Air quality improvement in response to intensified control strategies in Beijing during 2013–2019

Wenjun Li, Longyi Shao*, Wenhua Wang, Hong Li, Xinming Wang, Yaowei Li, Weijun Li, Tim Jones, Daizhou Zhang

a College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
b State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
c State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
d Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
e School of Earth and Ocean Sciences, Cardiff University, Museum Avenue, Cardiff, CF10, 3YE, UK
f Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan

First Author: Wenjun Li, (1992-), Ph. D candidate. Email: liwenjun_620@126.com
* Corresponding author: Longyi Shao, (1964-). Email: shaol@cumtb.edu.cn. Full postal address: No. 11, Xueyuan Rd., Haidian District, Beijing, P. R. China, 100083.

Highlights:
1. The air quality of Beijing before and after two action plans was assessed.
2. SO₂ decreased the most, followed by CO, PM₀.₅, PM₁₀, and NO₂, while O₃ increased slightly.
3. The control of coal consumption played a dominant role in pollutant reduction.
4. The influences from meteorology, pollutant emissions, and energy structure were evaluated.
5. The control measures have proved to be effective in improving Beijing’s air quality.
Abstract

The air pollution in Beijing has become of increasing concern in recent years. The central and municipal governments have issued a series of laws, regulations, and strategies to improve ambient air quality. The "Clean Air Action" and the "Comprehensive Action" implemented during 2013–2017 largely addressed this concern. In this study, we assessed the effectiveness of the two action plans by environmental monitoring data and evaluated the influencing factors including meteorology, pollutant emissions, and energy structure. The spatial distributions of air pollutants were analyzed using the Kriging interpolation method. The Principal Component Analysis-Multiple Nonlinear Regression (PCA-MNLR) model was applied to estimate the effects of meteorological factors. The results have shown that Beijing's air quality had a measurable improvement over 2013–2019. "Good air quality" days had the highest increases, and "hazardous air quality" days had the most decreases. The concentration of SO$_2$ decreased most, followed by CO, PM$_{2.5}$, PM$_{10}$, and NO$_2$ in descending order, but O$_3$ showed a fluctuant increase. The "Comprehensive Action" was more effective than the "Clean Air Action" in reducing heavy pollution days during the heating period. The meteorological normalized values of the main pollutants were lower than the observation data during 2013–2016. However, the observed values became lower than the normalized values after 2017, which indicated beneficial weather conditions in 2017 and afterwards. The emissions of SO$_2$ and dust significantly decreased while NOx had a slight decrease, and the energy structure changed with a dramatic decrease in coal consumption and an obvious increase in the use of natural gas and electricity. The significant reduction of coal-fired emissions played a dominant role in improving Beijing's air quality, and vehicle emission control should be further enhanced. The results demonstrated the effectiveness of the two action plans and the experience in Beijing should have potential implications for other areas and nations suffering from severe air pollution.

Keywords: Air quality, Clean Air Action, Comprehensive Action, effectiveness evaluation, PCA-MNLR model, Beijing
1. Introduction

In recent decades, China has achieved rapid industrialization and urbanization. As a result, severe air pollution problems appeared and became a major concern in China, especially in Beijing (Wang et al., 2018b; Zhang, 2019; Li et al., 2019b; Xu and Zhang, 2020). Air pollution has generated great public concern due to its influence on atmospheric visibility, human health, and global climate change (Sheehan et al., 2016; Huang et al., 2018; Wang et al., 2019c; Liu et al., 2020). To alleviate air pollution, the Beijing Municipal Government (BMG) formulated a series of control policies, laws, and regulations that focused most on SO\textsubscript{2} and total suspended particulate (TSP) control since 1998 (Wang et al., 2008; Zhang et al., 2016). However, the severe haze episodes still occurred, especially in the heating seasons (autumn and winter). One of these severe pollution episodes happened in January 2013, when the monthly average concentration of PM\textsubscript{2.5} reached almost 160 μg/m3, affecting about 1.3 million km2 and 800 million people in northern China (Huang et al., 2014; Li et al., 2015).

Since then, the State Council of China issued the "Air Pollution Prevention and Control Action Plan" (shorten to the APPCAP) on September 10, 2013 (The State Council of China, 2013). The APPCAP is the first national strategy targeting PM\textsubscript{2.5} pollution and air quality improvement in China by setting specific quantitative targets and clear time nodes (Feng et al., 2019). In particular, as a key city, the PM\textsubscript{2.5} concentration of Beijing should be kept below 60 μg/m3 by 2017. To fulfill the target, Beijing has made further efforts according to the guidance of the APPCAP. The BMG issued its own "Beijing 2013–2017 Clean Air Action Plan" (the Clean Air Action) in September 2013 (BMG, 2013), which implemented much more stringent control measures than ever before. However, heavy pollution days still occurred frequently in the winter of 2016 (Wang et al., 2018a). To accomplish the five-year target the "Action Plan for Comprehensive Control of Atmospheric Pollution in Autumn and Winter of Beijing-Tianjin-Hebei region in 2017–2018" (the Comprehensive Action) was carried out subsequently in autumn 2017 (MEP, 2017). The control measures on coal-fired emissions were enhanced in the heating seasons (generally from 15th November to 15th
March of the next year). By the end of 2017, the annual mean concentration of PM$_{2.5}$ reduced to 58 μg/m3 from 89.5 μg/m3 in 2013, which fully achieved the five-year goal of the Clean Air Action (Beijing Environment Statement, 2017). Thereafter, the State Council issued a three-year plan on defending the blue sky during 2018–2020. The "Action Plan for Comprehensive Control of Atmospheric Pollution in Autumn and Winter of Beijing-Tianjin-Hebei region" was annually released both in Beijing and its surrounding areas. The annual mean concentration of PM$_{2.5}$ has decreased to 51 μg/m3 in 2018 and 42 μg/m3 in 2019, indicating that Beijing's air quality has improved yearly (Beijing Ecology and Environment Statement, 2019).

Analysis of the air pollution characteristics of Beijing and its prominent air pollution control approach after the Clean Air Action can provide valuable guidance in optimizing control measures for policymakers. A significant body of research has shown that pollutant emission controls played a dominant role in the decrease of PM$_{2.5}$ and other pollutants (Zhang et al., 2019b), and the meteorological factors, secondary formation, and regional transport from the surrounding area had a significant influence as well (Cai et al., 2017; Cheng et al., 2019a; Zhang, 2019). A large number of studies have evaluated the air quality improvement by air quality data from online monitoring (Liang et al., 2016; Cui et al., 2019; Chang et al., 2019), offline ground observation (Ma et al., 2017; Wang et al., 2019d; Yang et al., 2020), and remote sensing (Wu et al., 2016; Li et al., 2019a; Geng et al., 2019). Chemical transport models, such as CAMx, WRF-Chem, and WRF-CMAQ (Zhang et al., 2019a; Geng et al., 2019; Zhang et al., 2019b), were frequently applied to analyze the intrinsic mechanism and influencing factors. Xue et al. (2019) found the national population-weighted annual mean PM$_{2.5}$ decreased by 32% in China during 2013–2017. Chen et al. (2019) found that the control of anthropogenic emissions contributed to 80% of the decrease in PM$_{2.5}$ concentration in Beijing 2013–2017. Statistical models, such as the deep neural network model, convergent cross-mapping (CCM) method, and the difference-in-difference (DID) model are other methods to decouple the influencing factors such as meteorology, pollutant emissions (Cobourn et al., 2010; Chen et al., 2018b; Wang et al., 2019a). Vu et al. (2019) found the primary emission controls have led to reductions in PM$_{2.5}$, PM$_{10}$,
NO$_2$, SO$_2$, and CO of about 34%, 24%, 17%, 68%, and 33% during 2013–2017 in Beijing, after meteorological correction.

Most of these studies were either concentrated on the long-term effect evaluation of certain air pollutants or focused on the short-term for one season or one year period. These studies could provide valuable insights into the effectiveness of the Clean Air Action. However, the simulations usually have biases compared with ground observations because of the uncertainties in the emission inventory and the missing mechanisms in models, as well as the heavy workload and massive volume of multiple data. Indeed, it is hard to measure the effectiveness of a policy due to compound factors and inner mechanisms, and the relationships among multiple air pollutants are non-linear related. Therefore, it is necessary to analyze both the spatio-temporal patterns of air pollutants and the influencing factors.

In this study, we compared the effectiveness of the Clean Air Action and the Comprehensive Action against the environmental monitoring data in Beijing during 2013–2019, and analyzed the influencing factors of meteorology, emission reduction, and energy structure. The spatial distribution of six air pollutants in Beijing during 2013–2019 was analyzed by the Kriging interpolation method for the first time. The PCA-MNLR model was applied to estimate the influences of meteorological factors. In comparison with the previous researches, this is the first attempt to integrate investigation of the spatio-temporal patterns of six types of air pollutants and the quantitative simulation of the influencing factors over Beijing during 2013–2019. We hope Beijing's experience could be beneficial for other megacities in the world suffering from similar air pollution problems.

2. Data and methods

2.1. Study area

As the capital, political and cultural center of China, Beijing (39.13°–41.08° N and 115.22°–117.50° E) is located in the northwest part of the North China Plain, surrounded by the northern Yanshan Mountains and the western Taihang Mountains (Fig. 1). Beijing has a typical temperate and monsoonal climate with high humidity
summers and cold, windy, and dry winters. Moreover, Beijing covers a total provincial area of 16,410 km2 with a population of 21.5 million (BSY, 2019). The central urban areas of Beijing include six districts, i.e., Haidian (HD), Chaoyang (CY), Dongcheng (DC), Xicheng (XC), Fengtai (FT), and Shijingshan (STS).

2.2. Data sources

In this study, air quality data was obtained from the Beijing ambient air automatic monitoring system. This system consists of 35 air monitoring stations, including 12 state-controlled stations and 23 city-controlled stations (Fig. 1). The real-time data are released to the public by the Beijing municipal environmental monitoring center (BMEMC) (http://www.bjmemc.com.cn/). The data was downloaded from the websites (https://github.com/tuanvvu and http://beijingair.sinaapp.com/#messy), where the real-time values are recorded. Data from the 35 monitoring stations included the hourly value of air pollutants from January 17th, 2013 to February 29th, 2020, and air quality index (AQI) from January 1st, 2014 to February 29th, 2020. The air pollutants consisted of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$. These pollutants are measured by the Thermo Fisher instrument series, which are calibrated by standard gases every two days (Wang et al., 2015). The measurement method and instrument for each pollutant are shown in Table S1. On the other hand, AQI is a comprehensive index calculated by considering six major pollutants, which could reflect the overall air quality (Zhan et al., 2018; Tian et al., 2019).

The pollutant emission data included the annual mean concentration of SO$_2$, NOx, and dust emissions. The socio-economic data included the annual mean of the permanent population, total energy consumption, gross domestic product (GDP), and vehicle numbers. The energy structure data included the annual means of coal, petroleum, natural gas, and electricity consumption (BSY, 2019). Hourly meteorological data including temperature, relative humidity (RH), wind speed (WS), atmospheric pressure (AP), and visibility (VIS) from January 1st, 2013 to February 29th, 2020, and were downloaded from the website (http://hz.zc12369.com/home/).
2.3. Data analysis

We calculated the AQI daily mean values in 2013 by Eq. (1) and Eq. (2) according to the technical regulations on ambient air quality index (HJ633–2012). The individual air quality index (IAQI) is the air quality index of each air pollutant. AQI and IAQI are dimensionless indexes. The corresponding threshold of each pollutant was presented in Table 1.

\[
IAQI_p = \frac{IAQI_{Hi} - IAQI_{Lo}}{BP_{Hi} - BP_{Lo}} (C_p - BP_{Lo}) + IAQI_{Lo} \tag{1}
\]

\[
AQI = \max\{IAQI_1, IAQI_2, IAQI_3, ..., IAQI_6\} \tag{2}
\]

where \(IAQI_p\) is the index for pollutant \(p\), \(C_p\) is the concentration of pollutant \(p\), \(BP_{Hi}/BP_{Lo}\) is the breakpoint that is greater/less than or equal to \(C_p\), \(IAQI_{Hi}/IAQI_{Lo}\) is the AQI value corresponding to \(BP_{Hi}/BP_{Lo}\). The maximum of the \(IAQI\) is defined by the value of AQI.

Depend on the different extent of human health impacts regulated by Table 2 according to the technical regulations on ambient air quality index (HJ633–2012), AQI is subdivided to different levels of air quality, including the levels of good (AQI: 0–50), moderate (AQI: 51–100), unhealthy for sensitive groups (AQI: 100–150), unhealthy (AQI: 150–200), very unhealthy (AQI: 200–300), and hazardous (AQI: >300).

The daily average, monthly average, seasonal average, and the annual average of air pollutant concentration and AQI were calculated by the arithmetic mean method. The average of 12 state-controlled stations was used to represent the overall air quality of Beijing. The daily average value was obtained by averaging hourly data from 00:00 to 23:00. As some data were missing due to instrument failure or internet error, and some data were considered abnormal, observation for at least 20 hours is required to obtain a daily average concentration of each pollutant for each station. Moreover, at least 27 days and 324 days are required to obtain monthly and annual average concentration, respectively. Otherwise, the invalid data was excluded. All calculations were carried out according to the National Ambient Air Quality Standards (GB3095–2012) (Table 3), technical regulations on ambient air quality index (HJ633–2012).
The concentrations of air pollutants have strong spatial self-aggregation effects, which proved the necessity for regional integration of air quality management (Chen et al., 2019b). For Beijing, the geographical location, land use, and types of the functional zones for monitoring stations are different. To obtain spatial variations of air pollutants in Beijing, we employed geographic information system (GIS) which could facilitate the understanding at spatial perspectives, and conducted the Kriging interpolation method which is a typical statistical algorithm widely applied in geoscience and atmospheric science (Liu et al., 2017; Hu et al., 2019). We applied the Kriging method using ArcGIS 10.2 software to investigate the spatial distribution of air pollutants from 35 monitoring stations in Beijing.

2.4. PCA-MNLR method

In this study, a multiple nonlinear regression (MNLR) method was employed to analyze the relationship between meteorological variables; namely temperature, relative humidity (RH), wind speed (WS), atmospheric pressure (AP), and visibility (VIS), and six air pollutant concentrations variables; namely PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$. The regression model requires a low correlation between variables, otherwise, the multicollinearity will affect the accuracy of the simulation results. Thus, the Principal Component Analysis (PCA) method was used to find patterns in data of high dimension by reducing the dimensionality (Salim et al., 2019; Li et al., 2018). As a simple, quick, and accurate statistical method, the Principal Component Analysis-Multiple Nonlinear Regression (PCA-MNLR) method, or named principal components regression (PCR), was employed by using the MATLAB R2019b software (MathWorks, Natick, MA, USA). PCA-MNLR method has been applied for predicting air pollution by several studies (Tan et al., 2016; Li et al., 2018).

The meteorological factors were set as independent variables, and the air pollutant concentrations were set as dependent variables. Firstly, the described data dependency
by Eq. (3) found strong correlations in most of the dependent variables. Due to the complex natural environment, there are different dimensions between environmental data, such as PM$_{2.5}$ (μg/m3) and temperature (°C). Data were firstly nondimensionalized into proper dimensionless indexes by the Eq. (4).

$$R(X, Y) = \frac{\sum^n_{i=0}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum^n_{i=0}(x_i - \bar{x})^2} \sqrt{\sum^n_{i=0}(y_i - \bar{y})^2}}$$

Eq. (3)

$$z_{ij} = \frac{x_{ij} - \min(x_{ij})}{\max(x_{ij}) - \min(x_{ij})}$$

Eq. (4)

In Eq. (3), where $R(X, Y)$ represents the correlation coefficient between two dependent variables. The closer of $|R(X, Y)|$ to 1, the more correlative between X and Y, and the nearer to 0, the more unobvious correlative between X and Y. In Eq. (4), where i is the year, j is the number index, x_{ij} is the data of j index in i year, $\min(x_{ij})$ is the minimum value of jth index, and $\max(x_{ij})$ is the maximum value of jth index.

The above data was principal component transformed to get the eigenvector matrix Coeff, the score matrix Score (Y), and the eigenvalue matrix latent. After the PCA process, the correlations in dependent variables were checked again. Due to the nonlinear relationship between the influencing factors, a power function was employed to perform the multivariate non-linear regression analysis by Eq. (5), and the natural logarithm of both sides of Eq. (5) were taken by Eq. (6).

$$y = a_0 X_1^{a_1} X_2^{a_2} \cdots X_k^{a_k}$$

Eq. (5)

$$\ln(y) = a_0 + a_1 \ln X_1 + a_2 \ln X_2 + \cdots + a_k \ln X_k$$

Eq. (6)

2.5. Control measures

Based on nearly 20 years of air pollution control, China has issued a series of strong air pollution prevention and control programs and ultimately developed a rich experience in air quality management (UN Environment, 2019). In the APPCAP, as a milestone, the control pollutants changed from the traditional pollutants (SO$_2$, NOx, smoke, and dust) to multiple pollutants including SO$_2$, NOx, primary particulate matter, and volatile organic compounds (VOCs). Non-point source pollution controls had been
greatly strengthened instead of the previous industrial point sources. The key control regions included the Beijing-Tianjin-Hebei (BTH) area, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The APPCAP is for nationwide control while the Clean Air Action is set by Beijing for the local emissions control. Particularly, as the principal action plans for Beijing, the Clean Air Action emphasized the integrated control measures, and the Comprehensive Action focused on the coal-fired emission reductions in autumn and winter that played a dominant role in its air quality improvement during 2013–2019. These measures greatly reduced coal-fired emissions. The major control measures of these two action plans are given in Table 4.

3. Results

3.1. Trends of AQI

During 2013–2019, the overall air quality in Beijing has improved dramatically, with the annual mean AQI decreasing year by year (Fig. 2). The proportion of meeting-standard days (AQI < 100) increased from 48.4% to 66.8%, and heavy pollution days (AQI > 200) decreased from 15.4% to 1.1%. During these seven years, the number of good air quality days had the most significant increase (111.7%), followed by moderate air quality days (16.9%) and unhealthy for sensitive (5.8%) in descending order. In association with these increases, hazardous days had the greatest decrease, falling from 14 days to zero, followed by very unhealthy days (90.6%) and the unhealthy days (40.7%).

Fig. 3 shows the time-series of the daily average of AQI. In northern China, heavy pollution days mostly happen in autumn and winter due to the central heating (Qiu et al., 2017). After the Clean Air Action implemented in 2013, the heavy air pollution days decreased in spring (4.1%), summer (70%), and autumn (6.6%) during 2013–2016, while the heavy air pollution days increased by 44.8% in winter. After the stringent control measures of the Comprehensive Plan implemented in autumn 2017, the daily value of AQI had a dramatic decrease (shown by the red circles in Fig. 3). During 2016–2017, heavy pollution days dramatically decreased by 88% in winter and 78.6% in autumn, and the meeting-standard days increased by 57.0% in winter and 32.4% in
autumn. Therefore, compared to the Clean Air Action, the Comprehensive Action is more effective in reducing the heavy pollution days in the heating seasons.

3.2. Trends of air pollutants

Between 2013 and 2019, the annual mean concentration of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO decreased by 53.1%, 37.1%, 84.9%, 33.9%, and 58.8%, respectively, while O$_3$ slightly increased by 4.1% in Beijing (Table 5). During the past seven years, SO$_2$ had the greatest decrease, followed by CO, PM$_{2.5}$, PM$_{10}$, and NO$_2$ in descending order. However, O$_3$ increased in 2013–2015 and then decreased after 2016; the annual average of O$_3$ in 2019 was still higher than in 2013. Compared to the National Ambient Air Quality Standard II, the annual mean concentrations of SO$_2$ and CO in 2019 were much lower than the standard, and NO$_2$ and PM$_{10}$ were 7.5% and 2.9% lower than the standard, which was the first time the standard was reached in recent years. However, PM$_{2.5}$ and O$_3$ were still 20.0% and 19.4% higher than the standard, respectively. In conclusion, under the implementation of the Clean Air Action and the Comprehensive Action from 2013 to 2019, the reductions of SO$_2$ and CO were very significant, but a complicated type of compound PM$_{2.5}$ and O$_3$ pollution emerged (Jin et al., 2016).

Fig. 4 shows the trends in the daily average, monthly average, and seasonal average of air pollutants. The concentrations of PM$_{2.5}$ were higher in autumn and winter than in spring and summer. The seasonal distributions of PM$_{10}$, SO$_2$, NO$_2$, and CO were approximately similar to PM$_{2.5}$. Typically, air pollution is worse in autumn and winter, while air quality is relatively better in summer over this region (Zhang et al., 2018). Thus, the seasonal characteristics of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO showed a single valley distribution with the minimum appeared in summer. However, O$_3$ had a different seasonal variation compared to other pollutants, with higher concentrations in summer and spring, and lower concentrations in autumn and winter, which often showed as a single peak distribution with the maximum appeared in summer. The concentration of SO$_2$ and CO decreased significantly in autumn and winter, which were close to the values in spring and summer, so the trend in the seasonal distributions of SO$_2$ and CO tended to be flat. However, the trends in PM$_{2.5}$, PM$_{10}$, NO$_2$, and O$_3$ still fluctuated...
throughout the whole year.

3.3. Temporal and spatial distribution of air pollutants in heating and non-heating periods

Before the Clean Air Action, the heat supply in Beijing was mainly by coal-fired boilers, and the coal consumption was usually higher in the heating period, which could directly aggravate haze pollution. After the implementation of the Clean Air Action, the clean energy alternatives such as coal-to-gas or coal-to-electricity gradually took over the coal-fired boilers in the heating seasons (Xu and Ge, 2020). To compare the coal consumption in the heating seasons of these two action plans, the research period was divided into two stages, including stage I (between the Clean Air Action and the Comprehensive Action) and stage II (after the Comprehensive Action).

At stage I, the concentrations of PM$_{2.5}$, PM$_{10}$, SO$_2$, CO, and NO$_2$ in the heating period remained much higher than in the non-heating period, while these concentrations significantly declined at stage II (Fig. 5). Compared to 2016, PM$_{2.5}$, PM$_{10}$, SO$_2$, CO, and NO$_2$ in the heating period of 2017 had decreased by 48.5%, 39.4%, 47.7%, 46.3%, and 29.7%, respectively (Fig. S1). Especially in 2017, PM$_{2.5}$ and PM$_{10}$ in the heating period were 10.3% and 17.0% lower than in the non-heating period (Fig. S1). These decreases were substantially related to the changing levels of coal consumption in the heating seasons after the implementation of the Comprehensive Action. Decreasing emissions from the coal-burning section are the key factor to control pollution during the heating season (Qiu et al., 2017). Unlike other pollutants, the concentrations of O$_3$ were much higher in the non-heating period. At stage II, O$_3$ even increased in both the heating period and the non-heating period. In summary, haze pollutions dominated by particulate matter were controlled effectively, especially in the heating seasons, but photochemical pollutions dominated by O$_3$ became increasingly prominent.

The vehicle emissions are always higher in the central urban areas with high traffic density, and have no seasonal variations, while the coal-fired emissions tend to display a seasonal variation with higher concentrations in the heating period. As Fig. 6 shows, the spatial distributions of coal-fired pollutants including PM$_{2.5}$, PM$_{10}$, SO$_2$, and CO
were similar. These pollutants had higher concentrations in the southern and central urban areas and relatively lower concentrations in the northern regions, which is related with the regional transportation from the southern areas of Beijing (Zheng et al., 2015; Zhang et al., 2017). However, NO$_2$ and O$_3$ had different distribution patterns. The serious NO$_2$ pollution in the heating period was related to the extra coal-fired emission source from heat supply, while in the non-heating period the source of NO$_2$ mostly came from vehicle emissions. At stage I, the concentrations of NO$_2$ were high in central urban areas in the non-heating period, and then the high NO$_2$ regions became wider in the heating period, with a distribution in the southern and central urban areas, which are mainly due to the extra coal consumption for central heating. At stage II, the high NO$_2$ regions were still centered in the central urban areas with high traffic density, but became much more constrained than stage I. This change was particularly obvious in the heating period. Therefore, the decrease in NO$_2$ was mainly due to the reduction of NOx from coal-fired emissions in the heating seasons.

Unlike other pollutants, the concentrations of O$_3$ in the non-heating period were higher than in the heating period. After the strict implementation of the Comprehensive Plan, the concentrations of O$_3$ increased further, especially in central urban areas during the non-heating period of stage II. In the lower atmosphere, O$_3$ is a secondary pollutant formed by the photochemical reaction of its precursors including organics like methane, volatile organic compounds (VOCs), and non-methane volatile organic compounds (NMVOCs), CO, and NOx. (Tao et al., 2016). To only focus on NOx emission reduction may not work or even aggravate O$_3$ pollution, VOCs-targeted control is a more practical and feasible way (Wang et al., 2019b). However, the control of VOCs is difficult due to its non-organizational emissions, and the relationships between O$_3$ and its precursors are non-linear, making the control of O$_3$ more challenging. In addition, the concentrations of O$_3$ were higher in the suburb areas than in the traffic-related central urban areas. Affected by vehicle emissions, the high concentrations of NO and NO$_2$ promote the reaction of O$_3$ with NO ($O_3 + NO \rightarrow NO_2 + O_2$) that frequently happens in the urban area in summer, which consumes ozone (Wang et al., 2014). There is also the terrestrial vegetation cover that is also regarded as an important source of VOCs,
which could promote O_3 formation in the suburb areas and affect the distribution of O_3 (Maji et al., 2019).

4. Discussion

4.1. Impact of meteorological conditions on air pollutants

The concentrations of air pollutants are closely related to meteorological conditions (Nguyen et al, 2019; Zhang et al., 2019c; Chen et al., 2018a). An important aspect in assessing air quality improvement is to consider the impact of meteorology (Chen et al., 2017; Vu et al., 2019). Beneficial weather conditions with stronger wind speed, higher local mixing layer heights (MLHs) could favour the dispersion of pollutants, while adverse weather conditions with higher relative humidity, lower wind speed, less rainfall, and more inversions, could aggravate air pollution conditions (Xu et al., 2020).

The meteorological factors were estimated by the PCA-MNLR model. Fig. 7 shows the time-series variation of the meteorological normalized concentrations and the observed concentrations of air pollutants during 2013–2019 in Beijing. By comparing the results of observation and simulation, it indicated that the PCA-MNLR model could reproduce the temporal distribution of air pollutants relatively well (R^2: 0.73–0.82). The meteorological normalized values (red line) had regular variations, which were similar to the observation results (black line). During 2013–2016, the meteorological normalized values of SO_2 and CO were just lower than the observed values, which indicated that the real meteorological condition was more significant and this could aggravate the SO_2 and CO pollution. However, after the implementation of the Comprehensive Plan, the meteorological normalized values of SO_2 were higher than the observed values, and the simulation and observation values of CO were close. This was mainly due to the more beneficial weather condition favoring the dispersion of air pollutants. Furthermore, SO_2 and CO had the most significant decreases over the seven years. Previous studies have indicated that, compared with 2013, the meteorological conditions worsened in 2014 and 2015 and improved in 2016 and 2017 (Zhang et al., 2019c). Thus, the beneficial weather conditions in 2017 and afterwards helped the dispersion of pollutants and promoted air quality improvement.
However, this variation pattern was not so consistent with PM$_{2.5}$ and PM$_{10}$. The differences between the stimulation and observation values of the particles were not so similar as the variation of meteorology. The influencing factors in the concentration of PM$_{2.5}$ and PM$_{10}$ are more complicated, and only considering the relationship between several meteorological conditions and air pollutants is insufficient. Moreover, the meteorological normalized O$_3$ and NO$_2$ concentrations were always lower than the observation results, which were different compared to other pollutants. One of the reasons is that the influence of the meteorological factor was different for O$_3$ and NOx, and the interactions between O$_3$/NOx and other air pollutants were more complicated. The different meteorological conditions could not completely explain the difference between the observation and simulation values, as previous analyses had indicated that the meteorology contributed about 12.1%–31% of the total PM$_{2.5}$ reduction in Beijing (Zhang et al., 2019c; Cheng et al., 2019a; Cheng et al., 2019b). Although the meteorological conditions significantly influenced the concentration of air pollutants, the dominant factor driving this decrease was still the emission reductions made by strict control measures (Chen et al., 2019a).

In addition, we compared the annual mean concentrations of air pollutants after the meteorological normalization by this study and other references in Table S2. Moreover, the PCA-MNLR results and other WRF-CMAQ modeling results by Cheng et al. (2019a) were compared by the monthly concentrations (Fig. 8). The correlation coefficients between monthly values by PCA-MNLR model was 0.84, while it was 0.78 for the WRF-CMAQ study. The difference between the monthly observation and the simulation values of PM$_{2.5}$ ranged from 0.3% to 23% with an average 10.3% difference by PCA-MNLR. In contrast, the deviation changed to 3%–33.6% with an average of 10.3% for the WRF-CMAQ study.

Fig. 9 shows the score plot of the two principal components. The score plot could help to elucidate the distribution of the observations and reveal the relative relationship between data points. Theoretically, on the score plot, closer distribution means similar behavior between samples (Camacho, 2014). In Fig. 9, each point represented the score status of each day considering both the meteorological factors and air pollutant
concentrations. During 2013–2016, the daily meteorological normalized values of some
days in autumn and winter were still high (the high x-axis value in Fig. 9), which
represented heavy pollution days especially happened in winter. The x-axis values of
scores significantly decreased year by year. Especially after 2017, the number of high
values points gradually decreased with a reduction in x-axis value. The data points in
2019 were already close to the y-axis with low x-axis values, indicating the significant
decrease of heavy pollution days in the whole year and the improvement of air quality
in Beijing.

4.2. Impact of emission reduction on air pollutants

The emission reductions in response to intensified control measures greatly affect
the ambient air concentrations (Chen et al., 2019a; Cheng et al., 2019b). Fig. 10 shows
the variations of SO$_2$, NOx, and dust emissions during 2010–2018 in Beijing. The
primary emissions of SO$_2$ and dust decreased especially after 2017, while NOx
emission was still high although the range decreased. With these decreases, the
concentrations of SO$_2$ decreased most, PM$_{2.5}$ and PM$_{10}$ decreased significantly,
especially after the implementation of the Comprehensive Action, while the decreasing
range of NO$_2$ was much less than that of SO$_2$. SO$_2$ is mainly emitted from the coal-fired
source, while NO$_2$ from both coal-fired and vehicle sources (Meng et al., 2018). The
coil-fired emission control measures were in line with the emission reduction of SO$_2$
but they were not with NO$_2$. One of the reasons is that NOx sourced from vehicle
emissions were not effectively controlled, mainly due to the less effective control
measures on vehicle emissions, such as traffic restrictions (Wang et al., 2019d; Sun et
al., 2018; Fontes et al., 2018; Zhang et al., 2020). Meanwhile, the reductions of PM$_{2.5}$
and PM$_{10}$ were mainly due to the result of coal-fired control measures (Cheng et al.,
2019a). Moreover, the decrease of PM$_{10}$ was less than PM$_{2.5}$, which was mainly due to
the natural sources including the spring dust storms from the desert areas in north and
northwest of China (Liu et al., 2014; Li et al., 2017).
4.3. Impact of energy structure variation on air pollutants

The energy support of China mainly relies on fossil fuels, including coal, petroleum, and natural gas. The previous energy structure was dominated by coal, which was mainly due to the small volume and difficult utilization of other energy types, and the costly development of renewable energy (Ji et al., 2019). With continuous air pollution control strategies, the energy consumption structure of Beijing was optimized, with coal consumption decreased 86.8% and natural gas increased 87.9% during 2013–2018 (Fig. 11a). Meanwhile, the socio-economic development had a stable growth with a significant increase in the vehicle population, GDP, total energy consumption, and a notable decrease in major air pollutant concentrations (Fig. 11b). Such an optimized energy structure played an important role in the air quality improvement in Beijing especially by the decrease of coal-fired consumption.

4.4. A comparison of air quality in Beijing with other megacities

Beijing’s air quality has been gradually improved in recent years, but the current air pollution levels are still severe. Fig. 12 shows the comparison of PM$_{2.5}$ concentration in Beijing with Shanghai, Shenzhen, and other capital cities around the world. The annual average concentration of PM$_{2.5}$ in Beijing is still much higher than in other capital cities of developed countries, such as Washington DC, London, and Wellington, and other Asian cities, such as Tokyo and Seoul. Meanwhile, the PM$_{2.5}$ concentration of Beijing is also higher than in Chinese domestic cities, such as Shanghai and Shenzhen. However, the PM$_{2.5}$ concentration in Beijing is lower than some cities in developing countries, such as Delhi and Kabul. According to the national standard limit for PM$_{2.5}$, the moderate air quality level set at 75 μg/m3 might be relatively high, only being close to the initial transition standard of the WHO. Many studies have proved that the concentration of PM$_{2.5}$ at 35–75 μg/m3 could still be harmful to the human body (Di et al., 2017). As the stricter environmental regulations have led to low levels of pollution (Wang et al., 2019a), the air quality standard should be upgraded to maintain a better air quality with a safer PM$_{2.5}$ level. Hence, the control of PM$_{2.5}$ should be intensified depending on a stricter standard. Although O$_3$ has recently become one of
the primary pollutants in Beijing (Beijing Ecology and Environment Statement, 2019),
the concentration limit of O$_3$ is almost in accordance with the international standards
(Table 3). Thus, O$_3$ keeps a low over-standard level when compared to PM$_{2.5}$. Therefore,
we should continue to control PM$_{2.5}$ pollution by cutting coal consumption, and
strengthen motor vehicle control to mitigate NO$_2$ and O$_3$ pollution. The combined
control of PM$_{2.5}$ and O$_3$ is the key for future air pollution control (Xiang et al., 2020).

5. Conclusions

In this study, the air quality improvement under the Clean Air Action and the
Comprehensive Action were assessed by the air monitoring data, and the influencing
factors including meteorology, pollutant emissions, and energy structure were discussed.
(1) The air quality of Beijing had obvious improvements during 2013–2019, with the
most increases in good air quality days and the most decreases in hazardous air quality
days. The concentration of SO$_2$ decreased most, followed by CO, PM$_{2.5}$, PM$_{10}$, and NO$_2$
in descending order, except O$_3$ showed a variable increase.
(2) The Comprehensive Action has been more effective in reducing heavy pollution
days in winter, and largely reduced the concentrations of coal-fired air pollutants in
heating seasons. In 2017, PM$_{2.5}$ and PM$_{10}$ in the heating period were even lower than
those in the non-heating period.
(3) PM$_{2.5}$, PM$_{10}$, SO$_2$, and CO concentrations were higher in the southern and central
urban areas. The high NO$_2$ regions became more constrained after the Comprehensive
Action, mainly due to the reduction of NOx from coal-fired emissions. However, the
O$_3$ concentrations were higher in the suburb areas than those in the central urban areas.
(4) The meteorological normalized values of SO$_2$ and CO were lower than the
observation data during 2013–2016, and after 2017 these values became higher, which
indicated beneficial weather conditions in 2017 and afterwards. But the variation
pattern was not as consistent with the changes of PM$_{2.5}$, PM$_{10}$, NO$_2$, and O$_3$, which
indicated that the meteorology could not completely explain the difference between the
observation and simulation. The decrease of SO$_2$ and dust emissions achieved a
significant decrease in SO$_2$, PM$_{2.5}$, and PM$_{10}$, while NOx only had a slight decrease to
get a less decrease in NO\textsubscript{2}. The significant reduction of coal-burning played a dominant role in improving Beijing's air quality.

(5) Beijing's air quality management experiences could guide other developing countries in coping with similar air pollution problems.

Acknowledgement

This study is supported by the National Natural Science Foundation of China (Grant No. 41175109) and its project for International Cooperation and Exchanges (Grant No. 41571130031), the National Basic Research Program of China (Grant No. 2013CB228503), Beijing Municipal Science & Technology Commission (No. Z181100005418015), and the Yueqi Scholar funds of China University of Mining and Technology (Beijing). All authors declare that they have no competing financial interests.

References

trends in air quality in Beijing. Landscape and Urban Planning. 185, 35–43.

https://doi.org/10.5194/acp-19-11303-2019.

10.4209/aaqr.2018.05.0187.

10.13671/j.hjkxxb.2014.0798.

Figures
Figure 1 The distribution map of automatic air quality ground monitoring stations in Beijing.
Figure 2 The distributions of days under different air quality levels and the annual mean of AQI in Beijing.
Figure 3 Time-series of the daily average of AQI in Beijing.
Figure 4 Time-series of the daily, monthly, and seasonal concentrations of (a) PM$_{2.5}$, (b) PM$_{10}$, (c) SO$_2$, (d) CO, (e) NO$_2$, (f) O$_3$ between January 2013 and February 2020 in Beijing.
Figure 5 The concentration of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$ in the heating period and the non-heating period at stage I and stage II in Beijing.
Figure 6 Spatial distributions of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$ in the heating period and the non-heating period at stage I and stage II in Beijing.
Figure 7 Comparison of observed (black line) and simulated (red line) monthly average of (1) PM$_{2.5}$, (2) PM$_{10}$, (3) SO$_2$, (4) NO$_2$, (5) CO, and (6) O$_3$ in Beijing.
Figure 8 Comparison of the stimulated monthly average concentration of PM$_{2.5}$ by PCA-MNLR and WRF-CMAQ (Cheng et al., 2019x).
Figure 9 The score plot of PC1 and PC2 by the PCA method.
Figure 10 The variations of air pollutant emission during 2010–2018 in Beijing.
Figure 11 The variations of (a) energy consumption structure, and (b) socio-economic in Beijing, 2010–2018.
Figure 12 The comparison of the annual mean concentration of PM$_{2.5}$ in different capital cities worldwide in 2013 and 2018.

Tables
Table 1 Sub-index of air pollutants and the corresponding concentration limits of different AQI levels.
Table 2 The different levels of AQI values and the corresponding health implications and cautionary statement.
Table 3 Air quality standards for air pollutants set by the Chinese government and other countries. Table 4 The major control measures of the Clean Air Action and the Comprehensive Action.
Table 5 Annual mean concentration of air pollutants in Beijing.
Table 6 A comparison of the annual mean concentrations of air pollutants after the meteorological normalization from this study and other references.

Note: Some explanations and descriptions of the above figures and tables were added after their titles. Please see the detailed text below.
Fig. 1. The distribution map of automatic air quality ground monitoring stations in Beijing.

Fig. 2. The distributions of days under different air quality levels and the annual mean of AQI in Beijing. Meet-standard days include good air quality days and moderate air quality days, and heavy pollution days include very unhealthy days and hazardous days. Note: the annual mean of AQI decreased yearly, good air quality days increased most, and hazardous days decreased most.
Fig. 3. Time-series of the daily average of AQI in Beijing. Please note that the red circled areas refer to autumn and winter in 2017 where the daily values of AQI had a significant decrease.

Fig. 4. Time-series of the daily, monthly, and seasonal concentrations of (a) PM$_{2.5}$, (b) PM$_{10}$, (c) SO$_2$, (d) CO, (e) NO$_2$, (f) O$_3$ between January 2013 and February 2020 in Beijing. Grey colors in the background refer to autumn (September to November) and winter (December to February), and light colors refer to spring (March to May) and summer (June to August). Note: SO$_2$ and CO decreased obviously and tended to be flat, and PM$_{2.5}$, PM$_{10}$, and NO$_2$ decreased but still fluctuated, while O$_3$ increased with a different seasonal distribution compared to other pollutants.
Fig. 5. The concentration of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$ in the heating period and the non-heating period at stage I and stage II in Beijing. The heating period is from November 15 to March 15, and the non-heating period is from March 16 to November 14. Note: At stage I, the air pollutant concentration was higher in the heating period, but at stage II these decreased dramatically, PM$_{2.5}$ and PM$_{10}$ were lower in the heating period. However, O$_3$ was increased in both the heating and non-heating period.
Fig. 6. Spatial distributions of PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, CO, and O$_3$ in the heating period and the non-heating period at stage I and stage II in Beijing. The numbers above each picture signify the average value (outside) and variation range (inside the bracket). Note: air pollutants decreased significantly in the heating period at stage II. O$_3$ had a different changing pattern and increased at stage II. The southern region had a more serious pollution situation.
Fig. 7. Comparison of observed (black line) and simulated (red line) monthly average of (1) PM$_{2.5}$, (2) PM$_{10}$, (3) SO$_2$, (4) NO$_2$, (5) CO, and (6) O$_3$ in Beijing. Note: the meteorological normalized values of major air pollutants were lower during 2013–2016, but these values became higher than the observed values after 2017, which indicated the more beneficial weather conditions in 2017.

Fig. 8. Comparison of the stimulated monthly average concentration of PM$_{2.5}$ by PCA-MNLR (this study) and WRF-CMAQ (Cheng et al., 2019a).
Fig. 9. The score plot of PC1 and PC2 by the PCA method. Note: The PCs dots had descending x-axis values, indicating the significant decrease of heavy pollution days after 2017.

Fig. 10. The variations of air pollutant emission during 2010–2018 in Beijing. Data came from the Beijing Statistical Yearbooks (BSY, 2019). Unit: 10,000 tons. Note: SO$_2$ and dust emissions decreased gradually, while NOx emission had a fluctuant decrease.
Fig. 11. The variations of (a) energy consumption structure, and (b) socio-economic in Beijing, 2010–2018. Data came from the Beijing Statistical Yearbooks (BSY, 2019). Unit: 10,000 tons of SCE for (a) energy consumption structure; 10,000 units for vehicle population, 100 billion yuan for GDP, μg/m³ for PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and O$_3$. Note: Coal consumption decreased significantly, with steady socio-economic growth and gradual air pollutants decrease.

Fig. 12. The comparison of the annual mean concentration of PM$_{2.5}$ in different capital cities worldwide in 2013 and 2018. Data came from a World Health Organization report (WHO Report). Note: PM$_{2.5}$ of Beijing is still higher than some capital cities of developed countries, some Asian cities, and some domestic cities, and also is lower than some cities of developing countries.
Table 1
Sub-index of air pollutants and the corresponding concentration limits of different AQI levels.
Unit: μg/m³ for all air pollutants, except CO (mg/m³).

<table>
<thead>
<tr>
<th>IAQI</th>
<th>PM_{2.5}^{24h}</th>
<th>PM_{10}^{24h}</th>
<th>SO_{2}^{24h}</th>
<th>NO_{2}^{24h}</th>
<th>O_{3}^{8h}</th>
<th>CO^{1h}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>35</td>
<td>50</td>
<td>50</td>
<td>150</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>150</td>
<td>150</td>
<td>500</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>150</td>
<td>115</td>
<td>250</td>
<td>475</td>
<td>650</td>
<td>180</td>
<td>700</td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td>350</td>
<td>800</td>
<td>800</td>
<td>280</td>
<td>1200</td>
</tr>
<tr>
<td>300</td>
<td>250</td>
<td>420</td>
<td>1600</td>
<td>-</td>
<td>565</td>
<td>2340</td>
</tr>
<tr>
<td>400</td>
<td>350</td>
<td>500</td>
<td>2100</td>
<td>-</td>
<td>750</td>
<td>3090</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>600</td>
<td>2620</td>
<td>-</td>
<td>940</td>
<td>3840</td>
</tr>
</tbody>
</table>

1 the daily average of PM_{2.5}, PM_{10}, SO_{2}, NO_{2} and CO is used in daily evaluation;
2 the hourly average of SO_{2}, NO_{2}, O_{3} and CO is only used in the hourly evaluation. When the hourly average of SO_{2} exceeds 800 μg/m³, the hourly IAQI will not be calculated and the daily concentration should be used instead.
3 when the 8 hour average of O_{3} exceeds 800, the 8-hour IAQI will not be calculated and the hourly concentration should be used instead.
Table 2

The different levels of AQI values and the corresponding health implications and cautionary statement.

<table>
<thead>
<tr>
<th>AQI values</th>
<th>AQI levels</th>
<th>Air quality level</th>
<th>Health implications</th>
<th>Cautionary statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–50</td>
<td>I</td>
<td>Good</td>
<td>Air quality is considered satisfactory, and air pollution poses little or no risk.</td>
<td>Everyone can do normal activities.</td>
</tr>
<tr>
<td>51–100</td>
<td>II</td>
<td>Moderate</td>
<td>Air quality is acceptable; however, some pollutants may have a moderate health concern for a very small number of people with abnormal sensitivity.</td>
<td>A very small number of people with abnormal sensitivity should limit outdoor exertion.</td>
</tr>
<tr>
<td>101–150</td>
<td>III</td>
<td>Unhealthy for sensitive groups</td>
<td>Members of sensitive groups may have a mild increase in symptoms. The general public may experience irritation symptoms.</td>
<td>Children, the elderly, and people with heart and respiratory disease should limit prolonged and intense outdoor exertion.</td>
</tr>
<tr>
<td>151–200</td>
<td>IV</td>
<td>Unhealthy</td>
<td>Members of sensitive groups may have further aggravated symptoms. The general public may experience an impact on the heart and respiratory symptoms.</td>
<td>Children, the elderly, and people with heart and respiratory disease should limit prolonged and intense outdoor exertion; everyone else should properly limit outdoor exertion.</td>
</tr>
<tr>
<td>201–300</td>
<td>V</td>
<td>Very unhealthy</td>
<td>Patients with heart and lung disease may have significantly increased symptoms and decreased exercise tolerance. The general public may widely experience symptoms.</td>
<td>Children, the elderly, and people with heart and lung disease, should stay indoors and stop outdoor exertion; everyone else should limit outdoor exertion.</td>
</tr>
<tr>
<td>>300</td>
<td>VI</td>
<td>Hazardous</td>
<td>The general public may have decreased exercise tolerance and obvious strong symptoms and may have some diseases in advance.</td>
<td>Children, the elderly, and patients should stay indoors and avoid physical exertion; everyone else should avoid outdoor exertion.</td>
</tr>
</tbody>
</table>
Table 3

Air quality standards for air pollutants set by the Chinese government and other countries.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Time</th>
<th>China I</th>
<th>China II</th>
<th>WHO 2006</th>
<th>USA I</th>
<th>USA II</th>
<th>European Union</th>
<th>Japan</th>
<th>South Korea</th>
<th>India</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ (µg/m3)</td>
<td>yearly</td>
<td>15</td>
<td>35</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>25</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>daily</td>
<td>35</td>
<td>75</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>50</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>PM$_{10}$ (µg/m3)</td>
<td>yearly</td>
<td>40</td>
<td>70</td>
<td>20</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>50</td>
<td>60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>daily</td>
<td>50</td>
<td>150</td>
<td>50</td>
<td>150</td>
<td>150</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>SO$_2$ (µg/m3)</td>
<td>yearly</td>
<td>20</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.022</td>
<td>50</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>daily</td>
<td>50</td>
<td>150</td>
<td>20</td>
<td>-</td>
<td>125</td>
<td>0.042</td>
<td>80</td>
<td>0.082</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>150</td>
<td>500</td>
<td>-</td>
<td>752</td>
<td>0.053,4</td>
<td>300</td>
<td>0.12</td>
<td>0.152</td>
<td>-</td>
<td>0.22</td>
</tr>
<tr>
<td>NO$_2$ (µg/m3)</td>
<td>yearly</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>533</td>
<td>533</td>
<td>40</td>
<td>-</td>
<td>0.032</td>
<td>40</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>daily</td>
<td>80</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>0.062</td>
<td>80</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>1003</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>0.12</td>
<td>-</td>
<td>0.122</td>
</tr>
<tr>
<td>CO (mg/m3)</td>
<td>1 day</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>102</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8 hours</td>
<td>10</td>
<td>92</td>
<td>-</td>
<td>10</td>
<td>202</td>
<td>92</td>
<td>2</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>10</td>
<td>10</td>
<td>30</td>
<td>352</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>252</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>O$_3$ (µg/m3)</td>
<td>8 hours</td>
<td>100</td>
<td>160</td>
<td>100</td>
<td>0.072</td>
<td>0.072</td>
<td>120</td>
<td>-</td>
<td>0.062</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4 hours</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 hour</td>
<td>160</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>0.12</td>
<td>180</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

1 China I is the first-level concentration limit of China national ambient air quality standards (NAAQS-I), suitable for the ecologically sensitive areas, tourist attractions, and other areas required special protection. China II is the second-level concentration limit of China national ambient air quality standards (NAAQS-II), suitable for industrial, residential, rural, and other areas.

2 units refer to parts per million (ppm).

3 units refer to parts per billion (ppb).

4 the average value of 3 hours.

Table 4

The major control measures of the Clean Air Action and the Comprehensive Action. A refers to the Clean Air Action, and B refers to the Comprehensive Action. This classification of pollution sources is depended on the classification in the source apportionment from Beijing Ecology and Environmental Statement 2018.

<table>
<thead>
<tr>
<th>Action</th>
<th>Pollution source</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coal-fired emissions</td>
<td>(1) Adjust and optimize the energy structure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Utilize clean coal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Increase clean energy alternatives such as coal-to-gas or coal-to-electricity, and increase clean energy sources such as hydropower, wind power, and solar energy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Renovate or eliminate coal-fired boilers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) Improve energy efficiency.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) Eliminate civil bulk coal consumption.</td>
</tr>
<tr>
<td>A</td>
<td>Industrial emissions</td>
<td>(1) Adjust industrial structure, optimize the industrial layout, and promote industrial upgrade.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Rectify polluting businesses and enterprises.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Eliminate or upgrade industries with excessive, backward, and polluting industries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Reduce volatile organic compounds (VOCs) emission.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) Promote cleaner production (CP).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) Accelerate the technological transformation and improve innovation capability.</td>
</tr>
<tr>
<td>A</td>
<td>Vehicle emissions</td>
<td>(1) Make strict standards for new vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Retrofit in-use vehicles, eliminate "yellow-labeled" vehicles, and retire old vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Improve fuel quality and develop new energy vehicles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Optimize traffic structure.</td>
</tr>
<tr>
<td>A</td>
<td>Dust emissions</td>
<td>(1) Increase the quality and frequency of the road cleaning process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Shut down concrete mixing plants and update cinder block transporters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Make an afforestation project.</td>
</tr>
<tr>
<td>A</td>
<td>Other measures</td>
<td>(1) Improve environmental law, regulation system, and economic policy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Enhance atmospheric environmental supervision capability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Establish regional coordination mechanisms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Monitor emergency response systems to deal with heavy pollution events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) Mobilize public participation.</td>
</tr>
<tr>
<td>B</td>
<td>Coal-fired emission</td>
<td>(1) Partial halt production in the steel industry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Full halt production in the building material industries, and optimization of production control in the nonferrous chemical industries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Full halted production in the cement powder stations during the heavy pollution emergency period.</td>
</tr>
<tr>
<td>B</td>
<td>Others</td>
<td>Other measures carried out are according to the “Clean Air Action”.</td>
</tr>
</tbody>
</table>
The annual mean concentration of air pollutants in Beijing. Data came from Beijing's ecology and environment statement.

<table>
<thead>
<tr>
<th>Year</th>
<th>PM$_{2.5}$ (μg/m3)</th>
<th>PM$_{10}$ (μg/m3)</th>
<th>SO$_2$ (μg/m3)</th>
<th>CO-24h (mg/m3)</th>
<th>NO$_2$ (μg/m3)</th>
<th>O$_3$-8h (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>89.5</td>
<td>108.1</td>
<td>26.5</td>
<td>3.4</td>
<td>56.0</td>
<td>183.4</td>
</tr>
<tr>
<td>2014</td>
<td>85.9</td>
<td>115.8</td>
<td>21.8</td>
<td>3.2</td>
<td>56.7</td>
<td>197.2</td>
</tr>
<tr>
<td>2015</td>
<td>80.6</td>
<td>101.5</td>
<td>13.5</td>
<td>3.6</td>
<td>50.0</td>
<td>202.6</td>
</tr>
<tr>
<td>2016</td>
<td>72.6</td>
<td>92.0</td>
<td>10.0</td>
<td>3.2</td>
<td>48.0</td>
<td>199.0</td>
</tr>
<tr>
<td>2017</td>
<td>58.0</td>
<td>84.0</td>
<td>8.0</td>
<td>2.1</td>
<td>46.0</td>
<td>193.0</td>
</tr>
<tr>
<td>2018</td>
<td>51.0</td>
<td>78.0</td>
<td>6.0</td>
<td>1.7</td>
<td>42.0</td>
<td>192.0</td>
</tr>
<tr>
<td>2019</td>
<td>42.0</td>
<td>68.0</td>
<td>4.0</td>
<td>1.4</td>
<td>37.0</td>
<td>191.0</td>
</tr>
<tr>
<td>NAAQS II</td>
<td>35.0</td>
<td>70.0</td>
<td>60.0</td>
<td>4.0</td>
<td>40.0</td>
<td>160.0</td>
</tr>
</tbody>
</table>
Supplement of

Air quality improvement in response to intensified control strategies in Beijing during 2013–2019

CONTENTS

Figures: Figure S1
Figure S1 The concentration of (a) PM$_{2.5}$, (b) PM$_{10}$, (c)SO$_2$, (d) CO, (e) NO$_2$, (f) O$_3$ in the heating period and the non-heating period during 2013–2019 in Beijing.

Tables: Table S1 to Table S2
Table S1 The measurement method and instrument of each pollutant.
Table S2 A comparison of the annual mean concentrations of air pollutants after the meteorological normalization from this study and other references.
Fig. S1. The concentration of (a) PM$_{2.5}$, (b) PM$_{10}$, (c)SO$_2$, (d) CO, (e) NO$_2$, (f) O$_3$ in the heating period and the non-heating period during 2013–2019 in Beijing. Note: The concentrations of pollutants in the heating period decreased yearly, especially after 2017, except O$_3$. The data of this study included January 2013 to February 2020, which didn’t cover the heating period of 2019. For that reason, the heating period and the non-heating period of 2019 were not compare in this figure.
Table S1

The measurement method and instrument of each pollutant. Note: Calibrations were strictly adhered according to Technical specifications for operation and quality control of ambient air quality continuous automated monitoring system for SO\(_2\), NO\(_2\), O\(_3\), and CO (HJ 808-2018) and particulate matter (HJ 817-2018).

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Method</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM(_{2.5})</td>
<td>Tapered element oscillating microbalance (TEOM)</td>
<td>Thermo Fisher 1405F</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>Tapered element oscillating microbalance (TEOM)</td>
<td>Thermo Fisher 1400</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>Ultraviolet fluorescence method</td>
<td>Thermo Fisher 43i</td>
</tr>
<tr>
<td>NO/NO(_2)/NO(_x)</td>
<td>Chemiluminescence (CL) method</td>
<td>Thermo Fisher 42C</td>
</tr>
<tr>
<td>CO</td>
<td>Gas filter infrared absorption method</td>
<td>Thermo Fisher 48C</td>
</tr>
<tr>
<td>O(_3)</td>
<td>Ultraviolet spectrophotometry method</td>
<td>Thermo Fisher 49C</td>
</tr>
</tbody>
</table>
Table S2

A comparison of the annual mean concentrations of air pollutants after the meteorological normalization from this study and other references.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Year</th>
<th>Obs.</th>
<th>Sim.</th>
<th>Others</th>
<th>Year</th>
<th>Obs.</th>
<th>Sim.</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$ (μg/m3)</td>
<td>2013</td>
<td>89.5</td>
<td>80.6</td>
<td>931, 862</td>
<td>2013</td>
<td>56.0</td>
<td>54.8</td>
<td>581, 632</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>85.9</td>
<td>86.8</td>
<td>851, 832</td>
<td>2014</td>
<td>56.7</td>
<td>53.2</td>
<td>561, 612</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>80.6</td>
<td>75.7</td>
<td>751, 752</td>
<td>2015</td>
<td>50.0</td>
<td>48.6</td>
<td>501, 572</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>73.0</td>
<td>68.1</td>
<td>711, 702</td>
<td>2016</td>
<td>48.0</td>
<td>46.2</td>
<td>481, 562</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>58.0</td>
<td>53.1</td>
<td>611, 542</td>
<td>2017</td>
<td>46.0</td>
<td>42.7</td>
<td>481, 552</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>51.0</td>
<td>49.2</td>
<td>-</td>
<td>2018</td>
<td>42.0</td>
<td>39.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>42.0</td>
<td>40.5</td>
<td>-</td>
<td>2019</td>
<td>37.0</td>
<td>36.3</td>
<td>-</td>
</tr>
<tr>
<td>PM$_{10}$ (μg/m3)</td>
<td>2013</td>
<td>108.1</td>
<td>113.5</td>
<td>1231, 1242</td>
<td>2013</td>
<td>1.4</td>
<td>1.2</td>
<td>1.51, 1.22</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>115.8</td>
<td>122.7</td>
<td>1211, 1282</td>
<td>2014</td>
<td>1.3</td>
<td>1.4</td>
<td>1.31, 1.22</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>101.5</td>
<td>105.5</td>
<td>1061, 1062</td>
<td>2015</td>
<td>1.3</td>
<td>1.2</td>
<td>1.21, 1.12</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>92.0</td>
<td>95.5</td>
<td>1011, 1032</td>
<td>2016</td>
<td>1.1</td>
<td>1.0</td>
<td>1.11, 1.12</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>84.0</td>
<td>86.2</td>
<td>931, 962</td>
<td>2017</td>
<td>0.9</td>
<td>0.9</td>
<td>1.01, 1.12</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>78.0</td>
<td>79.5</td>
<td>-</td>
<td>2018</td>
<td>0.8</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>68.0</td>
<td>64.8</td>
<td>-</td>
<td>2019</td>
<td>0.7</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>SO$_2$ (μg/m3)</td>
<td>2013</td>
<td>26.5</td>
<td>20.4</td>
<td>26.31, 372</td>
<td>2013</td>
<td>55.6</td>
<td>47.3</td>
<td>591, 472</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>21.8</td>
<td>18.6</td>
<td>201, 282</td>
<td>2014</td>
<td>57.4</td>
<td>53.0</td>
<td>561, 462</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>13.5</td>
<td>11.6</td>
<td>131, 192</td>
<td>2015</td>
<td>59.0</td>
<td>56.2</td>
<td>591, 442</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>10.0</td>
<td>10.1</td>
<td>101, 152</td>
<td>2016</td>
<td>58.1</td>
<td>56.3</td>
<td>601, 492</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>8.0</td>
<td>8.8</td>
<td>8.41, 112</td>
<td>2017</td>
<td>60.4</td>
<td>53.1</td>
<td>611, 492</td>
</tr>
<tr>
<td></td>
<td>2018</td>
<td>6.0</td>
<td>7.2</td>
<td>-</td>
<td>2018</td>
<td>62.5</td>
<td>56.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2019</td>
<td>4.0</td>
<td>5.8</td>
<td>-</td>
<td>2019</td>
<td>62.8</td>
<td>59.9</td>
<td>-</td>
</tr>
</tbody>
</table>

1 data is from Vu et al. (2019);

2 data is from Cheng et al. (2019a);

* the annual mean concentration of CO and O$_3$ is calculated by daily average concentration, which is different from the official data.