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a b s t r a c t

Cu2ZnSnS4 is a promising, versatile and inexpensive quaternary semiconductor with suitable optoelec-
tronic properties for solar energy conversion. In this work, we report the synthesis of CZTS nanocrystals
(NCs) using low-cost homemade hot-injection method. Oleylamine was used as both the binder and
stabilizer for the CZTS NCs during the growth process. Detailed investigation of the influence of sulphur
concentration and reaction temperature on the structural, stoichiometric, morphological, and opto-
electronic attributes of CZTS NCs was carried out. The XRD, Raman, and TEM measurements confirm the
formation of phase-pure tetragonal kesterite CZTS NCs. The synthesized CZTS NCs exhibit particle sizes in
the range of 15e30 nm and display strong optical absorption in the visible region. The nearly optimal
chemical composition of the CZTS NCs was confirmed by energy dispersive X-ray spectroscopy. UV
eVisible spectroscopy and electrochemical measurements predict the band gap of the CZTS NCs in the
range of 1.3e1.6 eV, which is very close to the optimum values for the fabrication of single junction solar
cells. The estimated conduction band offset (CBO) and valence band offset (VBO) of the CZTS-3M/CdS
heterostructure are predicted as 0.11 and 0.98 eV, respectively, whereas for CZTS-225 �C/CdS hetero-
structure, CBO and VBO are 0.10 and 1.0 eV, respectively. The small conduction band offset measured at
the CZTS/CdS interface are encouraging characteristics for the carrier transport and the deeper under-
stating of band alignment and interface properties provides a hopeful approach for designing higher
efficiency and more efficient carrier separation in CZTS solar cells.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Photovoltaic (PV) technology, which makes use of the super-
abundant and freely available Sun’s energy to generate electricity,
has obvious economic, environmental and societal benefits. How-
ever, for PV technology to provide a significant fraction of the
world’s energy demands, devices must be composed of cheap and
ondiya), adinathf@gmail.com
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readily available materials [1]. In thin film technologies, CIGS, CdTe
and thin film silicon solar cells have exhibited 10e25% efficiencies
[2e5], but the high cost of solar cell fabrication, particularly that of
silicon, and the degradation of the performance over time remain
major issues, which prevent their wide-spread deployment into the
power grid scale applications [6]. Emerging next generation solar
cells based on chalcogenide thin films like CIGS (CuInGaSe2) and
CdTe, show terrestrial cell efficiencies of 17.5e21.7% [7,8], but the
scarcity, cost and toxicity associated with the In, Ga, and Cd ele-
ments present in these cells limit their sustainability in the future.
Among the alternative absorber materials to replace CIGS and CdTe,
kesterite-copper-zinc-tin chalcogenides Cu2ZnSnS4 (CZTS) and
Cu2ZnSnSe4 (CZTSe) have recently emerged as promising
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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candidates to have the capacity to meet or exceed annual world-
wide electricity consumption with a significant cost-reduction
[9e12]. Kesterite-CZTS compounds are ideally positioned as a
next generation PV materials because they combine: (i) near opti-
mum direct bandgaps (1.5 eV for CZTS and 1.13 eV for CZTSSe), (ii)
high optical absorption coefficient of ~104 cm�1 in the visible light
region, with predicted theoretical power conversion efficiency
(PCE) more than 30% [9,13], and (iii) component elements that are
earth-abundant, cheap, and non-toxic. These characteristics make
CZTS absorbers promising candidates for scalable production of
cost-effective and environment-friendly thin-film photovoltaics
[14e16]. In recent years, with increasing research efforts that have
focused on improving the stability, interface properties and charge
carrier dynamics of CZTS materials, promising power conversion
efficiencies exceeding 10% have been achieved [10,11,17].

The development of simple and cost-effective synthesis ap-
proaches to fabricate CZTS thin films have also received significant
attention. Compared to vacuum based techniques, non-vacuum
based chemical techniques for the synthesis of CZTS thin films,
are characterized by low-cost and high throughput [18e20]. Yang,
C. et al., reported more than 10% efficiency for a CZTS solar cell.
With heat treatment, they controlled the charge carrier
recombination at the p-n junction and achieved 11% certified effi-
ciency for CZTS solar cell with 730 mV open-circuit voltage [21].
Thin films prepared by solution based non-vacuum methods have
demonstrated the highest power conversion efficiency of 12.6% for
CZTSe devices [11,22]. The commonly employed physical and
chemical techniques used for the synthesis of CZTS material in-
cludes RF magnetron sputtering [23], thermal evaporation [24],
pulsed laser deposition [25], e-beam evaporation [26], spray py-
rolysis [27], sol-gel method [28], electro-deposition [29], etc.
Among the above mentioned synthesis techniques, the hot injec-
tion method (HIM) has received a great interest for the synthesis of
high-quality CZTS nanocrystals. The simplicity, safety, and low-cost
associated with the hot injection method makes it suitable for
large-scale production of CZTS NCs. Riha et al. reported the syn-
thesis of mono-disperse CZTS NCs using stoichiometric initial
precursor concentration at the synthesis temperature of 300 �C by
hot injection method [30]. The effect of process temperatures on
particle size in the HIM was investigated by Chernomordik et al.
[31]. Wang et al. achieve power conversion efficiency of 12.6% for
kesterite CZTSSe fabricated using the hydrazine pure-solution
approach [11]. The challenges in kesterite photovoltaics has been
summarized in recent reports and mentioned very important is-
sues, such as massive deep defects, uncontrolled grain growth,
band trailing, unoptimized interfaces, which need to be addressed
for better efficiency [32,33]. There are extensive literature reports
on the use of CdS as a buffer layer (n-type material) for CZTS solar
cell, and all reports provides strong evidence that CdS has all
essential properties to form desirable junctionwith CZTS to achieve
efficient carrier transport [34e38]. A deep understating of band
alignment and interface properties (band offset) is, however,
needed to achieve proper optimization of the CZTS/CdS hetero-
junction towards improved charge carrier dynamics and device
performance. Rondiya et al. reported conduction and valence band
offset of 0.10 and 1.21 eV, respectively, from CV measurements and
0.28 and 1.15 eV from the density functional theory calculations
[39].

The structural, morphological, and opto-electrical properties of
CZTS NCs synthesized by the hot injection method can be
controlled by optimizing synthesis parameters such as process
temperature, injection temperature, reaction time, precursor con-
centrations etc. In this communication, we report the successful
synthesis of high-quality CZTS NCs in oleylamine (OLA) via the hot
injection method. We have primarily focused on optimizing the
2

stoichiometry of the CZTS by varying sulphur concentration during
synthesis. Also, the influence of reaction temperature on the
structural, morphological, and opto-electrical properties of CZTS
NCs was comprehensively investigated and discussed. From our
predicted energy band alignment between the CZTS absorber and
commonly used CdS buffer material, we provided insights into the
transport mechanism of photogenerated charge carriers across the
CZTS/CdS interface. The influence of reaction temperature on the
crystal structure, which further affects other physicochemical and
optoelectronic properties of the CZTS NCs is unraveled. The study
provides further understanding of the versatility of CZTS, not just as
a traditional absorber layer, but as a charge transport layer.

2. Experimental details

2.1. Chemicals

For the synthesis of the Cu2ZnSnS4 (CZTS) NCs, cupric sulphate
(CuSO4$5H2O), zinc sulphate (ZnSO4$7H2O), stannous sulphate
(SnSO4), sulphur powder, oleylamine (OLA) (C18H37N), iso-propyl
alcohol (CH3)2CHOH, toluene (C6H5eCH3), acetonitrile (ACN),
ferrocene, tetra-butyl ammonium per chlorate (TBAP), P2O5, were
purchased from Sigma-Aldrich and used without any further pu-
rification and treatment.

2.2. Synthesis of high-quality CZTS nanocrystals

The colloidal CZTS NCs were synthesized by the hot injection
method. Oleylamine solution was used as the solvent, surfactant,
and capping ligand. Cupric sulphate (CuSO4$5H2O), zinc sulphate
(ZnSO4$7H2O), and stannous sulphate (SnSO4) were used as sources
for Cu, Zn, and Sn, respectively. 0.15 M (CuSo4.5H2O), 0.075 M
(ZnSO4$7H2O) 0.075 M (SnSO4), and 10 mL of oleylamine were
mixed in a three-neck flask at room temperature. The first neck of
flask is connected to vacuum and argon gas via a two-way
connector, the second neck was used for injection of elemental
sulphur solution and the third neck of flask was used for insertion
of a thermocouple to monitor reaction temperature. The resulting
solution was heated to 130 �C for 1 h with constant stirring in
alternatingly vacuum and argon gas environment, which ensured
the complete elimination of air and moisture from the reaction
zone. Once the CueZneSn-oleylamine complex turned into a light
brownish solution, the reaction temperature was raised to 225 �C.
Meanwhile, another solution was prepared, for which 1 M sulphur
powder was mixed with 5 mL oleylamine in a glass beaker. This
sulphur solution was stirred and heated at constant temperature of
80 �C until all the sulphur powder was completely dissolved, and
the solution turned to red color. The resulting heated sulphur
precursor solution was rapidly injected into the preheated
CueZneSn-oleylamine complex solution, which immediately
change the color from dark brown to black. The schematic of the
experimental setup is shown in Scheme 1. The resulting mixture
was maintained at the temperature of 225 �C for half an hour,
forming a homogeneous black solution. After the reaction was
complete, the three-neck flask was taken out from the heating bath
and put in a cold-water bath for cooling. The same experiments
were repeated in this set for 2, 3, 4 and 5 M sulphur concentrations.
To get rid of impurities and unreacted precursors from the CZTS
NCs, it was precipitated using 1:8 toluene to propanol mixture. The
colloidal CZTS NCs were recovered from the solution by centrifu-
gation at 4000 rpm. The recovered NCs were annealed at 350 �C for
1 h and finally taken for characterization. In an another set of ex-
periments, the reaction temperature was systematically varied
from 200 �C to 300 �C, while keeping all other parameters constant
as listed in Table 1. The experimental procedure was same for this



Scheme 1. Schematic of the experimental setup for the synthesis of CZTS NCs using hot injection method.
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second set of the experiments in which 4 M sulphur solution were
injected into CueZneSn-oleylamine complex solution.
2.3. Characterization techniques

The synthesized Cu2ZnSnS4 NCs were systematically investigated
using different characterization techniques namely, X-ray diffraction
(XRD), Raman spectroscopy, UVeVisible spectroscopy, Energy
dispersive X-ray spectroscopy (EDS), field emission scanning elec-
tron microscopy (FESEM) and scanning electron microscopy (SEM).
The average crystallite size, lattice parameter and phase identifica-
tion of the Cu2ZnSnS4 NCs were studied using x-ray diffraction
(Bruker D8 Advance, Germany make) with Cu Ka radiation
(l ¼ 1.54 Å). The phase characterization of the as-synthesized
samples was obtained by the Raman spectroscopy with “Renishaw
Raman Microscope” using argon laser wavelength of 532 nm, in the
back-scattering geometry”. The optical bandgap of Cu2ZnSnS4 NCs
were estimated from absorbance spectrameasured using a JASCO, V-
670 UVevisible spectrophotometer in the range of 200e1400 nm.
The Scanning electron microscope (SEM) characterization was per-
formed using the JEOL JSM-6360-LA instrument. The electro-
chemical measurements for the estimation of band edges and
Table 1
Deposition parameters employed during reaction.

Synthesis Parameter SET e I SET e II

Cupric sulphate 0.15 M 0.15 M
Zinc sulphate 0.075 M 0.075 M
Stannous sulphate 0.075 M 0.075 M
Sulphur powder 1 M to 5 M 4 M
Growth Time (min) 120 min 120 min
Reaction Temperature 225 �C 200 �C e 300 �C
Annealing Temperature 350 �C 350

�
C
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electrochemical band gaps were performed using Metrohm Galva-
nostat/Potentiostat (Auto lab 100 PGSTAT). The standard 3 electrode
system having Au disk, Ag wire, and Pt wire loop as working,
reference and counter electrode, respectively. The working electrode
is cleaned/polished over the 0.5 mm Al2O3 powder and rinsed with
copious amount of DI water, followed by potentiodynamically
cycling in 0.5 M H2SO4, in the potential window (�0.8Ve1.5V) to
ensure the clean surface of gold. In a typical experiments, the pre-
dried 0.341 g of TBAP typically 100 mM in 15 mL pre-dried ACN
was transferred to electrochemical cell through silicone septa. The
blank cyclic voltammogramwere recorded for the reference inTBAP-
ACN mixture to ensure there were no peaks corresponding to
contamination on the Au electrode. Subsequently the Au electrode
was loaded with 100 mL CZTS sample dispersion in ACN (1.0 mg/mL)
and vacuum dried. The scan ratewas kept constant (100mV/s) for all
measurements. After completion of each set of experiments, the
potentials were calibrated using ferrocene as an internal standard
with respect to the normal hydrogen electrode (NHE). The band gaps
are estimated directly from the cathodic and anodic peak difference.
The band edges are extracted from the oxidation and reduction peak
potential vs. NHE. These positions are then convertedwith respect to
local vacuum by the standard difference of �4.5 vs NHE [13,40].

3. Results and discussion

3.1. Structural properties

The XRD patterns of the CZTS NCs synthesized at different
sulphur concentrations (1e5 M) and reaction temperatures
(200 �Ce300 �C) respectively, are shown in Fig. 1 (a) and 1 (b). The
major diffraction peaks located at 2q ¼ 28.9�, 33.4�, 47.6�, 56.4�,
69.4�, and 76.7� can be ascribed to the (112), (200), (220), (312),
(008) and (332) planes, respectively, of the kesterite phase of CZTS
NCs. The positions and intensities of the diffraction peaks are well



Fig. 1. X-ray diffraction pattern of CZTS powder synthesized at 225 �C (a) different sulphur molar concentration (1 Me5 M) (b) different reaction temperature (200 �Ce300 �C);
Raman spectra of CZTS powder synthesized at (c) 225 �C different sulphur molar concentration (1 Me5 M) and (d) different reaction temperature (200 �Ce300 �C); (e) TEM image
of the 4 M CZTS NCs and (f) SAED pattern of a single CZTS NCs.
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matched with the JCPDS card no. #26e0575. No secondary phases
like CuS, ZnS, SnS, SnS2 etc. were detected in all the samples, con-
firming the formation of high-quality CZTS NCs [41,42]. It is also
evident from Fig. 1 (b) that the intensity and sharpness of the (112)
plane increases with reaction temperature (up to 250 �C), sug-
gesting that the crystallinity of the CZTS NCs improved gradually
with increasing reaction temperature. The observed high intensity
and broad shoulder peak located at 2q ¼ 28.9� in all samples re-
flects the preferential growth of CZTS along the (112) plane. The
4

variation in crystallite size (dx-ray) of the synthesized CZTS NCs are
calculated by measuring the full-width half maxima (FWHM) cor-
responding to (112) planes using the Debye-Scherrer formula [43].
The calculated crystallite size of the CZTS NCs for set-I and set-II
was found to be in the range of 12 nme28 nm. The maximum
crystalline size is observed at 28.5 nm corresponding to the 3 M
sulphur concentration in set-1. The observed variations in crystal-
lite size in both sets, can be attributed to the non-uniform lattice
strain or different molar concentration of the reaction. Besides, the



Table 3
Energy dispersive x-ray spectroscopy analysis of CZTS powders synthesized at
different sulphur molar concentration (1 Me5 M) and at different reaction tem-
peratures (200 �Ce300 �C).

Sample Cu Zn Sn S

Sulphur molar variation (Set-I)
CZTS 1 M 23.90 12.35 10.38 53.36
CZTS 2 M 18.76 17.32 10.57 53.34
CZTS 3 M 23.85 14.25 11.11 50.79
CZTS 4 M 25.47 13.59 11.08 49.85
CZTS 5 M 19.38 14.75 11.35 54.52

Temperature variation (Set-II)
CZTS 200 �C 27.36 17.64 12.5 42.96
CZTS 225 �C 23.19 15.95 11.17 49.70
CZTS 250 �C 24.12 14.92 10.44 50.51
CZTS 275 �C 21.04 11.55 15.49 51.92
CZTS 300 �C 23.91 13.86 11.92 50.32
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nanocrystal size distribution in the hot injection method depends
on the process temperature, injection temperature of the sulphur
source, reactivity and concentrations of the CueZneSn and S pre-
cursors, and the type of solvent used [44]. The inter-planar distance
of the CZTS NCs for the first-order diffraction is estimated at
3.132 Å, which is very well matched with earlier reported by value
of 3.12 Å [45e47]. The lattice constants of CZTS NC for tetragonal
structure was calculated using equation (1):

1
.
d2ðhklÞ ¼

h
h2 þ k2 þ l2 ða = cÞ 2

i
1
.
a2 (1)

where, d is interplanar distance, a and c are a lattice constants and
h, k, l are the planes. Shown in Table 2 are the structural parameters
of the CZTS NCs prepared with varying sulphur concentration and
reaction temperature. The estimated lattice constants for the CZTS
kesterite tetragonal structure show good agreement with reported
values in the literature [48]. It is clear from the predicted structural
parameters coupled with the recorded XRD pattern that all the
synthesized CZTS NCs have good crystallinity.

Raman spectroscopy is a unique and powerful characterization
technique for the identification secondary phases in awide range of
Raman active materials. Fig. 1 (c) and 1 (d) show the Raman spectra
of the CZTS NCs synthesized at different sulphur concentration and
reaction temperatures, respectively. CZTS kesterite structures are
typically characterized by three main Raman peaks located at
286 cm�1, 336 cm�1, and 371 cm�1 [49]. Among these peaks, the
strongest peak of CZTS appeared at 336 cm�1, which can be
assigned to the A1 symmetry mode sulphur-metal vibrations in the
kesterite lattice [50]. Consistent with previous assignments, we
observed two major peaks at 283.7 cm�1 and 334.9 cm�1 (Fig. 3c)
for varying sulphur concentrations, which can be assigned to
Raman active mode of the tetragonal kesterite CZTS structure [51].
The high-intensity Raman peak located at 334.9 cm�1, corresponds
to the A1 symmetry mode of a single-phase CZTS NCs [50,52,53].
Similar to the varying sulphur concentrations, the Raman spectra of
the CZTS NCs synthesized at varying reaction temperatures
(200 �Ce300 �C) show Raman peaks at 283.7 cm�1 and 333 cm�1.
However, the peak intensity decreases and themost intense peak of
CZTS NCs shift from 335 cm�1 to 332 cm�1 with increasing reaction
temperature as shown in Fig. 1 (d). The absence of the vibrational
modes of cubic ZnS (352 and 275 cm�1) and orthorhombic Cu3SnS3
(318 cm�1) confirm the formation of single-phase CZTS by the hot
injection method [54,55]. Moreover, energy dispersive X-ray
spectroscopy (EDS) composition analysis (Table 3) confirmed that
both sets of CZTS NCs have nearly optimal stoichiometric
Cu:Zn:Sn:S ratios in all samples. Fig. 1 (e) shows the lower
magnification TEM image of the CZTS NCs synthesized with 4 M
Table 2
Average grain size (d x-ray), full-width half-maxima (FWHM), inter-planar spacing (dhkl),
reaction temperatures.

Sample/Peaks FWHM (rad) d (nm)

Sulphur molar variation (Set-I)
1 M (112) 6.977*10�3 20.49
2 M (112) 8.722*10�3 16.41
3 M (112) 6.977*10�3 28.52
4 M (112) 0.010466 13.67
5 M (112) 8.722*10�3 16.48

Temperature variation (Set-II)
200� (112) 8.722*10�3 16.38
225� (112) 5.233*10�3 27.34
250� (112) 8.722*10�3 16.41
275� (112) 8.722*10�3 16.45
300� (112) 5.233*10�3 27.34

5

sulphur concentration, which reveals that the particles are slightly
polydispersed. The selected area electron diffraction (SAED) pattern
of a CZTS NCs shown in Fig. 1 (f) reveal bright spot patterns that are
verywell matched to the planes observed from the X-ray diffraction
spectra. The average size of the CZTS NCs is found to be 21 nm, also
in good agreement with the X-ray diffraction data.
3.2. Optical properties

The performance of solar cell depends sensitively on the optical
properties such as optimum band gap and high absorption coeffi-
cient. The optical absorption coefficients of the CZTS NCs were
studied in the range of 200e1400 nm. The UVeVisible spectra are
recorded on the CZTS NCs dispersed in dimethyl sulfoxide (DMSO).
Shown in Figure (2a and 2b) are the absorption spectra of the CZTS
NCs synthesized at different sulphur concentration (1 Me5 M) and
different reaction temperatures (200 �Ce300 �C). All samples show
strong absorption in the visible region, indicating that CZTS is a
good absorber material in agreement with previous reports
[56e58]. The reflectance spectra for the CZTS nanocrystal samples
with varying sulphur concentration and reaction temperatures are
shown in Fig. 2c and d, respectively. For varying sulphur concen-
tration (Fig. 2c), the lowest reflectance is observed for the samples
prepared with 5 M concentration whereas for the temperature
variation, the lowest reflectance is observed for 250 �C in the
wavelength range of 200e1400 nm. CZTS is a direct band gap
material, based on the allowed direct inter band transition. We
have estimated the band gap of the synthesized CZTS material
using Tauc’s relation as reported previously [43] and shown in
Fig. 2e and f. The overall band gap for the different sulphur
and lattice strain (ε) for CZTS NCs prepared with varying sulphur concentrations and

dhkl a ¼ b, c (Å) ε

3.132 a ¼ b 5.436, c ¼ 10.550 1.69*10�3

3.079 a ¼ b 5.382, c ¼ 10.476 2.11*10�3

3.090 a ¼ b 5.382, c ¼ 10.586 1.68*10�3

3.079 a ¼ b 5.382, c ¼ 10.476 2.53*10�3

3.090 a ¼ b 5.382, c ¼ 10.586 2.11*10�3

2.850 a ¼ b 5.447 c ¼ 8.476 2.11*10�3

3.100 a ¼ b 5.393 c ¼ 10.651 1.26*10�3

3.079 a ¼ b 5.382 c ¼ 10.476 2.11*10�3

3.090 a ¼ b 5.382, c ¼ 10.586 2.11*10�3

3.096 a ¼ b 5.404 c ¼ 10.563 1.26*10�3



Fig. 2. Absorption spectra of CZTS powder synthesized at (a) different sulphur molar concentration (1 Me5 M) and (b) at different reaction temperature (200 �Ce300 �C); Reflection
spectra of the CZTS powder synthesized at (c) different sulphur molar concentration (1 Me5 M) and (d) at different reaction temperature (200 �Ce300 �C); Tauc Plots of the CZTS
powder synthesized at (e) different sulphur molar concentration (1 Me5 M) and (f) different reaction temperature (200 �Ce300 �C).
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concentration synthesized CZTS materials was found to be in the
range of 1.25e1.55 eV as shown in Table 4. As can be seen from
Fig. 2e, slightly higher band gaps are estimated for the 1 M and 3 M
concentrations compared to the 2 M, 4 M and 5 M sulphur con-
centrations. Similarly, the band gap values for the CZTS NCs syn-
thesized by varying reaction temperatures was estimated in the
range of 1.45e1.55 eV (Fig. 2f and Table 4), which is well matched
with previous experimental reports [57,59e64] and theoretical
predictions [65]. The estimated band gaps fall in the optimum band
gap range for solar energy conversion in a single-junction device.
6

The refractive index (n) and extinction coefficient (K0), which
are important properties for optical device and solar cell applica-
tions were also determined for the as-synthesized CZTS NCs. n is
related to the electric polarizability of ions and local field into the
material [66,67] whereas the K0 gives a measures of the fraction of
light loss due to scattering and absorption per unit distance in
materials [68]. The refractive index (n) of the CZTS NCs was
calculated from the reflectance (R) and extinction coefficient (K0)
using equations (2) and (3).



Fig. 3. Refractive index of CZTS powder synthesized at (a) different sulphur molar concentration (1 Me5 M) and (b) at different reaction temperature (200 �Ce300 �C); Extinction
coefficient of the CZTS powder synthesized at (c) different sulphur molar concentration (1 Me5 M) and (d) at different reaction temperature (200 �Ce300 �C).

Table 4
Bandgap (Eg) values of sulphur variation and temperature variation of CZTS NCs.

Molar variation Eg (eV) Temperature (�C) Eg (eV)

CZTS 1 M 1.45 200 1.45
CZTS 2 M 1.24 225 1.52
CZTS 3 M 1.54 250 1.51
CZTS 4 M 1.29 275 1.53
CZTS 5 M 1.26 300 1.54
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n¼1þ R
1� R

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4R

ð1� RÞ2
� k2

s
(2)

K0 ¼
al

4p
(3)

where, R is the reflectance, K0 is the extinction coefficient, a is the
absorption coefficient and l is the wavelength. The graph of
refractive index (n) and photon energy (հʋ) is shown in Fig. 3 (a)
and (b) synthesized CZTS samples with varying sulphur concen-
tration and reaction temperatures, respectively. For sulphur con-
centration variation (Fig. 3a), the refractive index changed from
10.5 to 3 when the photon energy is varied from 0.6 to 2.5 eV and
remains steady for higher photon energies.
7

In the reaction temperature variation set, the refractive index
increases with increasing reaction temperature of CZTS NCs,
especially 200 �C, 225 �C, 250 �C and 300 �C. The refractive index
varies from9.0 to 2.5, whenphoton energy varies from 0.6 to 2.0 eV.
The higher refractive index is attributed to the crystallinity in the
CZTS NCs, which is evident for the 3 M sulphur concentration in
first set and 250 �C reaction temperature in second set. By
increasing the sulphur concentration the material becomes denser.
So, increasing densification of material causes a decrease in the
velocity of the light into the material and leads to increase in the
refractive index of the materials [69]. These finding agrees with the
X-ray diffraction analysis and further applauded by SEM observa-
tion of CZTS NCs. The SEM morphology shows a homogeneous and
highly dense surface. Similar observations are also noted in the
literature data [70,71]. Fig. 3(c and d) shows the extinction coeffi-
cient of CZTS NCs. The extinction coefficient of CZTS NCs increases
from 1.0 eV to 2.5 eV photon energy range and decrease in the
range of 2.5e4.0 eV photon energy. In the sulphur concentration
variation set, the extinction coefficient increases with increasing
sulphur concentration, especially 1 M, 2 M, 4 M and 5 M and in the
reaction temperature set, the extinction coefficient increases with
increasing reaction temperature for 225 �C and 275 �C. The values
of K0 are ranging from 0.0002 to 0.0009. These values of extinction
coefficient are low in comparison with reported results, the lower
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values are probably due to the weak absorption in the CZTS NCs.
The high and low value of the extinction coefficient have direct
relation to the absorption of light. The dielectric constant is one of
the important intrinsic parameters of the semiconductor to
describe the optical behavior of the material for application in solar
cell. The dielectric constant has two parts i.e. real part of dielectric
constant (εr) and imaginary part of the dielectric constant (εi). The
real part of dielectric constant signifies deceleration of the incident
light velocity and imaginary part of dielectric constant signifies
interaction of matter from an electric field due to the dipole
moment. The real part of dielectric constant (εr) and imaginary part
of the dielectric constant (εi) was calculated by using the values of
Fig. 4. Real dielectric constant of CZTS powder synthesized at (a) different sulphur molar
Imaginary dielectric constant of the CZTS powder synthesized at (c) different sulphur molar
Optical conductivity of the CZTS powder synthesized at (e) different sulphur molar concen
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the refractive index (n) and extinction coefficient (K0) by using
following equations (4) and (5) [72e74]:

εr ¼n2 � k2 (4)

εi ¼2nk (5)

Fig. 4aed shows the variation of εr and εi for the sulphur con-
centration and process temperature variation as a function of
photon energy (հʋ). The real part dielectric constant increases from
10 to 130 for both sets of samples. It is interesting to note that the
values of the real part of dielectric constant are higher than that of
concentration (1 Me5 M) and (b) at different reaction temperature (200 �Ce300 �C);
concentration (1 Me5 M) and (d) at different reaction temperature (200 �Ce300 �C);

tration (1 Me5 M) and (f) at different reaction temperature (200 �Ce300 �C).



Fig. 5. High resolution magnified FESEM images of CZTS powders synthesized at (a) different sulphur molar concentration (1 Me5 M) and (b) different reaction temperatures
(200 �Ce300 �C).
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imaginary part of dielectric constant and both decreases expo-
nentially with increasing photon energy. The optical response of
the material is explicitly studied in term of the optical conductivity.
The optical conductivity (s) of the synthesized CZTS NCs was
calculated using the relation: s ¼ anc

4p , where, a is absorption coef-
ficient, n is refractive index, and c is speed of light. Fig. 4(e and f)
shows the plot of optical conductivity (s) against photon energy
9

(eV) for the different sulphur concentration and different reaction
temperature. It is evident from Fig. 4 (e, f) that the optical con-
ductivity of both sets of samples have very large optical conduc-
tivity in the lower wavelength range. These high optical
conductivity values can be attributed to the high refractive index
and high absorption coefficient of the CZTS NCs. The nature of the
plot of “sopt” is attributed to the photo-excited electrons [75].
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3.3. Morphological properties

The low-resolution and high-resolution Field Emission Scanning
Electron Microscope (FESEM) images of the CZTS NCs synthesized
at varying sulphur concentration (1e5 M) and reaction tempera-
tures (200e300 �C) are presented in Fig. 5a and b, respectively,
where we observe significant morphological differences in the
CZTS NCs. With increasing sulphur concentration and reaction
temperatures, we observed large agglomeration of grains, which
has potential implications for photovoltaic application, as larger
grains help to reduce recombination rate charge carriers
[64,65,76,77]. It is clear from the recorded morphological images of
the CZTS powders that the surface morphology is strongly influ-
enced by both the reaction temperature and sulphur molar
concentration.
Fig. 6. Cyclic voltammograms for CZTS NCs dispersions, drop-casted on gold electrode for CZ
a black line. The scan rate was 100 mV/s. Labels A and C indicate prominent anodic and cath
band alignment at the CZTS-3M/CdS and CZTS-225 �C/CdS heterojunctions. (For interpreta
version of this article.)
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3.4. Cyclic voltammetric measurements

Cyclic voltammetry measurements have been used to estimate
the band structure parameters of the prepared CZTS NCs. An argon
atmosphere is maintained throughout the electrochemical mea-
surements. In the electrochemical cell, 15 mL of dry acetonitrile
(ACN) is used as solvent, 100 mM TBAP as supporting electrolyte
and 1mg/mL solution of CZTS sample in ACN is used to drop-cast on
the electrode and used as the working electrode. The blank CV
measurement was taken on a bare Au disk electrode and the CV
measurement for the CZTS was recorded by drop casting 100 mL
CZTS solution on the working electrode, which is dried in vacuum
desiccator. Fig. 6 (a) shows the typical CV pattern for the CZTS
225 �C - blue line and CZTS 3 M � red line, drop-casted on the gold
electrode. The scan-rate was 100 mV/s. For comparison, the blank
TS-225 �C (blue line) and CZTS-3M (red line). The blank run (without CZTS) is shown as
odic peaks, observed in the repeated cycles for both the samples. (b) Schematic energy
tion of the references to color in this figure legend, the reader is referred to the Web



Table 5
Electrochemical band structure parameters from CV measurement on CZTS nanoparticles.

Sample name Oxidation Reduction EC Band gap Valance Band Conduction band

CZTS 3 M 0.94 �0.61 1.55 eV �5.44 �3.89
CZTS 225 �C 0.92 �0.60 1.52 eV �5.42 �3.90
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CV recorded on the bare Au electrode (without CZTS loading) is
shown as black line. For the CZTS prepared at 225 �C, a prominent
anodic peak at 0.92 V (labelled as A1) and cathodic peak �0.60 V
(labelled as C1), over and above the background trace is noted in the
repeated cycles. Similarly, for the CZTS prepared using the sulphur
precursor concentration of 3 M, we have noticed prominent
cathodic and anodic peaks at �0.61 V and 0.94 V, respectively.
Interestingly, in the 3 M CZTS sample we have observed one
additional complementary peak at 0.80 V in the reverse cycle,
which corresponds to anodic peak at 0.94 V. The observed com-
plementary peak at 0.80 V in the cyclic voltammogram shows that
the CZTS NCs gains electron after oxidation at 0.94 V in the reverse
cycle i.e., the CZTS NCs donate electron to the electrode (0.80 V) and
get it back in the reverse cycle (0.94 V). These results suggest that
the CZTS NCs are more stable in charge transfer condition [78,79].
The oxidation and reduction peaks in the CV are nothing but the
electron transfer (donation and acceptance) from valence band and
conduction band, which happens because of the applied bias/po-
tential. From the anodic and cathodic peaks, we have deduced the
values of valence and conduction band edges (Table 5), which are in
very good agreement with previous spectroscopic data [40]. The
electrochemical (EC) band gap calculated as the potential difference
between the anodic peak A1 and cathodic peak C1 is estimated at be
1.55 V for CZTS-225 �C (blue line) and 1.52 V for CZTS-3M (red line).
The close agreement between the estimated band gaps obtained
from the CV and UVeVisible NIR measurements confirmed the
formation of high-quality CZTS NCs by the hot injection method.
3.5. Band alignment investigation at CZTS/CdS interface

Cadmium sulfide (CdS) is a commonly used buffer layer mate-
rials for CZTS-based solar devices, hence we have determined the
energy band alignment at the CZTS/CdS interface. Themagnitude of
band offsets controls transport phenomena at the interfaces and
characteristics of devices hence the need for their accurate deter-
mination. Using the electrochemical band gap and electron affin-
ities for the CZTS (3 M) and CZTS (225 �C) as summarized in Table 5,
the band offsets can be estimated. The band gap and electron af-
finity for the n-type CdS are 2.42 and 4.0 eV, respectively [80].
Shown in Fig. 6 (b) is the schematic energy band alignment at the
CZTS-3M/CdS and CZTS-225 �C/CdS interface after heterojunction
formation, revealing a type-II band alignment. The conduction
band offset (CBO) and valence band offset (VBO) predicted at 0.11
and 0.98 eV, respectively, at the CZTS (3 M)/CdS interface. For the
CZTS-225 �C/CdS heterojunction, the CBO and VBO are predicted at
0.10 and 1.0 eV, respectively. The estimated small CBO at the both
heterojunctions suggests lesser resistance to electron transport
across the CZTS/CdS interface, and hence expected to favor efficient
charge carrier separation towards achieving efficient CZTS-based
solar devices.
4. Conclusion

Tetragonal kesterite Cu2ZnSnS4 (CZTS) NCs were successfully
synthesized by the hot injection method. The as-synthesized CZTS
NCs were comprehensively characterized using a range of tech-
niques such as XRD, Raman, UVeVis Spectroscopy, FESEM and EDS
11
all of which confirmed the formation of phase-pure tetragonal
kesterite CZTS. The nearly optimal chemical composition of the
CZTS NCs was confirmed by our energy dispersive X-ray spectros-
copy (EDS) composition analysis. The estimated band gaps from
UVeVisible NIR and electrochemical CV measurements are in the
range of 1.3e1.6 eV, which is very close to the optimum value for
the fabrication of single junction thin film solar cells. Besides, the
CZTS samples show strong absorption in the visible region, indi-
cating their suitability as active absorber layer material. We
determined a type-II staggered band alignment at the CZTS/CdS
heterojunction with smaller conduction band offset (CBO) ~0.1 eV,
which is suitable for efficient separation of photo-excited electrons
to the CdS and holes to holes to CZTS.We believe that the controlled
synthesis parameters for the hot injection method and the gener-
ated data presented here will have immediate applications in the
synthesis of high-quality CZTS-based materials for device
fabrication.
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