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Abstract:  

As a substructure of cell cytoskeleton, the crosslinked actin filament networks (CAFNs) 

play a major role in different cell functions, however, the elastic properties and the 

deformation mechanisms of CAFNs still remain to be understood. In this paper, a novel 

three-dimensional (3D) finite element (FE) model has been developed to mimic the 

mechanical properties of actin filament (F-actin) networks crosslinked by filamin A (FLNA). 

The simulation results indicate that although the Young’s modulus of CAFNs varies in 

different directions for each random model, the statistical mean value is in-plane isotropic. 

The crosslinking density and the actin filament volume fraction are found to strongly affect 

the in-plane shear modulus of CAFNs. The simulation results agree well with the relevant 

experimental results. In addition, an L-shaped cantilever beam model has been developed for 

dimensional analysis on the shear stiffness of CAFNs and for quantifying the deformation 

mechanisms. It has been demonstrated that the in-plane shear modulus of CAFNs is mainly 

dominated by FLNA (i.e., cross-linkers), and that the bending and torsion deformations of 

FLNA have almost the same contribution to the stiffness of CAFNs.  It has also been found 
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that the stiffness of CAFNs is almost insensitive to the variation of the Poisson’s ratios of 

FLNA and actin filament in the range from 0.29 to 0.499.  

Keywords: crosslinked actin filament networks, modelling, elastic properties, dimensional 

analysis 

 

1. Introduction 

As a ubiquitous intracellular architecture in eukaryotic cells, cytoskeleton plays a crucial 

role in maintaining the cell shape and bearing external loads. It is mainly composed of three 

distinct components, i.e., microtubules, intermediate filaments and actin filaments. Among 

the three components, actin filaments mainly locate just beneath the cell plasma membrane 

and can form a thin film network which is also known as cell cortex [1]. It surrounds the 

intracellular domain and can sensitively respond to the external physical or chemical signals. 

In addition, actin filaments can be crosslinked into other composite structures by different 

actin binding proteins (ABPs). For example, actin filaments can form lamellipodia, filopodia, 

stress fibres and contractile rings with different configurations to support or enable specific 

cell functions [2]. These complex structures always show distinct mechanical properties when 

participating in different cell functions (e.g., cell motility [3], cell differentiation [4] and cell 

division [5, 6]). Thus, studying the mechanical responses of cytoskeleton and its substructure 

becomes more and more imperative and important [1, 7, 8].  

During the past decades, both in vivo and in vitro experiments [9-15] have been conducted 

to measure the mechanical properties of CAFNs. However, conducting experiments is time-

consuming and very expensive, and external conditions can significantly affect the 

experimental results. Thus, theoretical [16-23] and computational [24-30] models have also 

been developed to study the mechanical properties of CAFNs.  When it comes to the methods 
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of numerical simulation, FE models and molecule dynamic (MD) models are widely used in 

studying the mechanical responses (e.g., elastic modulus, Poisson’s ratio and stress strain 

relationship) of CAFNs. As MD models focus on the molecule structure of the polymer 

chains, they can precisely capture the mechanical responses at the scale of molecule or atom. 

However, this can cause much more extra costs in computation due to the extreme 

complexity and large scale of the model. In FE models, filaments and cross-linkers could be 

simply modelled by elastic beams and assembled into a network structure, which can greatly 

improve the computational efficiency and reduce the cost. In addition, it is easy to control the 

network geometry and the material parameters in FE models. 

Considering the extreme complexity of these networks and the computation limits, 

numerical simulations based on representative volume element (RVE) have been conducted 

because of their advantages in computational efficiency. During the past decades, both two 

dimensional (2D) models [24-26, 28, 31] and three dimensional (3D) models [29, 30, 32-36] 

have been developed to probe the mechanical responses of CAFNs. Head et al. [24, 37] 

studied the elastic responses and deformation modes of crosslinked semi-flexible biopolymer 

networks by constructing a 2D network model, and all of the intersections (i.e., cross-linkers) 

were treated as rigid connections in their models. The same treatment for cross-linkers was 

also adopted by Wilhelm et al. [25], Onck et al. [26] and Bai et al. [31]. Thus, their models 

have ignored the compliant nature of the actin-binding proteins with a large contour length. 

Sharma et al. [38] built-up a 2D filamentous network model in which a wormlike chain cross-

linker was inserted to represent the connection of two distinct filaments. Recently, Wei et al. 

[28] developed a 2D network model to study how the physical properties of cross-linker 

affect the mechanical responses of biopolymer networks, where a linear spring and a 

rotational spring were inserted at the intersection point of two distinct filaments. In 

physiological conditions, CAFNs always appear as 3D structure with in-plane periodicity. 
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Therefore, 3D models are more reasonable than 2D models in mimicking the mechanical 

responses of CAFNs. Cyron et al. [33] introduced a simulation framework to investigate 

various biopolymer networks (e.g., isotropic, bundle, cluster and layer network phase) by 

developing finite element models which could capture the viscoelastic behaviors of the 

networks and have advantages in efficiency than earlier published models. In their model, 

actin filaments are randomly distributed and stochastically undulated to represent the thermal 

equilibrium configuration of actin filament networks. In addition, the friction coefficients of 

crosslinkers are also introduced in their model. Heidemann et al. [34] investigated the elastic 

properties of a 3D network that consists of rigid filaments and flexible cross-linkers, where 

the cross-linkers were modelled as wormlike chains. Ma et al. [39] studied the mechanical 

behaviour of a 3D fibre-network model where the fibres were modelled by beam elements 

and the cross-linkers were represented by additionally inserted beam elements. Lin et al. [35] 

constructed a 3D RVE model to study the active stiffening behaviour of CAFNs by inserting 

cross-linkers and myosin-II motors at proper positions. These numerical models can help us 

to investigate the mechanical properties of CAFNs, however, the precise physiological 

geometry of filamin A (FLNA) has not been taken into consideration. Kim et al. [36] 

analysed the viscoelastic properties of actin filament networks crosslinked by different actin 

crosslinking proteins by performing Brownian dynamics simulations on a 3D actin network 

model which considered the crosslinking angles between two actin filaments. This provides a 

good reference for the construction of models for crosslinked actin filament networks. In 

addition, using the correct mechanical properties of actin filament and FLNA is essential in 

finite element method (FEM) simulations. The mechanical properties of a single actin 

filament [40-42] and the force-extension relationship of a single FLNA [43] have well been 

documented. To the best of our knowledge, the effects of components’ contents and 

properties on the elastic properties of CAFNs remain to be understood, especially the effects 
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of some crucial parameters. Therefore, it is necessary to develop new models that can better 

reflect the physiological conditions (e.g., the realistic geometry, contents and mechanical 

properties of the building components) of CAFNs.   

Due to the page limit, this paper is mainly focused on the linear elastic properties and 

deformation mechanisms of actin filament networks crosslinked by FLNA, and their 

nonlinear elastic and viscoelastic properties will be investigated in a separate paper. A three-

dimensional actin filament network model is developed to represent the physiological 

geometry of actin filaments and FLNA using finite element analysis software ABAQUS 

(Simulia, Providence, RI). By varying the components’ contents (i.e., actin filament volume 

fraction and crosslinking density) and material properties (i.e., Young’s moduli and Poisson’s 

ratios), different mechanical responses of CAFNs can be obtained via finite element 

simulations. This model can precisely capture the elastic properties of CAFNs and reveal the 

role of CAFNs in different cell functions. In addition, a dimensional analysis is conducted to 

de-couple and to quantify the contributions of different deformation mechanisms to the 

stiffness of CAFNs. The details of the model construction and the boundary conditions are 

elaborated in Section 2; the elastic properties of CAFNs are presented and discussed in 

Sections 3; the dimensional analysis of CAFNs is presented in Section 4; and the conclusions 

are summarized in Section 5.  

 

2. Modelling 

2.1. Network geometry and parameters 

In order to study the elastic properties of crosslinked actin filament networks, a 3D 

network model is developed using finite element analysis software ABAQUS (Simulia, 

Providence, RI) and scripting Python, and it shows good consistency with the structure of 
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actin filament network in electron microscopy images (Fig. 1). According to the 

physiological geometries of cell cortex, actin filaments and FLNA, a periodic representative 

volume element (RVE) is constructed with a size of W×W×H, where W is the side dimension 

and H is the thickness (Fig. 2). It is reported that the majority of actin filaments in cell cortex 

have a physiological length less than 2 μm [11, 44, 45]. The thickness of cell cortex is 

reported to vary from 0.1 μm to 0.5 μm in different parts of the cell [46], for example, the 

average thickness of cell cortex in mitotic HeLa cells is measured to be 0.2 μm [47]. Huisman 

et al. [29] used a 3D model with a size of 2.5 μm to study the mechanical behaviour of 

CAFNs, in which the length of the actin filaments was between 0.5 μm and 2.0 μm. Chugh et 

al. [48] developed a 3D plate-like model to investigate the cell surface tension, and their 

model had a side length of 2.5 μm with the actin filament length ranging between 0.2 μm and 

0.8 μm. Gong et al. [49] constructed a three dimensional  model (2 μm ×2 μm ×2 μm) to 

investigate the mechanical responses of a crosslinked biopolymer network, and the filaments 

in their model had a contour length of 1.2 μm.  According to the dimensions of the 

aforementioned models [29, 48, 49], dimensions W=2 μm and H=0.5 μm are adopted for the 

RVE models of CAFNs in this work. The constructed geometrical model of CAFNs in Fig. 1 

shows great similarity with the microstructure of crosslinked actin filament networks in living 

cells. 
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             (a)                                                           (b) 

 

(c) 

Fig. 1. (a) Electron micrograph of actin filaments crosslinked by FLNA (the bar is 100 nm) 

[50]. (b) Electron micrograph of actin filament network in human blood platelet [50]. (c) The 

constructed 3D network model of CAFNs consisting of actin filaments (blue) and FLNA 

(red).  

 

Actin filaments are usually assumed to have the same length in simulations [24, 33, 48], 

however, it seems that this treatment neglects the real length distribution of actin filaments in 

living cells. It is reported that the length of actin filaments approximately holds an 

exponential distribution when polymerized in vitro [51, 52], and similar phenomenon is also 

observed in eukaryote [44]. In addition, experimental measurements show that the mean 

length of actin filaments in a whole cell is about 4.9 μm [53]. According to these reports, the 

length distribution of all filaments in a whole cell can well be described by an exponential 

probability density function given as [31] 
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where l denotes the length of the individual actin filament and λ-1 is the mean length of all 

actin filaments. It is noted that the probability density function of actin filament lengths (Eq. 

(1)) is obtained for all the actin filaments in a whole cell [44], and that most actin filaments in 

the cell cortex are shorter than 2 μm [11, 44, 45]. In addition, FLNA tends to associate with 

actin filaments which are longer than 50 nm according to the binding mechanisms [54]. Thus, 

only actin filaments with a length between 0.05 μm and 2 μm are generated in the RVE 

model (the shaded region in Fig. 2 (b)), and their mean length can be obtained as  

1

  
N

m i
i

L l N
=

=∑ ,                        (2) 

where N is the total number of complete actin filaments generated in the RVE model and l i is 

the length of filament i. It is worth noting that actin filaments with the length of 4 μm are 

generated in a cubic volume of edge length of 5 μm in the computational model proposed by 

Cyron et al. [33], which is different from our model in the dimensions of RVE and length 

distribution of actin filaments. In addition, the thermal fluctuation of actin filaments as well 

as the friction of crosslinkers are taken into consideration in Cyron’s model [33], however, 

these factors are not included in our model.  

   To generate a filament in a RVE, the x, y and z coordinates of its midpoint are determined 

by random numbers in the space of W×W×H.   α is defined as the angle of turning the 

filament projection on the x-y plane (lxy) clockwise to the positive direction of the x axis. As 

actin filaments are randomly oriented on the x-y plane of the RVE, α is randomly determined 

in the range of 0 to π.   β is defined as the angle between the filaments and the x-y plane. It is 

worth noting that some filaments have a length larger than the thickness H of the RVE, while 

the others have a length smaller than H.  When the length of a filament is smaller than H, β is 

randomly determined in the range of 0 to π/2. If the length of a filament is larger than H, an 

upper limit value for β is defined by 
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( )arcsinul H lβ = .          (3) 

In this case, β is randomly determined in the range of 0 to βul. If part of a filament is outside 

the top or bottom surface of the RVE, the filament is translated in the z direction to the 

position with its top end on the top surface or its bottom end on the bottom surface of the 

RVE, as shown in Fig. 2 (d). In addition, all filaments generated in the central REV are 

copied to the neighbouring 8 RVEs, thus periodic boundary conditions can be achieved in the 

x and y directions, as demonstrated in Fig. 2(c).  

 

      

(a)                                                                          (b) 

           

   (c)                                                                        (d) 
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Fig. 2. The construction details of actin filaments in RVE: (a) the position and orientation of a 

filament in RVE; (b) the length distribution of the actin filaments in the RVE model of CAFNs; 

(c) the diagrammatic sketch of how to keep periodicity of RVE in the x and y directions; (d) the 

method of processing out-of-plane protrusions of a filament. 

 

The Young’s modulus of actin filaments Ef  is measured to be about 2 GPa [40-42], and the 

cross-sectional area Af is about 20 nm2 [40, 41]. Thus, a circle cross section with a radius of 

2.52 nm is adopted for the actin filaments in our model. To the best of our knowledge, we are 

not aware of any experimental work that has actually measured the Poisson’s ratio of a single 

actin filament, however, an estimated or calculated Poisson’s ratio of about 0.3 to 0.4 is used 

for modelling or studying the actin filaments in previous studies [35, 55, 56]. Therefore, an 

average value of 0.35 is adopted as the Poisson’s ratio of actin filaments in our model. For 

simplicity, cross-linkers are also represented by elastic rods with specific geometric and 

material properties. Experimental measurements show an axial extension stiffness ( EA Lµ = ) 

of FLNA ranging from 5×10-4 N·m-1 to 1×10-3 N·m-1 [57], and 2×10-4 N·m-1 is adopted by 

Wei et al. [28]. The contour length (lcl) of FLNA dimer is reported to be about 160 nm [54, 

58]. Additionally, the radius of the circular cross-section of cross-linkers is estimated to be 

1.8 nm according to the microstructure of FLNA [54].  Thus, the Young’s modulus of the 

cross-linkers (Ec) can be obtained as Ec=12 MPa from their axial extension stiffness (μ), 

cross-sectional area (Ac) and contour length (lcl) of FLNA. The Poisson’s ratio of cross-

linkers is simply assumed to be the same as that of actin filament in this paper. Table 1 

shows the material properties and cross-sectional dimensions of actin filaments and FLNA 

which are adopted in our models of CAFNs. It worth noting that the FLNA dimers are 

represented by their rod 2 segment in simulations, which are illustrated in Section 2.2. The 

rod 2 segment of FLNA has the same material properties and cross-section with FLNA dimer, 
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however, the total length of the rod 2 segment in a single FLNA dimer is about 40 nm (Fig. 3 

(a)). 

 

Table 1 

The material properties and dimensions of actin filament and FLNA in simulations. 

Components 
Young’s 

modulus (Pa) 
Poisson’s 

ratio 

Cross-
sectional type 

Cross-
sectional 

radius (nm) 

Cross-
sectional area 

(nm2) 
Actin filament 2.3E+09 0.35 circle 2.52 19.95 

FLNA 1.2E+07 0.35 circle 1.80 10.18 

 

 

According to the geometric parameters determined above, the volume fraction of actin 

filaments, Vf, can be specified as 

1

N

i f
i

f

l A
V

W W H
=

×
=

× ×

∑
.           (4) 

 

2.2. Crosslinking principles 

FLNA is a type of actin-binding proteins that can bind distinct actin filaments into an 

orthogonal network structure. As FLNA has a relatively large contour length (approximately 

160 nm) and an easily deformable “V” shape [54, 58], cross-linkers (i.e., FLNA) between two 

distinct filaments are modelled by deformable curved elastic rods. In addition, the angle at the 

FLNA dimerization point is reported to range from 60° to 120° with an average angle being 

about 90° [54]. According to the microstructure of FLNA and its interaction with actin 

filaments [54, 58, 59], two filaments are crosslinked only when their crossing angle (θc) is 
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larger than 60° and smaller than 120°, and their distance (dc) is smaller than 35 nm 

(approximately the distance between two terminals of the rod 2 segment in a FLNA dimer 

when the angle at the dimerization point is 120º). In order to guarantee the uniformity of 

crosslinking, only one cross-linker is inserted between each pair of actin filaments until the 

expected crosslinking density is reached. If the crosslinking density is still smaller than the 

expected value when all of the available crosslinking points are crosslinked by one cross-

linker, the cross-linker generation process will be repeated until the expected crosslinking 

density is reached. This means that some pairs of actin filaments are crosslinked by more than 

one cross-linker. It is noted that actin bundles can be formed in the reconstituted actin 

filament networks crosslinked by filamins when the crosslinker concentration is at very high 

level [60, 61]. Different types of network structures (e.g., homogeneous-isotropic networks, 

bundles, clusters and layers) can be formed by changing the concentrations of actin filaments 

and crosslinkers as well as the orientation constraints of crosslinking in the computational 

model proposed by Cyron et al. [33]. Due to the fact that the crosslinking density studied in 

this research is not very high, the mechanism of forming actin bundles is not taken into 

consideration in our model. But the adoption of deformable “V” shaped crosslinkers in our 

model could better reflect the real contour of FLNA in living cells. 

As this paper is mainly focused on the linear elastic properties (i.e., small strain stage) of 

crosslinked actin filament networks, the unbinding between FLNA and actin filaments is 

ignored. Therefore, the binding points between FLNA and actin filaments are simply treated 

as permanently shared nodes (i.e., both FLNA and actin filaments have the same 

displacements and rotations at their shared nodes).  As the total length of the rod 2 segment is 

40 nm, a specific distance of 35 nm is used as the critical distance for crosslinking. It is easy 

to find that large crossing angles tend to appear more frequently than smaller ones, which 
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may explain the reason why FLNA prefers to crosslink actin filaments into orthogonal 

connections. Fig. 3 shows the crosslinking mechanism. 

The crosslinking density (i.e., the mean number of cross-linkers per micron length of actin 

filament), ρc, is defined as the connectivity of crosslinked actin filament networks and given 

by 

c c tn Lρ = ,            (5) 

where nc and Lt refer to the total number of cross-linkers and the total length of actin 

filaments in the RVE model, respectively. In experiments, the connectivity of the network is 

always controlled by tuning the molar ratio of FLNA dimers to actin monomers (RF). 

Experimental results showed that 0.2 μm long actin filament contains about 76 subunits of 

actin monomers[44], from which we can obtain the equivalent molar ratio of FLNA to actin 

in our model as 380F cR ρ= . In living cells and in-vitro experiments, it is proved that 

binding and unbinding between filaments and FLNA take place all the time. Under such a 

circumstance, some actin filaments are crosslinked by more than one cross-linker although 

some actin filaments may not be crosslinked. Once some actin filaments are crosslinked into 

a continuum path throughout the RVE, loads applied to the network can be transmitted. 

Although some of the actin filaments are not crosslinked at all (i.e., isolated), they are also 

included when calculating the nominal volume fraction of actin filaments (Vf ) in Eq. (4).  

Only in this way, is the definition of the nominal volume fraction of actin filaments in this 

work consistent with the fact in experiments. 
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(a)                                                               (b) 

  

 (c) 

Fig. 3. (a) Diagrammatic sketch of the microstructure of an ideally orthogonal connection 

formed by FLNA and actin filaments [54, 58]. Where A refers to the actin-binding domain 

(black solid point), AB refers to Ig1-8 of FLNA which does not bind with actin filament, BC 

refers to Ig9-15 of FLNA that binds with actin filament, C refers to Hinge-1 of FLNA, CD 

refers to Ig16-23 of FLNA which is also known as rod 2 segment, D refers to the 

dimerization (green solid point), the yellow solid triangle is FilGAP: a FLNA-binding 

RhoGTPase-activating protein. The inset shows the geometric details of rod 2 segment when 

the crosslinking angle is 120 degree, which determines the critical distance for crosslinking. 
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(b) The details of a cross-linker (in red) generated in our model. Because BC and B'C' (Ig9-

15) are assumed to bind with actin filament permanently in our model, only CD and C'D 

(Ig16-23) are presented in FE model. (c) The statistical results of probability distribution of 

the crossing angles (θc) between actin filaments in RVEs (over 100 models). The shaded area 

refers to the range of potential crosslinking angles. 

 

2.3. Mesh and boundary conditions 

All of the actin filaments and FLNA in the RVE are meshed into Timoshenko beam 

elements (B32), which could successfully take into consideration the bending, torsion, axial 

stretching/compression, and transverse shear deformation of the beam. To mesh the actin 

filaments, an element size (length) of 0.04 mµ  is adopted because actin filaments are much 

longer than FLNA. According to the discussion of crosslinking principles, the FLNA is 

represented by its rod 2 segment in finite element simulations, and the rod 2 segment (see Fig. 

3 (b)) of each FLNA (i.e. cross-linker) has a total length of cL =  0.04 mµ  and is meshed into 

10 Timoshenko beam elements. For simplicity, both the actin filaments and FLNA are 

assumed to have a uniform circular cross-section with a constant area as given in Table 1. In 

addition, both actin filaments and FLNA are assumed to be isotropic materials with Young’s 

moduli and Poisson’s ratio shown in Table 1.  

As the RVE model is periodic in the x and y directions, periodic boundary conditions 

(PBCs) are more suitable for these boundaries [62, 63]. For each pair of nodes on the 

opposite planes, the PBCs simply assume that they have the same nodal rotations, and the 

differences of their nodal displacements remain constants in the x, y and z directions. By 

simply ignoring the interactions between cell cortex and cell plasma membrane, all the nodes 

on the top and bottom surfaces of the RVE (shown in Fig. 1 (c)) are left to be free (i.e., these 
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nodes are free to displace or rotate).  These boundary conditions for the nodes on the top and 

bottom surfaces were also adopted to study the effects of cell cortex structure on cell surface 

tension in reference [48]. 

 

3. Simulation results 

3.1. Determination of the elastic constants  

     The random distribution of the actin filaments in cell cortex indicates that there are three 

orthogonal planes of elastic symmetry, and in addition, the x-y plane is isotropic. Thus, the 

crosslinked actin filament networks (CAFNs) have only five independent elastic constants 

[64, 65].  Under small deformation, the stresses of the CAFNs are related to the strains by the 

following relationship: 
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 .  (6) 

Since the compliance matrix in Eq. (6) is symmetric about the leading diagonal (e.g., v31/E1 

= v13/E3) and 12 1 122(1 )G E ν= + , there are only five independent elastic constants: E1, v12, E3, 

v31 and G31. In consideration of the fact that the cell cortex mainly bears in-plane (x-y plane) 

loads (e.g., arterial cell bears shear stress of blood flow [66]) rather than those in the out-of-
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plane (z direction), only the in-plane elastic properties are studied and presented in this paper. 

For simplicity, reference points are set up by coupling nodes in corresponding faces of the 

RVE, and their reaction forces as well as displacements can be obtained from the output 

database. The effective engineering stress can be obtained as 

F Aσ = ,           (7) 

where F is the reaction force of the loaded reference point and A is the effective cross-

sectional area of loaded plane. The effective engineering strain can be obtained by dividing 

the tensile deformation d by the initial side length W of the RVE model, and given by 

d Wε = .           (8) 

In order to study the in-plane elastic properties of the network, a small strain (0.001) is 

applied to the RVE model. The effective Young’s modulus (E ) and the Poisson’s ratio (ν) of 

the network can be obtained by conducting uniaxial tension simulations and using the 

periodic boundary conditions.  

11 11 11

21 22 11

E σ ε
ν ε ε

=
 = −

 ,           (9) 

where 11σ   is the effective engineering normal stress under uniaxial tension, 11ε  is the tensile 

strain in the loading direction, and 22ε  is the corresponding normal strain in the orthogonal 

direction. It is noted that the actin filament networks may have been pre-stressed.  For small 

deformation of linear elastic materials/structures, however, the principle of superposition 

applies, and pre-stress or pre-strain does not affect the results of the linear elastic properties. 

 

3.2. Isotropic properties  

The simulation results for 20 random models with a fixed actin filament volume fraction 

(Vf  = 0.4%) and a fixed crosslinking density (ρc = 1.0) are listed in Table 2. As can be seen, 
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although 11E  is different from 22E  and 12v  is different from 21v  for each of the individual 

random models, the statistical mean Young’s moduli and Poisson’s ratios are almost identical 

in the x and y directions (i.e., 11 22E E=   and 12 21v v= ), and 12 11 12/ [2(1 )]G E v= + . These 

results suggest that the CAFNs are in-plane isotropic, because actin filaments are randomly 

distributed in the x-y plane.  

 

Table 2  

The in-plane Young’s moduli, Poisson’s ratios and shear moduli of 20 periodic random RVE models 

with a fixed actin filament volume fraction of Vf = 0.4% and a fixed crosslinking density of ρc=1.0. 

Model No. E11 (Pa) ν21 E22 (Pa) ν12 G12 (Pa) 

1 11.0289 0.1023 11.8114 0.1096 5.1154 
2 18.2018 0.2432 28.1523 0.3761 13.8023 
3 27.2581 0.0819 24.7734 0.0744 10.5504 
4 8.5795 0.0092 7.4726 0.0080 2.4938 
5 20.3106 0.3131 12.4534 0.1920 9.8949 
6 27.4947 -0.0829 15.2173 -0.0459 4.3915 
7 11.2361 0.0907 11.5941 0.0936 3.5636 
8 19.1121 0.1014 22.3218 0.1184 11.5540 
9 26.0576 0.0163 14.5517 0.0091 9.8759 
10 18.1095 0.1671 26.3887 0.2434 7.1442 
11 16.8870 0.1359 16.9425 0.1363 6.7550 
12 9.8979 0.0545 20.4827 0.1129 3.1596 
13 13.9251 0.2178 7.7709 0.1216 3.7496 
14 18.3405 0.3085 6.1464 0.1034 7.5101 
15 32.1869 0.2359 18.5847 0.1362 10.4478 
16 14.8388 0.1350 16.6581 0.1516 9.4976 
17 6.9136 0.0223 26.0117 0.0841 5.1805 
18 23.8214 0.3038 14.2944 0.1823 11.3357 
19 17.4011 0.2277 31.3956 0.4109 10.5491 
20 7.2054 0.1364 17.7829 0.3367 6.0938 
      
Mean 17.4403 0.1410 17.5403 0.1477 7.6332 
Standard deviation 7.0455 0.1076 7.0225 0.1150 3.2406 
 

As the CAFNs are in-plane isotropic, and most experiments are conducted to measure the 

shear modulus of CAFNs, shear simulations are performed in the following parts to study the 
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elastic properties of CAFNs. By using periodic boundary conditions and applying a small 

shear strain (0.001) to the RVE model, the effective shear modulus of RVE can be obtained. 

The contours of stress distribution, strain and in-plane displacements of the filaments and 

cross-linkers in the RVE can also be obtained from simulations, as demonstrated in Fig. 4. It 

can be seen from Fig. 4 (a) that only some of the actin filaments bear the stress in the RVE, 

and the other actin filaments don’t undertake any stress. Fig. 4 (b) shows that the strain 

(indicated by red arrows) is mainly concentrated in the cross-linkers rather than in actin 

filaments, which suggests that the cross-linkers play a dominant role in the deformation 

mechanism of the CAFNs in small strain stage. Fig. 4 (c) and (d) present the in-plane 

displacements in the x and y directions, respectively. 

 

 

(a) 
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(b) 
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         (c)                                                                         (d) 

Fig. 4. The von-Mises stress (Pa) distribution (a), maximum in-plane principle strain (b) and 

in-plane displacements (μm) in the x direction (c) and in the y direction (d) of the RVE. 

 

3.3. Effects of actin filament volume fraction and crosslinking density on the in-plane 

shear modulus of CAFNs 

In different cells or distinct regions of a single cell, the volume fraction of actin filaments 

(Vf ) and the crosslinking density (ρc ) are always different in order to meet the requirements 

of specific functions. Vf   and  ρc are the two main factors that can significantly affect the 

elastic properties of CAFNs. In this section, we investigate the effects of Vf   and  ρc on the in-
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plane shear modulus of CAFNs.  100 models are simulated for each of the different volume 

fraction (or crosslinking density) conditions to obtain the statistical results, and the simulation 

results are presented in Fig. 5.  As can be seen in Fig. 5 (a), the simulation results of the in-

plane shear modulus, G12 , is approximately proportional to Vf 
5/2, which is consistent with the 

experimental measurements on crosslinked gels [10, 17, 67]. Although strut bending is the 

dominant deformation mechanism in both low density random irregular Voronoi open-cell 

foams [62] and honeycombs [63], the shear modulus G12  (or Young’s  modulus) is 

proportional to Vf 
2 for random irregular open-cell foams (3D) [62] and to Vf 

3 for random 

irregular honeycombs (2D) [63]. As the geometrical structure of CAFNs (shown in Fig. 1 (c)) 

is somewhat between random irregular Voronoi honeycombs (2D) [63] and random irregular 

Voronoi open-cell foams (3D) [62], their relationship between G12 and Vf  is also between 

those of the two types of cellular materials. The geometries of an undeformed random 

Voronoi open-cell foam and an undeformed random Voronoi honeycomb are provided in Fig. 

6 for comparing with that of the CAFNs. 

Fig. 5 (b) indicates that the in-plane shear modulus of CAFNs is approximately 

proportional to ρc
 2, which in general agrees with the scaling relationship of the experimental 

results in literature [10]. Table 3 lists the simulation results of the in-plane effective shear 

moduli of CAFNs and the experimental measurements for comparison. In experiments, the 

crosslinking density of CAFNs is dominated by the molar ratio of FLNA dimer to actin 

monomer, and it is reported that 0.2 μm long actin filament contains about 76 subunits of 

actin monomers[44]. Thus, the equivalent molar ratio of FLNA to actin in FE model can be 

obtained as / 380F cR ρ= .  It is worth noting that the in-plane shear moduli of CAFNs 

obtained from simulations are slightly larger than those obtained from experiments. This is 

because it is difficult for us to perfectly match the crosslinking densities in simulations with 

those in experiments.  In experiments, the molar ratio of FLNA dimer to actin monomer 
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corresponds to the amount of the FLNA dimer that has been added in, but some of them may 

be isolated. However, in computer simulations, every cross-linker is connected with actin 

filaments to contribute to the macro stiffness of the CAFNs. 

 

       

         (a)                                                                         (b) 

Fig. 5. The in-plane shear modulus of CAFNs, G12, as a function of the actin filament volume fraction 

(a) and the crosslinking density (b). 

 

 

Fig. 6. The geometries of an undeformed random Voronoi honeycomb (2D) [63], an undeformed 

random RVE of CAFNs (3D) and an undeformed random Voronoi open-cell foam (3D) [62]. 
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Table 3 

Comparison between the effective in-plane shear moduli of CAFNs obtained from experiments in 

literature and those obtained from simulations in this research. 

Method Volume 
fraction (%) 

Mean length 
(μm) 

Molar ratio 
(ABPs/actin) 

G12 (Pa) Ref. 

Experiment 0.05 2.5 – 3.0 1:300 0.2 Goldmann et al. [68] 
Experiment 0.05 2.0 1:100 0.2 Kasza et al. [15] 
Experiment 0.05 2.0 1:100 0.1 Lee et al. [69] 
Experiment 0.1 1.0 1:50 2 Kasza et al. [70] 
Experiment 0.2 1.0 – 2.0 1:100 1 - 1.5 Gardel et al. [11] 
Simulation 0.2 1.0 1:380 0.71 in this research 
Simulation 0.2 1.0 1:190 1.50 in this research 

Simulation 0.2 1.0 1:125 2.17 in this research 

 

4. Dimensional analysis 

In addition to the volume fraction of actin filament, Vf , and the crosslinking density, ρc, the 

elastic properties and deformation mechanisms of the component materials can also affect the 

stiffness of CAFNs.  However, to the best of our knowledge, this aspect has not been well 

studied. Here, we explore how the in-plane shear modulus of CAFNs depends on the elastic 

properties and the deformation mechanisms of their components by dimensional analysis and 

numerical simulations, and thus identify their contributions to the stiffness of CAFNs.  

    It is reported that the elastic properties of CAFNs are bending dominated [13, 59] in small 

strain stage. However, the effect of the torsional deformation of cross-linkers on the stiffness 

of CAFNs has almost never been investigated. In this research, an L-shaped cantilever beam 

model as shown in Fig. 7, which takes the torsion and bending of FLNA as well as the 

bending of actin filament into consideration, is proposed to perform dimensional analysis on 

the shear deformation behaviour of CAFNs. In Fig. 7, ABC refers to the rod 2 segment of 

FLNA dimer with a length of cL =  0.04 mµ  and it is in the x-z plane, CD refers to actin 
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filament (in the x direction) with a length of Lf , and P is a very small concentrated force 

applied in the y direction at point D.  As the dimensional analysis is mainly focused on the 

qualitative analysis, the main part (BCD) of the L-shaped cantilever beam model is simply 

assumed to be perpendicular to the side face of RVE. Though actin filaments may be not 

always perpendicular to the side face of RVE, this just influences the coefficient parameter 

rather than the dimensional analysis conclusions. The Young’s moduli of FLNA and actin 

filament are Ec and Ef, and the second moments of their cross-sectional areas are Ic and If, 

respectively. 

 

 

Fig. 7. The schematic diagram of an L-shaped cantilever beam model for dimension 

analysis. P is a small concentrated force applied in y direction at point D. 

 

According to Fig. 7, when a concentrated force, P, is applied in the y direction at point D, 

the deflection in the y direction and the rotation about the z axis of point B are obtained as 

3(0.5 )

3
c

B
c c

P L
y

E I

⋅= ,                    (10) 

( )0.5 0.5c f c

B
c Pc

P L L L

G I
θ

⋅ + ⋅
= ,                   (11) 

where Gc is the shear modulus of FLNA, IPc is the second polar moment of inertia of FLNA. 
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The deflection in the y direction and the rotation about the z axis of point C can be obtained 

and given as 

23 (0.5 )(0.5 )
0.5

3 2
f cc

C B B c
c c c c

PL LP L
y y L

E I E I
θ

⋅⋅ ⋅= + + + ⋅ ,      (12) 

2 (0.5 )(0.5 )

2
f cc

C B
c c c c

PL LP L

E I E I
θ θ

⋅⋅= + + .         (13) 

Using superposition, the deflection of point D in the y direction is derived as 

3

2 2

2 2 33 3

2

3

(0.5 ) 0.5 (0.5 ) (0.5 )
    

2

(0.5 ) (0.5 ) (0.5 )(0.5 ) (0.5 )
       

3 2 3 3

(0.5 ) 0.
    

f
D C C f

f f

c f c f c f f c

c Pc c c c c

f c c f c fc c

c c c c c c c Pc f f

c f

PL
y y L

E I

P L L L L P L L PL L

G I E I E I

PL L P L L L PLP L P L

E I E I E I G I E I

P L L

θ= + +

⋅ + ⋅ ⋅ ⋅
= + + +

⋅ ⋅ + ⋅⋅ ⋅+ + + +

⋅ + ⋅
=

2 2 335 (0.5 ) (0.5 )2 (0.5 )

3 3
c f c f c fc

c Pc c c c c c c f f

L PL L PL L PLP L

G I E I E I E I E I

⋅ ⋅⋅+ + + +

.  (14) 

The bending stiffness of actin filament (CD), ��, the bending stiffness of cross-linker (AB and 

BC), ���, and the torsion stiffness of cross-linker (AB), ���, are defined as 

3 4 3

3 4 3

3 4 3

(64 )

(0.5 ) 64 (0.5 )

(0.5 ) 32 (0.5 )

f f f f f f f

cb c c c c c c

ct c Pc c c c c

k E I L E d L

k E I L E d L

k G I L G d L

π

π

π

 = =



 = = ×  


 = = ×  

,        (15) 

where df  and dc are the diameters of the circular cross sections of actin filament and cross-

linker respectively, Lf  and Lc are the lengths of actin filament and cross-linker respectively. 

In addition, ��� = 2�� ,  and  
� = ��/2(1 + ��) is the shear modulus for the cross-linker 

material, where �� is the Poisson’s ratio of the cross-linker. Thus, the effective shear strain of 

the crosslinked actin filament networks (CAFNs) can be scaled as 
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3
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   ,  (16) 

    To obtain the effective shear stress applied on the side face of the RVE, it is simply 

assumed that there are n actin filaments crossing each side face of the RVE model (Fig. 1 (c)). 

In the RVE, actin filaments are randomly distributed, which means that they are in general 

not perpendicular to the side face of the RVE. But this does not influence the dimensional 

analysis conclusion as the dimensional analysis is mainly focused on qualitive analysis. By 

assuming Pi as the concentrated forces applied in the y direction at the ends of actin filaments 

which cross the side face of RVE, the effective shear force (F) applied on the side face of the 

RVE can be given as 

1

n

i
i

F P
=

=∑ ,            (17) 

where n is the total number of actin filaments that cross one of the side faces of RVE.  

Thus, the effective shear stress applied on one of the side faces of the RVE can be expressed 

as 

1

n

i
i

F WH P WHτ
=

= =∑  ,                       (18) 

where W and H are the side length and thickness of the RVE model, respectively. 
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The effective in-plane shear modulus of the RVE can thus be obtained, and given as 

( )
( ) ( ) ( ) ( )

12

1
2 2 22

3 0.5
     

3 0.5 2 0.5 3 0.5 3 0.5

n

c f i
ct cb fi

ct cb f cb c f ct c ct f c ct f c

G

L L P
k k k

WHP k k k k L L k L k L L k L L

τ
γ

=

=

+
= ⋅

 + ⋅ ⋅ + + ⋅ + ⋅ +  

∑
.

             (19) 

In this L-shaped cantilever beam model (Fig. 7), Lc refers to the total length of rod 2 segment 

in FLNA dimer (i.e., CDC' in Fig. 3 (a)) which is reported to be 40 nm [49, 53].  Lf  is the 

average length of actin filament segments between two neighbouring cross-linkers and given 

as  

f t cL L n=  ,                     (20) 

where Lt  and nc are the total length of actin filaments and the total number of cross-linkers in 

the RVE model, respectively. It is easy to find that Lf  is the reciprocal of the crosslinking 

density ρc . According to Eq. (15), the bending stiffness cbk  (or fk ) depends on not only the 

Young’s modulus of cross-linker (or actin filament), but also the length of cross-linker (or 

actin filament). The torsion stiffness of cross-linker, ctk , depends on the Young’s modulus, 

Poisson’s ratio and length of the cross-linker.  In order to explore either the cross-linkers or 

the actin filaments dominate the stiffness (i.e., G12 ) of the CAFNs, we fix the Poisson’s ratios 

of cross-linker and actin filament at 0.35, the volume fraction of actin filaments at 0.2%, and 

the crosslinking density at 1.0.  As Lf can be obtained to be 1 μm according to Eq. (20), we 

have ( ) ( ) ( ) ( )2 2 223 0.5 2 0.5 3 0.5 3 0.5 7803 7652cb c f ct c ct f c ct f c cb ctk L L k L k L L k L L k k ⋅ + + ⋅ + ⋅ + = +  
. 

In such a condition, the stiffnesses ctk  , cbk  and fk  only depend on Ec and Ef , respectively. By 

Jo
urn

al 
Pre-

pro
of



29 

 

noting  ( )
1

3 0.5
n

c c f i
i

L L L P WHP
=

+ ∑  as a constant coefficient parameter, λ , Eq. (19) can be 

rewritten as 

{ }12 (7803 7652 )ct cb f c ct cb f cb ctG k k k L k k k k kλ  = ⋅ + ⋅ +  .       (21) 

As the cross-linkers have a circular cross-section and are made of an isotropic material, 


� = ��/2(1 + ��) and ��� = 2�� , thus  

(1 )ct cb ck k ν= + .            (22) 

A new symbol (1 )c cb c ctk k kν= = +  is introduced to represent the amplitude of the bending 

stiffness of the cross-linkers, Eq. (21) can be rewritten as  

( )12 [ 18186 ]c f c c fG k k L k kλ= +          (23) 

Thus,  can be used to demonstrate how the shear modulus 12G  of 

CAFNs depends on the stiffnesses of the cross-linkers and actin filaments. We respectively 

increase or reduce the Young’s modulus of either the cross-linkers or the actin filaments by 

one or more orders, while fixing the Young’s modulus of the others at the normal level. The 

different values of  Ec ,  Ef , ck  and fk  used for discussion are listed in Table 4.  In order to 

identify either ck  or fk  dominates the stiffness (i.e., G12 ) of the CAFNs, the values of 

12 /G λ  are obtained from Eq. (23) and plotted against ck  and fk  in Fig. 8.  

 

Table 4 

The values of the Young’s moduli and bending stiffnesses of cross-linkers and actin filaments used 

for discussion in Fig. 8.   

( )[ 18186 ]c f c c fk k L k k+
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Vf ρc Ec (Pa) kc (Nm-1) Ef (Pa) kf (Nm-1) 

0.2% 1.0 1.2×104 1.24×10-8 2.3×106 7.28×10-11 
0.2% 1.0 1.2×105 1.24×10-7 2.3×107 7.28×10-10 
0.2% 1.0 1.2×106 1.24×10-6 2.3×108 7.28×10-9 
0.2% 1.0 1.2×107 1.24×10-5 2.3×109 7.28×10-8 
0.2% 1.0 1.2×108 1.24×10-4 2.3×1010 7.28×10-7 
0.2% 1.0 1.2×109 1.24×10-3 2.3×1011 7.28×10-6 
0.2% 1.0 1.2×1010 1.24×10-2 2.3×1012 7.28×10-5 
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(b) 

Fig. 8. (a) Dependences of 12 /G λ  on the bending stiffness ck  of FLNA and the bending 

stiffness fk  of actin filaments when Vf = 0.2% and ρc = 1.0. (b) The plane isoline graphs of 

12 /G λ  against ck   and fk  when Vf = 0.2% and ρc = 1.0. The solid triangle represents the 

combination of the normal stiffnesses of FLNA (i.e., 5 -11.24 10  Nmck −= × ) and actin filament 

(i.e., 8 -17.28 10  Nmfk −= × ). The arrow with the broken line indicates the increase of ck , and 

the arrow with the solid line indicates the increase of fk . 

 

According to Eq. (15), the normal bending stiffness is 5 -1
0 1.24 10  Nmck −= ×  for cross-linkers 

or 8 -1
0 7.28 10  Nmfk −= ×  for actin filaments. If fk  remains constant, 12 /G λ  exhibits almost a 

linear relationship with ck  when �� ≪ ��, then the gradient drops with the further increase of 

ck , and 12 /G λ  becomes a constant when �� ≫ ��. On the other hand, if ck  remains constant, 
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12 /G λ  slightly increases with fk , but the gradient drops with fk  and becomes zero when 

�� ≫ ��. This clearly indicates that the elastic properties of CAFNs are mainly dominated by 

its weaker part/component. The plane isoline graph of 12 /G λ  against ck  and fk  is shown in 

Fig. 8 (b), and the normal condition point is marked by the solid triangle. According to the 

plane isoline graph, when fk  is fixed at 0fk , it is easy to find that the small deformation 

stiffness of CAFNs shows a linear relationship with ck  near the normal condition point. 

However, when ck  is fixed at 0ck , the small deformation stiffness of CAFNs is not sensitive 

to fk  near the normal condition point. This also suggests that the elastic properties of CAFNs 

are mainly dominated by FLNA in normal conditions. 

In addition, the dependences of the in-plane shear modulus of CAFNs, 12G , on ck  and fk  

are investigated by performing FEM simulations, and the simulation results are shown in Fig. 

9.  Considering the randomness of the RVE model, 100 models are simulated for each 

condition, and the statistical results (i.e., the mean results and error bars) of the 100 models 

are presented. It is noted that as the vertical axes are in log scale, the error bars look not 

symmetric about the mean values in the Fig. 9.  In FEM simulations, the volume fraction of 

actin filaments and the crosslinking density are the same as those used in the dimensional 

analysis, i.e., 0.2%fV =  and 1.0cρ = . In Fig. 9 (a), the bending stiffness of actin filament, fk , 

is fixed at 0fk  (i.e., 8 -17.28 10  Nm−× ). In Fig. 9 (b), the bending stiffness of FLNA, ck , is 

fixed at 0ck  (i.e., 5 -11.24 10  Nm−× ). In addition, different values of fk  and ck  are applied in 

Fig. 9 (c) and Fig. 9 (d) respectively to further verify the dimensional analysis results. As can 

be seen in Fig. 9, the FEM simulation results of 12G  agree well with the predictions of the 

dimensional analysis. 

 

Jo
urn

al 
Pre-

pro
of



33 

 

10-6 10-4 10-2 100

10-2

100

102

104

Normal condition point

kf =7.28×10-8 Nm-1

 

 
G

12
 (

P
a)

k c (Nm-1)

 Simulation
 Dimensional analysis

    

10-10 10-8 10-6 10-4

10-2

10-1

100

101

102

Normal condition point

kc =1.24×10-5 Nm-1

 

G
12

 (
P

a)

k f (Nm-1)

 Simulation
 Dimensional analysis

 

(a) (b) 

    

 

 (c)                                                                         (d) 

Fig. 9. Dependences of 12G  on the bending stiffness of the FLNA (a) and (c) and the 

bending stiffness of the actin filament (b) and (d), where Vf = 0.2%, ρc = 1.0. Simulation 
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results (solid triangles and open triangles) are compared with the dimensional analysis 

predictions (solid line). In (a) and (b), the bending stiffness of actin filament, fk , and the 

bending stiffness of FLNA, ck , are fixed at their normal condition values, respectively. To 

further verify the dimensional analysis results, the values of the bending stiffness of actin 

filament, fk , and the bending stiffness of FLNA, ck , are chosen to be different from their 

normal condition values in (c) and (d). 

 

The Poisson’s ratio is another important material parameter when performing simulations. 

Although it is reported that the Poisson’s ratio of a viscoelastic solid could vary with time 

from 0.29 to 0.49 [71],  the effects of the Poisson’s ratios of actin filament and FLNA on the 

mechanical properties and the dominant deformation mechanism of CAFNs are found to be 

negligible, as demonstrated below.  In order to probe the effects of the Poisson’s ratios of 

actin filament (��) and FLNA (��) on the in-plane shear modulus of CAFNs, 100 random 

periodic CAFNs models with an actin filament volume fraction of 0.2% and a crosslinking 

density of 1.0 are simulated for numerical investigation. For simplicity, both the actin 

filament and FLNA are assumed to have the same Poisson’s ratio. The effects of the 

Poisson’s ratio of actin filament and FLNA on the in-plane shear modulus of the CAFNs are 

illustrated by the statistic results of 100 models shown in Fig. 10. As can be seen from Fig. 

10, the in-plane shear modulus of CAFNs, G12, decreases linearly and slightly (just about 2%) 

when the Poisson’s ratio of the actin filament and FLNA increases from 0.35 to 0.499. The 

change in G12 is because both the torsion stiffnesses and the transverse shear stiffnesses of the 

actin filament and FLNA decrease with the increase of the Poisson’s ratio. This indicates that 

the stiffness of the CAFNs is almost insensitive to the Poisson’s ratios of actin filament and 

FLNA when they vary in the possible range from 0.29 to 0.499. In addition, two different 

combinations of the Poisson’s ratios of actin filament and FLNA are used to further verify 

this conclusion. In the first combination, the Poisson’s ratio of actin filament, ��, is 0.29 with 
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the Poisson’s ratio of FLNA, ��, being 0.499. In the second combination, the Poisson’s ratio 

of actin filament, ��, is 0.499 with the Poisson’s ratio of FLNA, ��, being 0.29.   Two groups 

of simulations are performed with these two combinations of the Poisson’s ratios while all 

other parameters remain the same. The simulations results indicate that the difference 

between these two groups is just about 3.5%,  confirming that the Poisson’s ratios of actin 

filament and FLNA have negligible effects on the stiffness of CAFNs, and do not affect the 

dominant deformation mechanism. 

 

 

Fig. 10. Effects of the Poisson’s ratio of actin filament and FLNA on the in-plane shear 

modulus of CAFNs. The statistic results are obtained from 100 random periodic CAFNs 

models, where Vf  = 0.2%, ρc = 1.0. 
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bending and torsion deformations of actin filaments and FLNA on the stiffness (e.g., shear 

modulus) of CAFNs have never been studied before. In this research, four more different 

cases of testing simulations on the same 100 random RVE models are conducted to explore 

how the stiffness of CAFNs depends on the de-coupled bending and torsion deformations of 

actin filaments and FLNA, and to compare these results with that obtained from the normal 

condition (Table 5).  In case-1, both the bending and torsion stiffnesses of FLNA are fixed at 

the normal condition while both the bending and torsion stiffnesses of actin filaments are five 

orders larger than those of FLNA.  In this case, the deformations of the actin filaments can be 

ignored and the stiffness of CAFNs depends on only the deformation (i.e., bending and 

torsion) of FLNA. In case-2, the bending stiffness of FLNA is fixed at the normal condition, 

and the torsion stiffness of FLNA is five orders larger than its bending stiffness (this is 

realized by setting the Poisson’s ratio of FLNA at -0.99999). In addition, both the bending 

and shear stiffnesses of the actin filaments are also five orders larger than the bending 

stiffness of FLNA. In this case, the stiffness of CAFNs depends on only the bending 

deformation of FLNA. In case-3, both the bending and torsion stiffnesses of the actin 

filaments are fixed at the normal condition, while both the bending and torsion stiffnesses of 

FLNA are five orders larger than those of the actin filaments. In this case, the stiffness of 

CAFNs depends only on the deformation (i.e., bending and torsion) of the actin filaments. In 

case-4, the bending stiffness of the actin filaments is fixed at the normal condition, while the 

torsion stiffness of the actin filaments is five orders larger than its bending stiffness. In 

addition, both the bending and shear stiffnesses of FLNA are also five orders larger than 

those of the actin filaments. In this case, the stiffness of CAFNs depends only on the bending 

deformation of the actin filaments.   

Table 5 shows the simulation results of the shear modulus of the CAFNs for the four cases, 

and the result obtained from the normal condition is also provided for comparison. By 
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comparing the results of case-1 and case-3, it is very clear that the stiffness (or deformation) 

of CAFNs is dominated by FLNA (i.e., the cross-linkers), and that the bending and torsion 

deformations of the actin filaments have much smaller effects on the stiffness of CAFNs.  By 

decoupling case-1 and case-2, it can be found that the torsion deformation of FLNA plays 

almost the same important role as the bending deformation of FLNA in determining the 

stiffness of CAFNs.  The deflection of the CAFNs given by Eq. (14) can be approximately 

expressed as 

2 2 2 33

2 2 3

(0.5 ) 0.5 (0.5 ) (0.5 )2 (0.5 )
 y

3 3

(0.5 ) 0.5 (0.5 )
   

3

c f c f c f c fc

c Pc c c c c c c f f

c f c f c f

c Pc c c f f

P L L L PL L PL L PLP L

G I E I E I E I E I

P L L L PL L PL

G I E I E I

⋅ + ⋅ ⋅ ⋅⋅= + + + +

⋅ + ⋅ ⋅
≈ + +

.            (24) 

This is because c fL L<< . Thus, the deflection (or stiffness) resulted from the torsion 

deformation of the cross-linker, 
2(0.5 ) 0.5

 c f c

c Pc

P L L L

G I

⋅ + ⋅
, is almost the same as that resulted 

from the bending deformation of the cross-linker, i.e., 
2 (0.5 )

 f c

c c

PL L

E I

⋅
. To the best of our 

knowledge, this is the first time to quantify the contribution of the torsion stiffness of FLNA 

(i.e., cross-linkers) to the stiffness of CAFNs.   

In order to perform the sensitivity analysis in term of the geometry of crosslinkers, 

simulations are conducted on 100 CAFN models with straight crosslinkers, and the statistic 

results are given in Table 5 for comparison.  As can be seen, the mean shear modulus of 

CAFNs with straight crosslinkers has increased 18% compared to those with the “V” shaped 

crosslinkers.  This is because straight crosslinkers are shorter and thus stiffer than the “V” 

shaped crosslinkers.  The simulation results indicate that the stiffness of CAFNs with straight 

crosslinkers is also mainly determined by the stiffness of crosslinkers, and torsion 
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deformation of the straight cross-linkers plays a more significant role than their bending 

deformation in determining the stiffness of the CAFNs. 

 

 

 

 

Table 5 

Effects of the bending and torsion of actin filament and FLNA on the in-plane shear modulus (G12) of 

CAFNs. Models with straight crosslinkers are also studied for comparison. The statistic results are 

obtained from 100 random periodic CAFNs models, where Vf = 0.2%, ρc = 1.0. 

Case 
“V” shaped crosslinker Straight crosslinker 

G12 (Mean) Pa Standard deviation G12 (Mean) Pa Standard deviation 
Normal 0.7189 0.5381 0.8461 0.5818 
1 1.3866 0.8221 1.5920 1.5676 
2 2.6386 1.5979 34.2031 32.5497 
3 15.2351 10.4626 14.3799 9.7474 
4 20.5075 14.7296 18.3369 12.5196 
 

 

5. Conclusions 

In this paper, a novel random three-dimensional FEM model has been successfully 

developed to investigate the elastic properties of crosslinked actin filament networks. By 

performing FEM simulations, the effective in-plane Young’s modulus, shear modulus and 

Poisson’s ratio of the network are obtained. The simulation results show that the CAFNs are 

in-plane isotropic, and the scaling relationship between the in-plane shear modulus of CAFNs 

and the volume fraction of actin filaments agrees well with the experimentally measured 
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results (G12 ~ Vf 
5/2) in literature.  The in-plane shear modulus of CAFNs, G12, is observed to 

scale with the square of the crosslinking density of CAFNs, i.e.,  G12 ~ ρc
2.  By varying the 

actin filament volume fraction (via changing the concentration of actin) and crosslinking 

density (via altering the concentration of FLNA), the elastic properties of CAFNs could be 

optimized/tuned to meet the demanding requirements for distinct physiological functions (e.g., 

cell migration, cell growth and cell division). In addition, an L-shaped cantilever beam model 

has been developed for dimensional analysis on the shear modulus of CAFNs and for de-

coupling the effects of bending and torsion deformation of FLNA (i.e., cross-linkers) on the 

stiffness of CAFNs. According to the dimensional analysis, the in-plane shear stiffness of 

CAFNs is mainly dominated by FLNA.   The FEM simulation results also confirm that the 

Poisson’s ratios of actin filament and FLNA have negligible effects on the stiffness of 

CAFNs, and do not affect the dominant deformation mechanism. Four more cases of testing 

simulations on random RVE models are performed to de-couple the influences of the torsion 

deformation of cross-linkers and actin filaments on the stiffness of CAFNs by altering the 

torsion and bending stiffnesses of cross-linkers and actin filaments, respectively. The 

simulation results for the first time indicate that the torsion deformation of FLNA plays 

almost the same important role as the bending deformation of FLNA in determining the 

stiffness of CAFNs.  The results obtained in this research can increase the understanding of 

the mechanical behaviors of CAFNs and help us to reveal the roles of CAFNs in different cell 

functions. 
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