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Abstract
In this paper, we combine a modern machine learning technique called conformal pre-
dictors (CP) with elements of gestalt detection and apply them to the problem of visual
perception in digital images. Our main task is to quantify several gestalt principles of vi-
sual reconstruction. We interpret an image/shape as being perceivable (meaningful) if it
sufficiently deviates from randomness - in other words, the image could hardly happen
by chance. These deviations from randomness are measured by using conformal predic-
tion technique that can guarantee the validity under certain assumptions. The technique
describes the detection of perceivable images that allows to bound the number of false
alarms, i.e. the proportion of non-perceivable images wrongly detected as perceivable.
Keywords: Conformal Anomaly Detection, classification, gestalt vision, visual recon-
struction.

1. Introduction
In this paper, a novel approach to visual reconstruction of digital images is proposed and
studied. By visual reconstruction we mean detection of meaningful parts of the image,
without prior assumption or examples what is expected to be visible.

It is based on the framework of conformal predictors V.Vovk et al. (2005) or rather on
Conformal Anomaly Detection (CAD) R.Laxhammar (2014); J.Smith et al. (2015). Its main
advantage is that it guarantees bounds on the probability of error in the assumption that
the data is i.i.d. or exchangeable. Our key assumption is that if an image looks like an
anomaly when compared to the images of random noise, then it can be suspected to be
“meaningful”. This is the reason to use CAD as the base of the work.

Two-dimensional digital images are made of discrete pixels. Stimuli arriving at a hu-
man retina are also discrete examples. How these separate measurements are organized in
a human brain into geometrical examples like lines, cubes, circles, etc., is one of the main
“enigmas of perception” Kanizsa (1997). Principles and rules that govern such visual orga-
nizations are called principles of visual reconstruction Gombridge (1971). Gestalt Theory is a
single substantial scientific attempt to develop principles of visual reconstruction. Gestalt
is a German word translatable as “whole”, “form”, “configuration” or “shape”.
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Figure 1: The Helmholtz principle in human perception.

The first rigorous approach to quantify basic principles of visual reconstruction was
presented in A.Desolneux et al. (2008), and it is based on principles from image processing
and especially on the Helmholtz Principle. According to the Helmholtz Principle, gestalts
are sets of points organized by spatial arrangements. As a common-sense statement, this
means that “events that could not happen by chance are immediately perceived”. For
example, a group of seven aligned dots exists in both images in Fig. 1, but it can hardly be
seen on the left-hand side image. Indeed, such a configuration is not exceptional given the
total number of dots. In the right-hand image, we immediately perceive the alignment as
a large deviation from the randomness that would be unlikely to happen by chance. The
non-random element in the left image is not visible so clearly. Interestingly, human visual
system is capable to understand these regular spatial arrangements almost effortlessly.
Contrary to this, extracting structures by a computer is much more challenging.

Another form of the Helmholtz principle is called the non-accidentalness principle: an
observed structure is considered meaningful (perceivable) when the relationship between
its parts is too regular to be a result of an accidental arrangement of independent parts. In
psychology R.Arnheim (1956), it is also found that “the overall structural features are the
primary data of human perception, not the individual details”.

Gestalt theory of vision is based on the principal assumption that a meaningful (per-
ceivable) visible structure can be described by a hierarchy of grouping operations. In this
theory, the perception goes from the simplest elements (points) to lines (lines), then to the
high-level ones (continued curves, line combinations, figures, etc.). The ways of grouping
low-level examples into high-level ones are described by the list of special gestalt principles
(grouping principles).

The general challenge for the Gestalt Theory of vision is that gestalt groping may be
applied in different orders, for many different parts and not reflecting real meaningful
elements of the image. This can happen even starting from the first level where the points
are organized into lines.

In A.Desolneux et al. (2008), the study of meaningful structures and groupings is based
on hypothesis testing (also known as a contrario algorithms). Such algorithms use proba-
bility models not for the patterns to be recognized, but for random samples without the
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pattern: the so-called null hypothesis. Instead of seeking patterns in an image that are
highly likely in the model, we seek patterns in the image that are highly unlikely under
the null hypothesis.

The main advantage of our approach is that we do not rely on a specific model of
how the images are created. In our framework, the randomness of an image is tested
with respect to a data sample (training set) and not to the distribution itself, that may be
unknown. So, our approach is a machine learning type approach, i.e. data-driven and not
model-driven.

In this article, we demonstrate that the framework of reliable learning (conformal pre-
diction) provides guaranteed bounds on the probability of a false alarms i.e. the images
that are random by the way of their generation but occasionally found to be perceivable.
If an image is generated by the same distribution as the training set (of random images), it
may be classified as an anomaly (i.e. a perceivable image) with bounded probability, that
is equal to the pre-selected significance level.

We use ideas of the Gestalt Theory to define the non-conformity measure (NCM). A non-
conformity (strangeness) measure is a statistic used within the conformal framework for
testing the hypothesis. In particular, we apply CAD not to the pictures themselves but to
their gestalt-profiles that will be calculated according to the level of applicability of gestalt
grouping operations within a concrete image.

In agreement with Gestalt Theory, we assume that the first level (combining the points
into lines) is already important for the detection of perceivable images. It will be demon-
strated that even by applying only this rule, we can get some interesting results. At the
second level, we consider ones that apply to pairs of lines, i.e. describe pairwise geomet-
rical relations. The statistic of such relationships may be collected immediately after the
detection of the lines.

The paper is organized as follows. In Section 2, for the reader convenience, we remind
key notions of the theories of gestalt vision and conformal prediction. In Section 3 we de-
scribe the data and main algorithms. The results are presented and compared in Section 4.

2. Related work

2.1. Gestalt principles

In this article, we use the gestalt grouping principles following their description in the
book A.Desolneux et al. (2008). Usually, these principles are applied iteratively: a set of
examples grouped on a lower level becomes an example that can be a member of a more
high-level group. In our work, we focus our interest on 2–3 lowest levels: the points (zero
level), the lines (the first level), and the relation of the lines (leading to the second level).

The zero level is the level of individual points that belong to the image. For simplicity,
we look only on binary images, represented as square matrices of 0s and 1s, 1 for black, 0
for white. Therefore, we skip the principle of color constancy.

The first level is the level of lines (intervals) going through the individual points. The line
is not necessarily a continuous one. it is just required to be straight and to connect some
number of points (with the precision defined by the resolution level). We do not include
variability of the width, leaving it for possible future extensions of the work.
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The statistic of the number of first-level lines will be the prior information extracted
from an image for further quantification of its meaningfulness.

However, we also use the elements of the second level, that is grouping of the first level
lines into the figures by gestalt principles. In this work, we focus on those principles which
apply to pairs of lines. Some review of used principles is given in Appendix A.

2.2. Conformal Prediction and Anomaly Detection

In this section, we briefly outline the main ideas of conformal predictors (CP) V.Vovk et al.
(2005), A.Gammerman and V.Vovk (2007), and Conformal Anomaly Detection (CAD) that
provides a framework for reconstructions of visual images. Originally, CPs were devel-
oped for classification or regression problems, where each example is divided into an object
(typically, a feature vector) and a label. The output of conformal predictors is usually in the
form of prediction set – that is a set of possible labels. The size of this multi-label prediction
set depends on the required level of confidence (or significance level). The smaller the size
(and ideally just one label) the more efficient CP are. If the actual true label is outside of
the prediction set, this is a prediction error. This approach has guaranteed bounds on the
probability of error given the required significance level under the assumption that the
data is i.i.d. or exchangeable.

The central concept of CPs is a non-conformity measure (NCM). NCM defines how strange
a test example is with respect to the training set. There are many different NCM and the
efficiency of CPs depends on how good the measure is. Following the CP theory we con-
vert the NCM into the statistical notion of p-values. Using p-values, two parameters can
be considered to assess how well a new, test example can be fit with the training set: confi-
dence, which is (1-2nd largest p-value) and credibility which is just the largest p-value. The
low credibility can be interpreted that the test example is not representative of the training
set. In other words, the test example is not typical or abnormal. So, in principle, the CP
approach allows us to detect an anomaly.

These ideas of CAD were developed further in several papers – see R.Laxhammar
(2014), I.Nouretdinov et al. (2019), Cherubin et al. (2018). In this case, an example is not
divided into an object and a label. The key idea of CAD is that when an example is outside
the prediction set given a certain significance level, it leads to an alarm of its suspected
abnormality with respect to the training set.

CAD is defined by Algorithm 1. It tests the hypothesis that an example is generated
by the same distribution as a training set of examples. The core detail of CAD in the Non-
Conformity Measure (NCM) function that is a kind of information distance between an
object (typically, a feature vector) and a set of the same kind objects. For each (ith) exam-
ple, NCM is applied to this example and the set of remaining examples, and get the output
value αi. The classification for each example is made by comparing its value NCM αl+1

with NCM αj of the training examples, and obtaining the p-value. Note that adding a test-
ing example to the training set may change NCM output values for the training examples.
Therefore, if the algorithm is applied to many test examples, they have to be re-calculated
each time. The prediction set is the set of the examples that would be assigned p-value
above a significance level (threshold) ε. Low p-value (below the threshold) assigned to this
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hypothesis means that the example is likely to be an anomaly (outlier) for the training data
set.

Algorithm 1 CAD

1: INPUT: training data set {z1, . . . , zl} ⊂ Z (where zi may be a feature vector).
2: INPUT: NCM function A : Z(∗) × Z → R
3: INPUT: test example zl+1

4: INPUT: significance level(s) E = {ε1, ε2, . . . , εw−1, εw} ⊂ [0, 1]
5: for j ∈ 1, 2, . . . , l + 1 do
6: αj := A ({z1, . . . , zj−1; zj+1, . . . , zl+1}, zj)
7: end for
8: p :=

|{j∈1,2,...,l+1:αj≥αl+1}|
l+1

9: for i ∈ 1, . . . , w do
10: e := εi
11: if p < e then
12: OUTPUT anomaly alarm for zl+1 at level e
13: end if
14: end for

In the context of computer vision, we consider non-perceivable (random) images as
typical ones, and anomalies are suspected perceivable images. If another random image is
predicted as an anomaly, this is a mistake (‘false alarm’) because it was not perceivable. On
the other hand, a perceivable image might be not marked as an anomaly, this may mean
that the chosen significance level the test for anomalies is not set up low enough, and the
CAD system makes an error.

CAD is valid in the sense that the probability of the false alarm is bounded by the given
significance value (the ’false alarm’ means that the anomaly alarm has been wrong). The
validity means: if the example is generated by the same distribution as in the training set,
the probability that it is outside of the prediction set is bounded by the threshold ε that
was selected in advance. Like it is done in statistics, this threshold is usually set to 0.05 or
0.01.

Our aim here is to find whether an image is perceivable or non-perceivable. This prob-
lem can be interpreted as a binary classification. However, we treat it as anomaly detection
since, for the binary classification, the examples of both classes are needed for training but
they may not be always available. That is we may not have the perceivable images in our
data set, while the non-perceivable images can be easily generated. In other words, it is
often harder to have a set of representative perceivable images. A new image can be per-
ceivable but does not have much in common with ones collected before. Therefore, the
question can be formulated: ‘is the input image anomaly with respect to the set of non-
perceivable images?’ If yes, then it can be marked as a perceivable one, even it does not
show similarity with the set of perceivable images.

CAD heirs an important property of the Conformal Prediction framework that is the
ability to adopt other machine learning methods inside. As known from the experience
with conformal prediction, if a machine learning algorithm is efficient for the data, the
same is mostly true for its conformal version.
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The most commonly used underlying methods for CAD were k-Nearest-neighbors
(kNN) R.Laxhammar (2014); I.Nouretdinov et al. (2019) or Kernel Density Estimation (KDE) J.Smith
et al. (2015). In this paper, we also using Support Vector Machine (SVM). The SVM-based
outlier detection was used e.g. in C.Dawson and Mallinson and Gammerman (2003).

3. Data preparation

3.1. Data set: USPS

As the example of perceivable images, we take hand-written digits from USPS (United
States Postal Service) data set. It consists of 16x16 size handwritten digits, where a feature
means the grey-scale intensity of a pixel from -1 to 1.

Originally, each image was supplied with a label of one of 10 classes (0,1,. . . ,9). How-
ever, our task is not the distinction between them. What we wish is to separate them
altogether from non-perceivable images. Therefore, the original labels are not used in the
current work.

3.2. New classes

For different versions of this problem, we have created the following classes, that may play
the role of perceivable or non-perceivable, dependently on the point of view.

1. The class of real images taken directly from the database in random order.

2. The class of mixture images where a noisy image is a mixture1 of two randomly chosen
images from the database.

3. The class of random noise i.e. points generated according to the uniform distribution
on the square, independently on each other.

3.3. Pre-processing

To each of the images, we apply the following changes.
First, the images in the USPS data set are almost binary (the most pixels values are -1 or

+1, intermediate values typically appear only on a digit’s boundary), therefore we made
them binary (positive values transformed to 1, negative ones to 0). After that, a pixel with
value +1 will be also called a black pixel, and the whole image can be considered as a finite
set of points (black pixels).

Second, for our aims, each image is equalized in such a way that they all have the same
area (or, in other words, the same number of points). This area is set to be 1/8 of the whole
image, that is 32 pixels of 256. The equalizing is done by adding points randomly to the
image if the actual area is below, or by deleting some points randomly if it is above. Some
examples of how this looks can be found in the Appendix. This way of equalizing was
chosen also due to the domination of the extreme values (+1 and -1) in the data. Because

1. By the mixture of two images we mean that each pixel is randomly taken from one or the other of them,
with independent processing of different pixels.
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of that, thresholding can not always reach the goal. Another reason is to make the task a
bit more hard and realistic by modeling the background noise level added to the pictures.

As we discussed in the Related Work Section 2, if an image is likely to be perceivable,
then it contains the groups created with gestalt principles. They appear much more fre-
quently than in a random (noisy) image with the same number of points.

At the first level, a group is a set of the points which are located along a straight line (or,
in other words, within a narrow rectangle). The amount of points within such a group is an
integer parameter that varies. This inspired us to start with creating so-called gestalt-profiles
related to the picture: a gestalt profile is a vector whose indices are positive integers, and
the content of a dimension is the number of lines which can be found in the picture. The
indexing is needed because the definition of the line depends on what minimal amount
of points a line is required to connect. This is the basic version of gestalt profiling, more
complex ones can be created by taking into account the gestalt principles.2 We detail this
in Sections 3.4 and 3.5.

Then, an image is considered strange (anomalous) if its gestalt-profile is strange with
respect to the set of gestalt-profiles of noisy images. At this stage, we apply the methods of
CAD for anomaly detection as described in Section 3.6 to gestalt-profiles, not to the images
themselves.

Finally, we will get p-values for the images that are low when an image is suspected to
be non-random, and therefore possibly perceivable.

3.4. Basic analysis of images

Remind that an image U is finally presented as a m × m matrix of pixels, filled with 0s
(‘white’) and 1s (‘black’). So, we consider an image as a black drawing on a white back-
ground.

By a point (belonging to an image) we mean a ‘black’ position (p, q) (where 1 ≤ p ≤ m,
1 ≤ q ≤ m) so that

Upq = 1.

By a line we mean an line connecting two points (u1, v1) and (u2, v2), i.e. formally the
set

{(p1α+ (1− α)p2, q1α+ (1− α)q2) : 0 ≤ α ≤ 1} .

We say that it connects (goes through) another point (p, q) if it is matched by the rounded
value of these coordinates for some concrete α. In other words, the precision matches the
resolution: going of a line through a pixel is the same as including a point whose rounded
coordinates are in the center of this pixel.

Each line provides three levels of information that can be extracted:

1. vector – the difference between the ends3

2. line ends – the coordinates of the ends within the image;

3. line content – the positions of the points within the line.

2. A similar language for image understanding is also provided in Scalar Vector Graphic.
3. To choose the vector direction in a unique way, we use the lexicographical ordering (<) as it will be done

in Algorithm 2. This in fact means that the second end (p2, q2) lies above the first one (p1, q1) on the image.
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3.5. Creating gestalt-profiles

Extracting gestalt-profiles from the images is done by the rule described with Algorithm 2.
Here are some comments on it.

The set Q = Qi (it depends on i, but we will drop the index where possible) includes
all lines going through i or more points (including the line ends). The notation Vi is used
for simplification of Qi where a line is interpreted only as a vector.

The parameter i is a variable integer threshold. Note that in our definition the ends
should be points (pixels black with 1s), therefore looking at i < 2 does not make sense.
Also, due to the equalizing pre-processing step (Sec. 3.3), the size of V2 becomes a constant.
Therefore, the smallest essential value is i = 2 in general, and i = 3 in our experiments. Its
maximal value can be set to 2m+ 1 because a straight line can not intersect more pixels of
a square image with resolution m×m.

The vector (|V2|, . . . , |V2m+1|) is considered as the basic version of gestalt-profile (the
case T = 1 in Algorithm 2). It can be understood as the general statistic of the lines vis-
ible in the image, where a line means a series of points lying on a straight line (where
straightness is understood to the existing resolution) but not necessarily in a continuous
way.

The other values of the parameter T correspond to more advanced versions of gestalt-
profile, involving more gestalt principles. The principle of similarity is involved in a
slightly different way as the others, using another special parameter T1. The full list of
combinations of parameters can be found in Appendix B.

3.6. Prediction

As mentioned earlier, we do not rely on having an ‘image’ class for training. One of three
available data classes is selected as a background ‘non-perceivable’ class, and the other
one works as a source of ‘perceivable’ examples for testing (or, in the control experiments,
it may be the same class). However, at each step only one ‘perceivable’ item (called Ai) is
compared against a set of ‘non-perceivable’ examples (called B1, . . . , BN ).

The basic approach is CAD R.Laxhammar (2014) derived from algorithmic learning
theory V.Vovk et al. (2005). The CAD framework is using as a meta-parameter for the
NCM that is linked to an underlying anomaly detection (scoring) algorithm. As discussed
in Section 2, we use two versions (k-Nearest-neighbors and Support Vector Machines).
These two underlying methods are selected for being transparent and universal so that the
conclusion would not depend too much on fitting the model to the data.

For convenience, we present CAD in two corresponding ready-for-use version: k-
Nearest-neighbors CAD (Algorithm 3), and SVM CAD (Algorithm 4). Both of them apply
to gestalt-profiles. We present them as separate pseudo-codes because, in addition to NCM
they are also different in details of pre-processing (re-scaling).

3.7. Interpretation of the output

The output of Algorithm 3 or 4 can be interpreted as follows.
If Ai gets a low p-value pi, this means that is detected as anomaly with respect to the

training images B1, . . . , BN . In other words, if pi is below the threshold, the image Ai is
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Algorithm 2 Creating gestalt-profile of a image

INPUT: image U (binary, resolution m×m)
INPUT: gestalt function type T
INPUT: line analyser type T1
INPUT: resolution parameter K (for T1 > 0 only)
for i := 2 TO 2m+ 1 do
V := ∅
Q := ∅
for (p1, q1) IN {(p, q) : Up,q = 1} do

for (p2, q2) IN {(p, q) : Up,q = 1, (p1, q1) < (p, q)} do
if the connecting line intersects at least i black pixels of U then

for k := 0 TO K do
ψk := U

(
round

(
p1

1−k
K + k

K p2
)
, round

(
q1

1−k
K + k

K q2
))

end for
ψ := (ψ0, ψ1, . . . , ψK)
V := V ∪ {(p2 − p1, q2 − q1}
Q := Q ∪ {(p1, q1; p2, q2;ψ)}

end if
end for

end for
define Wi =Wi(T, T1, Q, V ) according to Appendix B.

end for
OUTPUT vector (W1,W2, . . . ,W2m+1)

suspected to be perceivable. This corresponds to the usual interpretation of CAD, with a
note that ‘abnormality’ in our case means that the image is more structured and less noisy.

A large number of low p-values assigned to Ai examples means that the test was ef-
ficient enough to ‘feel’ that it is unlikely to be from the same distribution as the ‘non-
perceivable’ ones. The details of how it is measured for a series of examples will be pro-
vided further in the experimental Section 4.2.

4. Experiments

4.1. Problem statements

The task of our interest is the following: is it possible to detect a meaningful image as an
anomaly, if it is inserted between the noisy (senseless) ones?

The possible tasks which we consider are listed in Table 1. In the detection problems,
the classification is successful if we mostly able to detect the less noisy images as anomalies
to a more noisy class.

In the control tasks, the goal is the opposite: if an image is classified as an anomaly, this
is considered as an undesirable false alarm. The conformal prediction framework allows to
bound their proportion by the pre-selected significance level.
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Algorithm 3 Conformal assessment of images (k Nearest neighbors version)

INPUT: training (non-perceivable) gestalt-profiles B1, . . . , BN of length W .
INPUT: gestalt-profiles A1, . . . , An of length W for testing.
INPUT: number of neighbors k
INPUT: re-scaling (binary option ON/OFF)
for i := 1, . . . , N do

LET BN+1 := Ai
if re-scaling is ON then

for j = 1, . . . ,W do
linearly rescale j-th dimension of B1, . . . , BN+1 s.t. its min. is 0 and its max. is 1.

end for
end if
for u := 1, . . . , N + 1 do

for v := 1, . . . , N + 1 do
LET D(u, v) be Euclidean distance between Bu and Bv

end for
LET αu be sum of k smallest values of D(u, v) for v = 1, . . . , u− 1, u+ 1, . . . , N + 1

end for
LET pi :=

|{u=1,...,N+1:αu≥αN+1}|
N+1

end for
OUTPUT: p1, . . . , pn

’perceivable’ class: real images mixture images random noise
‘non-perceivable’ class

real images
mixture images detection control
random noise detection detection control

Table 1: Statements of the problem tasks

For the detection tasks, the smaller p-value is, the better for the efficiency of the algo-
rithm, the ideal result is p-values about 0. For the control tasks, the ideal result is p-value
distributed uniformly from 0 to 1.

Note that the ‘internal background’ class G created within Algorithm 4 is just an aux-
iliary artificial class used for the realization of one-class SVM, and is not related to any
classes of the input data.

4.2. Evaluation criteria

We consider the experimental statements with the detection tasks 1–3 (numerated as in
Table 1), and assess the quality of each of them by the following criteria of efficiency.

The evaluation criteria for conformal prediction were discussed in Vovk et al. (2017),
but in the context of the full classification framework, for anomaly detection task we can
use just the following simple performance measures:
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Algorithm 4 Conformal assessment of images (SVM version)

INPUT: training (non-perceivable) gestalt-profiles B1, . . . , BN of length W .
INPUT: gestalt-profiles A1, . . . , An of length W for testing.
INPUT: kernel function K (Polynomial of degree d, or RBF of radius γ)
INPUT: parameter C for SVM (set to C = 0 in all the experiments)
INPUT: re-scaling (binary option ON/OFF)
for i := 1, . . . , N do

LET BN+1 := Ai
if re-scaling is ON then

for j = 1, . . . ,W do
linearly rescale j-th dimension of B1, . . . , BN+1 s.t. its mean is 0 and its std. is 1.

end for
end if
for j = 1, . . . ,W do

find the average Mj :=
Bj1+···+B

j
N+1

N+1

find the variance σj :=

√
(Bj1−Mj)

2
+···+(BjN+1−Mj)

2

N+1

end for
creating the ‘internal background’ class:
for j := 1, . . . , N + 1 do
Gj := random normally distributed vector with average (M1, . . . ,MW ) and diago-
nal covariance matrix (σ1, . . . , σW )

end for
run dual form SVM with kernel K and parameter C on two classes B and G
get Lagrange multipliers α1, . . . , αN+1 for the class B
LET pi :=

|{u=1,...,N+1:αu≥αN+1}|
N+1

end for
OUTPUT: p1, . . . , pn

1. median p-value (MPV);

2. average p-value (APV);

3. average log p-value (ALPV).

In all of these criteria, lower values reflect better efficiency (sensitivity of the tests, separa-
bility). The third criterion is considered as prior because of the special importance of low
p-values for anomaly detection. We can refer to I.Nouretdinov (2007) where this criterion
was suggested and justified.

The examples of performed control tasks 4 and 5 can be found in the Appendix. They
are just confirming the validity of the method (bounded false alarm rate), and are not
essential for evaluation of the efficiency.

4.3. Results

Tab. 2 compares the results according to Algorithms 3 and 4 with variations of settings.
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Statement: 1 2 3
Training on: (2) mixture images (3) random noise (3) random noise
Testing on: (1) real images (1) real images (2) mixture images

T T1 method MPV APV ALPV MPV APV ALPV MPV APV ALPV
vectors kNN

1 0 k = 5 0.213 0.292 -2.11 0.00387 0.0450 -5.39 0.0112 0.0660 -4.48
2 0 k = 5 0.187 0.298 -2.09 0.00728 0.0283 -4.95 0.0149 0.0587 -4.21
3 0 k = 5 0.223 0.296 -2.17 0.0100 0.0456 -4.82 0.0181 0.0549 -3.81
4 0 k = 5 0.178 0.315 -2.12 0.00528 0.0133 -5.32 0.0105 0.0232 -4.86
line ends kNN

5 0 k = 5 0.138 0.292 -2.23 0.00699 0.0293 -5.12 0.0109 0.0200 -4.63
6 0 k = 5 0.189 0.292 -2.18 0.0131 0.0487 -4.68 0.0195 0.0440 -3.84
7 0 k = 5 0.191 0.277 -2.09 0.0116 0.0901 -4.43 0.0777 0.1471 -2.89

3,5 0 k = 5 0.149 0.280 -2.31 0.00817 0.0232 -5.09 0.0113 0.0252 -4.39
3,5,7 0 k = 5 0.172 0.267 -2.27 0.00913 0.0246 -5.02 0.0157 0.0311 -4.12
3,6,7 0 k = 5 0.178 0.273 -2.24 0.0106 0.0361 -4.77 0.0255 0.0577 -3.60
5,6,7 0 k = 5 0.154 0.262 -2.29 0.00972 0.0268 -4.96 0.0157 0.0316 -4.11

3,5,6,7 0 k = 5 0.181 0.267 -2.31 0.00937 0.0265 -4.95 0.0157 0.0334 -4.08
line content kNN

3,5,6,7 1 k = 5 0.161 0.277 -2.23 0.0108 0.0304 -4.86 0.0185 0.0380 -3.94
3,5,6,7 0,1 k = 5 0.176 0.275 -2.26 0.0104 0.0282 -4.91 0.0162 0.0346 -4.03
3,5,6,7 2 k = 5 0.164 0.275 -2.24 0.0106 0.0293 -4.88 0.0171 0.0364 -3.98
3,5,6,7 0,2 k = 5 0.177 0.273 -2.27 0.0104 0.0275 -4.92 0.0161 0.0341 -4.04
3,5,6,7 0,1,2 k = 5 0.169 0.276 -2.25 0.0104 0.0283 -4.91 0.0162 0.0352 -4.01

line ends RBF-SVM
3,5,6,7 0 γ = 1 0.188 0.245 -2.21 0.00899 0.0323 -4.48 0.0349 0.0589 -3.52
3,5,6,7 0 γ = 3 0.128 0.245 -2.33 0.00655 0.0333 -4.69 0.0206 0.0457 -3.81
3,5,6,7 0 γ = 5 0.229 0.332 -1.85 0.0229 0.0691 -3.71 0.0468 0.0838 -2.97

line content RBF-SVM
3,5,6,7 0,2 γ = 1 0.195 0.268 -2.04 0.0188 0.0380 -4.14 0.0407 0.0695 -3.23
3,5,6,7 0,2 γ = 3 0.140 0.226 -2.22 0.00669 0.0307 -4.63 0.0327 0.0447 -3.61
3,5,6,7 0,2 γ = 5 0.121 0.258 -2.29 0.00851 0.0370 -4.55 0.0211 0.0509 -3.79
3,5,6,7 0,2 γ = 10 0.282 0.414 -1.58 0.0296 0.0775 -3.43 0.0526 0.0957 -2.80
3,5,6,7 0,1,2 γ = 1 0.199 0.279 -1.94 0.0270 0.0418 -4.38 0.0387 0.0728 -3.25
3,5,6,7 0,1,2 γ = 3 0.167 0.220 -2.20 0.00669 0.0316 -4.86 0.0368 0.0508 -3.48
3,5,6,7 0,1,2 γ = 5 0.123 0.246 -2.28 0.00655 0.0297 -4.88 0.0192 0.0449 -3.81
3,5,6,7 0,1,2 γ = 10 0.239 0.378 -1.71 0.0181 0.0653 -3.82 0.0436 0.0898 -3.01

the T = 3,5,6,7 3,5,6,7 3,5,6,7 1 4 1 1 5 4
best T1 = 0,2 0,1,2 0 0 0 0 0 0 0

settings method: RBF RBF RBF kNN kNN kNN kNN kNN kNN
line interpretation content content ends vector vector vector vector ends vector

usage of the principles
constant width + + + - + - - + +
continuity (V) + + + - - - - + -

amodal completion (T) + + + - - - - - -
vicinity (X) + + + - - - - - -
similarity + + - - - - - - -

Table 2: Efficiency of detection with various settings and criteria.

The numerical parameters m = 16, k = 5 (for kNN), n = 100, N = 500 are fixed for all
of them. The reason for the choice is following: m = 16 is determined by USPS structure,
N = 500 allows to get final p-values essentially (several times) below the standard statis-
tical threshold of 1%, n = 100 is selected to make the results observable and visualizable,
the number of neighbors k = 5 was chosen as an appropriate (not too large) one for the
size of the training set n = 100. The re-scaling option is always on as well, to normalize
gestalt profile dimensions.

The bottom part of Tab. 2 includes a summary. For each of the columns, it answers the
following questions. First, in what settings the best results are achieved. Second, what kind
of line interpretation (vector, ends, content) was deep enough for achieving the best results.
Third, which gestalt principles were involved and which of them did not contribute to the
best achievement. This allows us to compare them and to sort by their relative importance.
Surely, these conclusions are preliminary and bounded by the experiments included in the
table. We have mostly concentrated on the improvement of ALPV for the first problem
statements, and less focused on the others.

In addition to that, the following conclusions can be made:
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• The full combination aggregating all the considered principles at once is a good one
but not always the very best.

• The combination T = 3, 5, 6, 7 (aggregating the gestalt principles: constant width,
continuity, amodal completion, vicinity, but not including similarity as T1 = 0) is the
best (-2.33) for the prior ALPV criterion and the first (the most complex) task.

• However, almost the same quality (-2.31) is reachable with just T = 3, 5 (constant
width, continuity), so these two principles are the most important ones.

• The results improved with replacing k-NN with SVM (RBF kernel). The best result
for the ALPV criterion was achieved this way. This algorithm is sensible for the value
of the parameter (the best value is about γ = 3) but more tolerable for over-extensions
of the feature set.

• Involving similarity principle is not shown to contribute essentially to ALPV, but it
allows us to achieve the best results according to the APV criterion (0.220).

• Statements 2 and 3 are much easier and require less complicated methods. However,
they just give the information that an image is not random noise which is not so
interesting as a distinction from the mixture images.

• Summarising, all the gestalt principles we tried can contribute to efficiency, but this
is confirmed to a different degree. Sorted by priority, they are:

(0) point to line (always used as the fundamental platform);

(1) constant width (parallelism);

(2) continuity (V-junction);

(3-4) amodal completion and vicinity (T- and X- junctions);

(5) similarity of the content.

5. Conclusion and Future Work
In this work, we have shown how CAD can be used together with gestalt principles of vi-
sion (GPV) to separate perceivable and non-perceivable images. This combination of CAD
with GPV allows to improve the accuracy of the detection of the images and interprets an
image/shape as being perceivable (meaningful) if it sufficiently deviates from randomness
- that is the image could hardly happen by chance. Practically, all considered gestalt prin-
ciples have shown to contribute to improving the accuracy of detection, but to a different
degree. The deviations from randomness are measured by using the conformal prediction
technique that has a very valuable property of validity. The technique allows us to detect
perceivable images and bound the number of false alarms.

Further work may concentrate on the application of complex gestalt principles like
convexity, closure, common motion, etc. The principle of symmetry would be useful to
apply for more complex (high-level) examples than just the lines. Also, at higher levels, the
principles like similarity, vicinity, and constant width may have more interesting meaning

13
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than when they are applied just to the line pairs. Also, the family of the grouping principles
can be extended with the elements of the scalar vector graphics when they are relevant for
the detection of meaningful elements.

The next step of our work is exploring the anomaly detection as a tool for visual recon-
struction. Anomaly Detection itself is interesting for us as far is related on ‘being perceiv-
able’ as the cause of the abnormality, and allows to explain it in terms of most meaningful
region/elements of an image.
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Appendix A. Review of gestalt principles
In Table 3 we collect some of the gestalt grouping principles. We also mention what kind
of information is extracted from a line. The principle of constant width (parallelism) needs
the smallest amount of information, only vectors of differences between the line ends. For
continuity of direction (V-junction), amodal completion (T-junction) and vicinity (X-junction)4,
the location of the lines in the space becomes essential, but it is enough to use the line ends.
The similarity principle is the only one where we looking at the content of the lines, i.e. how
the lines are black by the points internally.

Some other gestalt principles are left for future work, as they need at least 3 lines to
be applied. When applied just to 2 lines, convexity becomes the same as continuity of
direction, closure is never satisfied, common motion is always satisfied.

Our interpretation of the gestalt principles was inspired by Rajaei and von Gioi. (2018).
In that work, the continuity level was measured by the angle between the connected lines,
through their scalar product. The same can be applied for quantifying parallelism between
the lines. Therefore, we assume that the vectors are still ‘parallel’ to some degree if their
scalar product is non-zero. This becomes our core way of involving gestalt principles:
instead of calculating the number of lines, we consider the overall scalar product of their
oriented version. To apply T-, V-, or X-junction, we restrict this summing only to the pairs
of lines following one of these relations. Finally, the similarity principle means that the
scalar products are additionally multiplied by the proportion of matching the content of
these lines. This is how quantification of parallelism and similarity is joined together for
the pairs of first-level lines.

4. We apply the vicinity principle in a simplified form, checking whether the (Hausdorff) distance between
the example is zero. For the lines, this means that they are intersecting at a common point.
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Name Grouping idea Applicability
points to line grouping points on a straight line points

color constancy same color within connected regions 1 line
(applicable in non-binary grayscale) (content)

constant width grouping parallel curves 2 lines
(parallelism) (vectors)

continuity of direction creating non-linear curves 2 lines
(V-junction) (ends)

amodal completion applies when a curve stops on another curve, 2 lines
(T-junction) tends to interpret the interrupted curve (ends)

as the boundary of some example

vicinity distance between examples is small enough 2 lines
(including X-junction) with respect to the rest; (ends)

similarity group similar examples 2 lines
into higher-scale examples (content)

convexity any convex curve (even if not closed) 3 lines
suggests itself as the boundary of a convex body at least

closure leads us to see as an example the part of the plane 3 lines
surrounded by a closed contour at least

common motion, several concurring lines appear in an image, 3 lines
or perspective law with common meeting point at least

(Y-junction) (possibly, in continuation)

symmetry group any set of examples that is higher
symmetric with respect to some straight line levels

past experience (applicable w.r. to the training data)

Table 3: Gestalt principles
16
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Appendix B. Parametrised versions of gestalt-profiles
Table 4 shows how the gestalt profiles are obtained for different values of parameters T
and T1, with comments which of the gestalt principles (Appendix A) are involved. In
accordance to it, we define the function Wi = Wi(T, T1, Q, V ) needed for Algorithm 2.
Note that more than one value of T may be applied simultaneously. This would mean that
the gestalt-profile is the union of the profiles for the different values of T . The same is true
for the second parameter T1.

• case T = 1, any T1 (quantity): Wi := |V |

• case T = 2, any T1 (length): Wi :=
∑

v∈V < v, v >

• case T = 3, T1 = 0 (constant width, parallelism):

Wi :=
∑

v1,v2∈V
< v1, v2 >

• case T = 4, T1 = 0 (variation of case 3): Wi :=
∑

v1∈V maxv2∈V < v1, v2 >

• case T = 5, T1 = 0 (continuity, V-junction) :

Wi :=
∑

(p1,q1;p2,q2;ψ),(p′1,q
′
1;p
′
2,q
′
2;ψ
′)∈Q:∃a∃b:(pa,qa)=(p′b,q

′
b)

(p2 − p1)(p′2 − p′1) + (q2 − q1)(q′2 − q′1)

• case T = 6, T1 = 0 (amodal completion, T-junction):

Wi :=
∑

(p1,q1;p2,q2;ψ),(p′1,q
′
1;p
′
2,q
′
2;ψ
′)∈Q:∃a∃b∃c∈(0,1):(pa,qa)=(p′b,q

′
b)c+(1−c)(p′3−b,q

′
3−b)

(p2 − p1)(p′2 − p′1) + (q2 − q1)(q′2 − q′1)

• case T = 7, T1 = 0 (vicinity, understood as X-junction):

Wi :=
∑

(p1,q1;p2,q2;ψ),(p′1,q
′
1;p
′
2,q
′
2;ψ
′)∈Q:∃c,d∈(0,1):(p1,q1)c+(1−c)(p2,q2)=(p′1,q

′
1)d+(1−d)(p′2,q′2)

(p2 − p1)(p′2 − p′1) + (q2 − q1)(q′2 − q′1)

• case T = 5, T1 = 1 (with similarity, ‘one-sided’ version; is defined by analogy for
T1 = 1 with other T ≥ 3 ):

Wi :=
∑

(p1,q1;p2,q2;ψ),(p′1,q
′
1;p
′
2,q
′
2;ψ
′)∈Q:∃a∃b:(pa,qa)=(p′b,q

′
b)(

(p2 − p1)(p′2 − p′1) + (q2 − q1)(q′2 − q′1)
) ∣∣{k : ψk = ψ′k}

∣∣
17
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T T1 the idea how i-th dimension is defined gestalt principles

1 0 |Vi|, or the total number of lines in Vi points to line
2 0 The summarised squared length of the lines in Vi (the length of a line here means the distance between its edges) points to line
3 0 The summarised pairwise scalar product of the lines. constant width
4 0 The sum-max scalar product. constant width
5 0 Same as T = 3, restricted to V-junctions, constant width

the pairs of lines with a common edge. + continuity
6 0 Same as T = 3, restricted to T-junctions, constant width

one of the lines goes through an edge of the other + amodal
7 0 Same as T = 3, restricted to X-junctions, constant width

the pairs of intersecting lines. + vicinity

3 1 The summarised pairwise scalar product of the lines, constant width
multiplied by the proportion of content coincidence. + similarity

3 2 The summarised pairwise scalar product of the lines, constant width
multiplied by the proportion of content coincidence (2-sided). + similarity

5 1 Same as T = 3, restricted to V-junctions, constant width
the pairs of lines with a common edge. + continuity

multiplied by the proportion of content coincidence. + similarity
5 2 Same as T = 3, restricted to V-junctions, constant width

the pairs of lines with a common edge. + continuity
multiplied by the proportion of content coincidence (2-sided). + similarity

6 1 Same as T = 3, restricted to T-junctions, constant width
one of the lines goes through an edge of the other, + amodal

multiplied by the proportion of content coincidence. + similarity
6 2 Same as T = 3, restricted to T-junctions, constant width

one of the lines goes through an edge of the other, + amodal
multiplied by the proportion of content coincidence (2-sided). + similarity

7 1 Same as T = 3, restricted to X-junctions, constant width
the pairs of intersecting lines, + vicinity

multiplied by the proportion of content coincidence. + similarity
7 2 Same as T = 3, restricted to X-junctions, constant width

the pairs of intersecting lines, + vicinity
multiplied by the proportion of content coincidence (2-sided). + similarity

Table 4: Types of gestalt-profles producible with Algorithm 2.

• case T = 5, T1 = 2 (with similarity, ‘two-sided’ version; is defined by analogy for
T1 = 2 with other T ≥ 3 ):

Wi :=
∑

(p1,q1;p2,q2;ψ),(p′1,q
′
1;p
′
2,q
′
2;ψ
′)∈Q:∃a∃b:(pa,qa)=(p′b,q

′
b)(

(p2 − p1)(p′2 − p′1) + (q2 − q1)(q′2 − q′1)
)
max

{∣∣{k : ψk = ψ′k}
∣∣ , ∣∣{k : ψK+1−k = ψ′k}

∣∣}
Appendix C. Examples of predictions
As the example for illustration, we use the settigs T = 3, T1 = 0. They are best for ALPV
on the first statement amongst the cases when the lines are interpreted as only vectors. The
formula of gestalt-profiling is:

Wi :=
∑

v1,v2∈V
< v1, v2 > .

Sensitivity check

Fig. 2–4 show the distribution of p-values, and the images sorted by p-values. This is done
for three proper tasks when the training is done on a more noisy class than the testing.
These figures show which of the meaningful images are easier to be detected (on the left
side), and which of them are harder (on the right side). Usually, the problem is caused
either by a high amount of the noise, imputed on the stage of equalizing or by circle ele-
ments (in such digits as 0,6,9). This can be taken into account in planning the future work:
prior attention to convexity, closure, and possibly non-linear circles/arcs.
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Figure 2: Distribution of p-values (sorted) assigned to real images, trained on mixture
images, and real images sorted by ascending p-values (from left to right, from up to down
within a column)

Figure 3: Distribution of p-values (sorted) assigned to real images, trained on random
noise, and real images sorted by ascending p-values (from left to right, from up to down
within a column)

Figure 4: Distribution of p-values (sorted) assigned to mixture images, trained on random
noise, and mixture images sorted by ascending p-values (from left to right, from up to
down within a column)
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Figure 5: Distribution of p-values (sorted) assigned to mixture images, trained on mixture
images, and mixture images sorted by ascending p-values (from left to right, from up to
down within a column)

Figure 6: Distribution of p-values (sorted) assigned to random noise, trained on random
noise, and random noise images sorted by ascending p-values (from left to right, from up
to down within a column)

Control tests

Fig. 5–6 are the control tests, they show the distribution when the training is done on the
same class to which it is applied. As expected, the distribution of p-value is close to the
uniform, so the required bounds on the false alarm rate are satisfied. The figures on the left
sides correspond to cases of ‘false alarms’: the noisy images are suspected to be meaningful
because of the occasional elements of the structure visible in them.
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