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Fault slip speeds range from steady plate boundary
creep through to earthquake slip. Geological
descriptions of faults range from localized
displacement on one or more discrete planes,
through to distributed shearing flow in tabular zones
of finite thickness, indicating a large range of possible
strain rates in natural faults. We review geological
observations and analyse numerical models of
two-phase shear zones to discuss the degree and
distribution of fault zone heterogeneity and effects
on active fault slip style. There must be certain
conditions that produce earthquakes, creep and
slip at intermediate velocities. Because intermediate
slip styles occur over large ranges in temperature,
the controlling conditions must be effects of fault
properties and/or other dynamic variables. We
suggest that the ratio of bulk driving stress to
frictional yield strength, and viscosity contrasts
within the fault zone, are critical factors. While
earthquake nucleation requires the frictional yield to
be reached, steady viscous flow requires conditions
far from the frictional yield. Intermediate slip speeds
may arise when driving stress is sufficient to nucleate
local frictional failure by stress amplification, or local
frictional yield is lowered by fluid pressure, but such
failure is spatially limited by surrounding shear zone
stress heterogeneity.
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1. Introduction
Faults are classically thought to creep steadily or slip episodically in earthquakes, with more
complex conceptual models involving seismogenic patches embedded within otherwise aseismic
faults [1–4]. It is, however, now clear that faults slip at a continuum of speeds [5]. Here, we review
and discuss this slip rate continuum in the context of geological fault zone structure.

2. Depth-dependency of fault zone structure, strength and frictional stability
A now classic model of fault zone structure describes an upper brittle zone governed by pressure-
dependent frictional sliding above a deeper ductile zone with grain-size and/or temperature-
dependent viscous rheology [6–8] (figure 1a,b). Geologically, the upper, frictional regime is
characterized by brittle fault rocks, including gouges, cataclasites and pseudotachylytes (lithified
friction melt), where one or more discrete fault cores are surrounded by a fractured damage
zone [2,10]. The deeper, viscous regime is characterized by mylonites, defined as recrystallized
and/or neocrystallized rocks, commonly with relatively thin (cm-m), anastomosing higher
strain zones within a broad (>km) foliated shear zone [11–13]. The shallower and deeper
fault rocks reflect a well-recognized crustal strength profile, where frictional strength increases
with increasing normal stress, and viscous strength decreases with increasing temperature [7].
The frictional–viscous transition is defined where the shear stresses (τ ) driving frictional and
viscous deformation are equal for some given strain-rate, composition, stress regime and thermal
gradient. In reality, this depth is going to be a broad zone where both frictional and viscous
deformation mechanisms are active [14,15]. Note that we have here defined ‘brittle’ and ‘ductile’
as descriptive terms for macroscopically localized and distributed deformation, respectively.
‘Frictional’ and ‘viscous’, respectively, refer to mechanisms where shear stress is proportional
to normal stress and shear strain rate. We avoid the term ‘plastic’, but recognize that what we
describe as ‘viscous’ deformation will have an activation energy.

The geological and mechanical observations outlined above for a homogeneous fault zone
relate to, but do not fully describe, the fault’s depth-dependent seismic behaviour. This is
further described by velocity-dependence of friction, denoted by the parameter (a − b), defined
by τ = σ ′

n[μ∗ + (a − b) log(V/V∗)] in the steady-state form of the rate and state friction law
[9,16–20] (figure 1c). Here, μ∗ is the coefficient of friction at reference velocity V∗, σ ′

n is
effective normal stress and V is slip velocity. In this framework, velocity-strengthening faults
(where (a − b) > 0) accommodate displacement by stable, steady sliding, because slip does not
accelerate after nucleation. Note that (a − b) can vary with velocity [21–24], and evolve as fault
rocks develop [25,26], and ruptures can therefore propagate within steady-state stable regimes
under some conditions [27–29]. Velocity-weakening faults (where (a − b) < 0) are unstable if
the critical stiffness (kc), a threshold that depends on material properties and effective normal
stress, exceeds the system stiffness (k), determined by the wallrock stiffness. Unstable fault
patches can generate earthquakes under static loading. Conditional stability occurs when (a −
b) < 0 and 0 < kc < k. Note that k decreases as a slipping region grows, such that conditionally
stable fault patches can be destabilized as they reach a critical length scale known as the
nucleation length [9]. Conditionally stable areas cannot nucleate earthquakes without a dynamic
load, but earthquakes may propagate into a conditionally stable field if the dynamic velocity
step is sufficient. This framework infers that rocks in the deep viscous regime are velocity-
strengthening because of the stable sliding observed there, and predicts that stable sliding prevails
at very shallow depths where poorly lithified rocks accommodate displacement by granular
flow involving dilatancy-hardening [30]. The seismogenic zone, where earthquakes can nucleate,
covers a depth range between these shallow and deep aseismic, stably sliding zones. Several
experiments have correlated the seismogenic zone, defined as where steady-state frictional
sliding is potentially unstable, with temperatures in the range 100–350◦C in quartzofelspathic
rocks [31] and phyllosilicate-rich gouges [32,33]; similar to thermal constraints determined from
combining thermal models and the depth-distribution of seismicity [34,35]. The seismogenic zone
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Figure 1. The generalized structural model of a fault zone, here shown for a vertical fault (a), illustrates a dominantly brittle
regime of discrete faults within a wider damage zone underlain by a dominantly ductile regime where shear is accommodated
withinmylonites [6]. In (b), the samebrittle–ductile two-layer system is describedby a shallower layerwhere frictional strength
increases with depth, down to a frictional–viscous transition where viscous deformation becomes easier than frictional failure
and strengthdecreaseswith increased temperature andpressure [7]. (c) Illustrates that the transition between shallow frictional
failure and deeper viscous creep may also be comparable to depth-dependent changes in steady-state frictional stability [9].
The models in (b) and (c) are simplified, and assume a homogeneous lithology subject to constant stress and strain rate. When
more complexity is included, variations thereof are more appropriate, as shown by examples in (d) and (e). (Online version in
colour.)

is considered separated from the stably sliding zones above and below by transitional regimes of
conditional stability [9,19] (figure 1c).

In transitional, conditionally stable regimes, slip speeds intermediate between steady creep
and earthquakes have now been observed globally in ‘slow earthquakes’, a term that includes
slow slip and low frequency earthquakes. ‘Slow slip events’ (SSEs) have been observed
geodetically in well-instrumented plate boundary zones across the globe over the last two
decades, and represent episodes of transient creep that repeat near-periodically at rates of mm
to cm per day [36,37]. Low frequency earthquakes (LFEs) are energetic pulses depleted in high
frequencies, relative to ordinary earthquakes, and represent plate boundary shear displacement
[38,39]. LFEs are commonly spatially and temporally associated with SSEs in ‘episodic tremor and
slip’ (ETS) events, when slow slip is accompanied by persistent, low frequency seismic signals that
comprise swarms of LFEs [40–42]. Slow earthquakes have now been observed at depths from no
more than a few kilometres below the sea floor in Japan and New Zealand [43,44], to as much
as 90 km in the Alaskan subduction zone [45]. Thus, there is no distinct pressure (P) or T regime
associated with slow earthquakes, but they do seem associated with conditional stability at or
close to the seismic–aseismic transition [20,46,47].

3. Geological observations of fault zone heterogeneity
Generalized, 1-D homogeneous fault models (figure 1a–c) assume a single composition with
a single depth-dependent rheology. Our aim here is to analyse the effect of rheological
heterogeneity on the bulk behaviour of fault and shear zones—with focus on how strength
contrasts between coexisting materials determine the depth range of the frictional–viscous
transition, and potential consequences for seismic, aseismic, and intermediate behaviours.

(a) Fault zone heterogeneity at shallow depths
Subduction-related mélanges commonly preserve evidence for early, soft sediment deformation
structures overprinted by later faults and fractures [48,49] (figure 2a). A common interpretation
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is therefore that subduction plate interface deformation style progressively changes from near-
trench distributed, ductile deformation of unconsolidated sediments to localized, frictional
sliding along faults in sedimentary rocks as the strata consolidate and lithify with progressive
displacement and burial [50,54–56]. Accordingly, a shallow updip limit of earthquake nucleation
in subduction zones has been associated with low-temperature diagenetic processes [57,58].
The transition from macroscopically ductile to brittle deformation occurs, however, at different
conditions in different materials. This is clear where sandstone boudins contain fractures that
do not continue into surrounding mudstone matrix (figure 2b). There is therefore a depth range,
between shallow unconsolidated sediments and deeper consolidated rocks, where variable states
of consolidation is an important source of heterogeneity.

Both strike-slip faults and subduction-related thrusts show variable sliding characteristics and
heterogeneous interseismic accumulation of elastic strain at shallow depths [43,44,59–61]. Like
the progressive and potentially heterogeneous consolidation observed in exhumed mélanges
(figure 2a,b), the geophysical observations in active faults question the model of uniformly
velocity-strengthening, unconsolidated sediments (figure 1c). An adaptation of the conceptual
model is that shallow instabilities can be generated by one or more layers of frictionally unstable
material within the frictionally stable zone (figure 1e). Such layers have been inferred to generate
episodic creep in southern California, where relatively strong shallow intrusions and more
lithified strata are inferred within otherwise unconsolidated or clay-rich velocity-strengthening
fault rocks [62] (figure 1d,e). Similarly, in the Hikurangi subduction margin, highly variable input
sediments are hypothesized to play a part in shallow SSEs [63,64].

That fractures are limited to a single material (as in figure 2b) implies that the brittle yield
is not met on both sides of the bimaterial interface. Lack of fracture propagation from one
material to another also implies that the static stress drop in the ductilely deformed matrix
(potentially lowered by a viscously relaxed background stress) was insufficent to overcome
frictional resistance, such that unstable slip was limited in dimension by the extent of relatively
rigid materials. Fractures may also have been arrested prior to reaching instability if they are
constrained to blocks that are smaller than a critical length scale [65]. Where shallow subduction-
related thrusts have been drilled and sampled, there is evidence for both brittle and ductile
deformation [66–68], also where lithological variation is not obvious [69]. Thus, local variation in
deformation mode can occur without compositional heterogeneity, for example in conditionally
stable regions that, over time, experience both unstable and stable deformation, because other
factors, such as porosity or fluid pressure, can vary in time and space and affect frictional stability
[70–72].

(b) Heterogeneity in the seismogenic zone
The earthquake cycle has long been recognized as resulting from elastic rebound [73], where
a new or existing fault accommodates stick-slip motion [74]. In this conceptual model, failure
occurs when local fault-parallel shear stress, resulting from wall rock elastic strain, exceeds the
cohesion plus frictional resistance of the fault rocks. Numerical models of this process are limited
by computational constraints, and faults are therefore commonly considered as planar, discrete
surfaces [75,76]. In such models, each point on the fault is given a single set of parameters that
represents that location in time and space. This is an appropriate representation of relatively thin,
planar faults [10] (e.g. figure 2c), where slip is well approximated by lateral interaction between
segments of a single continuous fault. However, many fault zones are volumetric features [77],
where fault-normal heterogeneities and interactions must also be considered.

Tabular faults that contain one or more discrete fault planes in a broad zone of foliated,
viscously deforming matrix can, on the other hand, deform by a combination of distributed
viscous flow of the matrix and localized frictional failure along or within more competent lenses
[2,78] (e.g. figure 2d). In this scenario, viscous creep accommodates finite strain at slow strain
rates over long time scales, whereas frictional failure typically occurs at episodically high strain
rates over short time scales once a critical level of stress has been reached [79,80], although
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Figure 2. Photographs illustrating examples of lithological heterogeneity linked to deformation style, at a range of depths.
In (a) dismembered bedding, developed by distributed independent particle flow in poorly to un-consolidated sediments, is
crosscut by a subhorizontal through-going fault (Chrystalls Beach Complex, New Zealand [50]); (b) shows an example of a
sandstone layer welded by quartz-filled fractures (red arrows at examples) that do not continue into the surrounding foliated
mudstone matrix (Makimine Mélange, Kyushu, Japan [51]). An example of a cm-thick, principal slip zone in crystalline rock is
found in the San Gabriel fault, California (c), and contrasts with an anastomosing fault system in the Chrystalls Beach Complex
(d). In shear zones exhumed from depths below the seismogenic zone, here the Kuiseb schist that deformed at temperatures in
excess of 500◦C [52,53], competent mafic layers are boudinaged (e) and locally fractured and faulted (red arrows in f ). (Online
version in colour.)

some phyllosilicates may also slide stably and frictionally at low strain rates [81]. The viscous
mechanism is commonly pressure solution [80,82–84], and the rate of pressure solution will
tend to vary along the fault, as it is a function of grain size, shear zone thickness, composition
and other factors affecting chemical potential gradients [84–87]. Consequently, the displacement
accommodated by pressure solution varies in space, resulting in along-strike and down-dip
spatio-temporal variation in elastic strain energy stored in the wall rocks. Therefore, the ratio



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20190421

................................................................

of shear stress to bulk shear zone frictional yield strength will vary spatiotemporally both
along-strike and down-dip.

In two dimensions (map-view) the seismogenic zone of a rheologically heterogeneous fault
may be best represented by locked patches, which creep inefficiently, in a dominantly creeping
fault zone [1,3]. One may expect locked areas to dominate (by area) in localized faults lacking
evidence for a wider creeping zone (e.g. figure 2c) and creep or mixed behaviour to be common
in thicker heterogeneous fault zones with scattered rigid inclusions (e.g. figure 2d). The bulk
fault strength of the latter will depend on the volume fractions and geometry of two (or more)
rheological components [77] (figure 1d). For fault patches where interseismic creep is too slow to
accommodate tectonically imposed displacement rates, elastic strain will accumulate until failure
occurs—at a strength determined by the frictional yield of locked or partially locked areas, and
potentially highly influenced by fluid pressure.

(c) Heterogeneity below the seismogenic zone
Mylonites formed deeper than the seismogenic zone are typically characterized by structures
formed by distributed flow in polyphase materials, where variable viscosity is commonly
illustrated by pinch-and-swell or boudinage of relatively competent layers [88–90] (figure 2e).
Some relatively rigid lenses and/or layers may remain in a frictional regime while adjacent rocks
deform by diffusion or dislocation creep [91,92] (figure 2f ), potentially leading to an intermingling
of velocity-weakening and velocity-strengthening rocks [77,93].

Progressive shear in a dominantly viscous shear zone may gradually increase stress in and
around rigid bodies embedded within it, allowing a frictional yield to be reached locally and
transiently [94,95]. Such frictional failure may be damped by surrounding viscous matrix [24,
96,97], although this matrix may host dynamic rupture propagation if a critical stress level is
reached [29]. Heterogeneity in viscous flow will tend to decrease with depth, theoretically, as
most materials weaken exponentially with increasing temperature (figure 1d). Although, local
variations in metamorphic reaction progress may also increase heterogeneity at depth, either by
producing stronger products along a prograde path, for example in eclogitisation, [98], or by
retrograde growth of weak phyllosilicates [82,99].

Whereas viscosity contrasts are likely to exist throughout shear zones accommodating
dominantly stable sliding below the seismogenic zone, there are areas where the contrasts are
larger. These are regions where matrix viscosity is low, creep in competent materials is slow
and bulk shear stress is well below the frictional yield strength of the stronger components.
Locally, however, frictional failure may occur within more competent rocks because yield strength
is lowered by high fluid pressures [100], or because stress amplification occurs by loading of
rigid clasts by surrounding flowing materials [101]. This local, and probably small displacement,
frictional failure within otherwise viscously creeping shear zones has been invoked to explain
both regular (but deep) earthquakes [94,95] and slow earthquakes [53,97,102].

4. Depth-dependence of viscosity contrasts in heterogeneous faults
Our review so far highlights various sources and degrees of rheological heterogeneity as a
function of depth (figure 3). From here, we will simplify the discussion by considering fault
zones as containing two components—one that is less competent and deforms efficiently by
distributed flow, and another that is more competent, rigid, deforms inefficiently by viscous flow
and therefore tends to fracture or host frictional failure along faults. The term ‘competent’ derives
from a structural geology field term, and describes the inferred rigidity of a material at the time of
deformation. The two contrasting fault zone materials can therefore be thought of as having low
(ηw) and high (ηs) viscosities at a steady creep rate, and an effective bulk viscosity describing the
combined visco-brittle deformation, defined by η′ = τ/γ̇ where γ̇ is shear strain rate, itself defined
by slip velocity divided by deforming thickness (v/w).
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Figure 3. Schematic diagram showing the difference in depth-dependent strength between two components. The red, dashed
curve shows a relatively weak, fine-grained phyllosilicate-rich matrix deforming preferentially by pressure solution creep. The
blue, solid line represents coarser-grained layers, possibly dismembered into oblate clasts, that are too coarse for efficient
pressure solution. The stress driving bulk deformation (intermediate, dashed green curve) is expected to be similar to the
frictional yield strength (τ ∼ τy) in the frictional regime, and similar to the viscous strength of competent material at the
imposed strain rate (τ ∼ ηsγ̇ ) in the viscous regime. Deviations from these conditions are associated with the frictional–
viscous interplay zone. Photographs to the right show potential structures developing in this material mixture: (a) sandy layers
dismembered by granular flow in a mudstone matrix (Makimine Mélange, Japan), (b) dismembered sand and chert layers in
a cleaved, phyllosilicate rich matrix, cross-cut by anastomosing faults (Chrystalls Beach Complex, New Zealand), (c) layers of
sheared metapelite, metapsammite, and metabasalt, with near-planar margins indicating small viscosity contrast (Makimine
Mélange, Japan). (Online version in colour.)

We consider a low viscosity, phyllosilicate-rich fault zone containing rigid lenses (figure 3),
as typical of many fault zones as discussed above. The competent component has a frictional
yield strength that increases linearly with depth, from the surface to a depth where viscous creep
can occur at the imposed strain rate. This linear increase in frictional strength does not occur
where the fluid pressure follows a lithostatic gradient below a fluid retention depth; in such
examples strength can be uniform and low at depths of fluid overpressure [103,104]. Conceptually,
this is no different from ‘Christmas Tree’ strength profiles discussed by many authors [7]. The
less competent material represents phyllosilicate-rich fault gouges, foliated matrix material in
tabular fault zones, and the least competent element of micaceous schists. The plot in figure 3
is intentionally plotted with no scale, as the absolute values of shear strengths and depths will
depend on rocktypes (both composition and grain size), thermal gradient, tectonic regime, strain
rate, fluid pressure and other parameters. We use this conceptual plot to define three conceptual
regimes.

(a) Granular flow and/or frictional sliding
At the shallowest depths the rheology is granular flow and/or frictional sliding, with possible
effect of pressure solution. In sheared sedimentary sequences, the typical observation is
dismembered sandy layers in a muddier matrix (figure 3a); however, one can think more generally
of stronger layers dismembered in a weaker matrix, where strength is defined as the frictional
yield τy = C0 + μ(σn − Pf ). Here, C0 is cohesion and μ is static coefficient of friction, such that
both level of consolidation/cementation and frictional properties determine relative strengths.
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This means that both composition and consolidation state is important, and relative strength may
vary, and locally invert, as sedimentary layers undergo diagenesis at different rates [105]. Friction
is typically velocity-strengthening at these shallow depths [30,31,106].

(b) Frictional–viscous interplay
At depths where rocks are consolidated, faulting is typically governed by some combination
of pressure-solution and frictional sliding [80,86,87,107]. The conceptual strength curve for
phyllosilicate-rich gouges (figure 3) follows a frictional–viscous flow for a micaceous matrix
with soluble, rigid inclusions [86,87]. Deeper than a depth determined by the temperature where
pressure solution becomes effective, roughly 100–150◦C for quartz [108,109], the phyllosilicate-
rich gouge will be able to creep at a stress lower than the frictional yield strength of the stronger
component. If pressure solution is less efficient, for example because grain size is large, strain
rate is high, or rocks are relatively dry, this will be a regime where rates of pressure solution and
frictional granular flow are comparable. At such conditions of competition between granular flow
and pressure solution at steady state, faults are velocity-weakening and potentially seismogenic
[23,80,110–113]. Various combinations of creep and stick-slip will exist depending on spatial and
temporal distribution of viscous and frictional deformation, as was discussed in §3(b) and is
illustrated by local through-going faults within a shear zone of competent clasts in a foliated
matrix in figure 3b. The highest degree of visco-frictional interaction is predicted at depths just
below the competent material’s frictional–viscous transition, where both the frictional yield (τy)
and the viscous strength of component material at the imposed strain rate (ηsγ̇ ) are too high for
either uniform frictional sliding or viscous flow to occur (figure 3).

(c) Viscous flow
Deeper than the frictional–viscous transition of the more competent phase, the flow strengths
of both materials are less than the frictional yield of the more rigid fault rocks at the steady-
state strain rate. Therefore, below the frictional–viscous transition in the competent phase, the
bulk flow stress departs significantly from the frictional yield curve. For shear stress to locally
reach frictional yield strength at these depths, one of two things must happen; either the stress
increases (for example by local stress amplification caused by the flowing matrix; [94,95,101])
or frictional yield decreases (for example by local increase in fluid pressure). In this regime, the
viscosity contrast decreases with increasing depth and temperature, and can become very small
if both components flow viscously at small driving stresses (τ ∼ ηsγ̇ ∼ ηwγ̇ ; figure 3c).

5. Modelled effects of rheological heterogeneity on slip behaviour
To further analyse the effects and importance of rheological heterogeneities as described above
from the geological record, we take a conceptual approach to modelling two-phase shear
zones. Previous numerical studies have also considered effects of heterogeneity on fault zone
behaviour. For example, by considering brittle asperities in a viscous matrix representing the
seismic–aseismic transition at the base of the subduction megathrust seismogenic zone [114],
by alternating velocity-weakening and velocity-strengthening properties in a rate-and-state
dependent formulation of fault friction [96,115], or by varying pressure solution kinetics within
seismic cycle simulations incorporating a microphysical model [29]. Another approach has been
to simulate slow slip transients as initiated by local fracture [116]. Slip rate transients can also
arise from interaction between competent clasts in a weak matrix [117], an interaction that also
creates local stress amplification [101].



9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20190421

................................................................

(a) Method
Using the particle-in-cell finite element code Underworld [118], we compute velocity and pressure
fields for a two-dimensional cross section, assuming plane strain, of a shear zone containing
more viscous elliptical clasts in a less viscous matrix [97,101]. Both clasts and matrix follow a
Newtonian, linear viscosity, but clasts also have a frictional yield strength τy dictated by the
Mohr–Coulomb failure criterion. This set-up is analogous to matrix deformation by pressure
solution, with embedded, higher viscosity clasts that may flow slower than the matrix, or
episodically fracture in response to locally amplified stresses or a low frictional yield strength [97].
Dynamic frictional slip is not modelled. All results can be non-dimensionalized and scaled [101],
such that the only model variables are the viscosity ratio of the strong and weak components,
ηs/ηw, and the ratio of driving stress to frictional yield τ/τy. Periodic boundary conditions are
applied to the left- and right-hand boundaries, the base is kept stationary and a constant driving
shear stress, τ , is applied to the top boundary. The model domain has a 4 : 1 aspect ratio and a high
mesh resolution of 2048 × 512 is used to resolve the anastomosing matrix. The shear zone contains
61% competent clasts, to simulate an anastomosing shear zone system, and these clasts have a
power-law size distribution with a constant aspect ratio of 1 : 3 and a maximum long axis of 84%
shear zone thickness. We explore how clast fracturing and shear zone strain-rate hetereogeneity
depend on varying ηs/ηw and τ/τy. Note that because stresses are amplified by the stronger clasts,
local stresses will exceed the applied driving stress [101]. Models with ηs/ηw = 103 have been
described in [101], where more detail on the modelling procedure is available. Additional models
with ηs/ηw = 10 and 102 were run for this study.

The aim here is not to model specific faults, conditions, scales or settings, but to consider a
fault system where interconnected weak zones between more competent lenses may allow strain
localization, while we can also assess how deformation is distributed between the two phases
and how the fault zone behaves as a bulk aggregate. We are interested in how the ratios ηs/ηw

and τ/τy influence the likelihood that a chain of adjacent clasts will have stress states at frictional
failure, which is assumed to be analogous to bulk shear zone frictional failure. The former ratio
represents the degree of viscous heterogeneity. The latter ratio is also a measure of heterogeneity,
because τ/τy → 1 will mean that the fault zone is essentially at brittle failure, τ/τy � 1 represents
a bulk viscous shear zone, but 0 < τ/τy < 1 can lead to intermediate behaviours. Considering the
ratio τ/τy is not new—it is an inverse form of the engineering safety factor for slope stability
[119], analogous to a flow factor that can control slow versus rapid sediment mass transport [120],
and similar ratios describe on-fault frictional deformation versus off-fault ductile matrix flow in
experiments [121]. Note that several other factors, such as the clast:matrix ratio, the size, aspect
ratio, and size distribution of clasts, and thickness of the shear zone, will also affect the model
results—however, these parameters will affect absolute values rather than the general trends, and
it is the general trends we wish to discuss here.

(b) Effects of variable viscosity ratio and τ/τy

First consider a model with a high viscosity ratio, 103 (figure 4). Such high viscosity ratios are
most likely above or slightly below the frictional–viscous transition in the competent phase, in
areas of local hydration and alteration to weak minerals, at shallow depths where consolidation
is highly variable, or other settings where low viscosity materials encompass competent lenses.

The large viscosity contrast will lead to local strain rate gradients that induce amplified
shear stresses in the competent clasts [101], as also predicted for rigid inclusions in both elastic
and plastic systems in the absence of clast interaction [122,123]. At driving stress near the
frictional yield, τ/τy = 0.88, this stress amplification is sufficient for 99% of total clast volume
to be at frictional failure (figure 4a). Because fracturing is now essentially occurring throughout
the competent clasts, while the matrix is flowing easily, the aggregate is deforming at a more
or less constant strain rate (figure 4b). Though dynamic frictional slip is not modelled, we
can hypothesize how such slip would be affected by the static stress state calculated here, by
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Figure 4. Plots of strain rate distributionwithin a linear-viscous shear zone,where the viscosity ratio between clasts andmatrix
is 103. Models are run at different ratios of driving stress (τ ) to frictional yield stress (τy) of the competent phase. When τ/τy
approaches 1 (a), frictional deformation dominates and allows uniformly high strain rates (b). Compare this to a small τ/τy
where only∼ 1/3 of clast volume is failing frictionally (e), and the strain rates are bimodal (f ), with much faster deformation
in the weak, viscously flowing matrix. In the intermediate case (c), sufficient clast volume (greater than 50%) is failing to
allow potential for through-going discrete fractures to form locally and transiently, linking fracturing clasts through the matrix
material. In this case, the probability density distribution of strain rate (d) shows a narrow peak for clasts deforming slowly and
viscously, and a broader peak for faster deformation in clasts that are undergoing some level of frictional deformation. The strain
rate is given in units of s−1 assuming a matrix viscosity of 1017 Pa s and τy = 160 MPa [97]. (Online version in colour.)

considering that earthquake ruptures can potentially propagate through velocity-strengthening
patches of similar length scale [115], or that experience a background stress near their frictional
yield strength [29], but will likely terminate in regions where the ambient stress is far below the
yield strength [124]. In this case, all clasts are at failure and any unstable frictional slip nucleating
in one clast may plausibly propagate through the shear zone and a principal slip zone may
develop in such a system (figure 4a).

At an intermediate τ/τy of 0.66, 63% of clast material is at frictional yield (figure 4c). Under
these conditions, the strain rate in the competent clasts covers a broad range, with a peak
deforming at a slow strain rate controlled by their viscosity, and others deforming faster as
fractures allow them to reach matrix strain rates (figure 4d). Though much of the clast stress
distribution is lower than the frictional yield, depicted by low strain-rates, hypothesized rupture
pathways could still be connected between clasts that are at frictional failure (figure 4c) as
fractures dynamically overcome shear resistance and velocity-strengthening friction in the matrix.
This stress field may therefore be conducive to earthquake nucleation. Note that these potential
rupture planes are slightly oblique to shear zone margins and will be limited in length by the
shear zone thickness. If τ/τy is lower still, 0.44, then only 34% of clasts are at frictional failure, and
the fault zone is dominated by viscous flow (figure 4e); the strain rate distribution is bimodal,
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with clearly different strain rates in fast flowing matrix and much slower flow in competent
clasts (figure 4f ). The driving stress is too low, or frictional yield strength too high, for much
clast material to be at frictional failure, and the hypothesized failure planes are limited to short
segments that rarely connect between multiple clasts without passing through material far from
frictional failure (figure 4c). Thus, fault lengths are likely to remain shorter than the nucleation
length scale for instabilities.

A viscosity ratio of 103 in summary gives a range from nearly fully frictional clast deformation
if τ/τy is 0.88, through to dominantly viscous flow at τ/τy of 0.44, although about 1/3 of clast
volume still fails frictionally at this stress ratio, albeit at very limited length scales. Reducing the
viscosity ratio to 10 changes the picture to largely remove the intermediate frictional–viscous
behaviour (figure 5). In this case, τ/τy = 0.88 again leads to near total frictional behaviour,
with 96% of clast material yielding, and potential for through-going failure planes connecting
fracturing clasts across the model domain (figure 5a). However, with τ/τy = 0.66, only 34% of
clast material is failing (figure 5b), as with τ/τy = 0.44 if the viscosity ratio is 103. This implies
a relatively sharp change from frictional–viscous behaviour with τ/τy = 0.66 to frictional at
τ/τy = 0.88 (figure 5a,b), as also indicated by a steepening of the % frictional deformation vs τ/τy

curve in figure 5d. Reducing τ/τy to 0.44 with a viscosity ratio of 10 leaves only 1% of clast material
fracturing, i.e. the shear zone is basically entirely viscous (figure 5c).

Overall, clast fracturing and therefore visco-frictional interplay increases with increasing
viscosity contrast, when 0 < τ/τy < 1. For a viscosity ratio of 10 the behaviour is uniformly viscous
for τ/τy < 0.4, whereas for viscosity contrasts of 102 and 103, some very minor frictional behaviour
is seen at τ/τy = 0.22 (figure 5d). As ηs/ηw increases, the transition zone covers a greater range of
τ/τy values (figure 5e), because stress concentration in the competent bodies brings them closer to
frictional yield [97,101], and the τ/τy at which frictional deformation ceases to dominate decreases.
The transitions between the deformation regimes also occur at lower τ/τy ratios if ηs/ηw increases,
because of this stress concentration. The transitions are likely similar at viscosity ratios >103,
based on the decreasing spacing of the curves in figure 5d.

Deformation style can be characterized by proportion of clast failure, as across the models
34% frictional failure appears to allow local fracturing that can only link between a few clasts
(figures 4e and 5b); 63% clast failure leads to fractures connecting across the bulk or all of the
model domain (figure 4c). Accordingly, we consider the bulk deformation viscous, and frictional
deformation restricted to rare and very local, short length-scale deformation if less than 30% of
clast material is yielding. On the other hand, if more than 60% of the clast material is yielding, then
through-going fractures accommodating frictional sliding would not need to overcome barriers
of clast and/or matrix material far from failure. The intermediate case, 30–60% clast material
yielding, can be considered a transitional state where local fractures develop, can link between
clasts and clusters of clasts, but are limited in length-scale and rarely span the model domain.
These values clearly depend on geometry and clast shape; however, we plot types of deformation
in figure 5e to demonstrate the shape of the viscous, frictional and frictional–viscous fields that
arise from the models in τ/τy versus ηs/ηw space. For the end-member where ηs/ηw = 1, the
change from frictional to viscous deformation occurs when τ/τy < 1 and there is no transition
zone, because there is no static stress concentration.

6. Model application
The models presented above consider a fault zone comprising interconnected viscously weak
material surrounding stronger visco-frictional lenses. This geometry can be seen as representative
for scales ranging from mineral clasts in gouges, as seen within fault cores or in laboratory
experiments, through to anastomosing schistose or phyllonitic shear zones separating relatively
intact, km-scale rigid wall rock lenses. Thus, we suggest the conceptual models connecting
viscosity contrast and τ/τy to bulk fault behaviour can be applied to a range of settings and scales.
Detailed applications are beyond the scope of this conceptual paper, however, we present some
thoughts and a simple illustrative application.
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Figure 5. Plots of strain rate distributionwithin a linear-viscous shear zonewhere the viscosity ratio between clasts andmatrix
is 10. As in figure 4, the models are run at different ratios of driving stress (τ ) to frictional yield strength (τy) of the competent
phase, however, here the viscosity ratio is two orders of magnitude smaller. When τ/τy approaches 1 (a), 96% of clasts are
yielding and frictional deformation dominates. There are multiple, potential through-going failure planes with lengths across
themodel domain. Compare this to a small τ/τy where here only 1% of clasts are failing frictionally (c), as opposed to 1/3 in the
modelswith viscosity ratio of 103. In the intermediate case (b), only 34%of clasts are yielding, so that there is limitedpotential for
short, discrete fractures to form, linking only few fracturing clasts through thematrixmaterial. The data plots shownhere, those
in figure 4 and additionalmodel runs are summarized in (d), whereas combined effects ofτ/τy and the viscosity ratioηs/ηw is
illustrated in (e). In (e), points showwheremodels were run, and depict viscous (less than 30% competent material fracturing),
frictional–viscous (30–60% competent material fracturing) and frictional (greater than 60% competent material fracturing),
respectively. Black dashed lines approximate fields by linear interpolation between calculated points. (Online version in colour.)

(a) Depth-dependence of frictional versus viscous deformation
We can use our two-phase numerical models (figures 4 and 5) to explore the dynamics that
may control the depth-dependence of the ratio of frictional to viscous behaviour (figure 3). The
models were used to predict the degree of visco-frictional interaction, based on the ratios of
ηs/ηw and τ/τy. These ratios will both change with depth, depending on the depth-dependence
of material properties and effective stress state. We will calculate how these ratios are expected to
vary for a particular tectonic profile and subsequently map the visco-frictional regimes to depth
ranges.

Conceptually, consider variations in the proportion of competent fault rocks fracturing as
a function of depth for a range of viscosity ratios. These are plotted in figure 6a, where the
solid, grey curves will always have same shape but will be translated shallower or deeper
depending on τ/τy. Deeper than a uniformly frictional regime, a transitional zone occurs where
the volume fraction of frictional failure decreases with depth. This decrease in fracturing is
a result of frictional strength increasing whereas increasingly efficient viscous flow occurs in
interconnected incompetent material. As depth increases, viscosity becomes progressively lower
relative to a higher frictional yield strength, and at some depth shear is entirely viscous, and any
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depth along the subduction interface in the deformation style map presented in figure 5e. (Online version in colour.)

competent material is too frictionally strong relative to bulk strength for any frictional failure to
occur. This line of argument, however, assumes a uniform fluid overpressure—it is important
to remember that at any depth, if frictional yield can be reduced sufficiently, the proportion of
material undergoing frictional failure will increase markedly. Note that this depth variation in
deformation is comparable to that well established from geological observations (e.g. figure 3).

(b) A simple example: the base of the subduction thrust seismogenic zone
We now calculate a specific viscosity contrast profile example, and plot the fraction of competent
material undergoing frictional failure against depth (figure 6a), based on extrapolating between
models as those shown in figures 4 and 5. Mapping viscosities to depth and fraction of material
fracturing (dependent on τ/τy; figure 5d) is based on subduction-like conditions, including a near-
lithostatic pore fluid factor (λ = pore fluid pressure/vertical stress) of 0.9, clast friction μ = 0.6,
low driving stress of 10 MPa, and thermal gradient of 15◦C km−1. As the bulk rheology changes
with depth, the constant driving stress is a simplification that implies a varying strain-rate at
depth if tectonic slip is approximately uniform. If viscosity decreases with increasing temperature,
as expected in a purely viscous regime, then the constant stress assumption implies strain
localization and decreasing shear zone width with depth. On the other hand, shear zone width
may be buffered by the yield strength of the undeformed wall rocks [126], which corresponds
to shear zone widening with depth below the brittle–ductile transition, consistent with figure 1a.
Such widening would also occur in a visco-frictional shear zone if increasing frictional strength
has a greater effect on bulk strength than decreasing viscosity. Separating these models and
further assessing the validity of the constant stress assumption could be a subject of future study.
We assume the weakest component can deform by pressure solution, with a constant viscosity
of 1019 Pa s, where T ≥ 100◦C and pressure solution is efficient in quartz; at this temperature,
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frictional resistance is still less than 10 MPa at the given conditions, and a sharp frictional–viscous
transition occurs somewhat deeper for ηs/ηw = 1 where τy drops below τ . The onset of pressure
solution will be more gradual than this T-dependent onset of a constant, low viscosity implies,
leading to a broader transition zone in reality than in our models. For ηs/ηw > 1, total clast failure
can occur when τ/τy < 1, such that the onset of some viscous deformation is seen a few kilometres
deeper. Below this, as illustrated also in figures 4 and 5, a relatively sharp change from dominantly
frictional to dominantly viscous deformation is seen for ηs/ηw = 10. For greater ηs/ηw, however,
local stress amplification leads to a mixed frictional–viscous behaviour over a substantial depth
range of up to tens of kilometres.

In a simplified view, the likely heterogeneous subduction thrust comprises weak,
phyllosilicate-rich materials representing pelitic sediment and/or altered, hydrated oceanic crust
[127], mixed with more competent materials such as sandy or cherty sediment layers and/or
basaltic oceanic crust [64]. Although there are certainly depth-variations in the strength of the
weak component, over our depths of interest we consider these small compared to competency
contrasts, and use a constant, low, Newtonian viscosity to represent pressure-solution creep
(figure 6b). Consider this weak component mixed with a quartz-dominated rheology, also plotted
in (figure 6b). This competent quartz rheology is derived based on crystal plastic flow in quartz
[125], assuming a constant, relatively slow, clast strain-rate of 10−13 s−1, such that the clast viscous
strength is conservatively underestimated. Then a viscosity ratio can be extracted from these two
lithologies and shown as a function of depth (figure 6a,b).

The viscosity contrast is greatest at the onset of pressure solution, but at this depth, frictional
yield is still relatively easy and a major proportion of deformation is therefore frictional
(figure 6a,b). In other words, τ/τy = 1, and therefore all deformation is frictional independently of
viscosity contrast. With increasing depth, frictional yield becomes more difficult, but for ηs/ηw >

102, and as long as τ/τy >∼ 0.6 there is likely to still be through-going frictional failure (figure 4).
However, as ηs/ηw decreases to 10 < ηs/ηw < 102 and τ/τy becomes smaller as τy increases, there
is a depth range where a fraction of 0.3 to 0.6 of the more competent material is fracturing
(figure 6a,c). By comparison to figures 4 and 5, the top of this depth range may have some
through-going frictional planes, but as the competence of the stronger phase decreases, these
become shorter and less important in accommodating displacement. Frictional slip propagating
from one block at frictional failure and through surrounding matrix would have to overcome the
stress deficit of the matrix and/or adjacent blocks far from failure, potentially limiting rupture
lengths to the length scale of one block (less than 100 m order; [128]). This may be comparable
to the inferred decrease in stress and length-scale of low frequency earthquakes that occur
within ETS in Cascadia [129,130], and the mixed behaviour of slow slip and tremor in general—
where low frequency earthquakes may represent smaller-scale frictional deformation embedded
within a fault deforming aseismically [131]. We make a jump here, assuming our visco-frictional
deformation may lead to slow slip; we do not know if that is the case, but it is a tempting
comparison given the coincidence between our predicted mixed behaviour and that seen in
subduction margins hosting ETS. This comparison is compatible with slow earthquakes as self-
driven frictional instabilities that have large nucleation length scales relative to the dimension
of the fault hosting them (the potential frictional failure planes within our model shear zone)
[132–134]. The potential for such transients to grow into larger instabilities will depend on their
stress drop overcoming the shear resistance of the surrounding shear zone, which will be easier
if the background stress approaches local fault strength [29]. Observation of increased moment
rate during coalescence of slow slip events in Cascadia also implies that interacting instabilities
have the potential of overcoming the dampening effect of intervening frictionally stable fault
material [135].

The exact depth range where we predict a mixed behaviour with decreasing brittle behaviour
with depth depends critically on parameters such as driving stress, fluid pressure and strain
rate, but is consistently where the viscosity ratio is at least on the order of 101 to 103, and
0.3 < τ/τy < 0.6, in the transition zone from frictional to viscous deformation (e.g. figure 6c) as
is commonly observed. Below this zone, which is likely a very narrow depth range if ηs/ηw is
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10 or less, ηs/ηw approaches one and τ/τy approaches zero, such that viscous creep dominates
unless local conditions, likely very high fluid pressures, allows very local frictional failure. Such
local, potential instabilities will be dampened by surrounding viscous material and suppressed
by a large nucleation length scale; however, unstable slip may occur if fault weakening by fluid
pressurization overcomes velocity strengthening [136]—and this has been suggested previously
as a mechanism for ETS spatially separated from the frictional–viscous transition [102].

We focused here on the base of the subduction interface seismogenic zone. If aseismic slip at the
updip end of the seismogenic zone also involves some component of viscous deformation, then
our assumption of a sharp, T-dependent onset of pressure solution at 100◦C hides any shallower,
near-trench effects of mixed frictional–viscous or seismic–aseismic deformation. Such shallow,
visco-frictional deformation may occur in some subduction zones, particularly where carbonates
make up a considerable proportion of the incoming sediment sequence [137,138]. We also recall
that within the shallow, dominantly frictional regime, variations in consolidation, porosity, fluid
pressure or material properties in time and space may add further heterogeneity than what we
model here, even in the absence of a viscous component [47]. We highlight the shallow portion of
subduction zones as a target for future study.

7. Is complex fault zone behaviour a reflection of rheological heterogeneity?
There appears to be a broad agreement among structural geologists that fault zone heterogeneity
gives rise to a range of deformation styles, and a common co-existence of brittle and ductile
structures [48,54,55,69,77,80,91–93,98,128]. However, because heterogeneity of some magnitude
is present at some scale in just about every rock outcrop, a question remains of how to quantify
heterogeneity, and to what extent the rheological heterogeneity inferred from the rock record
reflects the heterogeneity in slip style observed by geophysical techniques in active fault zones
[5,40,41,43,44,131]. One approach is to consider heterogeneity as the strength ratio between
co-existing materials, and their geometrical distribution [77,91]. This, however, has limitations.
If the stronger phase is very far from failure and not forming an interconnected network, it
will accommodate little deformation and the weaker phase controls rheology. Similarly, if the
stronger phase is very close to failure and there is insufficient interconnected weak material
for the strong phase to be rheologically insignificant, it likely controls rheology, with fractures
propagating though the weaker phase however easily it may deform viscously. These effects have
been considered before [77,89,91], and were illustrated here in (figure 5e). There is also the case
of a competent phase close to failure, but in low volumetric proportions. Rupture propagation is
then limited if the volume of matrix in between blocks is too large and experiencing a background
stress far below its frictional yield [29,96,115]. We add here, that although one competent block is
at failure, the adjacent one might not be, depending on stress heterogeneity or local weakening by,
for example, fluid pressure. Stress heterogeneity and local stress amplification is also reduced at
small fractions of competent material [101], and thus the frictional–viscous regime may be narrow
if weak, relatively viscous materials dominate volumetrically. These potential heterogeneities in
τ/τy are analogous to frictional variation providing barriers in dynamic rupture models of rough
faults [139,140]—in that a variable frictional yield will make the fault closer to failure in some
areas compared to others. In our model, the barriers effectively disappear when either the driving
stress or pore pressure is very high (τ/τy → 1), as also occurs in the rupture models.

Our models in figures 4 and 5 have a high clast/matrix volume ratio (61%) such that they best
represent an anastomosing shear zone network encompassing relatively high viscosity lenses.
From a range of geological observations, we suggest that heterogeneity varies with depth, and
arises from a range of processes including diagenesis, the degree to which pressure solution
accommodates creep in the seismogenic zone, and the strain rates that can be accommodated
by diffusion and dislocation creep in different materials. We suggest that the two basic, general,
controls on bulk deformation are the contrast in deformation behaviour between co-existing fault
rocks, and how far the bulk driving stress is from frictional yield. Strength contrast alone is
not a sufficient measure of heterogeneity, if the aim is to determine the bulk frictional–viscous
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deformation style of a fault or shear zone. For our models, viscosity ratios of 10 and 1000 give
depth ranges 3 and 10 km wide, respectively, where τ/τy ratios are high and frictional and
viscous deformation modes co-occur as a result of stress amplification in the stronger phase,
independently of the source of heterogeneity. This depth range of visco-frictional behaviour
can be shifted up/down dynamically, depending on τ and/or fluid pressure, which may both
vary substantially. Observed variations in depths of SSEs and LFEs, deemed representative of
a transitional regime, may be determined by these stress and fluid pressure variations, without
having to invoke variation in rheology or geothermal gradient.

8. Conclusion
Although geological and rheological heterogeneity is pointed out in an increasing array of fault
zones in several tectonic settings, the magnitude and length scale of such heterogeneity varies.
To what extent can ’heterogeneity’ in material properties be measured, quantified and tied to
heterogeneity in fault zone deformation? We propose that, at the first order, fault slip style in a
heterogeneous tabular fault zone is controlled by a combination of viscosity contrast and the ratio,
τ/τy, of bulk driving stress to frictional yield strength.

In this conceptual model, earthquakes require the frictional yield to be reached, and steady
viscous flow requires conditions far from the frictional yield, independently of fault zone viscosity
contrasts. Intermediate slip speeds may arise when driving stress is sufficient to arise local
frictional failure by stress amplification, but this failure is limited in length-scale by surrounding
viscously deforming media and heterogeneity of clast stresses (and/or strengths). The conditions
where this is likely cover a larger range of τ/τy at greater viscosity contrast.

Frictional deformation is more difficult and reliant upon local stress concentrations near the
frictional–viscous transition, and this is consequently also where the models presented here
predict a zone of intermediate and mixed deformation style. At greater depths, viscosity ratios
are small and driving stress far from frictional yield, such that frictional sliding and mixed
transitional behaviour is unlikely, but possible in the presence of high to extreme local fluid
overpressures.

Considering the variation in fault slip style with depth in some subduction and strike slip
zones, and the numerical models presented here, intermediate fault slip speeds as seen in tremor
and slow slip may correspond to slip in highly heterogeneous stress fields that may arise from
τ/τy ratios that are intermediate between low values suppressing frictional yield and high values
allowing through-going frictional failure. The exact values depend on viscosity contrast, but
lead to fractures limited by viscous, weak matrix but locally allowed to nucleate by an ability
for more competent lenses to flow or fracture. This is easier over a larger depth range at
higher viscosity contrast, as otherwise, the bulk rheology will tend towards either fracture or
viscous flow.
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