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The three-dimensional radial propagation of wave disturbances over a slightly compress-
ible fluid of constant depth is discussed. We focus on resonant triads comprising two
gravity modes and one acoustic mode. The derivation of the evolution equations in a non-
integral form is made possible by approximating the radial solution by cosine functions in
two regions, inner and outer, that are matched at a location where all relevant derivatives
are in agreement with the exact Bessel solution. When the interaction takes place in the
inner region of all modes, the amplitude evolution equations are found to be similar to
the two-dimensional case. However, focusing of one gravity mode and de-focusing of the
other is observed when the interaction involves an inner region of the acoustic mode, and
outer regions of the gravity modes.

1. Introduction

In classical water-wave theory, water is often treated as incompressible; an assumption
that is valid for many applications in linear theory, where surface (gravity) waves and
acoustic (compressible) waves are virtually decoupled. This assumption is appropriate
when the wave disturbance propagates to the bottom at relatively short time compared
to the period (Longuet-Higgins 1950), i.e. when h/c ≪ T , where h is the water depth, c is
the speed of sound in water, and T is the wave period. Accounting for both compressibility
and gravity effects reveals two types of wave motions: (1) surface waves with fluid motion
that decays exponentially with depth; and (2) non-evanescent longitudinal compression
waves. Among the first works who considered this setting were done by Pidduck (1910,
1912), who studied the propagation of an impulse applied on a water surface; Whipple
& Lee (1935), who showed that the two types of waves exist when the wave period is
a few seconds long; and Longuet-Higgins (1950) who focused on second-order pressure
variations. For reviews of the general theory of wave interactions see Phillips (1981) and
Craik (1985).
Longuet-Higgins (1950) demonstrated that quadratic nonlinear interactions of two

trains of monochromatic gravity waves of identical frequencies and opposite directions can
excite compression modes. Such special triad interactions comprise a standing compres-
sion mode at a cut-off frequency 2ω, and two subharmonic surface waves with frequency
ω and opposite wavenumbers k. The resonances found by Longuet-Higgins (1950) are
particular examples of resonant triads involving a propagating acoustic wave mode and
two oppositely travelling subharmonic surface waves, as demonstrated numerically by

† Email address for correspondence: kadriu@cardiff.ac.uk
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Kadri & Stiassnie (2013). The general two-dimensional (2D) asymptotic theory for
resonant triad interactions of acoustic–gravity waves was developed by Kadri & Akylas
(2016), and more recently a steady-state solution for resonant acoustic–gravity waves has
been reported by Yang et al. (2018).

Here, we extend the general solution and develop an asymptotic theory for three-
dimensional (3D) resonant triad interactions of acoustic–gravity wave disturbances in
cylindrical coordinates. Similar to Kadri & Akylas (2016), such resonant interaction
depends on a small parameter µ = gh/c2 that governs the effects of gravity relative
to compressibility, where g is the gravitational acceleration. Thus, free-surface wave
disturbances feature vastly different spatial and/or temporal scales from the acoustic
mode.

A major challenge in the 3D analysis is the radial solution that is governed by Bessel
functions, which makes collecting secular terms a cumbersome, if not an impossible, task.
Alternatively, one could follow an integral form analysis, e.g. as in Miles (1984), though
this would require a numerical evaluation of the integrals that is beyond the scope of the
current study. Here, we provide a non-integral approximated closed form solution. To
overcome the difficulty of collecting secular terms, we approximate the radial potential
solution (and its derivatives) by cosine functions in two regions, inner and outer, matched
at a location where all relevant derivatives are approximated to satisfactory agreement
with the original Bessel functions, following Kadri (2019a). The amplitude evolution
equations are then derived for three regions: (1) inner for all three modes; (2) mixed,
i.e. inner for the acoustic and outer for the gravity; and (3) outer for all three modes.
In the latter scenario, the waves disperse ∝ 1/

√
r, thus the interaction is weak and

effectively there is no energy share between the triad members. In the inner-inner region
the solution is almost identical to that of the 2D case. In the mixed region the interaction
is dictated by the vertical profile of the wave packets, and focusing of one gravity mode
and de-focusing of the other is observed.

2. Preliminaries and formulation

Based on irrotationality, the surface gravity and acoustic–gravity wave problems are
formulated in terms of the velocity potential ϕ(r, z, t), where u = ∇ϕ := (ϕr, ϕz) is
the velocity field assuming radial symmetry (∂θ = 0). Viscosity and surface tension are
neglected, and we shall use dimensionless variables, employing µh as lengthscale and h/c
as timescale. As in Longuet-Higgins (1950), the governing equation is the fully nonlinear
wave equation

ϕtt −
1

µ2

(

ϕrr +
1

r
ϕr + ϕzz

)

+ ϕz + (|∇ϕ|2)t + 1
2u · ∇

(

|∇ϕ|2
)

= 0. (2.1)

The boundary condition on the rigid bottom at z = −1/µ reads

ϕz = 0 (z = −1/µ). (2.2)

Finally, on the free surface z = ζ(r, t), we consider the standard dynamic and kinematic
boundary conditions

(

∂ϕ

∂t
+

1

2
|∇ϕ|2 + z

)

z=ζ

= 0 ;
(

ζt + ζrϕr − ϕz

)

z=ζ
= 0 . (2.3)
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After expanding the two conditions about z = 0, correct up to cubic terms in the
perturbation, and eliminating ζ yields the combined free-surface condition

ϕtt + ϕz + (|∇ϕ|2)t + 1
2∇ϕ · ∇

(

|∇ϕ|2
)

− [ϕt(ϕtt + ϕz)]z

−
[

ϕt(|∇ϕ|2)t
]

z
− 1

2

[

(ϕtt + ϕz)
(

|∇ϕ|2 − ϕ2
t

)]

z
= 0 (z = 0).

(2.4)

2.1. Linear solution

By dropping the nonlinear terms in (2.1) and (2.4), we seek modes that radiate with
frequency ω in the form

ϕ = R(r)Z(z) exp

(

1

2
µ2z

)

exp (−iωt) . (2.5)

Upon substituting (2.5) into (2.1), a separation of variables produces a set of two ordinary
differential equations, the first being in the vertical direction,

Zzz −
(

k2 − µ2ω2 +
1

4
µ4

)

Z = 0, (2.6)

and the second in the radial direction,

Rrr +
1

r
Rr + k2R = 0 , (2.7)

where k stands for the eigenvalue of the problem. The detailed solution in the vertical
direction is given by Kadri & Akylas (2016) who showed that for λ = O(1) and µ ≪ 1
the solution decays exponentially into the fluid

Z = exp(|k|z) +O(µ), (2.8)

and ω satisfies the well known dispersion relation for surface gravity waves on deep water

ω2 = |k|+O(µ4). (2.9)

On the other hand, when λ2 < µ2ω2 the vertical profile in (2.6) becomes oscillatory, with

Z = cos
(

ω2 − κ2
)

(Z + 1)− µ

2ω
sin

(

ω2 − κ2
)

(Z + 1) +O(µ2), (2.10)

where Z = µz and the eigenvalue k was rescaled to µκ for κ = O(1) to allow using h
as a characteristic length, instead of µh, and ω satisfies, to leading order, the dispersion
relation for acoustic modes

ω2 = ω2
n + κ2 + µ

ω2
n − κ2

ω2
n + κ2

+O(µ2) (n = 0, 1, 2, ...) (2.11)

with ωn = (n+1/2)π. For the radial equation (2.7), we seek a propagating wave solution
of the form

R = C1J0(kr) + iC2J0

(

kr − π

2

)

, (2.12)

where J0 is the Bessel function of the first kind and C1, C2 are coefficients determined
from the boundary-value problem. In the far field, J0 oscillates and behaves like a damped
cosine function, namely,

J0(kr) ≈
√

2

πkr
cos

(

kr − π

4

)

. (2.13)



4 U. Kadri and Z. Wang

2.2. Three-dimensional resonant triads

The existence of resonant triads in the acoustic–gravity wave family has been presented
numerically by Kadri & Stiassnie (2013), and various triad combinations were reported
by Kadri (2015). However, the importance of cubic terms at the limit µ ≪ 1 was first
demonstrated by Kadri & Akylas (2016). Here, we discuss acoustic–gravity wave triad
resonance in 3D space. In particular, we consider the evolution equations of two gravity
modes of complex amplitudes S± and frequencies ω± interacting with an acoustic mode
of amplitude A and frequency ω:

S+e
i(k+r−ω+t), S−e

i(k
−
r−ω

−
t), A ei(µκr−ωt). (2.14)

The gravity waves satisfy the dispersion relation (2.9), whereas the acoustic mode (µκ,
ω) satisfies the dispersion relation (2.11). The triad resonance requires that

ω+ + ω− = ω + µβ, k+ + k− = µκ, (2.15)

where β = O(1) is a detuning parameter. It follows from the resonance condition (2.15)
that two gravity modes are counter-propagating waves with nearly idential wavenumbers.
We introduce a positive wavenumber k, such that

k+ = k +
1

2
µκ , k− = −k +

1

2
µκ , (2.16)

and therefore a direct calculation yields

ω± = k1/2
(

1± µκ

4k

)

+O
(

µ2
)

. (2.17)

It then follows that

ω = 2k1/2 +O
(

µ2
)

, (2.18)

where

4k = ω2
n + κ2 + µ

ω2
n − κ2

ω2
n + κ2

. (2.19)

The velocity potential of gravity waves is O (ǫ), while the velocity potential of the excited
acoustic wave grows to α = O(1) due to its small contributions to free-surface elevation.
Based on the scaling argument carried out in Kadri & Akylas (2016), we have ǫ = αµ1/2.
In the subsequent analysis, we derive the amplitude evolution equations subject to a
resonant triad whose velocity potential is expanded as

ϕ = ǫ
{

S+(T )R(k+r)e
|k+|ze−iω+t + c.c.

}

+ ǫ
{

S−(T )R(k−r)e
|k

−
|ze−iω

−
t + c.c.

}

+α
{

A(T )R(µκr) cosωn(Z + 1)e−iωt + c.c.
}

+ . . . ,
(2.20)

where T = µt is a slow time variable.

3. Approximate solution

The derivation of the evolution equations, which is presented in the following section,
requires collecting secular terms. The collection process is rather straightforward when
the motion is 2D as in Kadri & Akylas (2016), which uses complex exponents. How-
ever, here the collection involves quadratic and cubic terms of zeroth, first and second
derivatives of J0, which is a cumbersome exercise. To overcome this difficulty we partially
implement a matching technique developed by Kadri (2019a) to approximate the Bessel
function and its first and second derivatives about the origin. The matching comprises



Triads in acoustic–gravity waves 5

inner and outer solutions. The inner solution is approximated by a simple cosine function,

J0,in(r) = cos(Mr), (3.1)

where M = 0.6967398 is a matching parameter calculated originally by matching J0,in
with J0 at r = π/e. We match the inner solution with an outer solution of the form

J0,out(r) =

√

2

πb1r
cos (b2r − b3) , (3.2)

where b1, b2 and b3 are matching parameters. For the zeroth derivative we require that

− cos(Mr) +

√

2

πb1r
cos (b2r − b3) = 0, (3.3)

and similarly for the first and second derivatives,

M sin(Mr)− b2

√

2

πb1r
sin(b2r − b3)−

1

2

√

2

πb1r3
cos(b2r − b3) = 0, (3.4)

M2 cos(Mr)−
(

b22√
r
− 3

4
√
r5

)
√

2

πb1
cos(b2r− b3) + b2

√

2

πb1r3
sin(b2r− b3) = 0. (3.5)

Noting that the matching can be carried out at a range of r, where r 6 π/e, and we
choose r = 1 for simplicity. With the values of b1, b2, and b3 at hand, we are able to
design a solution whose first and second derivatives are also matched. Note that the outer
solution does not coincide with J0(r) as r → ∞, since for the standard far-field solution
to be met one should impose b1 = b2 = 1 and b3 = π/4. To this end, a second matching
with the far-field at multiple locations can be performed as detailed by Kadri (2019a).
However, here we have no interest in the far-field since the waves disperse ∝ 1/

√
r, and

thus the interaction is weak. Moreover, a more accurate matching can be obtained by
adopting a three-point matching at r1, r2, r3, one for each derivative. However, this will
require collecting secular terms at more regions, e.g. at [0, r1], [r1, r2], [r2, r3], and [r3,∞),
as opposed to two regions, [0, 1] and [1,∞), when choosing a single matching point at
r = 1, as demonstrated in the next section.

4. Amplitude evolution equations

Since the acoustic mode is much longer than the gravity mode, attention is focused on
three scenarios of interest where the interaction could take place: (1) inner approximation
for both acoustic and gravity modes; (2) inner approximation for the acoustic mode and
outer for the gravity mode; and (3) outer approximation for both modes.

4.1. Inner-inner region

We employ the approximation in (3.1) for all modes so that the potential takes the
form,

ϕ = ǫ
[

S+(T )e
|k+|zei(Mk+r−ω+t) + c.c.

]

+ ǫ
[

S−(T )e
|k

−
|zei(Mk

−
r−ω

−
t) + c.c.

]

+α
[

A(T ) cosωn(Z + 1)ei(Mµκr−ωt) + c.c.
]

+ · · · .
(4.1)

Upon substituting (4.1) into (2.1), (2.2), and (2.4), collecting terms that result in secular
behaviour, and imposing solvability conditions, the amplitude evolution equations for the
acoustic and gravity modes are derived as detailed below.
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4.1.1. Acoustic mode

For the acoustic mode, we collect terms ∝ exp [i(Mµκr − ωt)]. The correction is posed
as ǫ2 {F (Z, T ) exp [i(Mµκr − ωt)] + c.c.}, where F satisfies the boundary-value problem

FZZ + ω2
nF = R1 (−1 < Z < 0), (4.2)

−ω2F = R2 (Z = 0), (4.3)

FZ = 0 (Z = −1), (4.4)

with

R1 = − 1

α

[

2iω
∂A

∂T
cosωn(Z + 1) + ωnA sinωn(Z + 1)

]

− 2iωk2S+S−e
2kzeiβT

(

1 +M2
)

,

(4.5)

and

R2 =
1

α
(−1)nωnA+ 2iωk2S+S−e

iβT
(

1 +M2
)

. (4.6)

Since cosωn(Z + 1) is a homogeneous solution, the forcing R1 and R2 must obey

0
∫

−1

R1 cosωn(Z + 1)dZ = −(−1)n
ωn

ω2
R2. (4.7)

Redefining A → AeiβT , in order to eliminate the exponential factor, it follows that

∂A

∂T
= iA

(

κ2 − ω2
n

2ω3
− 2β

)

+
(−1)n

8
αωnω

2S+S−

(

1 +M2
)

. (4.8)

Choosing M = 1 results in a 2D solution which is in agreement with (Kadri & Akylas
2016). Note that the same solution has been confirmed using the software Maple. For
the case of an infinitely long acoustic mode, or two gravity waves with the same wave
numbers, κ = 0, ωn = ω, the spatial dependence in the envelope dynamics can be invoked.
Introducing the slow spatial variable R = µ3/2r, the evolution equation takes the form

∂A

∂T
= − i

2ω

(

∂2A

∂R2
+

1

R

∂A

∂R
+A

)

+
(−1)n

8
αω3S+S−

(

1 +M2
)

. (4.9)

The interested reader is referred to Kadri (2017) for more details about the derivation
of (4.9). In the sequel we only derive the temporal evolution equations, as the spatial is
identical to (4.9) in exact resonant cases and can be easily involved.

4.1.2. Gravity modes

On the other hand, for the gravity modes we collect terms ∝ exp [i(Mk±r − ω±t)].
Here, the correction is posed as ǫ3 {G±(Z) exp [i(Mk±r − ω±t)] + c.c.}, where G± satis-
fies the boundary-value problem

(G±)zz − k2±G± = 0, for − 1/µ < z < 0, (4.10)

(G±)z − ω2
±G± =

1

ǫ3

[

−2iω±ǫµ
dS±

dT
+R

(3)
± +R

(4)
±

]

, at z = 0, (4.11)

(G±)z = 0, at z = −1/µ, (4.12)

with

R
(3)
± =

1

4
iαǫµ(−1)nω3ωnAS∗

∓e
−iβT − 1

4
ǫ3ω4k2(1 +M2)|S∓|2S±, (4.13)
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and

R
(4)
± = −ǫ3

[

(−6− 8M2 − 2M4)k4|S∓|2S± + (−3 + 8M2 −M4)k4|S±|2S±

]

. (4.14)

The solvability condition is thus

−2iω±ǫµ
dS±

dT
+R

(3)
± +R

(4)
± = 0, (4.15)

which finally yields

dS±

dT
= − (−1)n

4
ωnω

2αAS∗
∓ − i

256
ω7α2

[

(−3 + 8M2 −M4)|S±|2S∗
±

−(2 + 4M2 + 2M4)|S∓|2S±

]

.

(4.16)

Taking M = 1 reduces, in principle, to the 2D solution equation (5.9) by Kadri & Akylas
(2016). However, there is a factor of two in the first term, and a factor of a half in the last
third term of (4.16), that arise from higher order terms that were originally neglected by
Kadri & Akylas (2016).

4.2. Inner-outer region

Since the wavelength of the acoustic mode far exceeds that of the gravity mode, when
gravity modes generate an acoustic mode part of the interaction is expected to occur in
the inner region of the acoustic mode, yet in the outer region of the gravity modes. Thus,
the mixed potential takes the form

ϕ = ǫ

[

S+(T )e
|k+|z

√

1

r
ei(b2k+r−ω+t) + c.c.

]

+ ǫ

[

S−(T )e
|k

−
|z

√

1

r
ei(b2k−

r−ω
−
t) + c.c.

]

+α
[

A(T ) cosωn(Z + 1)ei(Mµκr−ωt) + c.c.
]

+ · · · .
(4.17)

By using a similar argument to those employed in the previous section, the solvability
conditions lead to the governing equations for A and S±,

dA

dT
= iA

(

κ2 − ω2
n

2ω3
− 2β

)

+ (−1)n
2αωn

ω2r

[

1

4r2
+ (b22 + 1)k2

]

ei(b2−M)µκrS+S−, (4.18)

dS+

dT
= − (−1)n

4
αωnω

2AS∗
−e

i(M−b2)µκr − iα2

ωr
N1|S+|2S+ − iα2

ωr
N2|S−|2S+, (4.19)

dS−

dT
= − (−1)n

4
αωnω

2AS∗
+e

i(M−b2)µκr − iα2

ωr
N ∗

1 |S−|2S− − iα2

ωr
N ∗

2 |S+|2S−, (4.20)

where

N1 =2

(

1

4r2
+ b22k

2

)(

3

4r2
− ib2k

r
− b22k

2 + 2k2
)

+

(

1

2r
− ib2k

)2 (
3

4r2
+

ib2k

r
− b22k

2 − 4k2
)

− 3k4,

N2 =4

(

1

4r2
+ b22k

2

)(

3

4r2
− ib2k

r
− b22k

2

)

+ 2

(

1

2r
− ib2k

)2 (
3

4r2
+

ib2k

r
− b22k

2 + 2k2
)

− 2k4.



8 U. Kadri and Z. Wang

Note that r enters as a parameter in the evolution equations. Therefore, the spatially
dependent case should have extra terms that are of the same form as the ones derived
earlier in (4.9) where the gravity modes are essentially standing waves relative to the
acoustic mode.

4.3. Outer-outer region

In the outer-outer region all modes obey (3.2), thus the velocity potential takes the
form

ϕ = ǫ

[

S+(T )e
|k+|z

√

1

r
ei(b2k+r−ω+t) + c.c.

]

+ ǫ

[

S−(T )e
|k

−
|z

√

1

r
ei(b2k−

r−ω
−
t) + c.c.

]

+α

[

A(T ) cosωn(Z + 1)

√

1

r
ei(b2µκr−ωt) + c.c.

]

+ · · · ,

(4.21)

where A was normalised by exp(−ib3)(2/πb1µκ)
1/2. Next, we substitute the ansatz into

the governing equation (2.1) and the boundary condition (2.4), and derive the evolution
equations. Repeating the same procedure as before, the governing equations for A and
S± read

dA

dT
= iA

(

κ2 − ω2
n

2ω3
− 2β

)

+ (−1)n
2αωn

ω2
√
r

(

1

4r2
+ b22k

2 + k2
)

S+S−, (4.22)

dS+

dT
= LAS∗

− − iα2

ωr
N1|S+|2S+ − iα2

ωr
N3|S−|2S+, (4.23)

dS−

dT
= L∗AS∗

+ − iα2

ωr
N ∗

1 |S−|2S− − iα2

ωr
N ∗

3 |S+|2S−, (4.24)

where

L = − αωn

2ω2
√
r
(−1)n

[

ω4

2
− 1

r

(

1

2r
− ib2k

)]

(4.25)

and

N3 =4

(

1

4r2
+ b22k

2

)(

3

4r2
− ib2k

r
− b22k

2

)

− 1

r

(

1

2r
− ib2k

)(

1

4r2
+ b22k

2 + k2
)

+ 2

(

1

2r
− ib2k

)2 (
3

4r2
+

ib2k

r
− b22k

2 + 2k2
)

− 2k4.

(4.26)

Again, the spatial dependence in the exact resonant situation should be the same as
derived earlier in (4.9).

5. Results and discussion

In the inner-inner region, the nature of interaction is almost identical to the 2D case. On
the other hand, in the outer-outer region and far from the origin, the amplitudes tend to
zero due to radial dispersion, and thus there is effectively no more resonant interactions.
The more interesting scenario is the interaction involving the mixed regions, i.e. inner
for the acoustic, and outer for two gravity modes.
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Figure 1: Amplitude spatiotemporal evolution of a triad comprising two gravity waves
(top) and an acoustic mode (bottom), for the 3D mixed-field solution (magenta) and 2D
solution by Kadri & Akylas (2016) (black). The initial conditions are A(0) = S±(0) =
exp(−r2), α = 0.1, γ = 0, κ = 1, grid size ∆r = 0.05, and time step ∆t = 0.0025.

To gain a quantitative understanding of the 3D resonant interaction we solved nu-
merically the amplitude equations (4.18), (4.19), and (4.20) (including both temporal
and spatial dependence) for two cases. In the first case, the computations focused on
Gaussian initial amplitudes for all modes, A(0) = exp(−r2), S±(0) = exp(−r2). In the
second case, the acoustic mode was instead considered to be infinitely long (κ = 0), which
acted as a vertically oscillating layer. In both cases an explicit Runge-Kutta method was
implemented, and only the leading acoustic mode (n = 0) was considered.
In the first case, since the two gravity waves are effectively standing in space, they

interact resonantly creating an acoustic ‘shock’ followed by acoustic ripples, as illustrated
in figures 1 and 2. Here, the 3D solution (magenta) is similar to the 2D solution (black).
However, a remarkable difference is that in the case of 3D waves, the gravity wave
amplitudes either focus or defocus in time, whereas in the 2D case the gravity wave
skewness changes. This is rather intuitive, as in the 2D case the gravity waves travel
from one side to the other, whereas in the 3D case the gravity waves travel radially
inwards or outwards. Since the two gravity waves exist simultaneously, the combined
amplitude is comparable to the combined amplitude of the 2D case. The increase in
amplitude of the acoustic wave reflects nonlinear interactions between three modes.
The second case is analogous to a surface gravity disturbance (Gaussian) of frequency

ω over a fluid layer that is subject to vertical oscillation, e.g. due to underwater tremor,
at double the frequency. The interaction excites subharmonic standing field of Faraday-
type waves of frequency 2ω, as shown in figure 3. The analogy between the long-crested
acoustic mode and an oscillating liquid is made possible since the interaction occurs



10 U. Kadri and Z. Wang

Figure 2: Evolution of waves at the surface from an acoustic mode A(0) = exp(−r2),
interacting with two gravity waves, S±(0) = exp(−r2), with α = 0.1, γ = 0, κ = 1.

Figure 3: Evolution of Faraday-type waves from a gravity disturbance S±(0) = exp(−r2)
α = 0.4, γ = 0.5, interacting with a long-crested acoustic mode of A(0) = 1, and κ = 0.

at the surface, i.e. for the gravity waves the water layer is a half space. However, the
applicability of the theory to laboratory scales, e.g. in an analogy to an oscillating bath,
is by no means straightforward. The main difficulty is that under the current rigid bottom
assumption, the frequency of the acoustic mode should be unrealistically high to exist.
However, Kadri (2019b) showed recently that one could overcome this difficulty by
considering an elastic bottom instead, which modifies the dispersion relations, though
not the structure of the evolution equations:

ω2 = ω2
n + κ2 + µ

ω2
n − κ2 − (ω2

n + κ2)E1/µ
ω2
n + κ2 + µE2/2

+O(µ2), (5.1)

where E1 and E2 represent elastic terms that are found from the boundary conditions.
Under these settings, the result in Figure 3, could be analogous to the generation of
Faraday-type waves in a laboratory-size container.
As a final note, the motivation behind the proposed approximation is to allow col-

lecting secular terms in a non-integral form, which otherwise becomes awkward when
employing exact Bessel functions that involve quadratic and cubic products of zeroth,
first and second derivatives of the Bessel functions. For example, the product of the first
derivative of two modes can be of the form J−1(k+r)J−1(k−r) − J−1(k+r)J+1(k−r) −
J+1(k+r)J−1(k−r) + J+1(k+r)J+1(k−r), and it is not obvious how this term resonates
with the third mode presented by J0(µκr). On the other hand, the proposed approxima-
tion uses complex analysis which allows collecting secular terms in a straight forward way,
e.g. exp(ik+r) exp(ik−r) ≡ exp(iµκr) clearly satisfies the resonance condition k+ + k− =
µκ. To validate the results numerically, one could seek a full numerical solution of
eqs.(2.1), (2.2) and (2.4), with (2.20). An alternative would be using exact Bessel solution
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with an attempt to numerically identify secular terms. Both options are beyond the scope
of this study and are left for future work.

This work was supported in part by the National Natural Science Foundation of
China (No.11772341), and the Key Research Program of Frontier Sciences, CAS (No.
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