajectories showed that human participants can

initiate a reaching action prior to when the target becomes fully available, and

select from competing action plans at a later stage (e.g. Chapman et al., 2010;

Gallivan and Chapman, 2014). In perceptual decision-making, movement tra-
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jectories from joysticks and other similar devices have been successfully used to

investigate the cognitive processes underlying changes of mind (Resulaj et al.,

2009), error correction (Acerbi et al., 2017) and subjective confidence (Berg

et al., 2016) that are otherwise difficult to study with key presses.

3.1.2 A comparison between response modalities

To extend currently available experimental findings to other devices, it is nec-

essary to assess the consistency of performance between response modalities.

More importantly, characterising the consistency between response modalities

may help us understand the interdependence of cognitive processes and motor

systems. For example, in decision-making tasks, comparisons between sac-

cadic eye movements and manual responses has suggested a domain general

decision mechanism regardless of response modality (Ho et al., 2009; Gomez

et al., 2015), and the apparent difference in response speed is accounted for by

the neuroanatomical distinctions in saccadic and manual networks (Bompas

et al., 2017).

The experiment described in the current chapter aimed to examine the validity

and consistency of continuous joystick responses versus discrete button presses

in perceptual decision-making. Participants performed a four-alternative mo-

tion discrimination task (Churchland et al., 2008) with two levels of perceptual

difficulty. The task was to indicate the coherent motion direction from random

dot kinematogram, a standard psychophysical stimulus for visual perceptual

decision (Fredericksen et al., 1994; Lappin and Bell, 1976; Pilly and Seitz, 2009;

Ramachandran and Anstis, 1983; Watamaniuk et al., 1989). In two counter-

balanced sessions, the participants indicated their decisions with either joystick

movements or key presses. The joystick response was to move the lever from

its neutral position towards one of the four cardinal directions, aligned to the

coherent motion direction, and the corresponding key press was one of the

four arrow keys on the keyboard. The raw behavioural performance (decision

accuracy and mean RT) was compared between the two response modalities

and between the two levels of task difficulty. From continuous movement tra-

jectories, I also examined whether joystick-specific measures were consistent

between movement directions (i.e., trajectory length, peak velocity and accel-
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eration time).

To assess whether the response modality affected the decision-making process,

I fitted a drift-diffusion model (DDM) (Gold and Shadlen, 2007; Ratcliff et al.,

2016) to individual participant’s behavioural data and compared model param-

eters derived from the joystick and keyboard sessions. The DDM belongs to a

family of sequential sampling models of reaction time. These models assume

that the decision process is governed by the accumulation of noisy sensory

evidence over time until a threshold is reached (Bogacz et al., 2006; Ratcliff

and Smith, 2004), consistent with the electrophysiological (Britten et al., 1992;

Churchland et al., 2008; Hanks et al., 2014; Huk and Shadlen, 2005; Shadlen

and Newsome, 2001) and neuroimaging (Heekeren et al., 2008; Ho et al., 2009;

Zhang, 2012) evidence on the identification of neural accumulators in the fron-

toparietal cortex.

The experiment described in the current chapter, I used the DDM to decom-

pose the observed RT distributions and accuracy into three model components:

decision threshold for the amount of evidence needed prior to a decision, drift

rate for the speed of evidence accumulation, and non-decision time to account

for the latencies of stimulus encoding and action initiation (Karahan et al.,

2019; Zhang et al., 2012; Ratcliff and McKoon, 2008; Wagenmakers, 2009).

The latter parameter is of interest in particular, because one may expect

a difference in the latency distribution of action initiation between joystick

movements and key presses.

Our findings demonstrated that when human participants used ballistic move-

ments to respond with a joystick, their behavioural performance was modu-

lated by task difficulty and similar to that from key presses during the same

perceptual task. Further computational modelling analysis showed no evi-

dence of a change in any model parameter when switching between response

modalities. As such, it can be concluded that the joystick movement is a

valid response modality for extending discrete actions to continuous behaviour

in psychological experiments, although participants may exhibit differences in

movement trajectory measures towards different directions.
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3.2 Method

3.2.1 Participants

Twenty-one participants (7 males, aged range 18-24 years; M = 20.43 years, SD

= 2.91 years) took part in the experiment following written informed consent.

All but three were right-handed. All the participants had normal or corrected-

to-normal vision, and none of them reported a history of motor impairments or

neurological disorders. The experiment was approved by the Cardiff University

School of Psychology Ethics Committee.

3.2.2 Apparatus

The experiment was conducted in a behavioural testing room with dimmed

light. Stimuli were displayed on a 22-inch CRT monitor with 1600x1200 pixels

resolution and 85 Hz refresh rate. A chin rest was used to maintain the viewing

distance and position (for more details, see: Figure A.1 in the Appendix). A

joystick (Extreme 3D Pro Precision, Logitech International S.A., Switzerland)

was used to record movement trajectories at 85 Hz in the joystick session.

The joystick handle could move nearly freely, with little resistance from its

neutral position within the 20% movement radius. Beyond the 20% radius, the

resistance during joystick movement was approximately constant. A standard

PC keyboard was used to record key presses. The experiment was written

using PsychoPy 1.85.4 library (Peirce, 2008).

3.2.3 Stimuli

In both the joystick and keyboard sessions, a random-dot kinematogram was

displayed within a central invisible circular aperture of 14.22◦ diameter (visual

angle). White dots were presented on a black background (100% contrast) with

a dot density of 27.77 dot/deg2/s and a dot size of 0.14◦. Similar to previous

studies (Britten et al., 1992; Pilly and Seitz, 2009; Roitman and Shadlen, 2002;

Shadlen and Newsome, 2001; Zhang and Rowe, 2014), the coherent motion in-
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Figure 3.1: The structure of a single trial of the experiment. A fixation screen
was presented for 400 ms, after which the random-dot kinematogram was pre-
sented for a maximum of 3000 ms or until response. The inter-trial interval
was randomised between 1000 and 1400 ms. Participants were instructed to
indicate the direction of the coherent motion direction (0◦, 90◦, 180◦ or 270◦)
using joystick or keyboard in two counterbalanced sessions.

formation was introduced by interleaving three uncorrelated sequences of dot

positions across frames at 85 Hz. In each frame, a fixed proportion (i.e., the

motion coherence) of dots was re-plotted at an appropriate spatial displace-

ment in the direction of the coherent motion (51.195◦/s velocity), relative to

their positions three frames earlier, and the rest of the dots were presented

at random locations within the aperture. Signal dots had a maximum life-

time of three frames, after which they were reassigned to random positions.

The coherent motion direction in each trial was set in one of the four cardinal

directions (0◦, 90◦, 180◦ or 270◦).

56



3.2.4 Task and procedure

Each participant took part in two experimental sessions using keyboard or

joystick as a response modality. The order of response modality was coun-

terbalanced across participants. In both sessions, participants performed a

four-alternative motion discrimination task, indicating the coherent motion

direction from four possible choices (0◦, 90◦, 180◦ or 270◦). Each session com-

prised 960 trials, which were divided into 8 blocks of 120 trials. Each block

had 15 repetitions of each of the four motion directions and two difficulty con-

ditions. The motion coherence was set to 10% in the “Difficult” condition and

20% in the “Easy” condition. Feedback on the mean decision accuracy was

provided after each block. The order of the conditions was pseudo-randomised

across sessions and participants, ensuring that the same direction and difficulty

condition did not occur in four consecutive trials. In the keyboard session, the

participants responded with four arrow keys corresponding to the coherent mo-

tion direction (right - 0◦, up - 90◦, left - 180◦ and down - 270◦). In the joystick

session, the participants were instructed to indicate the motion direction with

an appropriate joystick movement from the joystick’s central position towards

one of the four edges (right - 0◦, up - 90◦, left - 180◦ and down - 270◦).

Every trial started with a 400 ms fixation period (Figure 1a). The random dot

kinematogram appeared after the fixation period for a maximum of 3000 ms

or until response. In the keyboard session, stimuli disappeared after a button

press. In joystick condition, stimuli disappeared when the participants stopped

joystick movement. The chosen stopping rule was when the joystick position

did not change in the last four sampling points, and its position was outside

of the 20% motion radius. After response, a blank screen was presented as the

inter-trial interval, with a duration uniformly randomised between 1000 and

1400 ms.

The response time (RT) in the keyboard session was defined as the latency

between the onset of random-dot kinematogram and the time of key press. In

the joystick session, the RT was defined as the duration between the onset of

the random-dot kinematogram and the first time when the joystick’s position

left the 20% movement radius from its neutral position. It coincided with the

first noticeable increase in the velocity of the movement from the stimulus
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onset. Participants’ choice in the joystick session was one of the four cardi-

nal directions (i.e., 0◦, 90◦, 180◦ and 270◦) closest to the last position of the

joystick.

3.2.5 Drift-diffusion model (DDM) analysis

The DDM was fitted to each participant’s response time distributions and

accuracy. The DDM decomposes the behavioural data into four key model pa-

rameters (Ratcliff and McKoon, 2008). (1) The decision threshold (a) denotes

the distance between the two decision boundaries. (2) The mean drift rate (v)

denotes the strength of sensory information. (3) The starting point (z) denotes

the response bias towards one of the two alternatives. (4) The non-decision

time (Ter) denotes the latencies of stimulus encoding and response initiation.

In addition, the DDM can be extended to include trial-by-trial variability in

drift rate sv and non-decision time st, which improves model fit to the data

(Ratcliff and McKoon, 2008). The DDM predicts the decision time as the

duration of the accumulation process and the observed RT as the sum of the

decision time and Ter (Figure 3.1).

Similar to previous studies (Churchland et al., 2008), in this chapter the

four-alternative forced choice task was simplified to a binary decision prob-

lem for model fitting. This was achieved by separately grouping trials with

correct responses and trials with incorrect responses. The behavioural task

was then reduced to a binary choice between a correct and an incorrect al-

ternative. The hierarchical drift-diffusion model (HDDM) toolbox was used

to fit the behavioural data (Wiecki et al., 2013). The HDDM implemented a

hierarchical Bayesian model (Vandekerckhove et al., 2011) for estimating the

DDM parameters, which assumes that the model parameters for individual

participants are sampled from group-level distributions at a higher hierarchy.

Given the observed experimental data, the HDDM used Markov chain Monte

Carlo (MCMC) approaches to estimate the joint posterior distribution of all

individual- and group-level parameters. The posterior parameter distributions

can be used directly for Bayesian inference (Gelman et al., 2014), and this

Bayesian approach has been shown to be robust in recovering model parame-

ters when limited data are available (Ratcliff and Childers, 2015; Wiecki et al.,
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2013; Zhang et al., 2016).

Empirical results and simulations suggest that reducing the freely varying pa-

rameters led to improved model fit and increased reliability of obtained model

parameters (Lerche and Voss, 2016). Applying those suggestions, following

rules were applied to the model parameters. First, all the model parameters

(a, v, Ter, sv, and st) were allowed to vary between the two response modali-

ties. Second, the mean drift rate v was further allowed to vary between task

difficulties (easy, difficult) and correct directions (up, down, left and right).

The intention of letting those parameters vary freely, was to assess the impact

of basic experimental parameters like difficulty, visual motion direction and

response modality. Third, the starting point parameter z indicates the pro-

portion of distance of the starting point towards the two decision boundaries.

Here, the experimental design and instructions did not introduce any a priori

knowledge about the correct alternative at the beginning of each trial, and

thus the starting point z was fixed at 0.5, assumption that there was no bias

towards the two decision boundaries and the equal amount of evidence was

required for a correct and incorrect decision (Voss et al., 2015). It is worth

noting that when the two decision boundaries indicate two choice alternatives

instead of correct and error alternatives, z �= 0.5 would indicate the existence

of a response bias towards one of the two alternatives.

The 15,000 samples were generated from the joint posterior distribution of all

model parameters by using MCMC sampling (Gamerman and Lopes, 2006).

The initial 7,000 samples were discarded as burn-in for stable posterior esti-

mates. Geweke diagnostic (Cowles and Carlin, 1996) and auto-correlation were

used to assess the convergence of the Markov chains in the last 8,000 samples.

All parameter estimates were converged after 15,000 samples.

3.2.6 Data analysis

First, both the Bayesian and frequentist repeated-measures ANOVA were used

to make inferences on behavioural measures (JASP Team, 2018). For frequen-

tist ANOVAs, Greenhouse-Geisser correction was applied when the assumption

of sphericity was violated. For Bayesian ANOVAs, the Cauchy distribution
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with median m = 0 and width r = 0.707 was used as a prior. The 50% of

the values lie within -0.707 and 0.707. This particular parameter was used to

reflect the belief about the expected effect sizes. With effect size of 0.2 con-

sidered small thus more likely and effect of 1.0 considered large and much less

likely than 0.2. This choice meant that the unusually large effect sizes were

deemed less probable than moderate, thus considered unreasonable to attach

a larger prior weight (Rouder et al., 2009).

Also, the standard heuristic to characterise the strength of evidence based

on the Bayes factor was followed (BF10) (Wagenmakers et al., 2008a), which

can provide evidence supporting either null (BF10<1) or alternative (BF10>1)

hypotheses. A BF10 between [1, 3] (or [0, 1/3]) suggests weak evidence for the

alternative (or null) hypothesis. A BF10 between [3, 10] (or [1/10,
1/3]) suggests

moderate or compelling evidence for the alternative (or null) hypothesis. A

BF10 larger than 10 (or smaller than 1/10), suggests strong evidence for the

alternative (or null) hypothesis.

Second, to quantify the difference of RT distributions between response modal-

ities, the Kolmogorov-Smirnov test (Pratt and Gibbons, 1981) was used, a

non-parametric statistical measure of difference between two one-dimensional

empirical distributions.

Third, to compare a fitted DDM parameter between two conditions (e.g., be-

tween response modalities or between task difficulties), the Bayesian hypoth-

esis testing (Bayarri and Berger, 2004; Gelman et al., 2014; Kruschke, 2015;

Lindley, 1965) was used to make inferences from the posterior parameter dis-

tributions, under the null hypothesis that the parameter value is equal between

the two conditions.

More specifically, the distribution of the parameter difference from the two

MCMC chains of the two conditions was calculated, and the 95% highest den-

sity interval (HDI) of that difference distribution between the two conditions

was obtained. A region of practical equivalence (ROPE) was set around the

null value (i.e., 0 for the null hypothesis), which encloses the values of the

posterior difference that are deemed to be negligible from the null value 0 (Kr-

uschke, 2013). In each Bayesian inference, the ROPE was set empirically from

the two MCMC chains of the two conditions under comparison. For each of
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the two conditions, the 95% HDI of the difference distribution between odd

and even samples was calculated from that condition’s MCMC chain. This

95% HDI from a single MCMC chain can be considered as negligible values

around the null, because posterior samples from different portions of the same

chain are representative values of the same parameter. That is, the null hy-

pothesis is accepted as true when comparing the difference between odd and

even samples from the same MCMC chain. The ROPE was then set to the

widest boundaries of the two 95% HDIs of the two conditions.

From the 95% HDI of the difference distribution and the ROPE, a Bayesian

P -value was calculated. To avoid confusion, p was used to refer to classical

frequentist p values, and PP |D to refer to Bayesian P -values based on posterior

parameter distributions. If ROPE is completely contained within 95% HDI,

PP |D = 1 and we accept the null hypothesis (i.e., the parameter values are equal

between the two conditions). If ROPE is completely outside 95% HDI, PP |D =

0 and we reject the null hypothesis (i.e., the parameter values differ between

the two conditions). If ROPE and 95% HDI partially overlap, PP |D equals to

the proportion of the 95% HDI that falls within the ROPE, which indicates

the probability that the parameter value is practically equivalent between the

two conditions (Kruschke and Liddell, 2018).

3.3 Results

3.3.1 Behavioural results

The behavioural performance of the four-alternative motion discrimination

task was quantified by accuracy (proportion of correct responses, Figure 3.2A)

and mean reaction time (RT, Figure 3.2B). The behavioural performance was

compared between response modalities (joystick or keyboard), task difficulties

(easy or difficult) and motion directions (up, down, left or right) using three-

way Bayesian and frequentist repeated-measure ANOVAs. Across the two

response modalities, participants showed decreased accuracy (BF10 = 5.112 ×
1030; F (1,20) = 292.709, p < 0.001) and increased mean RT (BF10 = 1.458 ×
1018; F (1,20) = 63.163, p < 0.001) in the more difficult condition. There was
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Figure 3.2: Behavioural results in joystick and keyboard sessions. (A) Average
decision accuracy (proportion of correct) across participants. Error bars denote
standard errors of the means. (B) Average mean RT across participants. Error
bars denote standard errors of the means. (C) The Kolmogorov-Smirnov (K-S)
statistics when comparing the RT distributions between response modalities.
The scatter plot showed the K-S statistics in the difficult condition as a function
of the that in the easy condition. Each data point represents the correct (filled
data point) or incorrect (open data point) trials of one participant. Linear
regression lines were illustrated for correct (solid line) and incorrect (dashed
line) trials.

compelling evidence against the main effect of response modality on accuracy

(BF10 = 0.124; F (1,20) = 0.083, p = 0.776) and weak evidence against the

main effect of response modality on mean RT (BF10 = 0.560; F (1,20) = 0.495,

p = 0.490). These results indicated similar behavioural performance between

joystick and keyboard responses.

When comparing the behavioural performance between motion directions, there

was compelling evidence against the main effect on accuracy (BF10 = 0.185;

F (2.248, 44.961) = 0.107, p = 0.357). On mean RT, the frequentist ANOVA

suggested a significant main effect of motion direction (F (2.853, 57.052) =

3.021, p = 0.039), but this results was supported by neither post-hoc tests (p

0.139 in all post-hoc comparisons, Bonferroni corrected) or Bayesian ANOVA

(BF10 = 0.305). Furthermore, there was a significant interaction on accuracy

between task difficulty and motion direction (F (2.586, 51.718) = 6.317, p =

0.002), although this was again not supported by Bayesian analysis (BF10 =

0.299). There was evidence against all the other interactions on accuracy (BF10

= 0.179; p = 0.228) and mean RT (BF10 = 0.199; p = 0.083).

62



The results above suggested no systematic bias at the group level when com-

paring responses from a joystick and a keyboard. However, the consistency of

behavioural performance between response modalities could vary between par-

ticipants. For experiments with multiple response modalities, the researcher

may want to confirm whether the consistency between response modalities is

maintained across experimental conditions. This would allow, for example, a

pre-screening procedure to identify participants with high response consistency

to be recruited for further experiments. Here, the Kolmogorov-Smirnov (K-S)

statistics was used to quantify the difference of individual participant’s RT

distributions between the joystick and keyboard sessions in each difficulty con-

dition, separately for correct and incorrect trials. There was strong evidence of

a positive correlation between the K-S statistics of the easy and difficult condi-

tions (correct trials: BF10 = 3.647 × 106, R = 0.92, p < 0.001; incorrect trials:

BF10 = 4526.00, R = 0.82, p < 0.001) (Figure 3.2C). Therefore, the difference

in behavioural performance between response modalities was consistent within

participants across difficulty levels.

3.3.2 Hierarchical drift-diffusion model analyses

To compare the underlying decision-making process between joystick and key-

board responses, the four-alternative motion discrimination task was simplified

to a binary decision task (Churchland et al., 2008, see also: “Drift-diffusion

model” section) and fitted the drift-diffusion model (DDM) to the behavioural

data using the hierarchical DDM (HDDM) toolbox (Wiecki et al., 2013). The

DDM decomposed individual participant’s behavioural data into model pa-

rameters of latent psychological processes, and the HDDM toolbox allowed to

estimate the joint posterior estimates of model parameters using hierarchical

Bayesian approaches. To evaluate the model fit, model predictions were gen-

erated by simulations with the posterior estimates of the model parameters.

There was a good agreement between the observed data and the model simula-

tions across response modalities, task difficulties and motion directions (Figure

3.3).

With no a priori knowledge on the effect of response modality on the decision-

making process, all model parameters were allowed to vary between joystick
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Figure 3.3: Posterior predictive RT distributions from the fitted DDM. Each
panel shows the normalised histograms of the observed data (blue bars – correct
responses, red bars – incorrect responses) and the model prediction (black
lines) across participants. The RT distribution along the positive x-axis is
from correct responses, and the areas under the curve on the positive x-axis
corresponds to the observed and predicted accuracy. The RT distribution along
the negative x-axis is from error responses, and the areas under the curve on the
negative x-axis corresponds to the observed and predicted error. The posterior
predictions of the model were generated by averaging 500 simulations of the
same amount of model predicted data as observed in the experiment using
posterior parameter estimates.
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and keyboard responses: the boundary separation a, the mean drift rate v, the

mean non-decision time Ter, the trial-by-trial variability of drift rate sv, and

the trial-by-trial variability of non-decision time st (Table 1). The mean drift

rate was further allowed to vary between task difficulties and motion direc-

tions. Bayesian hypothesis testing was performed on the posterior parameter

estimates between response modalities (Bayarri and Berger, 2004; Kruschke,

2015; Gelman et al., 2014; Lindley, 1965). This analysis yielded 95% HDI of

the parameter difference between the joystick and keyboard sessions, as well

as Bayesian P -values PP |D (see “Data analysis” section for details).

(a, v, Ter, sv, and st)

Table 3.4: Posterior estimates of the hierarchical drift-diffusion model param-
eters (decision threshold a, mean drift rate v, non-decision time Ter, trial-by-
trial drift rate variability sv, trial-by trial non-decision time variability st). The
first two data columns showed the posterior means and standard deviations of
the parameters in the joystick and keyboard sessions. 95% HDI denoted the
95% highest density intervals for the parameter difference between the joystick
and keyboard sessions. PP |D denoted the Bayesian P -value for the parameter
difference being equal between response modalities.

Joystick(mean ± sd) Keyboard(mean ± sd) 95% HDI PP |D
a 1.508 ± 0.072 1.572 ± 0.073 [-0.270, 0.120] 0.872

v

easy

up 1.694 ± 0.263 1.269 ± 0.260 [-0.300, 1.144] 0.720
down 1.765 ± 0.264 1.454 ± 0.261 [-0.460, 0.999] 0.810
left 2.169 ± 0.267 1.906 ± 0.260 [-0.450, 1.020] 0.789
right 2.351 ± 0.267 2.187 ± 0.262 [-0.580, 0.880] 0.863

difficult

up 0.477 ± 0.257 0.291 ± 0.263 [-0.526, 0.896] 0.866
down 0.144 ± 0.262 0.202 ± 0.256 [-0.822, 0.603] 0.932
left 0.441 ± 0.261 0.216 ± 0.257 [-0.529, 0.909] 0.854
right 0.533 ± 0.263 0.597 ± 0.261 [-0.769, 0.685] 0.964

Ter 0.613 ± 0.028 0.556 ± 0.028 [-0.025, 0.130] 0.658
st 0.992 ± 0.047 0.916 ± 0.042 [-0.039, 0.203] 0.669
sv 0.268 ± 0.007 0.283 ± 0.007 [-0.035, 0.004] 0.641

For all the model parameters, we could not reject the null hypothesis that

the posterior parameter estimates are practically equal between the joystick

and keyboard sessions. The PP |D, which quantifies the probability that the

model parameter is practically equal between the two conditions, ranged from

0.641 to 0.964 (Table 3.4). Therefore, there was no evidence to support that

switching from keyboard to joystick altered the decision-making process. Next,

because the mean drift rate is often assumed to increase with decreased task

difficulty (Ratcliff and McKoon, 2008), I compared the drift rate averaged
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from the joystick and keyboard sessions between easy and difficult conditions.

As expected, the drift rate was larger in the easy compared with the difficult

condition in all motion directions (up: 95% HDI = [0.589, 1.613], PP |D = 0;

down: 95% HDI = [0.930, 1.958], PP |D = 0; left: 95% HDI = [1.204, 2.227],

PP |D = 0; right: 95% HDI = [1.185, 2.214], PP |D = 0).

3.3.3 Additional measures from joystick trajectories

In the joystick session, the participants’ movement trajectories were close to

the four cardinal directions (Figure 3.5A). Continuous movements with the joy-

stick enabled to acquire additional trial-by-trial behavioural measures beyond

that possible from simple key presses. Three such measures were examined:

peak velocity (Figure 3.5B), acceleration time (Figure 3.5C) and trajectory

length (Figure 3.5D). These additional joystick measures were subsequent to

accuracy and RT. In the current study, I did not expect them to have criti-

cal influence on the two primary behavioural measures. Hence our analyses

were focused on the effects of movement direction and task difficulty on the

trajectory measures. However, in experiments with more complex movement

trajectories, decisions may be more directly coupled to continuous motor re-

sponses (Song and Nakayama, 2009).

The action velocity was calculated as the rate of changes of joystick position.

There was a single peak of action velocity in each trial, consistent with the

ballistic nature of the movement. There was strong evidence for the main

effect of response direction on the peak velocity (Figure 3.5B, BF10 = 3.900 x

1024 , F(2.000, 40.002) = 39.25, p < 0.001), moderate evidence for the main

effect of difficulty (BF10 = 4.612, F(1,20) = 22.70, p < 0.001) and strong

evidence for the interaction between direction and difficulty (BF10 = 58.433,

F(2.841,56.813) = 30.58, p < 0.001). For post-hoc comparisons see Tables 3.8

and 3.9).

The acceleration time was calculated as the latency between the RT and the

time of peak velocity (Figure 3.5C). There was strong evidence for the main

effect of response direction (BF10 = 1147.376, F(2.253, 45.05) = 4.741, p =

0.011). We found moderate evidence against difficulty level (BF10 = 0.172,
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Figure 3.5: Measures from joystick trajectories. (A) The summary of move-
ment trajectories and final positions. The heat map in the centre represents
the proportion of the total joystick position across trials and participants. The
histogram on the edge represents the distribution of final positions. (B) The
peak velocity of joystick movements averaged across participants. (C) The
mean acceleration time of joystick movements averaged across participants
(D) The mean trajectory length averaged across participants. The error bars
denote the standard errors of the means.
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F(1,20) = 0.178, p = 0.677). Frequentist ANOVA showed a significant inter-

action between the response direction and difficulty levels (F(2.853, 57.053)

= 4.470, p = 0.008), which was not supported by the Bayes factor (BF10 =

0.256). For post-hoc comparisons see Tables 3.6 and 3.7).

The trajectory length was calculated as the sum of the Euclidean distance

between adjacent joystick positions in each trial (Figure 3.5D). There was no

compelling evidence for the main effect of response direction on trajectory

length (BF10 =1.759; F(3, 60) = 1.944, p = 0.151), nor the main effect of task

difficulty (BF10 = 0.450, F(1, 20) = 3.171, p = 0.09). The evidence against

the interaction between direction and difficulty was strong (BF10 = 0.090, F(3,

60) = 0.978, p = 0.409).

Table 3.6: Post Hoc Comparisons: Peak Action Velocity - Direction

Mean Difference SE t Cohen’s d pbonf

Down Left -0.015 0.003 -5.575 -1.217 < .001
Right -0.014 0.003 -4.460 -0.973 0.001

Up 0.010 0.002 5.922 1.292 < .001
Left Right 8.991e-4 0.002 0.378 0.082 1.000

Up 0.025 0.003 9.628 2.101 < .001
Right Up 0.025 0.004 6.955 1.518 < .001

In summary, the peak action velocity of joystick movements was affected by

both action direction and task difficulty, and acceleration time was affected

only by trajectory direction. There was no compelling evidence to support

that trajectory length was affected by action direction or task difficulty.

3.4 Discussion

In current chapter, I systematically compared the consistency between continu-

ous and discrete responses during rapid decision-making. In a four-alternative

motion discrimination task, joystick movements and key presses led to similar

accuracy and mean RT. Further modelling analysis with hierarchical DDM

showed no evidence in supporting a change of any model parameters between

response modalities. Together, our findings provide evidence for the valid-
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ity of using continuous joystick movement as a reliable response modality in

behavioural experiments.

3.4.1 Behavioural measures

In both joystick and keyboard sessions, participants had lower accuracy and

longer mean RT in the more difficult condition (i.e., lower motion coherence),

in line with previous findings with similar tasks (Britten et al., 1992; Pilly and

Seitz, 2009; Ramachandran and Anstis, 1983; Roitman and Shadlen, 2002).

Using Bayesian statistics, there was evidence that response modality (joystick

motion or key press) did not affect either accuracy or mean RT, confirming

the validity of using joystick as a response device in decision-making tasks.

Importantly, across participants, the difference in the RT distributions be-

tween response modalities was positively correlated between easy and difficult

conditions. Therefore, participants with similar behavioural performance be-

tween response modalities maintained their consistency between experimental

conditions.

Joystick positions estimated at a high sampling rate enabled additional be-

havioural measures beyond on/off key presses. In the current study, most of the

movement trajectories were along the four cardinal directions (Figure 3.5A).

The averaged trajectory length was close to 1 (Figure 3.5D), which was the

shortest distance from the joystick’s neutral position to the maximum range,

suggesting that the participants were able to make accurate and ballistic move-

ments following the task instruction. Nevertheless, it is worth noting that the

movement direction affected the peak velocity and acceleration time. This may

be due to the difference in upper limb muscle contractions when moving the

joystick towards different directions (Oliver et al., 2011). Therefore, for future

behavioural experiments relying on sensitive trajectories measures, I suggest

extra cautious on the effects of ergonomics and human motor physiology, es-

pecially for rapid movements as in the current study. One potential solution

would be to acquire baseline recordings of the movement to be expected during

the experiment, which can then be used to compensate measurement biases.
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3.4.2 Model-based measures

The DDM and other sequential sampling models (Bogacz et al., 2006; Smith

and Ratcliff, 2004) are commonly used to investigate the cognitive processes

underlying rapid decision-making (Bogacz et al., 2006; Smith and Ratcliff,

2004). In the current study, the mean drift rate increased in the easier task

condition, consistent with previous modelling results (Ratcliff and McKoon,

2008). The combination of posterior parameter estimation and Bayesian in-

ference allowed us to obtain the probability of the parameter being practically

equal, a more informative measure than frequentist p-values (Kruschke, 2015).

Although our results suggested that most parameter values had high proba-

bilities to remain the same between response modalities (Table 3.4), the null

hypothesis could not be accepted for certain (which requires PP |D = 1) and

need more data to confirm the inference.

It is worth to highlight two model parameters with low PP |D values, which

indicate that, with additional observed data from future experiments, the pos-

terior model parameters might be in favour of the alternative hypothesis (i.e.,

a difference between response modalities). First, when switching from key

presses to joystick movements, there was a small increase in the mean non-

decision time (PP |D = 0.658). Second, responding with a joystick resulted in a

slightly decreased decision threshold (PP |D = 0.872). Several previous studies

showed that instructing to respond faster or more accurately could efficiently

modulate participants’ behaviour (Beersma et al., 2003; Schouten and Bekker,

1967; Wickelgren, 1977). The decision threshold plays a substantial role un-

der such speed-accuracy instructions (Mulder et al., 2013; Rae et al., 2014b;

Starns and Ratcliff, 2014; Zhang and Rowe, 2014): a decrease of threshold is

accompanied with faster reaction speed and lower accuracy. If participants do

implicitly trade accuracy for speed when switching from keyboard to joystick

movements, this cognitive discrepancy needs to be considered when conducting

experiments involving continuous responses. One hypothesis for this potential

behavioural change is that continuous joystick movements allow participants

to change or correct their responses later in a trial (Albantakis and Deco,

2009; Gallivan and Chapman, 2014; Gallivan et al., 2016), and this response

flexibility may lead to reduced deliberation in initial movements.
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The trial-by-trial variabilities in drift rate and non-decision time also had PP |D

values. Empirically, across-trial variability was introduced in DDM to improve

the model fit to RT distributions (Ratcliff and McKoon, 2008), although the

functional significance of these parameters to the decision process is still un-

clear. Across-trial variability in the drift rate produces different RT between

correct and error trials (Ratcliff and Rouder, 1998), and across-trial variabil-

ity in the non-decision time accounts for the large variability in trials with

short RT across experimental conditions (Ratcliff, 2002). These model param-

eters allow the DDM to account for the subtle differences in the shape of RT

distributions between response modalities. Future studies could apply formal

model comparison to evaluate the need of trial-by-trial variability in modelling

joystick responses.

3.4.3 The use of joystick and its validity

The current chapter aimed to establish the validity of joystick response in

rapid decision-making tasks. More specifically, I examined whether response

modality (joystick movements vs. key presses) alters the raw behavioural mea-

sures (RT and accuracy) and underlying cognitive processes. I found that both

behavioural measures and model parameters from cognitive modelling did not

differ significantly between response modalities. In other words, using joystick

movements to indicate choices of perceptual decisions elicit behavioural and

cognitive characteristics similar to those from conventional key presses.

Motion discrimination based on random dot kinematogram is a typical paradigm

for simple decisions. The same computational mechanism of evidence accumu-

lation has been suggested to account for the cognitive processes underlying

a broad range of decision-making tasks, spanning across sensory modalities

(O’Connell et al., 2012) and cognitive domains (Gold and Shadlen, 2007).

Therefore, I expect that the validity of joystick response established in the

current chapter can be extended to experimental paradigms in which partici-

pants make rapid choices with motor actions (Ratcliff and McKoon, 2008).

The joystick as a response modality has been successfully applied in ageing and

clinical populations, in which conventional key presses may be error-prone due

71



to impaired dexterity. Both older and young adults can operate joysticks in

visuo-motor tasks with similar response patterns (Kramer et al., 1999). Previ-

ous studies showed that older adults can complete multiple hour-long cognitive

training sessions with joystick responses, and the performance benefit persisted

for 6 months after training (Anguera et al., 2013). In patients with neurode-

generative diseases, volitional joystick movements have been successfully used

to examine the motor deficits and underlying neural abnormalities (Kew et al.,

1993). This evidence suggested that the use of joystick can be well tolerated

in older adults and patients.

In the current study, the participants did not report fatigue after joystick

or keyboard sessions, which lasted approximately 45 minutes each. Other

paradigms with longer experimental sessions and more intense joystick move-

ments may impose a challenge to participants’ stamina. Nevertheless, it is

possible to use measures from the continuous joystick recording (Kahol et al.,

2011) or concurrent physiological recording (Mascord and Heath, 1992) to

identify the onset of fatigue prior to performance deterioration.

One may ask if joystick responses provide any additional value over conven-

tional key presses. Here, I showed that, even in simple ballistic movements,

joystick-specific measures (e.g. action velocity) can be affected by the task

difficulty, providing additional information on behavioural performance in ad-

dition to RT and accuracy. It is yet to be determined whether continuous

responses provide independent information from discrete responses (Freeman,

2018; Freeman and Ambady, 2010; Stillman et al., 2017). However, the capac-

ity of recording continuous responses via joysticks enables new experimental

designs to probe the continuous interplay between action, perception and cog-

nition. For example, the ongoing locomotion can modify the sensory informa-

tion flow (Ayaz et al., 2013; Souman et al., 2010).

In conclusion, our results validated the joystick as a reliable device for contin-

uous responses during rapid decision-making. Compared with key presses, the

additional complexity and continuity associated with joystick movements did

not affect raw behavioural measures such as accuracy and mean RT, as well

as underlying decision-making processes. However, I highlighted the effects of

movement direction on continuous trajectory measures. Researchers should be
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cautious when adopting experimental designs that require complex movement

trajectories.
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Table 3.7: Post Hoc Comparisons:Peak Action Velocity - Coherence * Direction

Mean Difference SE t pbonf

Easy, Down Hard, Down 0.002 0.001 1.510 1.000
Easy, Left -0.020 0.003 -6.746 < .001
Hard, Left -0.008 0.003 -2.877 0.146
Easy, Right -0.017 0.003 -5.813 < .001
Hard, Right -0.009 0.003 -3.182 0.059

Easy, Up 0.014 0.003 4.791 < .001
Hard, Up 0.009 0.003 3.099 0.076

Hard, Down Easy, Left -0.022 0.003 -7.324 < .001
Hard, Left -0.011 0.003 -3.637 0.014
Easy, Right -0.019 0.003 -6.408 < .001
Hard, Right -0.011 0.003 -3.948 0.005

Easy, Up 0.012 0.003 4.010 0.004
Hard, Up 0.007 0.003 2.446 0.473

Easy, Left Hard, Left 0.011 0.001 8.130 < .001
Easy, Right 0.003 0.003 0.933 1.000
Hard, Right 0.010 0.003 3.446 0.026

Easy, Up 0.033 0.003 11.537 < .001
Hard, Up 0.029 0.003 9.727 < .001

Hard, Left Easy, Right -0.008 0.003 -2.835 0.164
Hard, Right -8.984e-4 0.003 -0.311 1.000

Easy, Up 0.022 0.003 7.583 < .001
Hard, Up 0.018 0.003 6.083 < .001

Easy, Right Hard, Right 0.007 0.001 5.483 < .001
Easy, Up 0.031 0.003 10.604 < .001
Hard, Up 0.026 0.003 8.810 < .001

Hard, Right Easy, Up 0.023 0.003 7.888 < .001
Hard, Up 0.018 0.003 6.394 < .001

Easy, Up Hard, Up -0.005 0.001 -3.484 0.023

Table 3.8: Post Hoc Comparisons: Acceleration Time - Direction

Mean Difference SE t Cohen’s d pbonf

Down Left -0.010 0.003 -3.239 -0.707 0.025
Right -0.008 0.002 -3.218 -0.702 0.026

Up -0.011 0.003 -3.724 -0.813 0.008
Left Right 0.002 0.003 0.542 0.118 1.000

Up -0.002 0.003 -0.477 -0.104 1.000
Right Up -0.003 0.004 -0.773 -0.169 1.000
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Table 3.9: Post Hoc Comparisons: Acceleration Time - Coherence * Direction

Mean Difference SE t pbonf

Easy, Down Hard, Down -0.005 0.002 -2.630 0.288
Easy, Left -0.013 0.003 -3.794 0.008
Hard, Left -0.011 0.003 -3.136 0.067
Easy, Right -0.011 0.003 -3.116 0.072
Hard, Right -0.010 0.003 -2.836 0.162

Easy, Up -0.015 0.003 -4.481 < .001
Hard, Up -0.012 0.003 -3.353 0.034

Hard, Down Easy, Left -0.008 0.003 -2.338 0.612
Hard, Left -0.006 0.003 -1.753 1.000
Easy, Right -0.006 0.003 -1.669 1.000
Hard, Right -0.005 0.003 -1.449 1.000

Easy, Up -0.011 0.003 -3.015 0.096
Hard, Up -0.007 0.003 -1.973 1.000

Easy, Left Hard, Left 0.002 0.002 1.137 1.000
Easy, Right 0.002 0.003 0.678 1.000
Hard, Right 0.003 0.003 0.908 1.000

Easy, Up -0.002 0.003 -0.687 1.000
Hard, Up 0.001 0.003 0.392 1.000

Hard, Left Easy, Right 2.126e-4 0.003 0.061 1.000
Hard, Right 0.001 0.003 0.304 1.000

Easy, Up -0.004 0.003 -1.286 1.000
Hard, Up -7.574e-4 0.003 -0.219 1.000

Easy, Right Hard, Right 8.370e-4 0.002 0.448 1.000
Easy, Up -0.005 0.003 -1.365 1.000
Hard, Up -9.700e-4 0.003 -0.277 1.000

Hard, Right Easy, Up -0.006 0.003 -1.586 1.000
Hard, Up -0.002 0.003 -0.524 1.000

Easy, Up Hard, Up 0.004 0.002 1.999 1.000
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Chapter 4

Continuous movements during

perceptual decision-making

4.1 Introduction

4.1.1 Background

In our daily lives, decisions and actions are intertwined in time. Constantly

changing surroundings affect how we behave. In other words, the changes in

sensory information require adjustments of motor outputs. Riding a bicycle

on a foggy day is a good example of how environmental pressures require us to

make decisions during ongoing actions. It forces us to process a stream of im-

perfect visual information to produce a specific series of movements. Riding on

an empty park lane requires maintaining a continuous action (e.g., pedalling)

with only sporadic adjustments with a handlebar. On the other hand, entering

a busy street requires a decision among action plans, such as the right moment

to join the traffic. To keep a safe position on the road, we need to adjust our

continuous actions without stopping, e.g., to avoid jaywalking pedestrian or

a pothole. Some aspects of those real-life scenarios could be found in stud-

ies using driving (Roenker et al., 2003) or flight simulators (Schriver et al.,

2008). However, continuous responses are not commonly used in conventional

lab-based experiments.

77



In Chapter 3, I assessed the use of a joystick as a response device. The be-

havioural performance as well as the underlying cognitive processes were not

affected by the response modality (button press or joystick movement). Exper-

imental design in Chapter 3 required participants to perform a simple ballistic

movement to indicate their decisions, similarly to previous studies (Gallivan

et al., 2016; Gallivan and Chapman, 2014; Gallivan et al., 2016; Resulaj et al.,

2009; Burk et al., 2014; Berg et al., 2016; Freeman et al., 2011).

In this chapter, I aimed to investigate the performance of continuous, periodic

movements in response to perceptual decisions. Here I outlined the rationale

of this research.

First, ballistic joystick movements or rapid point-to-point reaching used in

Chapter 3 are not strictly continuous actions from the point of view of motor

control. As reviewed in Section 2.2, rapid ballistic movements are characterised

by a single peak in velocity, which are in sharp contrast to rhythmic movements

characterised by periodic trajectories or multiple peaks in velocity (Hogan and

Sternad, 2007; Howard et al., 2011). Moreover, the distinction between discrete

and continuous movement is non trivial from the standpoint of the motor

control. Utilising a state flow analysis of dynamic systems, a computational

model distinguished two ways of which the motor output is controlled. The

simulation of the discrete movement required a module to monitor for a right

time to trigger the action. The maintenance of the rhythmic movement did

not rely on it (Huys et al., 2008).

The perceptual decision-making methodology has been useful in discovering

and refining the understanding of the cognitive mechanisms mediating our in-

teraction with the environment (Shadlen and Newsome, 2001; Cisek, 2007).

The experimental designs based on random dot motion discrimination task

were instrumental in linking a choice probability and a response time (RT)

with the neuronal signals (Newsome and Pare, 1988; Newsome et al., 1989).

As argued in Chapter 3, the continuous response measures can provide more

detailed look on decision making process (Freeman et al., 2011; Song and

Nakayama, 2009). Findings from my previous research (Chapter 3, Szul et al.

(2019)) showed that a button press and responses made using joystick did not

affect the behavioural performance in random dot motion discrimination task
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and underlying decision-making processes. Experiments utilising the continu-

ous response measures (mouse (e.g. Spivey et al., 2005), motion tracking (e.g.

Gallivan and Chapman, 2014), joystick (e.g. Resulaj et al., 2009)) and prob-

ing various aspects of decision processes, commonly use a simple directional

movement towards an object or the alternative. Recent developments of the

decision-making field reflected an expansion towards the exploration of var-

ious contextual factors affecting the processes of decision-making (de Lange

and Fritsche, 2017; Shadlen and Kiani, 2013; Doya, 2008).

Second, our motor functions obey the same rules as found in research on per-

ceptual decision-making, the speed-accuracy trade-off (SAT) (Plamondon and

Alimi, 1997; Newell, 1980; Hancock and Newell, 1985; Battaglia and Schrater,

2007). In fact, the SAT in continuous movement is more robust to external

perturbations than discrete movements (Guiard, 1997; Smits-Engelsman et al.,

2006, and see Section 2.2.2). The existence of SAT in continuous movements

suggests a information processing bottleneck similar to that in decision-making

process. Wolpert and Landy (2012) suggested that continuous motor control

and decision-making share a computational principle: the prior expectation

being updated by ongoing sensory inputs. This implies that the judgement

of the sensory evidence and motor execution could co-occur in parallel with

continuous mutual influences (Selen et al., 2012; Cisek, 2007).

As I argued in the Chapter 3, the common ground between simple and more

complex actions is the initial engagement. However, to find out how the con-

textual factors affect the decision process, one need to go beyond a simple

response. The more complex the actions, the more opportunity for them to be

affected by the environment (Doya, 2008; Hagura et al., 2017; Gallivan et al.,

2016).

4.1.2 A new decision-making paradigm with continuous

responses

As outlined in Chapter 2, the decision-making process can be influenced by

a wide range of the contextual factors (Doya, 2008; Gold and Shadlen, 2007).

The bodily state like arousal can affect the accumulation of information pro-

79



cess (e.g. Honey et al., 2012; Urai et al., 2017). Not only internal states but

also the environmental factors can modify the ongoing decision process. (e.g.

Ossmy et al., 2013). The mutual influence of the action and perception occurs

not only during the action-decision cycle (Selen et al., 2012; Cisek, 2007), but

also extends over future cycles. The decision process can be biased by the

events prior to the decision. It has been shown that the actions unrelated to

choice can bias subsequent decision process (e.g. Pape et al., 2017). A phe-

nomenon of the serial dependence, the stimulation and choice history affecting

the subsequent decisions, highlighted the integration of the prior information

and current state in the decision process (Fründ et al., 2014; Fischer and Whit-

ney, 2014; John-Saaltink et al., 2016). The use of the cognitive models of the

decision-making process unravelled that the prior decisions reduced the rate

of evidence accumulation for the sensory input after the decision was made

(Bronfman et al., 2015; Urai et al., 2018). This process is also mediated by

the confidence in the prior choices (Braun et al., 2018).

I developed a two-alternative visual discrimination paradigm (Figure 4.1),

which combined continuous flow of sensory inputs (RDM stimulus) and contin-

uous motor outputs (clockwise or anti-clockwise joystick circular movement).

Participants were instructed to continuously respond to the visual information

over a few seconds, and adjust their actions if there was a change in the visual

information.

A circular movement (clockwise or anti-clockwise) was used to continuously

indicate the direction of the visual stimuli. Clockwise and anti-clockwise move-

ment allowed to use the stable, stereotypic movement as the response measure

in a simple perceptual discrimination task. The experimental design described

in the current chapter, followed the experiment from the Chapter 3. The ran-

dom dot motion stimuli were generated in the same way. Moreover, the initial

engagement in the movement (clockwise or anti-clockwise) was uniform. To

allow the comparison across the conditions, and ensure the interpretability of

the movement initiation, participants were asked to start the continuous move-

ment with the simple, directional upward movement (for detailed overview of

the design see: Figure 3.1 and Methods section). The results from Chapter 3

showed that the initial engagement in the action is equivalent to a commonly

used button press (Szul et al., 2019), and similar to linear trajectories used
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in other decision-making studies (e.g. Berg et al., 2016; Resulaj et al., 2009;

Gallivan et al., 2016).

The complexity of the task and the relatively unusual way of responding re-

quired an intensive behavioural training. The current chapter included a set

of four experiments. To facilitate the learning of stable circular movements,

a self-guided practice session was introduced first (Sigrist et al., 2013) (see

Section 4.2.4). In Experiment 1, participants were introduced to the trial

structure. In Experiments 2-4, participants was trained with the RDM stim-

ulus and continuous responses. In Experiments 3-4, a lower motion coherence

was introduced in 50% of trials.

All the four experiments included two phases in each trial. In the first phase,

a visual cue (arrows in Experiment 1 or RDM stimulus in Experiments 2-

4) indicated a left or right direction, and the participants responded to the

cue with continuous circular clockwise or anti-clockwise movements using a

joystick. In the second phase, depending on the visual cue, the participants

either maintained the ongoing movement in the same direction, or changed to

the opposite circular direction.

The main goal of this chapter was to assess the validity of the new experimen-

tal task. The training procedure, which gradually introduced the complexity

of the task, was expected to yield a stable behavioural performance across

participants. This task was set to be further used in MEG (see Chapter 5). I

expected that the participants will be able to adjust their continuous action to

the change of visual information. This behavioural flexibility would be further

influenced by the signal-to-noise ratio of the information (i.e., motion coher-

ence), similar to previous perceptual decision-making studies using discrete

responses (Fredericksen et al., 1994; Lappin and Bell, 1976; Pilly and Seitz,

2009; Ramachandran and Anstis, 1983; Watamaniuk et al., 1989; Szul et al.,

2019; Zhang and Rowe, 2014).

The performance in the Experiments 3 and 4 was expected to be stable after

training phase depicted in the Experiments 1 and 2. The engagement in action

in the first phase of the trial should not be affected by the experimental manip-

ulation as the directions of the stimuli are equally probable and the stimulus

quality is constant. In the second phase of the trial, the adjustment in action
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Figure 4.1: Structure of the trial across all experiments. In the Experiment 1,
the direction of the arrow served as the visual cue for the action. A cursor (a
circle), and a line provide a participant a visual feedback about the direction
of their actions. In experiments 2-4, the coherent motion direction of RDM
stimulus provided a cue for continuous movement. In experiments 1, 2, and
3 participants are receiving feedback information about the accuracy in each
trial.
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is expected to be affected by the quality of the visual stimulation. In cases of

both maintenance and adjustment of the action, lower coherence would result

in lower accuracy as there is more likely to produce a deflection in hand trajec-

tories akin to changes in mind (Resulaj et al., 2009). The action adjustment

should display a longer latency when the stimulus strength is lower.

Current chapter highlighted a multifaceted interaction between perceptual

decision-making, action selection, and learning aspects of sensory-motor trans-

formation. One of the goals of the study was to elicit states present in real life

decision making, but infrequently addressed in the research. Building on the

results from Chapter 3, I was able to evaluate the novel paradigm that linked

continuous movements with perceptual decisions. Over the course of four ex-

periments, participants successfully learned to perform the task. Experimental

manipulation of the stimulus signal-to-noise ratio brought the effects in an ex-

pected direction. The learning effect was observed across all the experiments.

4.2 General methods

4.2.1 Participants

20 participants (5 males), aged between 19-26 (M = 21.1, SD = 1.83) took

part in practice session and 4 experiments in exchange for the course credits.

All participants were right-handed, with normal or corrected to normal vision.

None of the participants reported motor impairments or neurological disorders.

The study was approved by Cardiff University, School of Psychology Ethics

Committee.

4.2.2 Apparatus

Experiments were conducted in a room with dimmed light. Stimuli were dis-

played on a CRT monitor with 1600x1200 pixels resolution and 100 Hz re-

fresh rate. A Logitech 3D Pro Precision joystick (Logitech International S.A.,

Switzerland) was used to record the movement trajectories. The device was
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attached to the table using velcro straps to maintain the location and orien-

tation during the experiment. The orientation of the device was adjusted for

comfort of the participant before the session. A change of the joystick lever

position was recorded with a time stamp (maximum polling rate of 125 Hz),

in a process independent of the experiment. Within the 20% movement ra-

dius, joystick movement exhibited small amount of resistance. Beyond the

20% radius, the resistance during joystick movement was higher and approx-

imately constant. PsychoPy 1.85.4 library (Peirce, 2008) was used to display

the stimuli.

4.2.3 Experimental Design

Each experiment followed a similar trial structure (see Figure 4.1). Partici-

pants performed continuous circular movement using a joystick (clockwise or

anti-clockwise) in responding to arrows (Experiment 1) or the coherent motion

of RDM stimulus (Experiments 2-4), which indicating a left or right direction.

Each participant was assigned to a stimulus-response mapping group (Group

I: right - clockwise, left - anti-clockwise; Group II: right - anti-clockwise, left

- clockwise). The group assignment was random and counterbalanced across

participants.

Each trial was initiated with a 0.8 s fixation period (Thaler et al., 2013). In the

first phase of the trial (1.95 s), participants initiated and maintained circular

movements on a joystick from its neutral position. They were instructed to

always initiate the movement with an upward action, followed by clockwise or

anti-clockwise rotations. In the second phase of the trial (1.95 s), the visual

cue changed its direction in 50% of the trials, in which participants had to

adjust the direction of their circular movements accordingly and maintain the

new movement direction until the end of the trial. Participants were instructed

to keep a constant speed of circular movement and prioritise the accuracy over

the speed when deciding to engage in movement or change movement direction.
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4.2.4 Initial practice

Prior to the first experiment, participants familiarised themselves with the

joystick and task instructions in a short practice session. To facilitate the

early phases of learning, there was no trial structure or time pressure, present

in experiments (Figure 4.1). Data from this session was not recorded.

Through verbal instructions, participants learned how to initiate an continuous

action with a linear upward action followed by circular movement (clockwise or

anti-clockwise). Various visual information displayed on the screen provided

the feedback about the movement. A white disc (0.1 ◦ of visual angle) was

indicating the position of the joystick handle. Two white circles, one at a

40% (4◦ diameter) and the other at a 100% (10◦ diameter) of the maximum

movement radius, delineated the area where participants were instructed to

keep the joystick positioned while performing a circular movement. Addition-

ally, the line following the angle of the movement was displayed to provide

better feedback about the speed of movement. To help with maintaining the

movement within designated area, movement trajectory was displayed in real

time.

4.2.5 Behavioural measures

Behavioural performance was quantified with four dependent measures (Table

4.2).

Reaction time

The results from Chapter 3 suggest that reaction time obtained using joystick

is comparable to a button press, a widely used response method in perceptual

decision making research. However, the direction of response had an impact

on the velocity-derived measures of joystick movement. Taking those insights

into account, participants were instructed to initiate continuous actions with a

linear upward movement, irrespective of the direction of subsequent movement

(i.e., clockwise or anti-clockwise). This design allowed to measure reaction time

consistently across conditions.
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Table 4.2: Summary of dependent measures.

Engage RT - Latency in a task engagement during the
first phase of the trial. Time measured between the
stimulus onset and leaving the area within 20% of the
joystick range radius. Present in every trial.
Change RT - Latency in a change of direction. Time
measured between the onset of the stimulus in the sec-
ond phase of the trial and the moment when the direc-
tion of the movement changes. Only present in trials
where the direction of the cue changed.
Accuracy - In the current series of experiments, term is
used to describe the proportion of time spent perform-
ing correct movement with response to the visual cue,
to a total duration of the phase of the trial.
Speed of movement - A measure of speed of circular
movement. Rate of change in the angle of the joystick
position.

Current experiments used the same joystick as in the experiment in Chapter 3.

Thus, the same way of obtaining the engage RT could be used. The time was

measured between the onset of the stimuli and leaving the area within the 20%

of the joystick range radius. Latency in the change of direction (change RT)

was measured between the onset of the second phase of the trial and the point

when the movement speed is reduced to zero while switching to the opposite

direction (see Figure 4.1).

Accuracy score

The response in current experiments involved maintaining a continuous move-

ment in response to a visual cue. In this particular type of a continuous

response, I defined the accuracy as the ratio between the time spent perform-

ing joystick rotation towards the correct direction, to the total duration of

the phase of the trial. When the participants did not perform any action or

performed an incorrect action, the accuracy is 0%. When the participants per-

formed a circular movement with the joystick in the correct direction through-

out a phase (e.g., in the second phase with no change of direction), the accuracy

is 100%. The delay between the beginning of the trial and engaging in the ac-
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tion is considered an incorrect response due to lack of the action, thus the

percentage of the accuracy is going to be lower than 100% in this phase of

the trial. The same rule is applied to the trials when in the second phase the

direction of the visual motion changes. When the participants are maintaining

the opposite movement direction before the change, this part of the trial is

considered incorrect, thus the percentage of the accuracy is going to be lower

than 100%.

Other eventualities like e.g. momentary changes of direction or stopping of the

movement due to hesitation were reflected in the accuracy score as well. In

those instances the accuracy score was further lowered according to the time

spent in that state, as with previously mentioned situations.

4.2.6 Analysis

Bayesian analysis for ANOVA designs (JASP Team, 2018) was used to make in-

ferences on RTs and accuracy between conditions 1. The mixed model method

was used, that is, both random and fixed factors were specified in the Bayesian

model. Random factors are included in the null model, which serves as a base-

line for the model to estimate all fixed factors. Here, as in previous studies,

between-subject variability was included in the null model as a random factor

(Barr, 2013). In Experiments 1 and 2, the stimulus-to-response mapping was

included as a fixed factor to examine the early stage of the skill acquisition.

In Experiments 3 and 4, preliminary analysis showed that the fixed effect of

stimulus-to-response mapping did not affect the accuracy (BF10 = 0.913) or

RT (BF10 = 0.991) in the first phase of the trial. As a result, the stimulus-to-

response mapping factor was included in the null model in the final statistical

results, which helps to test the robustness of the experimental manipulation

(Zhang, 2020).

The first phase and the second phase of the trial were analyzed separately,

because the nature of movements and task designs differs between the two

phases. The first phase of a trial established a context of the continuous

1In this chapter, all figures of accuracy and RT have a consistent colour scheme. The
legend and the colour scheme are independent to the order of results in individual figures.
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action, which was either maintained or changed in the second phase of the

trial. The low perceptual difficulty of the first phase minimized the influence

of action engagement on the second phase. In Experiments 3 and 4, analyses

on accuracy and RT in the second phase were initially separated for trials

with and without a motion direction change from the first phase. This was

due to the fact that change RT was available only in trials with a change

of direction. Furthermore, in the second phase, accuracy would be lower by

default when there was a change of direction because participants needed to

stop and reverse their continuous movements, which was confirmed in Sections

4.7.2 on the comparison between experiments.

To compare the time courses of the speed of motion (Figures 4.10, 4.11, 4.15

and 4.16), I used permutation tests with cluster-level correction for multiple

comparisons (Maris and Oostenveld, 2007). A lenient cluster formation thresh-

old (F = 6.0) was used to form an initial set of clusters. From the initial set

of clusters, a permutation test was applied to obtain corrected p-values.

4.3 Experiment 1: Establishing the cue-movement

mapping

Experiment 1 aimed to train participants to perform continuous circular move-

ments with unambiguous direction cues (i.e., arrows) and real-time visual feed-

back about the ongoing movement (Figure 4.1).

4.3.1 Design

After a short practice session, participants were introduced to the trial struc-

ture with time pressure present, and a trial timing outlined on the Figure

4.1. In each trial, participants were instructed to perform continuous circular

movements in response to the direction of an arrow presented at the centre of

the screen. Experiment 1 contained a total of 120 trials. In the first phase, 60

trials had left arrows and the other 60 trials had right arrows. In the second

phase, arrow changed to the opposite direction in half of the trials. Trials were
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presented in a pseudo-random order, with no more than four consecutive trials

of the same condition.

The instructions emphasised the accuracy rather than response speed. Partic-

ipants were asked to perform only one change of direction during a trial, and

maintain their continuous movement even if the response was incorrect. After

each trial, participants received a feedback (1000 ms) about the accuracy of

their responses at each phase of the trial. At the end of the experiment, par-

ticipants received a feedback of the percentage of correct trials (both phases

of the trial correct), and the percentage of the trials in which participants

stopped or performed more than one direction change.

4.3.2 Stimulus

Participants were shown a target area of movement on the screen, limited by

two circles (as in the practice session, see Section 4.2.4). A white arrow (3◦

length) was placed within a smaller circle (4◦). The visual feedback of the

joystick movement was similar to the one used in the practice, except the

trajectory of movement was not displayed.

4.3.3 Results

In the first phase of the trial, as expected, Engage RT (BF10 = 0.060) (Figure

4.3A) and accuracy (BF10 = 0.055) (Figure 4.4A) remained the same between

trials with our without direction change in the second phase. The stimulus-

response mapping also did not affect the Engage RT (BF10 = 0.489) or ac-

curacy (BF10 = 0.462), although the evidence is inconclusive. There is no

interaction between experimental conditions and stimulus-response mapping

in engagement RT (BF10 = 0.087) and or (BF10 = 0.069).

In the second phase, Change RT (BF10 = 0.286) (Figure 4.3B) and accuracy

(BF10 = 0.250) (Figure 4.4B) were not affected by stimulus-response mapping.

Accuracy score was lower in trials with a change of movement direction (BF10 =

6.607 x 1084). There was no interaction in accuracy between stimulus-response

mapping and the presence of direction change (BF10 = 0.119).
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Figure 4.3: Reaction times in Experiment 1. Panel A shows the Engage RT
in the first phase. Panel B shows the Change RT in the second phase when
there was a change of movement direction. Data points represent the mean
score and bars represent 95% bootstrapped confidence intervals. Line colour
denotes the stimulus-response mapping group (Group I: right - clockwise, left
- anti-clockwise; Group II: right - anti-clockwise, left - clockwise).
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Figure 4.4: Experiment 1 accuracy scores (i.e., proportion of time spent in cor-
rect continuous movement to the overall duration of the phase) in the first (A)
and second (B) phase. Data points represent the mean score and bars repre-
sent 95% bootstrapped confidence intervals. Line colour denotes the stimulus-
response mapping group (Group I: right - clockwise, left - anti-clockwise; Group
II: right - anti-clockwise, left - clockwise).

91



4.3.4 Conclusion

The results showed that the stimulus-response mapping did not affect any

of the behavioural measures (accuracy score, Engage RT and Change RT).

Participants were capable of performing the task at a satisfactory level. In the

first phase of the trial, accuracy was well above 50% (Figure 4.4 A), indicating

that the participants spent more than a half of the phase duration performing

correct movements in response to the visual cue. In the second phase, accuracy

score was over 90% in trials with no change of the direction of the visual cue,

suggesting that the participants were able to maintain their ongoing actions

without considerable delay or stopping. In trials with a change in the direction

of the visual cue, participants adjusted their actions with an expected delay

(Change RT). This was reflected in a lower accuracy in the second phase.

Therefore, the participants can reliably perform continuous movements and

change movement directions in response to visual cues.

4.4 Experiment 2: Continuous movement in

response to noisy sensory information

Experiment 2 aims to examine continuous movements initiated and changed

by perceptual decisions of noisy visual stimulus.

4.4.1 Design

Experiment 2 included 120 trials. The trial structure was the same as in

Experiment 1 (Figure 4.1). Instead of a static arrow used in Experiment 1

participants were presented with the RDM stimulus with left- or rightward

coherent motion. The participants were instructed to decide the direction of

coherent motion and perform continuous clockwise or anti-clockwise joystick

movements according to the stimulus-response mapping learnt in Experiment

1. There was no visual feedback of the joystick movement trajectory.
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4.4.2 Stimulus

RDM stimulus were generated as in Chapter 3. Coherent motion was imple-

mented by using three uncorrelated, interleaved sets of dot positions across

frames at 100 Hz. White dots (0.14◦ diameter each) were presented on black

background (100% contrast) within a centrally located aperture (15◦ diame-

ter) with a 28.30 dot/deg2/s density. In each frame, 50% of signal dots were

re-plotted at the appropriate displacement (velocity of 60.23◦/s) and direction

(left - 0◦ or right - 180◦) relative to the position three frames earlier, resulted

in a motion coherence of 50%. Remaining dots were presented at random lo-

cation within the aperture. Signal dots had lifetime of 5 frames, after which

they were re-plotted in the random positions.

4.4.3 Results

In the first phase of the trial, there was anecdotal evidence for the stimulus-

response mapping affecting the engagement RT (BF10 = 2.843) (Figure 4.5A)

and moderate evidence for the accuracy (BF10 = 3.578) (Figure 4.6A). Partic-

ipants responding to dots moving to the right with a clockwise motion were

faster and with higher accuracy scores. Engagement RT (BF10 = 0.052) and

accuracy (BF10 = 0.051) were not affected by the presence of direction change

in the second phase. None of the main effects interact (Engage RT: (BF10 =

0.129), accuracy: (BF10 = 0.074))

In the second phase of the trial, stimulus-response mapping did not affect

the Change RT (BF10 = 0.319, moderate evidence) (Figure 4.5B) or accuracy

(BF10 = 0.632, inconclusive evidence) (Figure 4.6B). Change of motion direc-

tion reduced the accuracy (BF10 = 9.884 x 10136, strong evidence). There was

no interaction in accuracy score between the presence of direction change and

stimulus-response mapping (BF10 = 0.273).

I found moderate evidence for stimulus to response mapping affecting response

latency and accuracy in the first phase of the trial, and inconclusive evidence

against that effect in the second phase of the trial. In the second phase of the

trial accuracy was lowered in the condition with the change of direction
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Figure 4.5: Reaction times in Experiment 2. Panel A shows the Engage RT
in the first phase. Panel B shows the Change RT in the second phase in
trials with a change of movement direction. Data points represent the mean
score and bars represent 95% bootstrapped confidence intervals. Line colour
denotes the stimulus-response mapping group (Group I: right - clockwise, left
- anti-clockwise; Group II: right - anti-clockwise, left - clockwise)
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Figure 4.6: Experiment 2 accuracy scores in the first (A) and second (B)
phase. Data points represent the mean score and bars represent 95% boot-
strapped confidence intervals. Line colour denotes the stimulus-response map-
ping group (Group I: right - clockwise, left - anti-clockwise; Group II: right -
anti-clockwise, left - clockwise).
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4.4.4 Conclusion

The results showed that the stimulus-response mapping did not affect any

of the behavioural measures (accuracy score, Engage RT and Change RT).

Participants were capable of performing the task at a satisfactory level. In the

first phase of the trial, accuracy was well above 50% (Figure 4.4 A), indicating

that the participants spent more than a half of the phase duration performing

correct movements in response to the visual cue. In the second phase, accuracy

score was over 90% in trials with no change of the direction of the visual cue,

suggesting that the participants were able to maintain their ongoing actions

without considerable delay or stopping. In trials with a change in the direction

of the visual cue, participants adjusted their actions with an expected delay

(Change RT). This was reflected in a lower accuracy in the second phase.

Therefore, the participants can reliably perform continuous movements and

change movement directions in response to visual cues.

Experiment 2 introduced noisy sensory information (RDM stimulus) that the

participants had to use to initiate and change their continuous actions. This

design links perceptual decisions with continuous actions.

In the first phase of the trial, as in Experiment 1, the accuracy scores were

above 50%. Therefore, despite the major change in visual information in com-

parison with Experiment 1, the participants were still able to perform the task

at a satisfactory level. In the second phase of the trial, the change of co-

herent motion direction resulted in a lower accuracy score, while maintaining

continuous movements without direction changes had high accuracy (∼90%).

I found that the stimulus-response mapping affected the accuracy and the la-

tency RT in the first phase of the trial in Experiment 2. Responding left

motion with clockwise movement (and right motion with anti-clockwise move-

ment) were slower and less accurate than the opposite S-R mapping. When

there was a lack of visual feedback of the movement (cf. Experiment 1), at

the early stages of the training this resulted in the difference in behavioural

performance.

It is possible that humans have certain tendencies to perform rotation move-

ments in response to a directional target (i.e., right direction - clockwise move-
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ment). These tendencies may be associated with factors like reading or writing.

It has been observed that those daily activities have an impact on various as-

pects of cognition, including executive functions (Altemeier et al., 2008), visual

attention (Siéroff et al., 2012), spatial perception (Román et al., 2013), and

manual motor skills (Taguchi and Noma, 2005). Moreover, the influence of

reading/writing patterns on cognition has been demonstrated in cross-cultural

studies. Languages of mainly European origins, e.g. German, French or Polish

have a left-to-right pattern of reading and writing. Languages with a right-to-

left pattern are predominantly of Arabic origins like Arabic, Hebrew, Persian,

and Urdu. While in east Asian languages such as Chinese, Japanese, and

Korean, both left-to-right and right-to-left patterns have been used. Several

studies have suggested that the directional patterns of writing and reading

contribute to distinct patterns of motor actions (e.g. Taguchi and Noma, 2005;

Taguchi, 2010; Kebbe and Vinter, 2013). Analysis of drawing patterns (e.g.,

the direction of the face, orientation of the vehicle, or the handle of the mug)

showed that French participants (left-to-right pattern of reading or writing)

exhibit a leftward bias in their direction of drawings. Conversely, Tunisian

participants (right-to-left pattern of reading or writing) exhibit a rightward

bias.

Probably directly relevant to the circular movements used in the experiments

in Chapters 4, 5, and 6, it has been shown that Japanese participants are more

likely to draw a circle in an anti-clockwise way, while German participants are

more likely to use clockwise movements to draw a circle (Taguchi, 2010). Such

cultural-dependent biases may underlie the behavioural difference between S-R

mappings observed in the current study.

4.5 Experiment 3: Continuous movement in

response to sensory information with dif-

ferent noise levels

Experiment 3 examined the effect of motion coherence on the performance of

continuous movements.
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4.5.1 Design and stimuli

Experiment 3 contained 5 runs and each run included 120 trials. Participants

had a self-paced break between each two runs. The first phase of the trial

had the same structure and RDM stimulus as in Experiment 2. In the second

phase, there were four different types of stimulus:

1. motion direction and motion coherence remained unchanged,

2. motion direction remained unchanged and motion coherence was reduced

from 50% to 20%,

3. motion change to the opposite direction and motion coherence remained

unchanged,

4. motion change to the opposite direction and motion coherence reduced

to 20%.

There were 30 trials of each of the four conditions in each run. The order

of the conditions was randomised across runs. Participants received the same

instructions and feedback about their performance as in previous experiments.

4.5.2 Results

RT and accuracy

In the first phase of the trial, Engage RT was different across runs (Figure

4.7A, BF10 = 2.422 x 1093, strong evidence). Post-hoc tests showed that RT

decreased after each run (Table 4.9A). Engage RT was not affected by exper-

imental conditions (change/no-change of direction/coherence, BF10 = 1.699

x 10-4, strong evidence), and there was no interaction between experimental

conditions and runs (BF10 = 2.111 x 10-8, strong evidence). Accuracy differed

across the runs (Figure 4.8A, BF10 = 5.628 x 1067, strong evidence). Post-

hoc tests showed that the accuracy increased after the first run, and remained

stable in later runs (Table 4.9B). Accuracy was not affected by experimental
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Figure 4.7: Reaction times in Experiment 3. (A) Engage RT in each run from
the first phase of the trial. (B) Change RT in each run from the second phase
of the trial. Data points represent the mean score and bars represent 95%
bootstrapped confidence intervals.
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conditions (BF10 = 3.444 x 10-4, strong evidence), and there was no interac-

tion between experimental conditions and runs (BF10 = 3.739 x 10-9, strong

evidence)

In the second phase, Change RT was measured in trials with a change of motion

direction. Change RT was longer when the motion coherence was reduced

(Figure 4.7B, BF10 = 3.548 x 1019, strong effect), but it did not vary across

runs (BF10 = 0.022, strong evidence). There was no interaction in Change RT

between conditions and runs (BF10 = 0.003, strong evidence).

In conditions with a change of motion direction, accuracy scores decreased

when the motion coherence was reduced (Figure 4.8B, BF10 = 3.479 x 10154,

strong evidence) and had no significant change across runs (BF10 = 1.785 x

10-4, strong evidence). There was no interaction in Accuracy score between

conditions and runs (BF10 = 0.002, strong evidence)

In conditions with no change of direction, there were strong evidence for the

main effects of conditions (changed/unchanged coherence, BF10 = 7.463 x

1028) and runs (BF10 = 1.562 x 1060, strong evidence, see Table 4.9C for post-

hoc tests). The interaction between experimental conditions and runs was

inconclusive (BF10 = 1.181).

When comparing between the first and second phase, Change RT was longer

than Engage RT (BF10 = 34.980, strong evidence), and accuracy was lower

in the second phase than that in the first phase of the trial (BF10 = 559.163,

strong evidence).

In sum, there was strong evidence for performance improvements across runs.

Lowering motion coherence and Changing motion direction resulted in in-

creased RT and decreased accuracy scores.

Movement speed

Using the continuous recording of the joystick, I could obtain a continuous

measure of movement speed throughout the trial, time-locked to stimulus onset

(Figure 4.10).
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Figure 4.8: Accuracy scores in Experiment 3. (A) Accuracy scores in each
run from the first phase of the trial. (B) Accuracy scores in each run from
the second phase of the trial. Data points represent the mean score and bars
represent 95% bootstrapped confidence intervals.

101



A. Response latency - phase 1
Run 1 2 3 4 5

1 4.796 x 1016 1.670 x 1025 9.783 x 1046 2.115 x 1067

2 0.049 1.311 x 104 5.168 x 1011

3 5.411 1.683 x 106

4 0.267

5

B. Accuracy - phase 1
Run 1 2 3 4 5

1 6.480 x 1018 5.518 x 1023 3.909 x 1026 2.485 x 1031

2 0.018 0.044 0.266

3 0.013 0.035

4 0.014

5

C. Accuracy - phase 2 (no change of direction)
Run 1 2 3 4 5

1 1.067 x 106 2.029 x 108 1.181 x 1011 4.553 x 1011

2 0.022 0.086 0.130

3 0.023 0.029

4 0.015

5

Table 4.9: Experiment 3. Posterior odds of post-hoc comparisons between
runs. Cells highlighted in green indicate evidence for the difference in the
comparison. Cells highlighted in red indicate evidence against the difference.
Cells in white indicate inconclusive evidence.

In the first phase of the trial, there was no difference in movement speed

between conditions. This was expected and confirmed the findings from the

Engage RT and accuracy scores that experimental conditions did not intro-

duce any bias in continuous movements. In the second phase, the participants

showed signs of slowing down in the lower coherence conditions, regardless

whether the motion direction changed (Figure 4.10, bottom panel) or not (Fig-

ure 4.10, top panel).

For trials with motion direction changes present, I aligned the movement speed

to the Change RT (Figure 4.11, top panels). This showed the fact the par-

ticipants slowed down before changing the direction (Change RT) and subse-

quently recovered the speed in the opposite direction. During a short interval
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Figure 4.10: Movement speed in Experiment 3. Solid lines denote the mean
movement speed, and shaded areas denote the standard error of the mean
across participants. The differences between conditions are highlighted by
green shading (cluster permutation test with cluster-level correction at p <
0.05). The grey shading around t = 2s indicates the 100 ms gap between the
two phases of the trial.

(0.25 s) after the Change RT, the movement speed was significantly slower in

low coherent trials than that in high coherent trials.

Participants spent more time to accelerate after the direction change than to

slow down before the change (Figure 4.11, middle panels). It might be due

to the different processes guiding the maintenance of the action and adjusting

the action after the decision is reached (e.g. forming a confidence judgement

(Fleming et al., 2015)). Furthermore, the participants spent more time to reach

a stable movement speed when engaging in an action, compared to adjusting

an ongoing action to the opposite direction (Figure 4.11, bottom panels). All

the evidence confirmed that participants engaged in the action according to

the experimental instructions.
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Figure 4.11: Experiment 3: movement speed time-locked to various movement
milestones. Top panel: the time course of movement speed time-locked to
Change RT. Middle panel: comparisons of movement speed before and after
Change RT. Bottom panel: comparisons of movement speed from Engage RT
(in the first phase) and Chagne RT (in the second phase). The differences
between conditions are highlighted by green shading (cluster permutation test
with cluster-level correction at p < 0.05).
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4.5.3 Conclusion

The introduction of the change in RDM coherence was the main difference

between Experiment 2 and Experiment 3 (Figure 4.1). Participants also com-

pleted five times more trials (5 runs x 120 trials) and exhibited training effects

across runs. As with previous experiments, the first phase of the trial served

as a baseline for the adjustment of action in the second phase.

In the second phase of the trial, when the direction of the RDM stimulus did

not change, the accuracy was close to 90%. However, when the quality of the

visual cue was lowered from 50% to 20%, participants were more likely to stop

or slow down. Such behaviour decreased the time spent on performing their

ongoing actions in response to the visual information in the first phase and

resulted in lower accuracy scores and longer Change RT. The movement speed

was also affected by the changes in the visual cue quality and the phase of the

trial.

4.6 Experiment 4: Continuous responses to

perceptual decisions without feedback

Experiment 4 aimed to evaluate the performance of continuous movements in

response to perceptual decisions without trial-by-trial feedback.

4.6.1 Design and stimuli

Experiment 4 contained 5 runs and each run included 120 trials. Trial struc-

ture, instructions, experimental conditions and stimulus remained the same as

in Experiment 3. However, participants only received a feedback about the

performance after each run, and there was no feedback after each trial.
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4.6.2 Results

RT and accuracy

In the first phase of the trial, Engage RT differed across runs (Figure 4.12A,

BF10 = 1.605 x 108, strong evidence). Post-hoc test showed a decrease in

Engage RT in first two runs, and the performance remained stable after (Table

4.14A). Engage RT did not differ between conditions (BF10 = 4.105 x 10-4,

strong evidence), and there was no interaction between experimental conditions

and runs (BF10 = 4.105 x 10-4, strong evidence). There was a strong evidence

of a main effect of runs in accuracy scores (Figure 4.13A, BF10 = 2.010 x

1024, strong evidence). Post-hoc tests showed that the accuracy increased

after the first run and remained the same in subsequent runs (Table 4.14B).

Accuracy did not differ between experimental conditions (BF10 = 1.873 x 10-4,

strong evidence), and there was no interaction between conditions and runs in

accuracy (BF10 = 1.896 x 10-7, strong evidence).

In the second phase, Change RT was longer in trials with lower motion co-

herence (Figure 4.12B, BF10 = 4.415 x 1020 ,strong evidence), but it did not

differ across the runs (BF10 = 2.825 x 10-4, strong evidence). There was no

interaction in Change RT between conditions and runs (BF10 = 5.413 x 10-4,

strong effect).

Accuracy scores were lower in trials with lower motion coherence (Figure 4.13B,

Change direction conditions: BF10 = 2.601 x 1075; No-change direction condi-

tions: BF10 = 3.268 x 1021). There was a strong evidence against a main effect

of runs (Change direction conditions: BF10 = 2.337 x 10-4; No-change direction

conditions: BF10 = 0.023) and against an interaction between runs and exper-

imental conditions (Change direction conditions: BF10 = 0.004; No-change

direction conditions: BF10 = 6.007 x 10-4).

When comparing between the first and second phase, there was a moderate

evidence supporting no difference between Engage RT and Change RT (BF10

= 0.273). Accuracy was lower in the second phase than that in the first phase

of the trial (BF10 = 37600.699).
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Figure 4.12: Reaction times in Experiment 4. (A) Engage RT in each run
from the first phase of the trial. (B) Change RT in each run from the second
phase of the trial. Data points represent the mean score and bars represent
95% bootstrapped confidence intervals.
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Figure 4.13: Accuracy scores in Experiment 4. (A) Accuracy scores in each
run from the first phase of the trial. (B) Accuracy scores in each run from
the second phase of the trial. Data points represent the mean score and bars
represent 95% bootstrapped confidence intervals.
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A. Response latency - phase 1
Run 1 2 3 4 5

1 1.537 x 104 1.146 x 1015 6.193 x 1011 5.618 x 108

2 14.193 .897 0.091

3 0.017 0.051

4 0.020

5

B. Accuracy - phase 1
Run 1 2 3 4 5

1 1.266 x 106 6.122 x 1011 6.276 x 1012 1.766 x 1013

2 0.161 0.302 0.386

3 0.014 0.014

4 0.013

5

Table 4.14: Experiment 4. Posterior odds of post-hoc comparisons between
runs. Cells highlighted in green indicate evidence for the difference in the
comparison. Cells highlighted in red indicate evidence against the difference.
Cells in white indicate inconclusive evidence.

Movement speed

I performed the same analysis on movement speed as in Experiment 3.

For the movement speed measure time-locked to stimulus onset 4.15, I observed

similar effects as in experiment 3. In the first phase of the trial, participants

were initiating movements uniformly across conditions. In the second phase

of the trial, the movement speed slowed down in a short interval ∼0.5 s after

low coherence stimulus was presented.

However, the movement speed time-locked to the Change RT showed no dif-

ference between high and low coherence trials (Figure 4.16, top panels), in

contrast to the results Experiment 3. It is likely caused by the familiarity with

the task, which as behavioural performance show, seemed to reach the satura-

tion point. Other aspects of movement speed across different stages of the trial

showed the same pattern as in Experiment 3. Participants took more time to

regain movement speed after the direction change than to slow down before it

(Figure 4.16, middle panel). Compared to the adjustment of ongoing actions,

the participants took more time to reach a stable speed when initiating an
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Figure 4.15: Movement speed in Experiment 4. Solid lines denote the mean
movement speed, and shaded areas denote the standard error of the mean
across participants. The differences between conditions are highlighted by
green shading (cluster permutation test with cluster-level correction at p <
0.05). The grey shading around t = 2s indicates the 100 ms gap between the
two phases of the trial.

action (Figure 4.16, bottom panel).

4.6.3 Conclusion

The only difference between Experiment 4 and Experiment 3 was a lack of

trial-by-trial feedback. Most of the behavioural results on accuracy, RT and

movement speed reported in Experiment 3 were found in this experiment as

well. Lowering the motion coherence and changing a motion direction resulted

in increased RT and decreased accuracy scores. This occurred even after exten-

sive training, suggesting the robustness of the behavioural effects I was looking

for. The main difference between the two experiments was that, in Experiment
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Figure 4.16: Experiment 4: movement speed time-locked to various movement
milestones. Top panel: the time course of movement speed time-locked to
Change RT. Middle panel: comparisons of movement speed before and after
Change RT. Bottom panel: comparisons of movement speed from Engage RT
(in the first phase) and Chagne RT (in the second phase). The differences
between conditions are highlighted by green shading (cluster permutation test
with cluster-level correction at p < 0.05).
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4, I found no training effects across the runs on accuracy in the second phase.

4.7 Behavioural measures across experiments

This section compared the behavioural measures between Experiments 1-4 to

evaluate the effects of training.

4.7.1 Experiment 1 vs. Experiment 2

The Engage RT was reduced from Experiment 1 to Experiment 2 (Figure

4.17A, BF10 = 4.329 x 108). There were strong evidence against a main effect

of experimental conditions (BF10 = 0.038) or an interaction between conditions

and experiments (BF10 = 0.067). The Change RT, however, was increased from

Experiment 1 to Experiment 2 (Figure 4.17B, BF10 = 7.910 x 1017).

The accuracy score increased from Experiment 1 to Experiment 2 in the first

phase (Figure 4.17C, BF10 = 232.067), but decreased in the second phase,

although the evidence for the latter was inconclusive (Figure 4.17D, BF10 =

0.656). There were strong evidence against the main effect of experimental

conditions (first phase: BF10 = 0.041; second phase: BF10 = 2.045 x 10219) or

an interaction between conditions and experiments (first phase: BF10 = 0.051;

second phase BF10 = 0.138).

In sum, over the first two experiments, the participants improved Engage RT

and accuracy in the first phase but the performance decreased in the second

phase. The increase of Change RT and the decrease of accuracy in the second

phase were likely due to the introduction of the noisy RDM stimulus. Partic-

ipants experienced a change of the direction which was not as apparent as in

the Experiment 1.

4.7.2 Experiment 3 vs. Experiment 4

The Engage RT decreased from Experiment 3 to Experiment 4 (Figure 4.18A,

BF10 = 2.423 x 1056). There were strong evidence against a main effect of
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Figure 4.17: Summary of RT and accuracy in Experiments 1-2.
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Figure 4.18: Summary of RT and accuracy in Experiments 3 and 4.
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experimental conditions (i.e., change/no-change of direction and high/low co-

herence in the second phase) (BF10 = 7.905 x 10-5 or an interaction between

conditions and experiments (BF10 = 2.645 x 10-4. The Change RT from the

second phase increased from Experiment 3 to 4 (Figure 4.17B, BF10 = 3.580).

There was no effect in Change RT between experimental conditions (BF10

= 2.427 x 1039) or interactions between conditions and experiments (BF10 =

0.111).

The accuracy score increased from Experiment 3 to Experiment 4 in the first

phase (Figure 4.18C, BF10 = 2.193 x 1033), and increased in the second phase

over experiments (Figure 4.18D, BF10 = 8.565 x 106). In the first phase, there

were strong evidence against the main effect of experimental conditions (BF10

= 1.187 x 10-4) or an interaction between conditions and experiments (BF10

= 2.005 x 10-4). In the second phase, I found strong evidence for the main

effect of experimental condition (BF10 > 9.999 x 10100 and moderate evidence

for the interaction of experimental conditions and experiments (BF10 = 3.583.

To sum up, the training without a feedback further improved the behavioural

performance in the first run of Experiment 4. However in the second phase of

the trial participants were slower but more accurate.

4.8 General discussion

This chapter highlighted a multifaceted interaction between perceptual decision-

making, action selection and learning of sensory-motor transformation. Build-

ing on the results from Chapter 3, I was able to evaluate the novel paradigm

that linked continuous movements with perceptual decisions. Over the course

of four experiments, participants successfully learned to perform the task. Ex-

perimental manipulation of the stimulus signal-to-noise ratio led to results that

were hypothesised. The learning effect in RT, accuracy and response speed was

observed across all the experiments.
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4.8.1 Initiation of continuous responses

Chapter 3 showed that movement speed and acceleration of joystick move-

ments were affected by the movement direction. Incorporating this insight

in the current set of experiments, a uniform way of engaging in the action

was introduced. Participants initiated their movements in the same upward

direction, regardless of the direction of the stimulus and stimulus-response

mapping. This consistency during action initiation allowed to make compar-

isons of, e.g., Engage RT, across experiments. Previous studies using joysticks,

often adopted linear trajectories as responses (e.g. Berg et al., 2016; Resulaj

et al., 2009; Gallivan et al., 2016; Szul et al., 2019). Experiments in this chap-

ter retained this feature at the action initiation stage, despite the departure

with continuous movements later in a trial.

Because there was no manipulation of motion coherence in the first phase, I

could use the behavioural measures in the first phase as a sanity check within

and across experiments. Indeed, in most experiments, experimental conditions

did not affect the accuracy score (Figures 4.4A, 4.6A, 4.8A, 4.13A), the Engage

RT (Figures 4.3B, 4.5B, 4.7B, 4.12B) or movement speed (Figures 4.10, 4.15)

in the first phase.

The only exception was observed in Experiment 2, in which the stimulus-

response mapping affected RT and accuracy (Figure 4.6A). Such results might

came from a compounded effect of the introduction of the noisy RDM stimulus

which was more difficult than the arrow. Comparison between Experiments 1

and 2 (Figure 4.17A, C) supported this account. Participants were slower and

less accurate when the noisy RDM stimulus was introduced in Experiment 2.

On top of that, this new and challenging situation might have captured a bias

towards a specific combination of the visual cue and action pattern. As argued

in a Section 4.4.4 this tendency can have a cultural origin, more specifically

being a reflection of the reading and writing patterns (e.g. Taguchi and Noma,

2005; Taguchi, 2010).

Across Experiments 3 and 4, I observed improvements in motion discrimina-

tion performance. Observed effects of low-level visual perceptual learning are

consistent with results found in the literature (e.g. Zhang and Rowe, 2014;
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Ratcliff et al., 2006; Seitz et al., 2006; Fine and Jacobs, 2002). During the

Experiment 3, participants were consistently improving the speed and the ac-

curacy of decisions throughout the runs (Figures 4.7A, 4.8A; Table 4.9A). In

the Experiment 4, participants were overall faster and more accurate com-

pared to the performance in the Experiment 3 (Figure 4.18A, C), but the

performance stopped improving after the first run (Figures 4.12A, 4.13A; Ta-

ble 4.14). Low-level, relatively salient stimuli, like the random dot motion,

are subject to fairly rapid learning, reaching saturation in few sessions (e.g.

Fine and Jacobs, 2002; Frisby and Clatworthy, 1975). Nevertheless, I cannot

definitely rule out that the withdrawal of the feedback contributed to the lack

of improvement across the runs in the Experiment 4 (Shiu and Pashler, 1992;

Herzog and Fahle, 1997; Roelfsema et al., 2010). However important, resolving

the reservations about the influence of learning and/or feedback are outside of

the scope of the current design.

4.8.2 Changing and maintaining movements

A novel feature of this set of experiments was a combination of noisy visual

inputs and continuous motor output. A decision of whether to maintain or

change the direction of movement in the second phase was made while per-

forming the action based on the previous decision in the first phase. In all

experiments, participants were able to correctly respond to the demands of

the task, and changed the direction of ongoing circular movements in 50% of

trials.

In Experiments 1 and 2, the quality of the stimulus remained stable and the

stimulus-response mapping did not affect Change RT nor accuracy score. Nev-

ertheless, switching visual cues from unambiguous arrows (Experiment 1) to

noisy RDM stimulus (Experiment 2) increased the Change RT and decreased

the accuracy. In Experiments 3 and 4, lower motion coherence in the second

phase resulted in longer Change RT and lower accuracy score. Overall, the

results were in accordance with previous studies that RT and accuracy are

affected by the quality of visual input (Britten et al., 1992; Pilly and Seitz,

2009; Ramachandran and Anstis, 1983; Roitman and Shadlen, 2002; Szul et al.,

2019). Here, continuous movements did not alter this fundamental property.
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In Experiments 3 and 4, the maintenance of an ongoing action was affected

by a decrease of motion coherence in the second phase. The change in the

quality in the visual cue was also reflected in accuracy score (Figures 4.8B and

4.13B). Lower quality of visual inputs introduced more uncertainty, hence the

increased hesitation, accidental stopping or momentary changes of direction.

In Experiment 4, the accuracy increased despite the increase in Change RT.

Assuming the learning of the task saturated in Experiment 4, participants

seemed to improve the maintenance of the stable movement. Summary of the

speed of the movement (Figure 4.11) showed that in Experiment 3, participants

were slower to regain the speed after the change of the direction under more

noisy visual input. This effect disappeared in Experiment 4 (Figure 4.16).

In summary, this chapter extended a conventional perceptual-decision task

with continuous responses over a time-scale of several seconds. The new

paradigm enables to examine new research questions such as action main-

tenance and action switch with concurrent decision-making. I observed the

expected effects of task difficulty and learning across multiple sessions (Gold

and Shadlen, 2007; Ratcliff et al., 2016). Combining current results with Chap-

ter 3, I concluded that continuous movements are valid and robust to indicate

perceptual decision outcomes and their changes. In Chapter 5, I implemented

this paradigm in MEG to investigate the electrophysiological signatures of

continuous movements.
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Chapter 5

MEG representations of

continuous responses during

decision-making

5.1 Introduction

The previous chapter presented a novel paradigm that combined perceptual

decisions with continuous circular movements to investigate the dynamics of

the action-decision coupling (Experiment 4 in Chapter 4). The perceptual de-

cision task, random-dot motion discrimination, was used to coordinate circular

movements (clockwise or anti-clockwise) of a joystick. Participants were asked

to initiate, maintain or change continuous circular movements based on the

direction of the coherent motion.

In this chapter, the behavioural task (Experiment 4 in Chapter 4) was adapted

for concurrent magnetoencephalography (MEG) recording. All the partici-

pants who took part the experiments in Chapter 4 were re-recruited for the

MEG experiment, and therefore all participants had sufficient training of the

experimental procedure before the MEG session.

The MEG experiment aimed to identify electrophysiological signatures sensi-

tive to (1) continuous movement directions and (2) changes in RDM coherence.

119



I examined three categories of MEG activities: ERFs, multivariate patterns

and oscillatory power. Below I outlined rationales of the proposed analyses.

First, several electrophysiological signatures are related to decision-making and

action initiation. Early EEG studies highlighted readiness potential (RP) as

an ERP component related to motor preparatory activity (Kutas and Donchin,

1980). The RP, an event preceding the negative component, was found to be

the strongest when participants were able to prepare their responses in ad-

vance, i.e., performing a voluntary movement or having a preparatory cue to

indicate subsequent actions. For perceptual decisions, the P300 ERP compo-

nent in central-frontal electrodes is associated with the evidence accumulation

process (Twomey et al., 2015). The current experiment instructed participants

to initiate their continuous circular movements with a common upward push

(for both clockwise and anticlockwise movements). As demonstrated in Chap-

ter 3, such short, ballistic actions are similar to conventional button presses

in terms of behavioural performance as well as underlying cognitive processes.

Therefore, I will calculate univariate ERFs evoked by the RDM stimulus in

different MEG sensor groups and examine whether the ERFs differed between

movement directions (in both first and second phases) and between coherence

levels (in the second phase).

Second, although continuous movements were not commonly used in perceptual-

decision studies, they have been studied extensively in the field of brain-

computer interface (BCI), including drawing (Lv et al., 2010), precise finger

movement (Kubánek et al., 2009; Sugata et al., 2012; Antelis et al., 2013), linear

joystick movement (Waldert et al., 2008; Robinson et al., 2013; Nasseroleslami

et al., 2014), point-to-point reaching (Pistohl et al., 2008; Ball et al., 2009;

Bradberry et al., 2009, 2010; Toda et al., 2011; Nakanishi et al., 2013; Yeom

et al., 2014) and continuous stable motion (Georgopoulos et al., 2005; Langheim

et al., 2006). One common interest of BCI researchers is to decode the in-

tention of movements from electrophysiological data, which is then used to

provide feedback or control robotic devices to assist people with impaired mo-

tor functions. Indeed, previous research showed that multivariate patterns in

electrophysiological signals contain information of movement trajectory (e.g.

Georgopoulos et al., 2005; Pistohl et al., 2008; Hajipour Sardouie and Sham-

sollahi, 2012; Sugata et al., 2012; Antelis et al., 2013), indicating that it is
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possible to classify patterns of movement directions from MEG signals.

In this Chapter, I will use multivariate pattern analysis (MVPA) to decode

task relevant information from sensor-level MEG data, including: movement

directions (clockwise vs. anticlockwise), motion coherence (high vs. low in the

second phase). Because participants were instructed to maintain steady and

continuous circular movements throughout the trial, I will further calculate the

temporal generalization pattern in multivariate MEG data. As highlighted in

Figure 2.8, different temporal generalization patterns would highlight the tem-

poral structure of underlying mental states. Specifically, I expect an oscillatory

temporal generalization pattern for classifying movement directions, due to the

periodic nature of circular movement. I also expect a sustained generalization

pattern for classifying motion coherence in the early period of the second phase,

because a change of motion coherence would affect the decision process until

the action is altered (i.e., change of direction) or maintained (i.e., no change

of direction) (King and Dehaene, 2014). Furthermore, engagement RT and

change RT vary across trials and between participant. I will test whether

aligning the MEG data to action onset (instead of stimulus onset) would pro-

vide a stronger multivariate pattern of movement direction (Leuthold et al.,

2004), because time-domain signals may contains information about the phase

(Waldert et al., 2008) as well as the velocity (Fuchs et al., 2000) of an action.

Third, Donner et al. (2009) showed that the MEG signals over sensorimotor ar-

eas were predictive of perceptual decision outcomes prior to actual behavioural

responses. Moreover, the gamma-band activity was found to be reflecting the

stimulus strength in a perceptual decision-making task using RDM (Siegel

et al., 2007; Donner et al., 2007). Evidence from the non-human primates

invasive electrophysiology confirmed that the beta-band activity indeed re-

flects action selection (Haegens et al., 2011) and its uncertainty (Tzagarakis

et al., 2010) during decision-making. These results suggest a rich frequency-

specific information during decision-making and action selection. The beta

band power also has been found to reflect the uncertainty in the action se-

lection process. The primary motor cortex activity reflects the dynamics of

the decision process prior to response. For example, the deliberation and the

subsequent commitment as major components in motor control not the sen-

sory information accumulation are reflected in the local field potential (LFP)
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activity during the reach task (Thura and Cisek, 2014).

One feature of the current experiment was the active maintenance of an action

after its initial engagement. The beta band desynchronisation (see: the MEG

section in Chapter 2) is a strong feature of active actions in electrophysiological

recordings (Taniguchi et al., 2000; Neuper and Pfurtscheller, 2001). For exam-

ple, beta-band desynchronisation is elicited during the change of limb position

in point-to-point reaching and was stable for the duration of the movement

(Grent-’t Jong et al., 2014; Grent-’t Jong et al., 2013), and the origin of this

activity has been localised in the motor cortex (Kilner et al., 1999; Taniguchi

et al., 2000; Engel and Fries, 2010; Kilavik et al., 2013; Khanna and Carmena,

2017). Early modelling work suggested that beta-band desynchronisation is

sensitive to movement velocity but not direction (Fuchs et al., 2000). Hence,

in this Chapter, I will estimate the beta-band oscillatory power throughout

the trial with the expectation of sustained beta-band desynchronization inde-

pendent of movement direction.

To sum up, in this Chapter, I will set to test the following hypotheses:

• Behavioural results (RT, accuracy and movement trajectory) from MEG

sessions are similar to those from behavioural sessions reported in Ex-

periment 4 in Chapter 4.

• Univariate ERFs differ between movement directions (in the first and

second phases) and coherence levels (only in the second phase).

• Significant above-chance (50%) MVPA classification accuracy between

movement directions (in the first and second phases) and coherence levels

(only in the second phase).

• MVPA temporal generalization patters are different when classifying

data aligned to stimulus onset vs. action onset.

• Continuous movements would lead to a sustained beta-band desynchro-

nization throughout the trial, regardless of movement directions.
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5.2 Methods

5.2.1 Participants

Sixteen participants (thirteen females and 3 males, age range 19-28, M =

21.88 years, SD = 2.42 years) took part in the study following a briefing,

MEG safety instructions, and written informed consent. All the participants

were right handed. All the participants had normal or corrected-to-normal

vision. None of the participants reported a history of motor impairments or

neurological disorders. The study was approved by the Cardiff University

School of Psychology Ethics Committee.

5.2.2 Apparatus

The experiment was conducted in a shielded MEG chamber with dimmed

light. Stimuli were displayed on a MEG compatible PROPixx projector (VPixx

Technologies Inc., Canada) projector with 1920x1080 pixels resolution and

120 Hz refresh rate. A chin rest was used to maintain the viewing distance

and position (for more details see: Figure A.2). A MEG-compatible joystick

(Current Design Inc., Canada) was used to record movement trajectories at

120 Hz. Similar to Chapters 3 and 4, the joystick handle could move nearly

freely with little resistance from its neutral position within the 20% movement

radius. Beyond the 20% radius, the resistance during joystick movement was

approximately constant. The experiment was written using PsychoPy 1.85.4

library (Peirce, 2008).

5.2.3 Experimental Design and stimuli

The experimental design and stimulus were the same as Experiment 4 in Chap-

ter 4. The stimulus-response mapping was counterbalanced across partici-

pants.
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5.2.4 MEG data acquisition and pre-processing

Data acquisition

The whole head MEG recording was acquired in a magnetically shielded cham-

ber, using a 275-channel axial gradiometer CTF system (VSM MedTech). Two

channels were turned off due to excessive noise. The data were acquired con-

tinuously with 1200 Hz sampling rate, low-pass filtered at 300 Hz by a built-in

on-line filter. For noise cancellation purposes an on-line 3rd order gradient

compensation was applied using 29 reference channels. The data was analysed

as synthetic, third order gradiometers (Vrba and Robinson, 2001). Horizontal

and vertical electro-oculograms were recorded to monitor blinks and eye move-

ments. The horizontal electrodes were placed on temples, and vertical ones,

above and below the eye. To track the head position relative to the MEG

sensors, three electromagnetic coils were placed on nasion, left and right pre-

auricular area. The position of the coils was tracked continuously during the

recording. The head shape with the position of the coils was digitised using a

Polhemus FASTRAK (Colchester, Vermont). Participants were seated upright

with their heads supported by the chin rest to minimise the head movement.

Data pre-processing

Data was processed using a MNE-Python 0.17.1 library (Gramfort et al., 2013,

2014). Continuous raw data was extracted from 5 s before the first trigger to

5 s after the last trigger. Data were separately high-pass filtered at 0.1 Hz

and low-passe filtered at 80 Hz with minimum-phase causal filter using a finite

impulse response (FIR) design. The data were then downsampled to 250 Hz

to reduce computation load.

To remove the artifacts associated with eye movement and cardiac activity, the

independent component analysis (ICA) was applied. The FastICA algorithm

(Hyvärinen and Oja, 2000) was used to extract 50 independent components.

The components containing eye-movement and cardiac activity were rejected.

For the time-domain analysis the data were further low-pass filtered at 40

Hz. Subsequently, the continuous data were divided into epochs of -0.5-4.0 s
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around the onset of each trial, which encompassed the duration of the entire

trial. The epochs were baselined using the -0.2 - 0.0 s period before trial

onset. In a separate analysis, the data were divided into epochs of -1.0 - 1.0

s around the onset of the movement in each trial (Engage RT, see Figure

4.1) and around the moment of the adjustment of the action (Change RT).

For the frequency domain analysis, data were further band-passed to extract

functionally relevant frequency bands: alpha band (8-14 Hz), beta band (14-30

Hz), theta band (4-8 Hz) and low gamma band (30-80 Hz). From each band-

passed data, the envelope of the Hilbert transformed signal was obtained. The

data at each frequency band were epoched in the same manner as in the time-

domain analysis.

5.3 Data analyses and results

As in Chapter 4, Bayesian ANOVA (JASP Team, 2018) was used for analysis

of RTs and accuracy scores (Table 4.2). To compare the time courses of move-

ment speed I used permutation tests with cluster-level correction for multiple

comparisons (Maris and Oostenveld, 2007).

After artefact rejection, visual inspection of the pre-processed data suggested

that continuous arm movements led to noisy recordings in temporal sensors.

As a result, univariate analyses were conducted on medial frontal, central,

parietal and occipital sensors, which have been shown to contain informa-

tion of action selection, motor execution and visual processing (e.g. Cisek and

Kalaska, 2010; Waldert et al., 2008; Donner et al., 2009). For each sensor

group, I conducted time-resolved analyses on ERF time courses and Hilbert

power envelops. For each participant, the time-courses were robustly averaged

across trials using a trimmed mean (5% of the extreme ends of the distribution

were discarded) (Wilcox and Rousselet, 2018). The differences between aver-

aged ERFs were assessed by permutation tests with cluster-level corrections

for multiple comparisons at different time points. A lenient cluster formation

threshold (F = 2.0) was used to obtain an initial set of clusters. From the

initial set of clusters, permutation test (5000 permutations) was used to estab-

lish statistical significance with a threshold of p < 0.05. In all ERF figures,
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significant clusters were highlighted with a green shade (p < 0.05corrected).

Non-significant clusters with p-values 0.05 < p < 0.5 were highlighted in light

grey (e.g. right Central Sensors, Figure 5.17). Due to a lenient threshold

used for initial cluster detection, the numbers of clusters that survived the

uncorrected threshold were high and thus not reported.

MVPA temporal generalization results were corrected for multiple comparisons

using a two-dimensional cluster-based correction approach. Similar to the ERF

analysis, a lenient cluster threshold (F = 2.0) was used to obtain an initial

set of 2D clusters. From the initial set of clusters, permutation tests (5000

permutations) were conducted to find significant clusters with a significant

threshold of (p < 0.05). Significant clusters were highlighted with a black

border on temporal generalisation maps.

5.3.1 Behavioural results

I first examined the behavioural performance (Accuracy, Engage RT in the

first phase, and Change RT in the second phase, see Table 4.2 for definitions

of behavioural measures). For the first phase of a trial, there was no experimen-

tal manipulation on the stimulus quality. As expected, I found no difference

between conditions (change in directions and/or change in coherence) in accu-

racy (BF10 = 4.898 x 10-4, strong evidence, Figure 5.2A) or Engage RT (BF10

= 3.603 x 10-4, strong evidence, Figure 5.1B). There was strong evidence for

a main effect in accuracy across experimental runs (BF10 = 1.349 x 106; see

Table 5.3A for post-hoc tests) and a main effect in Engage RT (BF10 = 5.043

x 1045; see Table 5.3B for post-hoc tests). None of the main effects interacted

(accuracy - BF10 = 2.138 x 10-6 strong evidence; Engage RT - BF10 = 2.197 x

10-6 strong evidence).

For the second phase of a trial, there was a reduction in coherence (50% of

trials) and/or a change in coherent motion direction (50% of trials) (see Figure

4.1, Experiment 4). When the motion direction was changed, the Change

RT was affected by the reduction in motion coherence. The participants took

longer (BF10 = 59499.859, strong evidence; Figure 5.1B) and were less accurate

(BF10 = 5.342 x 1097, strong evidence; Figure 5.2B) in changing the direction of
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Figure 5.1: Reaction times (see Table 4.2 for the definitions of behavioural
measures). (A) Engage RT in each run from the first phase of the trial. (B)
Change RT in each run from the second phase of the trial. Data points repre-
sent the mean score and bars represent standard deviations. As in Chapter 4,
Change RT only reported for trials with a change of motion direction in the
second phase.
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Figure 5.2: Accuracy scores. (A) Accuracy scores in each run from the first
phase of the trial. (B) Accuracy scores in each run from the second phase of
the trial. Data points represent the mean score and bars represent standard
deviations.
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A. Accuracy (action engagement)
Run 1 2 3 4 5

1 0.639 0.259 2701.831 2969.783

2 0.016 0.147 0.127

3 0.436 0.383

4 0.014

5

B. Engage RT (action engagement)
Run 1 2 3 4 5

1 84.033 97.883 2.053 x 1017 3.258 x 1017

2 0.015 2419.536 5064.370

3 2155.933 4511.613

4 0.015

5

Table 5.3: Posterior odds of post-hoc comparisons of (A) accuracy scores and
(B) Engage RT between runs. Cells highlighted in green indicate evidence for
the difference in the comparison. Cells highlighted in red indicate evidence
against the difference. Cells in white indicate inconclusive evidence.

their circular movements when the motion coherence was reduced, suggesting

a sustained sensitivity towards sensory information in the second phase. When

the motion direction was not changed, participants were less accurate (BF10

= 2.150 x 1031, strong evidence; Figure 5.2B) in maintaining their circular

movements under more noisy conditions. Across runs, there was no change in

accuracy (BF10 = 0.008, strong evidence) or the Change RT (BF10 = 4.764

x 10-4, strong evidence). There was an interaction between the change/no-

change of the motion coherence and runs on accuracy (BF10 = 8.256, moderate

evidence), but not on Change RT (BF10 = 0.002, strong evidence).

Next, I compared the behavioural measures between the first and second

phases. When the second phase had a change of motion direction but not

motion coherence, there was no conclusive evidence (BF10 = 2.685) that En-

gage RT (in the first phase) was different to the Change RT (in the second

phase). When the change of motion direction and lowered motion coherence

occurred in the second phase, there was moderate evidence (BF10 = 3.664) that

Engage RT and Change RT were different. In both conditions, the change of

motion direction led to a decrease in accuracy than that in the first phase
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Figure 5.4: Movement speed in trials with (A) and without (B) a change of
motion direction in the second phase. Solid lines denote the mean movement
speed, and shaded areas denote the standard error of the mean across partici-
pants. The grey shading around t = 2s indicates the 100 ms gap between the
two phases of the trial.

(change of coherence: BF10 = 1.829 x 10125, strong evidence; no change of

coherence: BF10 = 6.519 x 107, strong evidence).

The speed of circular movements, as measured by the angular displacement

velocity, was not affected by changes in motion coherence (no change of di-

rection trials: Figure 5.4A; change of direction trials: Figure 5.4B). For trials

with direction changes, there was no effect of motion coherence in the move-

ment speed when the measure was time-locked to the onset of direction change

(Figure 5.5A). The participants achieving the stable motion speed faster in

changing the direction of an ongoing action than initiating an action in the

first phase (Figure 5.5B). In addition, the participants were decelerating be-

fore the change, and accelerating after the direction change at a similar rate,
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Figure 5.5: Movement speed time-locked to various movement milestones. (A)
The time course of movement speed time-locked to Change RT. (B) Movement
speed from Engage RT (in the first phase) and Change RT (in the second
phase). (C) Movement speed before and after Change RT. Solid lines denote
the mean movement speed, and shaded areas denote the standard error of the
mean across participants. The differences between conditions are highlighted
by green shading (cluster permutation test with cluster-level correction at p <
0.05).
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except from a short period around the pivotal point of the direction change

(Figure 5.5C).

In sum, the behavioural results of the MEG experiment was similar to previous

experiments conducted in the behavioural lab (Experiments 3-4 in Chapter 4,

confirming the validity of the paradigm in the MEG suite.

5.3.2 MEG results

ERFs

For each participant, the pre-processed MEG data in each condition were av-

eraged using: the movement direction in the first phase (clockwise or anti-

clockwise), the presence of direction change in the second phase (change or

no change) and the presence of motion coherence change in the second phase

(high or low coherence). Figures 5.7 and 5.6 showed the averaged ERFs in

four sensor groupings (frontal, central, parietal and occipital), comparing tri-

als with clockwise and anti-clockwise movements. There was no significant

difference in ERFs between movement directions. Further tests showed no sig-

nificant difference in ERFs between trials with high and low motion coherence

in the second phase. Therefore, univariate MEG signals were insensitive to the

experimental manipulation and the direction of continuous movements.

Time-domain multivariate pattern classification using SVM

I performed two MVPA analyses to evaluate the discriminability of multivari-

ate patterns of MEG activity. The first was binary classifications between

clockwise and anti-clockwise movements, separately for the first and second

phase of the trial. The second was binary classifications between RDM coher-

ence (high vs. low), separately for trials with and without change in motion

direction.

I applied the analysis pipeline outlined in Section 2.3.4. Each analysis included

all the MEG sensors. For each classification problem, a 10-fold cross-validation

procedure was conducted. In each cross-validation, the data was standardised
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Figure 5.6: ERFs of clockwise vs anticlockwise movements in trials with no
change of direction in the second phase. The results were shown separately for
each sensor group (frontal, central, parietal and occipital). Solid lines denote
the mean movement speed, and shaded areas denote the standard error of
the mean across participants. No significant clusters between change and no
change of direction conditions were observed at the cluster level p < 0.05.
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Figure 5.7: ERFs of clockwise vs anticlockwise movements in trials with change
of direction in the second phase. The results were shown separately for each
sensor group (frontal, central, parietal and occipital). Solid lines denote the
mean movement speed, and shaded areas denote the standard error of the mean
across participants. No significant clusters between change and no change of
direction conditions were observed at the cluster level p < 0.05.
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Figure 5.8: MVPA of clockwise vs. anticlockwise movements in the first phase.
A) and B): Temporal generalisation map of the clockwise vs. anticlockwise
movements when the data was time-locked to trial onset (A) or Engage RT (B).
Black outline denotes the clusters with a significant difference from the 50%
chance level (one-sample cluster permutation test with cluster-level correction
at p < 0.05) C) and D): Classification performance for the classifier trained
on and applied to the data from the same time point. Solid lines denote a
mean performance of the classifier. Shaded areas denote the standard error of
the mean across participants.
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Figure 5.9: MVPA of clockwise vs. anticlockwise movements in the second
phase. A) and B): Temporal generalisation map of the clockwise vs. an-
ticlockwise movements when the data was time-locked to the onset of the
second phase (A) or Change RT (B). Black outline denotes the clusters with a
significant difference from the 50% chance level (one-sample cluster permuta-
tion test with cluster-level correction at p < 0.05). C) and D): Classification
performance for the classifier trained on and applied to the data from the same
time point. Solid lines denote a mean performance of the classifier. Shaded
areas denote the standard error of the mean across participants.
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Figure 5.10: MVPA of trials with high vs. low motion coherence presented in
the second phase. A): Temporal generalisation performance of the classifier for
the trials with no change of the direction in the second phase. B): Temporal
generalisation performance of the classifier for the trials with a change of the
direction. Black outline denotes the clusters with a significant difference from
the 50% chance level (one-sample cluster permutation test with cluster-level
correction at p < 0.05). C): Performance of the classifier trained on and
applied to the data from the same time point. Solid lines denote a mean
performance of the classifier. Shaded areas denote the standard error of the
mean across participants.
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using a robust scaling method. A PCA was conducted on the training set

to identify principle components that explained ¿99% of data variance. Both

training and test sets were then projected to the reduced space defined by the

chosen principle components. A linear support vector classifier (SVC) with

LASSO regularisation was used to train and test the multivariate patterns.

Furthermore, the temporal generalisation procedure was applied to determine

the temporal patterns of the information representations. That is, the SVM

classifier was trained on one time point and tested in the data at all time points

(King and Dehaene, 2014).

Classification performance was evaluated using the area under the receiver

operating characteristic curve (ROC AUC). If AUC = 0.5, the classification

is uninformative and the classifier cannot separate between the two classes. If

AUC > 0.5, multivariate patterns contain information to distinguish between

the two classes. If AUC < 0.5, the classifier is correctly predicting the opposite

class (Bradley, 1997).

Figure 5.8 showed the MVPA results and their temporal generalisation pattern

of movement directions during the first phase of the trial, when the data was

time locked to stimulus onset (panel A) or movement onset (i.e., Figure 5.1B).

Panels C and D in Figure 5.8 illustrated the classification performance trained

and tested on the same time point (i.e., the values along the diagonal of tem-

poral generalisation plots). The decoding of movement direction was above

chance level from 0.25 s after stimulus onset (Figure 5.8A) and 0.5 s before the

movement onset (Figures 5.8B). The multivariate patterns sensitive to move-

ment directions had a temporal generalization window of 0.125 s. Beyond this

point, the temporal generalization showed a reversed pattern with significant

performance below the 50% chance level, possibly due to the periodic nature

of circular movements in the current experiment.

During the second phase of the trial, classification of movement directions was

significantly above chance 0.5 s after the onset of the second phase (Figure

5.9A and 5.9C), with a temporal generalisation window of 0.125 s. The figure

5.9 shows the results of the classification between clockwise and anti-clockwise

movement during the change of the direction. Classifier was able to distinguish

the direction of the 0.5 s after the onset of the second phase of the trial with
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a generalisation of 0.125 s around the diagonal point (Figure 5.9A and 5.9C).

When the data was aligned to movement onset or change of movement direc-

tion, the classification performance was consistently above chance throughout

the second phase of the trial, with a similar temporal generalisation pattern

as in the first phase (Figure 5.9 B and 5.9D).

In the second analysis, I trained the classifier to distinguish between the easy

vs. difficult trials (i.e., trials with high coherence vs. low coherence in the

second phase). In trials with no change of motion direction, classification per-

formance was significantly above chance 0.35 s after the beginning of the sec-

ond phase (Figures 5.10A and 5.10C), and the temporal generalisation results

suggested that the information of motion coherence was maintained across a

broad time window. In trials with a change of motion direction, there was no

significant classification between motion coherence (Figures 5.10B).

Oscillatory power

The amplitude of Hilbert envelope of each frequency band (Alpha, Beta,

Gamma, Theta) was averaged for each condition and baseline corrected to

stimulus onset. The relative desynchronization in the Beta band were pre-

sented to illustrate the patterns associated with continuous movements (change

of direction: Figures 5.11, 5.12; no change of direction: Figures 5.15, 5.16).

The strength of the stimulus did not affect the Beta band frequency as well

(change of direction: Figures 5.13, 5.14; no change of direction: Figures 5.17,

5.18). There was also no significant difference in oscillatory power in other fre-

quency bands between the direction of the movement and high vs. low motion

coherence in the second phase.

5.4 Discussion

The experiment in this chapter was a repetition of Experiment 4 in Chapter 4

with concurrent MEG recording. The goal of the current study was to identify

MEG signatures sensitive to movement direction and motion coherence.
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Figure 5.11: Beta frequency band (14-30 Hz) Hilbert envelope of clockwise
vs anticlockwise movements in trials with change of direction in the second
phase. The results were shown separately for each frontal and central sensor
group. Solid lines denote the mean movement speed, and shaded areas denote
the standard error of the mean across participants. No significant clusters
between clockwise and anticlockwise conditions were observed at the cluster
level p < 0.05.
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Figure 5.12: Beta frequency band (14-30 Hz) Hilbert envelope of clockwise
vs anticlockwise movements in trials with change of direction in the second
phase. The results were shown separately for each parietal and occipital sensor
group. Solid lines denote the mean movement speed, and shaded areas denote
the standard error of the mean across participants. No significant clusters
between clockwise and anticlockwise conditions were observed at the cluster
level p < 0.05.
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Figure 5.13: Beta frequency band (14-30 Hz) Hilbert envelope of movements
in trials with change of direction in the second phase, separately for high or
low motion coherence. The results were shown separately for each frontal and
central sensor group. Solid lines denote the mean movement speed, and shaded
areas denote the standard error of the mean across participants. No significant
clusters between change and no change of direction conditions were observed
at the cluster level p < 0.05.
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Figure 5.14: Beta frequency band (14-30 Hz) Hilbert envelope of movements
in trials with change of direction in the second phase, separately for high or
low motion coherence. The results were shown separately for each parietal
and occipital sensor group. Solid lines denote the mean movement speed, and
shaded areas denote the standard error of the mean across participants. No
significant clusters between change and no change of direction conditions were
observed at the cluster level p < 0.05.
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Figure 5.15: Beta frequency band (14-30 Hz) Hilbert envelope of clockwise vs
anticlockwise movements in trials with no change of direction in the second
phase. The results were shown separately for each frontal and central sensor
group. Solid lines denote the mean movement speed, and shaded areas denote
the standard error of the mean across participants. No significant clusters
between clockwise and anticlockwise conditions were observed at the cluster
level p < 0.05.
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Figure 5.16: Beta frequency band (14-30 Hz) Hilbert envelope of clockwise vs
anticlockwise movements in trials with no change of direction in the second
phase. The results were shown separately for each parietal and occipital sensor
group. Solid lines denote the mean movement speed, and shaded areas denote
the standard error of the mean across participants. No significant clusters
between clockwise and anticlockwise conditions were observed at the cluster
level p < 0.05.
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Figure 5.17: Beta frequency band (14-30 Hz) Hilbert envelope of movements
in trials with no change of direction in the second phase, separately for high
or low motion coherence. The results were shown separately for each frontal
and central sensor group. Solid lines denote the mean movement speed, and
shaded areas denote the standard error of the mean across participants. No
significant clusters between change and no change of direction conditions were
observed at the cluster level p < 0.05.
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Figure 5.18: Beta frequency band (14-30 Hz) Hilbert envelope of movements
in trials with no change of direction in the second phase, separately for high
or low motion coherence. The results were shown separately for each parietal
and occipital sensor group. Solid lines denote the mean movement speed, and
shaded areas denote the standard error of the mean across participants. No
significant clusters between change and no change of direction conditions were
observed at the cluster level p < 0.05.
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5.4.1 Behavioural measures

All the participants who took part in experiment described in the current

chapter also took part in all the experiments described in the Chapter 4, thus

were familiar with the task and procedure.

As in Chapter 5, there was no effect of the experimental conditions on Engage

RT or accuracy in the first phase, indicating that the experimental procedure

did not introduce any biases in the initial engagement phase of the task.

In the second phase, the experimental manipulation of the stimulus quality

(lowering the coherence of RDM stimulus) resulted in increased Change RT

and decreased accuracy (Figures 5.1B, 5.2B). However, unlike Experiment 4 in

Chapter 4, Change RT and accuracy in the second phase did not vary across

runs. Furthermore, when comparing the action engagement (first phase of the

trial) and action adjustment (second phase of the trial), there was no conclusive

evidence that those two decisions were different in terms of the latency (Engage

RT vs. Change RT) when there was no change in motion coherence.

The time courses of movement speed showed that participants further im-

proved their continuous responses to RDM stimulus. Experiment 4 in Chapter

4 showed that motion coherence in the second phase affected the angular speed

of the circular joystick movement. This effect was not present in the current

experiment (Figures 5.4 and 5.5). Moreover, the difference between the de-

celeration and acceleration, before and after the change of the direction, was

reduced in the current experiment.

We replicated most of the behavioural results in the MEG experiment, indi-

cating the robustness of the paradigm. The small difference in performance

between experiments might be due to the change of experimental settings

(MEG chamber instead of behavioural lab) and the visual presentation with a

lower contrast in MEG sessions (projector instead of the CRT monitor)
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5.4.2 MEG signatures

This chapter considered three types of MEG measures: ERFs, oscillatory

power in separate sensor groups, and whole-brain multivariate patterns. There

was no significant difference between movement directions or between high vs

low motion coherence in ERFs or oscillatory power changes. The beta-band

power has been related with various stages of movements (Meirovitch et al.,

2015; Erbil and Ungan, 2007; Gallivan et al., 2011). Indeed, across all sensor

groups (frontal, central, occipital and parietal), the beta-band power decreased

throughout the duration of the movement (Figures 5.11, 5.12, 5.15 and 5.16).

The stable pattern of beta desynchronisation was observed irrespective of the

presence of direction change during the second phase of the trial (Meirovitch

et al., 2015; Erbil and Ungan, 2007; Gallivan et al., 2011).

Patterns of movement directions

Previous research on arm kinematics showed that pattern classifications of

complex limb movements were possible (e.g. Waldert et al., 2008; Lv et al.,

2010; Georgopoulos et al., 2005; Pistohl et al., 2008; Hajipour Sardouie and

Shamsollahi, 2012; Sugata et al., 2012; Antelis et al., 2013; Langheim et al.,

2006). The current chapter extended these results. MVPA results on clockwise

vs. anti-clockwise movements showed that the direction of circular movement

can be decoded from MEG activity throughout the trial (Figures 5.8 and 5.9).

For the first phase of the trial, the temporal generalisation plots (Figure 5.8A)

implied an oscillating/reactivated nature of multivariate patterns of directional

information (King and Dehaene, 2014, see also Figure 2.8). The alternating

pattern of circular movements when performing clockwise or anti-clockwise

movement may correspond to the observed limb kinematics, because the push

and pull movement engages the flexor and extensor muscles inversely. The

circular movements can elicit an alternating pattern of contracting and relaxing

arm’s muscle groups that led to the observed pattern of classifier performance

(Oliver et al., 2011; Waldert et al., 2008; Ofner et al., 2017; Fuchs et al., 2000).

The theoretical account of the observed temporal generalisation pattern can

be a reflection of periodic muscle dynamics (Ofner et al., 2017) was further
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supported by the MVPA result in the second phase (Figure 5.9). When the

MEG data was time-locked to the onset of the second phase, we observed

only a narrow window of the temporal generalisation (Figure 5.9A) and low

classification performance (Figure 5.9C). When the MEG data was time-locked

to the onset of Change RT, the pattern of the temporal generalisation similar

to that in the first phase, suggesting the importance of the movement features

alignment (Leuthold et al., 2004).

It is worth noting that significant classification of movement direction appeared

as early as 0.25 s after stimulus onset (Figure 5.8A) and 0.5 s prior to movement

onset (Figure 5.8B). This is consistent with the motor preparatory activity

reported in the literature (Thura and Cisek, 2014; Haegens et al., 2011; Masaki

et al., 2004) as an indicator of the subsequent choice response (Donner et al.,

2009). That is, the multivariate patterns carry information of unimanual and

complex movements prior to the initiation of the movement.

Patterns of motion coherence

Because the binary classification between high vs low coherence trials was per-

formed irrespective of the direction of the movement, each class contained bal-

anced trials of the clockwise and the anti-clockwise movement. Therefore, the

significant pattern information between motion coherence (Figure 5.10) cannot

be readily attributed to the difference of movement direction, but reflected a

continuous sensitivity towards sensory inputs independent of continuous move-

ments.

When participants maintained the same movement direction throughout the

trial, the SVM classifier was able to distinguish the high from low coherence

trials in the second phase (Figure 5.10A and 5.10C). The cluster of significant

classification started around 0.5 s from the onset of the second phase, compa-

rable to the mean Change RT (Figure 5.1B), and its temporal generalization

results implied a sustained categorisation between high vs low representations.

Interestingly, the same binary classification was not significant in trials with

a change of movement direction (Figure 5.10B). According to the affordance

competition hypothesis (Cisek and Kalaska, 2010; Wolpert and Landy, 2012,
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see also Figure 2.4), the decision is essentially an action selection process. In

this context, the null MVPA result form the trials with a change of movement

direction suggested the quality of sensory inputs did not elicit a stable repre-

sentation after participants’ altered their movement direction, as the sensory

information was no longer needed to guide further actions (Cisek and Kalaska,

2010).

5.4.3 Conclusion

This chapter set to examine the electrophysiological signatures of continuous

responses to perceptual decisions in a MEG experiment, using an experimen-

tal paradigm validated in Chapter 4. The temporal pattern of SVM classifi-

cations showed that the MEG representation of circular movements was not

abstract and generalisable in time, but possibly linked to the kinematics of

arm movements. The phase of the circular movement was an important fea-

ture of the signal. During the second phase of the trial, aligning the signal

to the movement milestone (Change RT) improved classification performance

and temporal generalisation patterns. Moreover, the choice direction of the

complex continuous movement can be distinguished up to 0.5 s prior to move-

ment onset. This result linked continuous responses with the previous research

on the encoding of action plans of discrete responses (e.g. Thura and Cisek,

2014; Haegens et al., 2011; Masaki et al., 2004; Donner et al., 2009).

Overall, these results supported the use of the continuous movements in per-

ceptual decisions. The responses elicited distinct multivariate MEG patterns

that were sensitive to movement characteristics as well as sensory information.

In Chapter 6, I capitalised these features to investigate whether continuous

movements, when chosen voluntarily, could establish casual expectations of

sensory information.
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Chapter 6

Continuous action-perception

congruency

6.1 Introduction

Chapters 4 and 5 examined how participants performed continuous actions in

response to the visual stimulus, and how ongoing actions may affect concur-

rent perceptual decisions. The previous chapter also observed the temporal

MEG patterns that distinguish the direction of continuous movements. In this

chapter I built on these results and investigated whether continuous voluntary

actions can shape the MEG responses to subsequent visual perception.

6.1.1 Background

Voluntary action and the predictive coding framework

The embodied cognition account outlined in Chapter 2, highlighted the need

to consider actions in the context of their interactions with the environment.

The voluntary actions, rather than passive sensations, are needed by an in-

telligent agent to interact with the environment (Clark, 1999, 2013; Shepard,

1984). Here, a voluntary action as opposed to an involuntary act such as a

knee-jerk reaction, can be defined as intentional behaviour driven by internal
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factors (O’Regan and Noë, 2001). The internal factors that guide voluntary

actions may include bias, preferences, expected reward, amongst many others

(Passingham et al., 2010; Haggard, 2008; Schüür and Haggard, 2011).

The temporal proximity and contingency between an action and its predictive

outcome impacts on the subjective acknowledgement of volitional control (e.g.,

pulling a trigger leads to firing a gun) (Beck et al., 2017). The extent of how

voluntary the action is, facilitates the binding between the action and its con-

sequences (Haggard et al., 2002; Moore et al., 2009). The impairments in the

perception of action-outcome causality have been associated with psychiatric

symptoms in e.g., schizophrenia (Fletcher and Frith, 2009; den Ouden et al.,

2012). On the other hand, the prior expectation of an imminent outcome can

in turn bias a voluntary behaviour. For example, in a RDM-based perceptual

decision task (Summerfield and de Lange, 2014), the behavioural performance

was improved by introducing informative cues about the future stimuli.

Therefore, the brain can generate predictions that both influence and are in-

fluenced by the voluntary behaviour (Kok et al., 2012, 2019, 2017; Rees and

Frith, 1998). In the predictive coding framework (Friston, 2005), the brain

constantly generates active inferences (i.e., predictions) based on prior knowl-

edge and compare them with incoming information. The interplay between

voluntary actions and active inferences (Friston, 2005) minimises the predic-

tion error, the mismatch between the expectation and the experienced outcome

(Bubic et al., 2010; Friston, 2010, 2009).

The oddball paradigm and mismatch negativity

The oddball paradigm is a common experimental design to evaluate the influ-

ence of prior expectations during attentional or basic sensory processes. The

paradigm involves an manipulation of the relative occurrence probabilities of

regular and odd/deviant events (stimuli). The regular stimuli were identical

or similar to each other with a higher occurrence probability, which are used

to establish the expectations. The odd stimuli are physically distinct from the

regular ones and with a lower occurrence probability. The occurrence of an

odd stimulus would therefore be perceived as an unexpected event.
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In active oddball experiments, participants’ attention was directed towards the

odd and regular events, for example, when instructed to count the occurrence

of odd stimuli. The ERP component P300 (also the N2b) differs between the

odd and regular stimuli in active oddball experiments (Polich, 2007; Näätänen

et al., 2007). The P300 amplitude is negatively related to the occurrence

probability of odd stimuli, and its variability is associated with the subjective

evaluation of the frequency of odd stimuli (Sutton et al., 1965; Mars et al.,

2008). These results suggested that the P300 component is sensitive to events

that violate expectations (Sutton et al., 1965).

In passive oddball experiments, participants’ attention was directed away from

the stimulus under investigation, for example, when instructed to watch movies

during auditory regular and odd stimulus presentation. Contrasting between

odd and regular events in passive oddball experiments resulted a fronto-central

negative potential at 150–250 ms, namely the mismatch negativity (MMN).

The MMN is thought to reflect expectation violation during early sensory pro-

cessing of physical characteristics (Sams et al., 1983; Näätänen and Gaillard,

1983). The source of MMN can be specific to the sensory modality of the stim-

ulus. For auditory MMN, the main source of MMN is in the primary auditory

cortex (Sams et al., 1983; Näätänen and Gaillard, 1983; Näätänen et al., 2007).

Visual MMN has its neural source in the V1, and the MMN evoked by tactile

stimuli is localised in the somatosensory cortex (Huang et al., 2005; Stefanics

et al., 2019, 2014).

In addition to the modality-specific sources, contrasting between odd and reg-

ular stimulus also showed a across-modality, wide involvement of the fronto-

parietal network, including DLPFC, anterior cingulate cortex and the supra-

marginal gyrus (Huang et al., 2005). Furthermore, along with changes in the

time-domain (Sams et al., 1983; Näätänen and Gaillard, 1983), the oscillatory

markers of the odd vs. regular stimulus were found in alpha, delta and theta

bands (Ishii et al., 2009).

The predictive coding framework has been used to explain the computational

mechanism underlying the results from oddball experiments (Stefanics et al.,

2014). Based on the short-term memory trace, frequent presentations of reg-

ular stimuli establish an expectation or prediction. The presentation of an
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odd event would violate this expectation, which give rise to a prediction error

during early sensory processing, leading to the observed difference in MEG or

EEG signals.

Action-perception congruency

The affordance competition hypothesis (Chapter 2, Cisek and Kalaska (2010))

suggested that action and perception processing can co-exist in parallel (Clark,

1999; Shepard, 1984). A similar proposition came from the common coding

theory, suggesting that shared spatial or temporal features between action

and perception facilitate information processing. (Prinz, 1997; Hommel et al.,

2001).

The influence of actions upon perception has been reported elsewhere. In a

binocular rivalry paradigm, when the motion of one rival stimulus was con-

sistent with participants’ voluntary hand movements, stable percept of that

stimulus were extended (Maruya et al., 2007). More evidence of the impact of

action on perception is provided by comparing between discrete and continu-

ous responses (Beets et al., 2010). In a motion discrimination task (clockwise

vs. anticlockwise), participants responded with key presses or through con-

tinuous rotations of a manipulandum. The percept stabilised only when the

action was congruent with the stimulus (i.e., participants were rotating the

manipulandum in the same direction as the stimulus), but not when using

key presses. Furthermore, when action and perception share the same goal

(i.e., direction), action preparation, instead of action itself, is sufficient to bias

subsequent perceptual decisions (Wohlschläger, 2000).

6.1.2 The current experiment

This chapter proposed a new action-perception congruency (APC) task (Fig-

ure 6.1). It was designed to test a main research question: can voluntarily-

initiated, continuous action establish causal expectations of subsequent per-

ception?

The task design has three main ingredients. First, participants were instructed
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Figure 6.1: The diagram of the action-perception congruency task.

to make a clockwise or anti-clockwise joystick rotation in the first half of a

trial, similar to the continuous actions in Chapters 4 and 5. Crucially, The

participants can choose the movement direction voluntarily at the beginning

of each trial.

Second, the task aimed to establish a causal link between continuous actions

and subsequent visual stimulus, with the latter presented in the second half

of a trial. During rotation actions, the participants had a full control on the

direction and the speed of motion: the circular joystick movement is translated

directly to the angular displacement of a wedge shape. After the action and

a short delay (100 ms), the participants passively observed the same wedge

shape to rotate continually on the screen, and the wedge shape filled with

a 8 Hz flickering checkerboard pattern to elicit strong visual evoke responses

(Muthukumaraswamy and Singh, 2008). The rotation of the checkerboard pat-

tern started from the same position as the endpoint of participants’ voluntary

movement, which further facilitates the causal link between the movement and

the visual stimulus.

Third, to establish a statistical expectation, in majority of the trials the di-

rection (i.e., clockwise or anti-clockwise) of the checkerboard pattern was con-

gruent with the participants’ voluntary movement (regular trials). In a small

subset (20%) of pseudo-randomly placed trials, the checkerboard pattern had

the opposite (incongruent) rotation direction to the participants’ actions (odd

trials). As in other oddball experiments, the participants were instructed to
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count the occurrences of the incongruent perceptual experience.

I set out to test two main lines of hypotheses. First, if participants established

an expectation of subsequent visual information on the basis of their voluntary

movement direction, I hypothesised a change in MEG univariate activities or

multivariate patterns when the expectation was violated in incongruent tri-

als. Both deviance detection (Stefanics et al., 2014; Näätänen et al., 2007;

Polich, 2007; Kimura et al., 2009) and sensory templates (Kok et al., 2017)

have been found in early sensory cortices. This evidence suggested that the

response to the oddball visual stimulus in the APC task could originate from

the visual cortex. The common-coding theory (Hommel et al., 2001; Prinz,

1997) suggested that a stimulus causally associated with an action and shar-

ing its spatio-temporal profile may lead to re-activation in the sensorimotor

cortices (Hughes and Waszak, 2011). Therefore, in this chapter, the univariate

analysis on the congruency effect was focused on two MEG sensor groups: the

occipital sensors over the visual cortex and the central sensors over the senso-

rimotor cortices. For multivariate analyses, all MEG sensors were included in

the training and testing procedures, because less relevant data features (i.e.,

sensors) will be down weighted after the training stage.

In conventional EEG/MEG oddball paradigms (Näätänen et al., 2007; Mars

et al., 2008), the congruency effect (i.e., oddball vs. standard stimuli) is com-

monly characterised by the MMN (e.g. Näätänen et al., 2007) and P300 (e.g,

Sutton et al., 1965; Mars et al., 2008) components. The current experiment

included a complex chain of events to elicit the congruency effect within a

single trial, from a voluntary decision to continuous action, and then to con-

gruent/incongruent continuous visual stimulus. Here, the perceptual congru-

ency originated from continuous actions, a process likely involving multiple

cortical networks (Gentili et al., 2011; Gupta and Chen, 2016). As a result, I

performed time-resolved univariate and multivariate analyses throughout the

time course of a trial, without making an a priori assumption of the time

window of interest.

Second, I was expecting to replicate the MVPA results in Chapter 5, on the

significant classification and temporal generalisation pattern of clockwise vs.

anti-clockwise stable movement. However, voluntary and externally triggered
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actions are associated with distinct brain networks. Voluntary or endogenous

actions are associated with networks consisting of the medial prefrontal cortex,

preSMA and SMA. It is thought that this medial-frontal network supports self-

generated actions and deliberation. In contract, externally cued actions are

associated with a lateral network, including the parietal cortex, the motor

and premotor cortices (Passingham et al., 2010; Schüür and Haggard, 2011;

Haggard, 2008). Therefore, multivariate MEG patterns of continuous action

direction in the APC task may be different from those observed in Chapter

5. In addition, I would expect an increase in the gamma-band oscillatory

power during the movement period, which has been associated with self-paced

movements in previous studies (e.g. Cheyne et al., 2008).

6.2 Methods

6.2.1 Participants

Twenty-four participants (17 females, seven males, age range 18-28, M = 21.25

years, SD = 2.67 years) took part in the study following a briefing and written

informed consent. All the participants were right handed. All the participants

had normal or corrected-to-normal vision. None of the participants reported

a history of motor impairments or neurological disorders. The study was ap-

proved by the Cardiff University School of Psychology Ethics Committee.

6.2.2 Apparatus

The joystick data was acquired in the same way as in the Chapter 5.

6.2.3 Experimental Design

Each participant completed the action-perception congruency (APC) task dur-

ing two sessions of MEG recording on different days. Each session contained

150 trials and each trial consisted of two stages, an action stage and a subse-
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Figure 6.2: Action-Perception Congruency. Move-
ment Phase The video of the movement phase. Link:
https://www.youtube.com/watch?v=jEdheAvNTOk

quent observation stage.

In the action stage, participants rotated a joystick to control the direction of of

a low contrast wedge shape (circle with 90◦ sector removed) (Figure 6.1). After

a 500 ms fixation period, the participants initiated circular joystick movements

in either clockwise or anti-clockwise direction. The action stage lasted 1000

ms, sufficient for 2 to 4 circles of rotations. The remaining time of the action

stage was indicated by a red time bar presented in the middle of the screen.

Time bar was shrinking in size proportionally to the elapsed time (i.e., 0 ms

- 100%, 1500 ms - 0%). As in Chapters 4-5, to ensure a common starting

point of the rotation movement, a trial could proceed only if the joystick was

at its neutral position. The participants was instructed to stop continuous

movements by the end of the action stage (i.e., before the time bar runs out).

To avoid the contamination of the subsequent observation stage, there was

a 100 ms gap after action termination or the end of action stage, whichever

occurred latter. Moreover, the observation stage of a trial would start only if

the joystick was returned to its neutral position.

In the observation stage, participants were presented with a rotating flickering
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Figure 6.3: Action-Perception Congruency. Observa-
tion Phase The video of the observation phase. Link:
https://www.youtube.com/watch?v=kL3FXCOjSEs

Figure 6.4: Action-Perception Congruency. Catch Trial The video of
the catch trial. Link: https://www.youtube.com/watch?v=I7Iz48jV24o
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checkerboard of the same shape as the low contrast wedge shape in the action

stage (for detailed presentation of the stimulus see: Figure 6.2). The visual

stimulus lasted for 1500 ms. In a regular trial, the checkerboard shape rotated

in the same direction as the voluntary movement (for detailed presentation of

the stimulus see: Figure 6.3). In an odd trial, the checkerboard shape rotated

in the direction opposite to the movement. Participants were instructed to

count the number of trials in which the checkerboard shape moved to the op-

posite direction of their voluntary movements. The direction of the movement

during the action stage was established based on the M score derived from

frame-by-frame recording of the circular movement during the action phase of

the trial. M denotes the averaged frame-by-frame angular displacement mul-

tiplied by the radius (See: Equation 6.1). M > 0 indicates a predominantly

anti-clockwise movement, and M < 0 indicates an anti-clockwise movement.

M =
�f
n=0(

ΔΘ
Δt r)

n

Equation 6.1: M - movement direction metric, f − 1 - number of frames, ΔΘ
- angle change between two subsequent frames, Δt - time between two frames
( 1
120

s), r - radius

The two MEG sessions comprised a total of 20 blocks with 15 trials each,

including 73.33% (220/300) regular trials and 20% (60/300) odd trials. The

rest 6.67% (20/300) trials were catch trials. In a catch trial, participants were

cued by an arrow in the centre of the screen, which specify the direction to

rotate the joystick (i.e., they no longer need to make a voluntary choice) and

there was no observation stage at the end of the movement (Figure 6.1). Catch

trials were used to promote participants to make a fresh voluntary choice at

the beginning of each regular or odd trial (Oppenheimer et al., 2009; Nachev

et al., 2005) (for detailed presentation of the stimulus see: Figure 6.4). The

order of the trials within each block was pseudo-randomly generated, ensuring

the odd trial did not occur at the first or the last in a block, and there were

no two consecutive odd trials.
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6.2.4 Stimuli

In the action stage, the wedge shape had a diameter of 20◦ visual angle with

a 270◦ arc. The wedge shape was in light gray (29.18% luminance) with a

dark gray background (23.07% luminance), resulted in a 1.22 contrast ratio.

The average speed of rotation was controlled by the participants (mean = 7.30

rad/s, std = 2.59 rad/s across participants).

In the observation stage, the stimulus was in the same shape as in the ac-

tion part. The initial position of the shape matched the last position of the

shape in the action stage. The speed of rotation of the shape was constant

(average speed, 6.28 rad/s) during the 1000 ms of display. The shape was

filled with a circular flickering chequerboard pattern. The pattern consisted

of XX concentric cycles and XX angular cycles of black and white patches

(21 contrast ratio). The chequerboard patterns were alternating the contrast-

ing blocks with 8 Hz frequency to optimise the visual cortex response (e.g.

Muthukumaraswamy and Singh, 2008).

6.2.5 MEG data acquisition and pre-processing

Data acquisition

The MEG data was acquired in the same way as in the Chapter 5.

Data pre-processing

The MEG data was pre-processed in the same way as in the Chapter 5. For

the time-domain analysis the data were further low-pass filtered at 30 Hz.

Subsequently, the continuous data were divided into epochs of -0.7-1.5 s around

the onset of the trial and -0.1-1.0 s around the onset of the observation phase.

The epoch was initially baselined using the -0.7 - -0.5 s period before the onset

of the trial to accommodate for the longer preparatory activity of the voluntary

movement. Second baseline was applied separately to the observation phase to

avoid differences in the amplitude caused by the post-movement activity from

the previous part of the trail. The period between -0.1-0.0 s before the onset of
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the observation phase was used In a separate analysis, the data were divided

into epochs of -1.0-1.0 s around the onset of the movement during the action

stage the trial (see Figure 6.1). For the frequency domain analysis, raw data

were further band-passed to extract the functionally relevant frequency bands:

alpha band (9-14 Hz), beta band (14-30 Hz), theta band (4-7 Hz), low gamma

band (30-80 Hz), and a narrow band of frequencies (7-9 Hz) which correspond

to the flickering frequency of the stimuli in the observation phase. From each

band-passed data the envelope of the Hilbert transformed signal was obtained.

The data for each frequency band were divided in the same manner as for the

time-domain analysis. From the envelope of the transformed signal, the evoked

response has been subtracted.

6.3 Results

6.3.1 Behavioural results

During the action stage of the APC task, participants performed circular move-

ments with a joystick. Four behavioural measures were compared between odd

and regular conditions. First, as in previous chapters, the position of the joy-

stick in Cartesian coordinates was transformed into polar coordinates. The

movement onset time was calculated as the time when the joystick left the

20% of its maximum movement radius after fixation offset (Szul et al., 2019).

Second, the average speed of movements was calculated as the ratio of the total

angular displacement and the duration of the action stage (1.5 s). Third, the

movement direction in each trial was quantified by the M score (6.1). The ab-

solute value of theM score depended on the relative difference of the movement

duration towards the two directions, and the sign of the M score depended on

the predominant movement direction during the action stage. M > 0 denoted

a predominant anti-clockwise movement, and M < 0 denoted a predominant

clockwise movement. Forth, although the participants were instructed to stop

the rotation movement at the end of the 1500 ms action stage, the nature of

a continuous action often led to overshoot after the 1500 ms deadline. The

duration between the end of the designated action stage (i.e., 1500 ms after

fixation offset) and the end of participants’ actual movement was measured as
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the overshoot delay (including a fixed 100 ms delay).

The movement heat map (Figure 6.5) indicated the participants performed

most of the circular movements between 40 and 100 % of the joystick’s max-

imum movement range. Since the participants were not aware of the condi-

tion prior to the observation stage, one would not expect difference in be-

havioural measures between regular and odd trials. To validate this pre-

diction, I used a Bayesian and frequentist t-tests (see the Analysis Section

in the Chapter 4 for technical details of the analysis). The movement on-

set time did not differ between the odd and regular conditions (Figure 6.6A;

BF10 = 0.694, anecdotal evidence; t(23) = −1.645, p = 0.114). Similarly,

the average movement speed (Figure 6.6B; BF10 = 0.489, anecdotal evidence;

t(23) = 1.366, p = 0.185) and the overshoot delay (Figure 6.6D; BF10 =

0.290, anecdotal evidence; t(23) = −0.817, p = 0.422) did not differ be-

tween the odd and regular trials. Finally, To compare the distributions of

the M score pooled across all participants (a trial-by-trial movement direction

summary, Figure 6.6C), we used a non-parametric two sample Kolmogorov-

Smirnov (KS) test (Pratt and Gibbons, 1981), as the direction distributions

were bi-modal. The distribution of the M score did not differ between condi-

tions (KSstatistic = 0.035, p = 0.117).

6.3.2 MEG results

Evoked response fields

The pre-processed MEG data was further band-pass filtered between 0.1 and

30 Hz and epoched from -0.6 s (before the fixation onset) to the end of the

observation stage. Every epoch contained 0.1 s of baseline period, 0.5 s of

fixation duration, 1.5 s of the action stage phase, 0.1 s gap and 1 s of the

observation stage (Figure 6.1). The overshoot delay between the end of the

action stage and 0.1 s prior to the onset of the action stage was removed

(Figure 6.6D). A linear detrending was applied to every epoch with a baseline

correction from -0.6 s to -0.5 s. Due to the overly long duration of epochs, a

second baseline correction was applied to the data segments of the observation

stage, using the averaged activity from the 0.1 s gap prior to the onset of the
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Figure 6.5: JOYSTICK MOVEMENT HEAT MAP. The heat map represents
the joystick positions pooled across all the participants from all the trials. The
joystick position was initially recorded in Cartesian coordinates and trans-
formed into polar coordinates, which represent circular motion as an angular
displacement a distance from the centre of the joystick. The area within 20%
of the joystick range was left blank as movements in this area could be due to
the lack of resisting force of the joystick.
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Figure 6.6: SUMMARY OF THE BEHAVIOURAL MEASURES: A) Mean
movement onset. B) The average angular displacement during the action
stage. C) Distribution of the M scores (Equation 6.1) pooled across all par-
ticipants, illustrating the predominant direction of rotation movements. D)
Delay between the end of the action stage and the onset of the observation
stage, including a minimum fixed delay of 100 ms. Box and whiskers plots (A,
B, D), are based on the interquartile range.
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action stage. The sensor groupings were based on CTF sensor labels, including

right and left occipital sensors (19 each; Figure 6.7) as well as right and left

central sensors (30 each; Figure 6.8) close to the sensory-motor cortex.

For each participant, the ERFs from regular and odd trials were averaged sep-

arately using a robust average procedure (Wilcox and Rousselet, 2018) (5%

of the extreme ends of the distribution were discarded). Trimmed mean pro-

vides a reliable estimation of the central tendency for mixed distributions,

thus deemed an appropriate way to deal with averaging from uneven amount

of samples between odd and regular trials (Leonowicz et al., 2005). Further,

the ERFs were averaged across the channels in each sensor grouping. Paired

t-test with cluster permutation correction (Maris and Oostenveld, 2007) was

used to compare the ERFs between odd and regular conditions (see: Section

5.3 for more detailed description of analysis and reporting of the results). After

correction of multiple comparison, both action (Figures 6.7) and observation

(Figure 6.8) stages showed no ERF difference in any sensor groupings between

the odd and regular conditions.

Oscillatory power during action and observation stages

To calculate the oscillatory power in different frequency bands, the pre-processed

MEG data was band-pass filtered into the alpha band (9-14 Hz), beta band

(14-30 Hz), theta band (4-7 Hz), low gamma band (30-80 Hz) and a stimulus

specific band (7-9 Hz, containing the frequency of flicking checkerboard). The

filtered MEG dta was then epoched as in the ERF analysis. In an additional

analysis, a new set of 2-second epochs were extracted, which were centred on

the onset of the movement in each trial.

For each frequency band, the Hilbert envelop was calculated from each trial,

and the envelops were averaged separately for odd and regular conditions Simi-

lar to the ERF analysis, paired-test with cluster permutation correction showed

no significant difference in oscillatory powers of any sensor groupings between

odd and regular trials (Figures 6.9, 6.10 and 6.11).
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Figure 6.7: The time course of the ERF activity averaged over the set of oc-
cipitally located MEG sensors (indicated with red markers on the topography
map). The solid line denotes the mean ERF activity, the shaded area denotes
a standard error of the mean. We observed no differences in the ERF time
course between the incongruent and regular trials in the movement phase as
well as in the observation phase.
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Figure 6.8: The time course of the ERF activity averaged over the set of
centrally located MEG sensors (indicated with red markers on the topography
map). The solid line denotes the mean ERF activity, the shaded area denotes
a standard error of the mean. We observed no differences in the ERF time
course between the incongruent and regular trials in the movement phase as
well as in the observation phase.
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Figure 6.9: The Oscillatory power in the action stage. Figure shows the Hilbert
envelope of each frequency band for different sensor groupings. The epochs
were aligned to the onset of fixation (Figure 6.1). Solid line denote the mean
oscillatory power of odd (orange) and regular (blue) conditions. Shaded areas
denote the standard error of the mean across participants.
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Figure 6.10: The Oscillatory power in the observation stage. Figure shows the
Hilbert envelope of each frequency band for different sensor groupings. The
epochs were aligned to the onset of the observation stage (Figure 6.1). Solid
line denote the mean oscillatory power of odd (orange) and regular (blue)
conditions. Shaded areas denote the standard error of the mean across partic-
ipants.
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Figure 6.11: The Hilbert envelope of each frequency band for different sensor
groupings. The epochs were aligned to the onset of movement (when the
joystick left its 20% maximum radius) (Figure 6.1). The colour scheme is the
same as in Figure 6.10.
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Multivariate pattern analysis (MVPA)

Pre-processed MEG data was band-pass filtered between 0.1 and 30 Hz and

epoched as in the ERF analysis. For each participant and each time point of

epochs, three analyses were conducted. First, a binary classification between

clockwise and anti-clockwise movements, with labels of trials determined by the

M score. Second, a binary classification between odd and regular conditions.

Third, the MEG data in the action stage was realigned to the movement onset,

and the binary classification between clockwise and anti-clockwise movements

were conducted.

I applied the analysis pipeline outlined in Section 2.3.4. Each analysis included

all the MEG sensors. For each classification problem, a 10-fold cross-validation

procedure was conducted. In each cross-validation, the data was standardised

using a robust scaling method. A PCA was conducted on the training set

to identify principle components that explained ¿99% of data variance. Both

training and test sets were then projected to the reduced space defined by

the chosen principle components. A linear support vector machine (SVM)

classifier with LASSO regularisation was used to train and test the multivariate

patterns. Furthermore, the temporal generalisation procedure was applied to

determine the temporal patterns of the information representations. That is,

the SVM classifier was trained on one time point and tested in the data at all

time points (King and Dehaene, 2014).

Classification performance was evaluated using the area under the receiver

operating characteristic curve (ROC AUC). If AUC = 0.5, the classification

is uninformative and the classifier cannot separate between the two classes. If

AUC > 0.5, multivariate patterns contain information to distinguish between

the two classes. If AUC < 0.5, the classifier is correctly predicting the opposite

class (Bradley, 1997).

The classification of regular vs odd conditions posed a problem of unequal

numbers of trials between the two conditions (73.33% regular vs 20% odd). I

used under-sampling to randomly select a subset of regular trials to match to

the amount of odd trials. This under-sampling was repeated 20 iterations. For

each of the 20 iterations,, the same MVPA pipeline was applied to the odd

174



trials and sampled regular trials.

The MVPA analysis resulted in temporal generalisation maps for movement

classification (Figure 6.12), congruency classification (Figure 6.13) and move-

ment classification with data aligned to movement onset (Figure 6.14). Clas-

sification performance was evaluated with a one-sample t-test against a 50%

chance level and spatial clustering permutations to correct for multiple com-

parisons (Maris and Oostenveld, 2007) which returned. The diagonal values of

temporal generalisation maps (Figure 6.15) indicated the classification perfor-

mance for the classifier trained and tested on data from the same time point.

We observed a significant, above the chance level classification performance for

the direction of the movement. Model also managed to appropriately classify

the movement coherent with the prior action (Figure 6.12). The ramping

up temporal generalisation during the movement phase was observed for the

signal aligned to the trial onset. The same signal, temporally aligned to the

response onset, yielded a reactivated or oscillatory pattern of generalisation

(Figure 6.14). The classification of congruent versus incongruent trials yielded

a pattern of significant classification performance during the observation phase

(Figure 6.13).

175



Figure 6.12: Temporal generalisation map of the clockwise vs anticlockwise
movement classification. The map includes the action stage aligned to the
onset of the trial (0 - 1.5 s) and the observation state (1.6 - 2.6 s). The
baselines of the signal were at the beginning of the epoch (-0.6 - -0.5 s) and
before the onset of the observation stage (1.5 - 1.6 s). The classification was
based on the sign of the M score (see: Equation 6.1). The colourmap indicates
the classification performance (ROC AUC). Black outlines denote the clusters
of the time that differ (p < 0.05) from the chance level (50%).
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Figure 6.13: Temporal generalisation map of the odd vs regular trials. The
classification was based whether the checkerboard motion in the observation
stage was incongruent (odd) or congruent (regular) with the movement. The
analysis included the full duration of the trial, including a 0.5 s window before
the onset of the self-generated movement (t = 0s) The colour scheme and
epoch timing is the same as in Figure 6.12. The colourmap indicates the
classification performance (ROC AUC). Black outlines denote the clusters of
the time that differ (p < 0.05) from the chance level (50%).
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Figure 6.14: Temporal generalisation map of the clockwise vs anticlockwise
movement classification. The map includes the action stage aligned to the
onset of the movement (-1 - 1 s) and the observation phase (here displayed
between 1 and 1.1 s). The baselines of the signal were at the beginning of
the epoch (-1 - -0.5 s) and during the blink period before the onset of the
observation phase (1.0 - 1.1 s). The classification was based on the sign of the M
score (see: Equation 6.1). The colour scheme and epoch timing is the same as
in Figure 6.12. The colourmap indicates the classification performance (ROC
AUC). Black outlines denote the clusters of the time that differ (p < 0.05)
from the chance level (50%).
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Figure 6.15: Classification performance for the classifier trained on and ap-
plied to the data from the same time point. A) diagonal of the temporal
generalisation map of the clockwise vs anticlockwise movement classification
(see: Figure 6.12). B) diagonal of the temporal generalisation map of the
odd vs regular visual motion classification (see: Figure 6.13). C) diagonal of
the temporal generalisation map of the clockwise vs anticlockwise movement
classification, with movement phase aligned to the movement onset (see: Fig-
ure 6.14). Solid lines denote mean performance.Shaded areas denote standard
errors of the mean.
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6.4 Discussion

In this chapter, I developed the Action-Perception Congruency (APC) task,

aiming to establish a causal expectation between voluntary movements in the

action stage and subsequent visual stimulus in the observation stage. In regular

trials, the motion direction of the visual stimulus was congruent to voluntary

movements. In odd trials (20%), the direction of the visual stimulus was

opposite to that of voluntary movements. The rare occurrence was designed

to violate the expectation of the action-perception causality.

I found no difference in univariate ERF and oscillatory power between odd

and regular conditions. MVPA showed that multivariate patterns of MEG

activity can be distinguished between odd and regular conditions during the

observation stage. These results suggested that continuous movements from

voluntary choices elicited representations of action-perception expectations,

which can be violated experimentally in the oddball paradigm as in the APC

task.

6.4.1 Behavioural measures

The behavioural measures were gathered only during the action stage, which

appeared to be the same between congruency conditions from participant’s

perspective. As expected, there was no conclusive evidence that the congru-

ency conditions affected the onset of the movement (Figure 6.6A), the average

movement speed (Figure 6.6B), movement directions (Figure 6.6C), or the

delay between action and observation stages (Figure 6.6D).

Moreover, the voluntary movement onset time in the APC task was around

0.3 s, much faster than the onset time in response to the RDM in previous

chapters (around 0.6 s, Figure 4.3). This result is in accordance with the

evidence from comparison between voluntary and sensory-driven responses:

the voluntary movement is faster due to lesser constraints on the preparatory

activity (Hughes et al., 2011).

The delay duration between the action and observation stages (Figure 6.6D)

was longer than the minimum 0.1 s prescribed in the experimental design
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(Figure 6.1). It was caused by the participants failing to stop movements or

leaning on the joystick at the end of the action stage. This measure was used

to remove the excessive delay in MEG analysis to avoid the contamination of

the observation stage by ongoing movements.

6.4.2 ERF and oscillatory power

The P300 component and MMN were associated with deviance detection in

oddball tasks (Polich, 2007; Näätänen et al., 2007). In contrast to previous

studies (Stefanics et al., 2014; Huang et al., 2005; Knight, 1997; Kimura et al.,

2009), the current experiment did not observe any difference between odd and

regular conditions in ERFs (Figures 6.7 and 6.8), although there were strong

evoked responses in both occipital and central sensors during the observation

stage.

The lack of univariate difference between congruency conditions may be due

to the design of the APC task, rather than the absence of the deviation de-

tection itself. The MMN depends on the comparison between memory traces

of early sensory information and current stimulus during passive observation

(Näätänen et al., 2007; Stefanics et al., 2014; Näätänen et al., 2005). Further-

more, short memory traces of visuo-motor information decayed exponentially

after 0.5 - 1.5 s (Vaillancourt and Russell, 2002). The duration of the delay

between the action and observation stages (Figure 6.6D) may have introduced

variability in evoked responses sensitive to expectation violation (Gaspar et al.,

2011).

To determine whether the oscillatory power is sensitive to the detection of

odd stimuli, I compared Hilbert envelopes between odd and regular conditions

and observed no significant difference in any frequency band (Figures 6.9, 6.10

and 6.11). However, I have observed hypothesised oscillatory power patterns.

During the action stage (Figure 6.9), beta-band power increased prior to the ac-

tion stage, followed by stable desynchronisation during the movement, and the

beta-band desynchronisation is more prominent when the signal was aligned

to movement onset (Figure 6.11). During the observation stage (Figure 6.10),

beta-band rebound was observed after movements. In the frequency range en-
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compassing the flickering frequency of the checkerboard stimulus (8 Hz), there

was a strong increase in the oscillatory power at 7-9 Hz during the observation

stage. Consistent with previous studies (Muthukumaraswamy, 2014), there

was also an increase in the low-gamma oscillatory power during the presenta-

tion of the 8 Hz flickering stimulus.

The lack of univariate difference between congruency conditions may be due to

the design of the APC task, rather than the absence of the deviation detection

itself, as supported by the multivariate results. The MMN depends on the

comparison between memory traces of early sensory information and current

stimulus during passive observation (Näätänen et al., 2007; Stefanics et al.,

2014; Näätänen et al., 2005). The current study is departed from classical

oddball tasks in several aspects. First, instead of establishing a representa-

tion of regular events via consecutive and repetitive stimuli (e.g., continuous

tones), the APC task elicited congruency or incongruency on a trial-by-trial

basis. Second, the MMN is commonly established in a passive paradigm, in

which participants do not need to attend to the stimulus, and standard and

deviant events have a similar spatiotemporal structure but differ in simple sen-

sory features (e.g., frequency, pitch or duration in auditory MMN). In contrast,

the APC task established an expectation of movement direction by combining

voluntary choice and continuous movements, with the latter coupled with con-

current visual feedback to elicit a strong action-outcome causality, which is a

hallmark of healthy prefrontal function (O’Callaghan et al., 2019). As a result,

successful deviant detection in the APC task likely involves conflict monitoring

across time (from movement to observation phases) and top-down predictions

between modalities (from action to visual perception). These novel features

afforded by the APC task make it a good candidate paradigm to investigate

the interplay between decision, expectation and outcome in future research.

Furthermore, short memory traces of visuo-motor information decayed expo-

nentially after 0.5 - 1.5 s (Vaillancourt and Russell, 2002). The duration of

the delay between the action and observation stages (Figure 6.6D) may have

introduced variability in evoked responses sensitive to expectation violation

(Gaspar et al., 2011), which contributes to the absence of the congruency ef-

fect in ERF.
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6.4.3 Multivariate analysis results

MVPA with temporal generalisation showed that MEG activities contained

multivariate information of odd vs regular events (Figure 6.13). In the obser-

vation stage, the signal evolved from an early narrow generalisation window

to a wider window of generalisation (ca. 400-500 ms after the stimulus onset),

much later than the P300 component in other active oddball experiments.

This pattern of temporal generalisation can be interpreted as a gradual forma-

tion of information from fragmented (chained) to a stable (sustained) one (see

Figure2.8) (King and Dehaene, 2014), leading to a categorical representation

of odd vs. regular events. Although the temporal generalisation results pro-

vided new insights into the evolution of information representation within a

trial (King and Dehaene, 2014; Grootswagers et al., 2016; Hebart and Baker,

2018), it is working noting the limitation of MVPA results, which lacked inter-

pretations of the signal that led to significant classification (Hebart and Baker,

2018).

The classification between clockwise and anticlockwise movements showed a

ramping up pattern towards a stable representation (Figure 6.12), replicat-

ing the MVPA results in Chapter 5. When the MEG data was aligned to

movement onset, significant classification occurred prior to movement with

sustained representation (Figure 6.14), suggesting categorical action plans for

different movement directions. After movement onsets, the representation of

movement direction switched to a reactivated and interleaving pattern (see:

Figure 2.8), probably relating to the recurrent characteristic of circular move-

ments (see: Chapter 4). The temporal generalisation pattern before the move-

ment was different than the one underlying the actual movement. It can be

interpreted as the evidence that movement direction predictive activity has a

more abstract character than the actual movement that it leads to (Passing-

ham et al., 2010). Comparing the ramping up temporal pattern between the

sensory-driven (Figure 5.8) and voluntary movement (Figure 6.14) showed a

different temporal extent. It further supports the conclusions drawn from the

behavioural data. Not only the onset of the movement occurred faster, but

the temporal pattern of the preparatory activity was visibly distinct (Hughes

et al., 2011).
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The classification of clockwise vs. anticlockwise movements was significant

during the fixation period, before the onset of continuous movements (-0.5 s

to 0 in Figure 6.14). This result is expected if participants had made and held

their voluntary choices on movement direction during the fixation period. Pre-

vious studies showed that, before execution, task sets and action plans were

actively maintained in the frontoparietal (Zhang et al., 2013) and medial pre-

frontal networks (Haynes and Rees, 2006), consistent with the results in the

current experiment. Surprisingly, the classification of the odd vs regular trials

(Figure 6.13) was also significant during the fixation and movement periods.

This result could not be explained by the active encoding of congruent vs.

incongruent events, because the visual stimulus and task instruction were the

same between the two conditions up until the observation phase. Unlike the

ERF analyses, MVPA was performed on individual trials with no robust aver-

aging across trials. Therefore, it is likely that the classifier used here exhibited

a bias between the two conditions due to their unequal sample sizes (e.g., the

classification accuracy was at a steady level of 55% before the observation

phase, Figure 6.15), an issue needs to be examined in more detail in future

studies.

6.4.4 Conclusion

In the current chapter, the APC task was used to associate continuous move-

ments from voluntary choices with expectations of subsequent visual percep-

tion, and this expectation was violated in a small subset of trials. I observed

multivariate representation, but not univariate activity, that was sensitive to

the contrast of odd vs. regular events (Polich, 2007; Näätänen et al., 2007;

Knight, 1997; Stefanics et al., 2014; Kimura et al., 2009). I have discussed

possible future works to improve the design and analysis that may result in a

more sensitive paradigm for examining action-perception congruency.
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Chapter 7

Discussion

This chapter summarised the contents of the thesis in Section 7.1. I further dis-

cussed limitations and possible future work in Section 7.2, which may provide

a broader understanding of continuous sensory-motor transformations.

7.1 Summary of contributions

This thesis began with a review of theoretical and experimental foundations

in Chapter 2. The decision-making process was formalised as a statistical in-

ference problem, based on which the classical Drift-diffusion model (DDM)

of decision-making was introduced. In the context of DDM, I reviewed com-

monly observed factors affecting behavioural performance in decision-making,

such as speed-accuracy trade-off, quality of the sensory evidence, number of

alternatives and contextual influences. Next, I reviewed the seminal research

on signatures of decision-making obtained from invasive electrophysiological

recordings as well as non-invasive neuroimaging. Following that, I reviewed

adopting continuous response measures as a way to expand the scope of the

methodology to understand the decision-making process.

The use of the joystick as a response device allows for a better understanding

of perception, motor control and contextual factors such as expectation that

collectively drive sensorimotor transformation. The studies presented in this
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thesis established the joystick as an valid response device in rapid decision-

making (Chapter 3), extended a classical perceptual decision paradigm with

continuous motor outputs (Chapters 4 and 5) and highlighted its potential

in examining expectancy violation elicited by continuous actions (Chapter

6). These new results challenge the conventional sequential sampling account

of actions as merely decision outcomes, highlighting a reciprocal influence of

decision-making and action. Below I summarise main contributions of the

thesis.

Comparing joystick movements to key presses

Chapter 3 investigated to what extent a change of response modality affects

behavioural performance and underlying decision processes, by comparing but-

ton presses with joystick movements. Across four directions and two levels of

perceptual difficulty, participants were instructed to decide the direction of

coherent motion of the RDM stimulus, either with a button press or a ballistic

joystick movement. I compared raw behavioural measures (RT and accuracy)

and parameters of the DDM between response modalities. I found that the

initial stage of the joystick trajectory was comparable to a button press in

terms of behavioural performance and underlying cognitive processes. The

decision process was affected only by the stimulus strength, but additional

measures derived from joystick trajectories were also affected by ergonomic

factors (e.g., movement direction). These results established that the joystick

is a valid instrument for decision-making research. Importantly, compared with

key presses, the additional complexity and continuity associated with joystick

movements did not affect raw behavioural measures such as accuracy and RT,

as well as underlying decision-making processes.

Chapter 3 laid foundation for the following experiments, establishing a com-

mon ground between the widely used key press and joystick trajectories. The

ergonomic limitations has been taken into account when designing experiments

presented in Chapters 4-6. For example, the initial engagement in a continuous

movement was made uniform across conditions and across stimulus-response

mapping to enable a reliable comparison. To my best knowledge, the research

described in the Chapter 3 is the first study compared explicitly response
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modalities in perceptual decision-making.

Integrating continuous circular movements with perceptual decisions

Chapter 4 developed an experimental paradigm that integrates continuous

movements and perceptual decisions. Participants performed continuous circu-

lar movements (clockwise or anti-clockwise) to indicate the coherent direction

of RDM stimulus and its changes within a trial. Participants initiated move-

ments based on visual information and maintained the chosen action unless

the visual information indicated to change to the opposite movement direc-

tion. The possible change of movement direction created a unique state in

which an alternative action plan had to be selected while performing another

action. This allowed to investigate how ongoing actions may affected subse-

quent decisions. Through a series of four experiments, I observed consistent

results that participants had longer RT, lower accuracy and slower movement

speed when changing or maintaining movement directions in the presence of

more noisy sensory information.

Chapter 4 established an experimental design that utilised continuous move-

ments as a response measure. Participants used a circular movement (clock-

wise and anti-clockwise) to indicate the direction of non-stationary visual cues.

This design mimics scenarios in real-life decision making and would be difficult

to implement with discrete key press. Participants engaged in circular move-

ments based on the visual cue and maintained their chosen action until the

visual cue changed in the second half of the trial or until the end of the trial.

Having a circular movement as a response introduced three stages: a phase

of action engagement in the absence of prior movements, a period of action

maintenance and a possible action change.

The change of action created a unique state in which an alternative action

plan had to be selected while performing the other action. It allowed to inves-

tigate how prior action affected the subsequent decision process. In the initial

experiment, participants performed a direction discrimination based on a very

clear cue (an arrow), which had 50% chance to change direction in the middle

of the trial. Participants were able to perform the task well. Participants were

able to engage in action, and adjust it according to the change of the visual
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cue.

In the next experiment, the RDM was introduced as the visual cue to guide

circular movements. Participants were still able to engage in, and adjust the

movement based on the noisy and ambiguous visual stimulus. When the RDM

stimulus changed with a lower coherence in the second phase (in Experiment

3 and 4), as expected, participants were slower and less accurate in changing

to a new direction and maintaining the ongoing action. I observed the move-

ment velocity being affected by the quality of the visual cue. Participants were

slower in recovering the speed of movement from the direction change when

using a noisy cue. Also, when maintaining the action under noisy conditions,

participants were more likely to slow down or stop making their movement less

accurate. Throughout the experiments 3 and 4, I observed the improvement in

behavioural performance which led to reduction of the effects observed in the

movement velocity, and behavioural performance. Overall, the participants

were able to perform a task without any problems. The experimental manip-

ulation in stimulus strength elicited the changes in the expected direction.

These behavioural results supported continuous circular movement as a valid

and sensitive to experimental manipulations approach to respond in a perception-

decision task. I have shown that complex continuous response conjoined with

a simple, widely used perceptual decision task could still elicit a predictable

pattern of the behavioural results. The latency between the onset of the stim-

ulus change and the moment in which the action is adjusted is affected by

the stimulus strength. This effect has been observed not only in latency but

also in measures derived from the joystick trajectory. However, what I also

observed is that, repetitive training extinguished the effects found in the mo-

tor response, while the experimental manipulation still robustly modulated

the accuracy and RT. These observations highlighted the flexibility of human

motor function. When learning to perform a simple motor task, the motor

output reached optimum after a few sessions as shown in the Chapter 4 and

to certain extent in Chapter 5.

Chapter 5 conducted the same experiment in MEG. The univariate analysis of

ERF and oscillatory power did not show any difference between experimental

conditions (movement direction or stimulus strength). MVPA showed that the
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direction of the movement can be decoded up to 0.5 s prior to the onset of the

movement. This results extended previous findings on the encoding of action

plans in the cortex (Donner et al., 2009) by showing that complex actions (e.g.,

circular movements) also have distinct cortical representations.

During continuous movements, the temporal generalisation pattern of MVPA

results showed that, instead of an abstract and generalisable representation of

clockwise and anti-clockwise actions, continuous circular movements elicited

periodic multivariate patterns. Furthermore, for high vs. low motion coher-

ence, I observed significant MVPA results only in trials without a change of

motion direction. Because a change of motion direction led to a change of

movement direction, it is possible that switching an ongoing action to the

opposite direction masks the necessity to monitor the sensor information, al-

though further work is needed to validate this hypothesis.

Moreover, the MVPA was only able to distinguish the stimulus strength for

the trials when participants maintained the action throughout the trial. This

result may reflect the lack of action commitment when maintaining a previous

action plan, and necessity of representing the stimulus for the error monitoring

purposes. The commitment to switching the action removes the necessity to

monitor the performance, especially when the participants were well trained

in the task.

Chapter 5 showed that a continuous periodic movement can be utilised in

decision-making studies with neuroimaging. It provides a detectable movement

pattern and an opportunity to adopt the design for a wide range of the studies.

The experiment presented in Chapter 6, is an example of such design. Using

circular movements, participants controlled the rotation of a shape presented

on the screen. The main difference between the Experiment presented in the

Chapter 5 is that participants performed a self paced voluntary action with

an on-line feedback about the movement. As with Chapter 5, the MVPA was

used to extract the temporal representations of the experimental conditions.

189



Establishing sensory expectations with continuous actions

Chapter 5 showed that a continuous periodic movement can be utilised in

decision-making studies with neuroimaging. It provides a detectable movement

pattern and an opportunity to adopt the design for a wide range of the studies.

The Action-Perception Congruency (APC) task in Chapter 6, is an example

of such design.

Chapter 6 developed the APC task. The goal was to establish a causal expec-

tation between voluntary movement in the action stage and subsequent visual

stimulus in the observation stage. In congruent trials, the motion direction of

the visual stimulus was the same as voluntary movements. In the incongruent

trials (20%), the direction of the visual stimulus was opposite to that of vol-

untary movement. The rare occurrence of incongruent trials was designed to

violate the expectation of the action-perception causality. I found no difference

in univariate ERF and oscillatory power between congruent and incongruent

conditions. However, MVPA showed that multivariate patterns of MEG activ-

ity can be distinguished between congruent and incongruent conditions during

the observation stage. These results suggested that continuous movements

from voluntary choices indeed elicited the action-perception expectations.

Comparing the results between Chapter 6, and the one presented in Chapter 5,

one can observe the patterns differentiating the sensory driven and voluntary,

free choice. Primarily, the temporal generalisation pattern prior to the engage-

ment in the action. In the sensory driven task, the pattern was resembling the

one found later, a reactivated/oscillating pattern of the circular movement

of the joystick. When the participants were asked to perform a free choice,

the pattern of activity resembled a single state, ramping up, quite distinct to a

common across the experiments pattern of the stable circular movement (King

and Dehaene, 2014).

What results of those experiments showed us, is that the continuous response

allowed to easily distinguish a voluntary responses from a sensory driven in

the preparatory stage. What I managed to show, once the action plan is exe-

cuted, whether it is the voluntary choice or the stimulus driven discrimination,

subsequent action is similar. The continuous movement allowed to establish
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a unique pattern of the temporal generalisation that can be used in future

studies on volition and free choice.

7.2 Limitations and future directions

The applications of joystick and other devices

Chapter 3 showed that a key press and the initial engagement in a joystick

movement were similar in terms of behavioural performance and underlying

cognitive processes. Here, I only used a joystick to record movement trajec-

tories, which is commonly used and widely available in behavioural testing

labs. However, there are many other devices capable for recording continuous

responses, such as computer mouse (e.g. Koop and Johnson, 2011), optic mo-

tion sensor (e.g. Chapman et al., 2010) and robotic arms (Abrams et al., 1990;

Archambault et al., 2009; Berg et al., 2016; Burk et al., 2014; Resulaj et al.,

2009). Below I briefly outline relevant research using those alternative devices.

An even more widely available device that can be used to record continuous

responses is a computer mouse, which has been used in decision-making re-

search (Koop and Johnson, 2011; Freeman, 2018). The widespread use of the

digital pointing devices allows them to be used in both lab-based and online

experiments. The main difference between joystick and mouse is the range

of movement and affordance. The limited range in joystick is more suitable

for precise movements and repetitive/periodic trajectories. Most joysticks are

self-centred without external force, and the resistance of their internal springs

is approximately stable within the maximum movement range. These features

allow a joystick well suited for experiments requiring a fixed starting position

(Oliver et al., 2011). In contrast, a computer mouse cannot offer the same

level of repeatability of the movement qualities such as a fixed starting point

or a consistent range of movements, leading to less control to limb and hand

positions. There are also practical considerations towards data collection and

analysis from mouse tracking. A standard mouse driver returns the cursor

position on the screen. The transition between the physical movement of the

mouse and the displacement of the cursor is affected by factors like the mouse
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resolution, the quality of the surface and screen resolution. Although those

factors can be amended in a controlled experimental environment, they are

difficult to control in online experiments, in which participants use different

computers. To sum up, although both joystick (Chapter 3) and computer

mouse (Hehman et al., 2015) can offer continuous movement recordings, there

are technique and practical challenges for mouse tracking.

On the other spectrum of affordability and availability are complex robotic

arms like vBOT (Howard et al., 2009). Using computer controlled electric

motors, the experimenter can not only locate the position of the arm, but

also apply the resistive forces to participants. This type of setup has been

used to study sensorimotor control, haptic perception (Wolpert and Flanagan,

2010) and decision-making (Gallivan et al., 2016). The limitations are the

high equipment cost and complexity in operation and programming. It is also

worth noting that the most robotic arms cannot be used during fMRI (due

to ferromagnetic parts of the device) or MEG (due to electromagnetic fields

generated by electric motors) recordings.

Bridging the gap between widely available devices and specialised robotic arms

is a myriad of strategies used to record continuous movements in decision-

making and motor control research. For example, touchscreens and tablets

are used to mimic button presses and additionally track finger movements

(e.g. Anguera et al., 2013; Gallivan et al., 2011). They allow to extend the

functionality and flexibility of experimental design, i.e. dynamically adjusting

decision alternatives (Gallivan et al., 2015; Gallivan and Chapman, 2014). The

advent of touchscreen smartphones opens a new avenue to record continuous

finger movements, offering an exciting possibility to large-scale online testing.

Technically, a touch interface has comparable qualities as a computer mouse

in terms of digitising movements.

Beyond simple finger and arm movements, full body movements can be digi-

tised and tracked using continuous 3D motion capture. Cameras record the

movement of markers (e.g., inferred tracers) attached on body, which is then

transformed to body movements in 3D. The quality and precision of the record-

ing depend on cameras’ resolution and framerate, and improvements in quality

come with increased costs. One advantage of motion capture is that movements
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are no longer constrained, enabling experiments in a realistic setting (Gallivan

et al., 2015; Chapman et al., 2010; Gallivan and Chapman, 2014).

Limitations

There are several issues requiring further consideration. First, the experiment

described in the Chapter 3 offered a comprehensive comparison between key

presses and joystick movements, but it is yet to be validated whether measures

from other devices mentioned above are consistent with discrete responses. I

also offered a practical solution to measure RT from joystick movement com-

parable to that from key presses, taking into account the small resistive forces

near the joystick’s neural position, which potentially can be extrapolated to

other devices.

Second, the DDM required the behavioural data to be presented as binary

choices (Ratcliff and McKoon, 2008). To meet this constraint, I simplified

our four-choice task data into correct and incorrect decisions, and incorrect

responses contained errors towards three different directions from the correct

motion direction. Our modelling results provided a good fit to the observed

data. It would be useful to extend the analysis using other models that are

designed for decision problems with multiple alternatives (Brown and Heath-

cote, 2008; Usher and McClelland, 2001; Wong and Wang, 2006; Bogacz et al.,

2007; Zhang and Bogacz, 2009). A hierarchical Bayesian implementation of

those more complex models can be useful especially when using the joystick

as a response instrument affords higher flexibility in experimental design.

Third, I instructed participants to make directional movements in the joystick

session, which allows for intra-individual comparisons between response modal-

ities. Motion trajectories suggested that the participants mainly made ballistic

actions towards one of the four cardinal directions (Figure 3.5A). One could ex-

plore the further potential of continuous responses in behavioural tasks, such

as in response to the change of mind (Berg et al., 2016; Burk et al., 2014;

Resulaj et al., 2009) or external distractions (Gallivan and Chapman, 2014).

Furthermore, the description of the joystick trajectory measures was limited

to the physical direction of the movement and the experimental conditions.

However, I observed a modest effect of the experimental conditions on action
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velocity. It is possible that a joystick trajectory can contain more information

beyond the response time and accuracy. It has been shown that a joystick

trajectory can be used to associate the confidence with the change of mind

(Berg et al., 2016). It would be useful to explore the movement velocities with

regard to the post-decision confidence judgements (You and Wang, 2013). The

brain stimulation biased action selection competition affected the confidence

judgements in the correct responses (Fleming et al., 2015). Moreover, the cost

of action also affects the decision process, biasing it towards a lower cost op-

tion (Marcos et al., 2015; Hagura et al., 2017). The simple keyboard press, a

linear joystick response and circular joystick movement require different phys-

ical effort to complete the response. Thus, it is reasonable to examine whether

physical effort can influence the action selection process and in turn affect the

post-decision confidence rating (Fleming et al., 2015; Yeung and Summerfield,

2012; Moran et al., 2015).

Fourth, the novelty of the task in Chapters 4-5 also posed a limitation. Many

previous studies used a continuously measured response but with a discrete

movement (Burk et al., 2014; Resulaj et al., 2009; Acerbi et al., 2017; Berg

et al., 2016). Some other studies focused on continuous movements, but not

explicitly manipulating sensory inputs (Howard et al., 2011; Huys et al., 2008;

Torre and Balasubramaniam, 2009). To the best of my knowledge, there is cur-

rently no extensive research with a task design similar to that in Chapters 4-5,

which combined continuous movements with continuous visual inputs during

perceptual decisions. Therefore, it was difficult to predict participants’ perfor-

mance and their training progress. As a result, it was difficult to distinguish

between the training effects on perceptual decisions and that on action execu-

tion. Interestingly, the stimulus strength affected the movement velocity in the

second phase of the trial in Experiment 3, however this effect was diminished

in Experiment 4. It might be due to repetitive training of simple movement,

which leads to automatic responses that are less susceptible to changes in the

environment (Shmuelof et al., 2012).

Finally, in Chapter 4, the change of motion coherence in the second phase

elicited different multivariate patterns. The experiment did not vary the mo-

tion coherence in the first phase of the trial. This design aimed to minimize the

number of conditions due to a time constraint and participants’ fatigue dur-

194



ing MEG recording. Future studies could manipulate motion coherence also

in the first phase, which allows to dissociate the influence of ongoing actions

(Pape and Siegel, 2016; Pape et al., 2017) and visual perception on the MEG

signatures of subsequent decisions.

Further directions

The results presented in the Chapter 6 suggested that the APC task elicited

evoked responses and oscillatory power changes during voluntary action and

subsequent perception. However, these responses were not modulated by ex-

pectation violations, prohibiting further applications of the APC task as tra-

ditional oddball tasks, e.g. manipulating the probability of the odd stimuli

(Polich, 2007). Nevertheless, further works are need with more complex statis-

tical models and refined experimental design. One could employ a multivariate

General Linear Model for data analysis, which are able to account for signal and

timing variability across trials. For example, It can incorporate trial-by-trial

covariates such as the expected occurrence probability of an odd stimulus or

the delay between action and observation stages (Warbrick et al., 2009; Ouyang

et al., 2015). Increasing the involvement of the participants in the task may

improve deviance detection and the related MEG markers (Polich, 2007). One

possible solution would be to require participants to detect the presence of

incongruent stimulus in each trial (Hughes and Waszak, 2011; Hughes et al.,

2011; Desantis et al., 2014) with monetary rewards (Pfabigan et al., 2014).

The trajectory recording from the experiments in Chapters 5 and 6 offer a

great opportunity to examine further the electrophysiological signals underly-

ing continuous movement under different context (Kilavik et al., 2013; Todorov

and Jordan, 2002; Todorov, 2004). In Chapter 6, participants performed a vol-

untarily chosen movement with visual feedback of the movement. In Chapter

5, although the movement patterns were the same (circular movement), the

movement direction was determined by sensory stimulus. I observed different

multivariate patterns of the preparatory activity prior to the movement on-

set under these two contexts but common patterns during stable movements.

Future work is needed to relate the preparatory activity, and the movement

trajectory itself to the source localised MEG signal (Baillet, 2017). A search-
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light procedure could be used to systematically map the classifier performance

of multivariate patterns across the brain (Kriegeskorte et al., 2006). Moreover,

patterns of activity during stable movement may offer an insight into the na-

ture of the motor control of continuous movement. It may be possible to obtain

the signatures of the motor control process (Kilavik et al., 2013; Todorov and

Jordan, 2002; Todorov, 2004).

Continuous movements would expand the scope of decision-making research

beyond what is possible with conventional experiments with key presses. Two

theoretical accounts support this promise. First, during continuous move-

ments, motor control can be framed as an instance of the statistical decision

theory (Wolpert and Landy, 2012), which integrates action selection with prior

information (e.g. experience, expectations), environmental cues and cost func-

tions (e.g., a trade-off between movement variability and effort). Second, the

affordance competition hypothesis (Cisek and Kalaska, 2010, see also Section

2.2.1) posits that when continuous movements are visually guided, they influ-

ence both the feed-forward and feed-back stream of information. Continuous

movements could therefore be used to interact with various environmental fac-

tors (Standage et al., 2011; Doya, 2008), which, according to the urgency-gating

model (Cisek et al., 2009; Thura and Cisek, 2017; Thura et al., 2014), could

modulate the environmental dependent urgency signal, and in turn influence

perceptual processing (Chapman et al., 2010; Gallivan et al., 2015, 2016; Gal-

livan and Chapman, 2014) and motor planning (Plamondon and Alimi, 1997;

Wobbrock et al., 2008).

Guided by the those theoretical promises, one ambitious attempt to capitalise

further the potential of continuous movement measures would be to envisage a

continuous action-perception-action paradigm, extending from common trial-

based experiments to examine how contextual factors affect decision-making

and motor control (Doya, 2008). Figure 7.1A showed a schematic of such a

proposal, in which visual inputs shape action selection by combining avail-

able pathways and the time to execution. Here, continuous movements are

constantly affected by response urgency, movement precision prior experience

(e.g. the trajectory of previous responses may bias future actions) and ongoing

evidence (e.g. the visible path informs the action plan). Dependent measures

(Figure 7.1B) such as joystick trajectories (how precise the path is traced by
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Figure 7.1: A continuous joystick task with various environmental pressures.
A) Schematic of the experiment. The path refers to a continuous stream of
visual information that guides action selection. The cursor is controlled by
the participant using left- or rightward joystick movements, which contains a
central point indicating the actual position of the joystick and an outer ring
indicating the bounds for the precision of the movement to be considered “on
the path”. Participants earn game points from their accuracy on the task, with
penalties for not following the path and rewards for being precise in following
the path. Speed of the path: how fast participants will be required to follow
the path, this will introduce the time pressure and challenge the movement
precision; Horizon controls how much information is available in advance for
participants to plan their actions. B) Dependent measures. Movement tra-
jectory can be measured by a joystick. EMG activity can be recorded from
the forearm (forearm flexor-extensor tension balance) with concurrent EEG
activity.

the cursor), brain states (measured by the EEG) and effector states (measured

by EMG) could then be measured concurrently to inform an action-selection

model.

Finally, paradigms with continuous sensorimotor transformation (e.g., Chapter

4) could be useful for investigating action inhibition. Conventional inhibition

paradigms such as the stop-signal task require participants to abort an imme-

diate action following a stopping cue (Logan et al., 1984; de Jong et al., 1990).

Successful inhibition of a pending action involves monitoring of the stopping

cue and the ability to alter one’s responses (Verbruggen and Logan, 2008).

It has been suggested that keypress-based tasks (as used in most stop-signal

and go/no-go tasks) and continuous tasks measure the same inhibition process

(Morein-Zamir et al., 2004), which is in accordance with results in Chapter 3.
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Therefore, results in Chapter 4 have the potential to be examined in a similar

context. For example, in both Chapters 4 and 5, I observed a slowing of move-

ment in the second phase of the trial, when the direction of the visual motion

maintained, and this slowing effect sustained throughout several sessions of

intensive training. These results suggest that ongoing actions are attenuated

at the presence of new sensory information, possible as a preparatory mecha-

nism for optimal motor control. Future research can compare MEG signatures

between overt action inhibition and action attenuation observed in this thesis.

7.3 Summary

In conclusion, the results presented in this thesis contributed to the field of

decision-making and offered a novel methodological approach. I validated the

joystick as a response instrument for decision-making experiments. Further-

more, I capitalised the continuous recording of joystick trajectories in two novel

paradigms: one focusing on continuous actions in response to perceptual de-

cisions, and the other focusing on statistical violations of action-perception

congruency. Behavioural and MEG results indicated a close, continuous and

mutual influence between perception and action, which calls for new research

on the continuity of human cognition across different domains.
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Appendix A

Technical considerations

regarding the use of joystick.

There are several technical issues to be considered when using joysticks for

continuous response measures. First, continuous movements with forearms are

often accompanied with head movements (especially with large circular move-

ments used in Chapter 3), which affect the viewing distance. To minimise this

effect, a chin rest was used in all behavioural experiments (see Figure A.1 for

the experimental setup). Second, when used with concurrent MEG recording,

the joystick needs to be MEG-compatible, i.e., containing no moving metal

parts that could interfere with the magnetic field in the shielded room. To

minimise further muscle artifacts in MEG recording, in all MEG experiments,

participants were seated comfortably and a MEG-compatible chin-rest was

used to limit head movements (see Figure A.2 for the setup of MEG experi-

ments).
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Figure A.1: The experimental setup and joystick positioning. Each
participant was seated in front of the screen. Distance from the screen and head
position were maintained using a chin rest. The seating height was adjusted
to the most comfortable position, and the joystick was positioned to the right
of the participant (A). The exact position of the device was adjusted to the
most comfortable position. Participants were asked to hold the base of the
joystick while responding. The keyboard was placed parallel to the screen to
ensure that the arrow directions corresponded to the direction of the motion
of the visual stimuli (B).
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Figure A.2: The experimental setup for the MEG. Each participant was
seated in the MEG chamber. The seating position was adjusted to fit the
MEG helmet. Additionally, the head was fixed using a chin rest, and pillows
between the participant’s body and the arms of the seat (both items were not
pictured). The table was slid over the seat, and the height was adjusted at
an appropriate level. The MEG-compatible joystick was then attached to the
table using velcros in a comfortable position. The visual stimuli were displayed
on a projector screen, with an eye-tracker camera underneath.
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Trommershäuser, J., Maloney, L. T., and Landy, M. S. (2008). Decision mak-

ing, movement planning and statistical decision theory. Trends in Cognitive

Sciences, 12(8):291–297.

Tsetsos, K., Usher, M., and McClelland, J. L. (2011). Testing Multi-

Alternative Decision Models with Non-Stationary Evidence. Frontiers in

Neuroscience, 5.

Twomey, D. M., Murphy, P. R., Kelly, S. P., and O’Connell, R. G.

(2015). The classic P300 encodes a build-to-threshold decision vari-

able. European Journal of Neuroscience, 42(1):1636–1643. eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.12936.

Tzagarakis, C., Ince, N. F., Leuthold, A. C., and Pellizzer, G. (2010). Beta-

Band Activity during Motor Planning Reflects Response Uncertainty. Jour-

nal of Neuroscience, 30(34):11270–11277.

Tzagarakis, C., West, S., and Pellizzer, G. (2015). Brain oscillatory activity

during motor preparation: effect of directional uncertainty on beta, but not

alpha, frequency band. Frontiers in Neuroscience, 9.

Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić,
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