
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/134895/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Padungwech, Wasin , Thompson, Jonathan and Lewis, Rhyd 2020. Effects of update frequencies in a
dynamic capacitated arc routing problem. Networks 76 (4) , pp. 522-538. 10.1002/net.21990 

Publishers page: http://dx.doi.org/10.1002/net.21990 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Noname manuscript No.
(will be inserted by the editor)

Effects of update frequencies in a dynamic capacitated
arc routing problem

Wasin Padungwech∗

Jonathan Thompson
Rhyd Lewis

the date of receipt and acceptance should be inserted later

Abstract The Capacitated Arc Routing Problem (CARP) concerns a
minimum-cost set of routes for vehicles that provide service on edges in a
given graph while ensuring that the total demand in each route does not
exceed the vehicle’s capacity. This paper concerns a dynamic variant of the
CARP. In particular, it focuses on a problem in which new tasks appear over
time. We find that simply increasing the number of iterations of a tabu search
algorithm does not always lead to a better solution for a dynamic CARP. This
paper investigates how the solution quality can be affected by changing the
frequency of updating solutions. Furthermore, we investigate whether or not
such effect varies with a method of integrating new tasks into the solution at
each update.

Keywords capacitated arc routing · dynamic · new tasks · update schedule ·
metaheuristic · tabu search

1 Introduction

In the Capacitated Arc Routing Problem (CARP), introduced by Golden and
Wong [6], the goal is to find a minimum-cost set of routes for vehicles that
provide service on edges in a given graph while ensuring that the total demand
in each route does not exceed the vehicle’s capacity. A dynamic CARP is an
extension of the CARP in which some information in the problem changes
while vehicles are travelling and servicing tasks. Those changes may cause a
set of routes that are planned before the changes to have lower quality with
respect to total distance (or some other quantity that is being optimised) or
even become infeasible, hence the need to update the routes accordingly.

∗Corresponding author. E-mail: padwasin@gmail.com

School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, United
Kingdom.



2 Wasin Padungwech et al.

The type of change that we focus on in this paper is the appearance of
new demands. It is, however, interesting to note that there are many types of
changes that can be considered in a dynamic CARP such as dynamic graphs
[13, 16], changes of edge costs [15], and broken-down vehicles [11]. A dynamic
CARP with multiple types of changes has also been studied by Liu et al. [8, 9].
Interested readers are referred to relevant papers as referenced.

In most existing studies on dynamic CARPs, solutions are updated as soon
as a change occurs. However, for some types of changes such as the appearance
of new tasks, a solution does not necessarily need to be updated immediately.
In fact, it might be possible that updating a solution at different times would
lead to different solution qualities. In this paper, we are interested in how the
solution quality might be affected by an update schedule, i.e. a set of times at
which a solution is updated.

In practice, route planning and amending needs to be performed in an
indefinite period of time as long as new tasks appear [14]. For the purposes
of this paper, however, we restrict our attention to a finite period of time,
which will also be referred to as a planning horizon. It is assumed that all
demands that appear within the planning horizon cannot be rejected and must
be serviced. In practice, demands that appear after the end of the planning
horizon would be dealt with in the next planning horizon, e.g. the next working
day. In other words, new demands must be included in the solution by the end
of the planning horizon. Nevertheless, they do not need to be added to the
solution immediately when they appear. This means that a route planner can
decide when to update the solution.

In an extreme case, a route planner may decide to update the solution
just once at the end of the planning horizon (while keeping all vehicles idle
at the depot until the end of the planning horizon), which would allow all
tasks to be added to the solution at the same time. This would be an ideal
approach if the total distance travelled by the vehicles was the only measure of
concern. However, this would also greatly delay the completion of the services
since those new tasks could be started only after the solution was updated.
Therefore, in this paper, we consider performing a number of solution updates
over the planning horizon as new tasks appear while vehicles are travelling and
servicing tasks. We are interested in finding a way to amend a solution as new
tasks appear while ensuring that both total distance and service completion
time do not increase excessively.

Notice that updating a solution infrequently would allow the route planner
to deal with many tasks at the same update. However, a large amount of time
between updates means that a large proportion, if not the whole, of a route
would be traversed (assuming that the corresponding vehicle travels without
stopping from leaving the depot until returning to the depot) and thus could
no longer be amended. This reduces the number of possible ways in which a
solution can be changed. In contrast, updating the solution more frequently
would give more flexibility in making changes to the solution, although a route
planner would have less information to exploit about new tasks. This illustrates



Effects of update frequencies in a dynamic capacitated arc routing problem 3

the need to identify a solution update frequency that facilitates effective route
planning for the dynamic CARP (and dynamic routing problems in general).

This paper describes how the dynamic CARP will be tackled and
investigates how the frequency of updating the solution can affect solution
quality. The main objective is to minimise total distance, although the solution
quality will also be analysed based on service completion time, i.e. the time at
which all vehicles return to the depot after servicing all tasks. Apart from the
frequency of updating the solution, a comparison will also be made between
different ways of integrating new tasks into an existing set of routes.

Section 2 describes the CARP and its dynamic variants. Section 3 then
describes components of a proposed solver. In Section 4, we explain a way of
generating instances for the dynamic CARP with new tasks. Computational
results given by variants of our solver are shown and discussed in Section 5.
Section 6 then compares different ways of integrating new tasks into a solution.
Conclusions of this paper are given in Section 7.

2 Problem Definition and Solution Representation

2.1 The CARP

In the (static) CARP, we are given a graph G = (V,E) with a set of vertices
V and a set of edges E, a positive cost or distance cij and a non-negative
demand dij for each edge {i, j} ∈ E, a capacity Q (assumed to be no less than
any demand), and a depot v0 ∈ V . The objective of the CARP is to find a
minimum-cost set of routes that satisfy the following conditions:

– each edge with non-zero demand, also called a task (or a required edge), is
serviced in one of the routes;

– the total demand of edges serviced in each route does not exceed the
capacity;

– each route starts and ends at the depot.

A route in a solution can be represented by a sequence (v0, a1, . . . an, v0),
where v0 is the depot, and a1, . . . , an are tasks that are serviced in the route
in the order they appear in the sequence [1]. Since the objective is to minimise
the total cost, a path between consecutive tasks can be easily deduced: it is a
shortest path between them, which can be found by an algorithm such as that
of Dijkstra [4]. Note that even if the graph given in the problem is undirected,
it is necessary to state in which direction each task is serviced in each route
since such directions can affect the total distance. In other words, each ai in
the sequence (v0, a1, . . . an, v0) is viewed as an arc (i.e. a directed edge).

2.2 Dynamic CARP

In a dynamic CARP, a solution needs to be updated in order to maintain the
quality or feasibility of the solution in the face of changes to the problem. Some



4 Wasin Padungwech et al.

tasks may be known before vehicles start travelling (i.e. at time 0), and so an
initial set of routes may be constructed based on those tasks. With new tasks
appearing over time, a solution needs to be updated to ensure that all tasks
are serviced, regardless of when they appear (as long as they appear within
the time frame being considered).

Once it has been specified when a solution is to be updated, the dynamic
CARP can be viewed as a sequence of static CARPs, where each static CARP
occurs at one of the specified points in time. One possible approach to the
dynamic CARP is to use an existing algorithm for the CARP to solve each
static CARP in the sequence. However, it should be noted that obtaining
an optimal solution to each static CARP in the sequence is not guaranteed
to give the best possible solution to the underlying dynamic CARP. This is
illustrated by the sample dynamic CARP instance in Fig. 1. At time 0, the
solution in Fig. 1(a) is optimal, whereas that in Fig. 1(b) is sub-optimal. Then,
when task AC appears at time 3, the vehicle in Fig. 1(a) is at Vertex A, and
the best way to service the remaining tasks is to travel from A to C, A, and
then D, resulting in the total cost of 6. In contrast, for Fig. 1(b), at time 3
the vehicle is at Vertex C, and the best way to service the remaining tasks
is to travel from C to A and then D, resulting in the total cost of 5. Notice
that the solution in Fig. 1(a) has higher total cost than the final solution in
Fig. 1(b) even though it is obtained from an optimal solution at both time
0 and time 3. This is possible because features of the static CARP (e.g. the
current position of the vehicle, the remaining tasks) at each update are not
only affected by changes that occur in the problem, but also by solutions from
previous updates. This highlights the importance of investigating and devising
an algorithm specifically for the dynamic CARP, rather than solely relying on
algorithms that are specifically designed for the static CARP.

3 Components of a Dynamic CARP Solver

Our process of finding a solution for the dynamic CARP can be divided into
three main components: deciding when to update the solution, determining the
current state of the problem at each update, and deciding how to re-calibrate
the solution to fit with the new problem state. We now consider these in turn.

3.1 Solution Update Schedules

Here we shall focus on a regular update schedule. Let T be the length of the
planning horizon and N be the number of updates, which is to be specified by
the user. Without loss of generality, let the planning horizon start at time 0 and
end at time T . Solution updates then take place at time kT

N for k = 1, . . . , N .
Intuitively, fewer updates mean more time to collect information about new
tasks that appear in the interval prior to each update, while more updates
means new tasks can be dealt with more promptly. A regular update schedule



Effects of update frequencies in a dynamic capacitated arc routing problem 5

Time 0 Time 3

Traversal with service
Traversal without service
Other existing edge

A

B
C

D

E

A

B
C

D

E







Time 0 Time 3

B
C

D

E

A

B
C

D

E



A

Overall route: D – E – B – A – D
(route cost = 4)

Route from Time 3: A – C – A – D
Overall route: D – E – B – A – C – A – D (route cost = 6)

Overall route: D – E – B – C – A – D
(route cost = 5)

Route from Time 3: C – A – D
Overall route: D – E – B – C – A – D (route cost = 5)

Cost of each edge = 1
Demand of each task = 1

(a)

(b)

Depot
Current vehicle position

Vehicle capacity = 3
Vehicle speed = 1 unit cost

per unit time

Fig. 1: Sample dynamic CARP instance

has previously been used in dynamic vehicle routing [3, 12]. In particular,
computational results given by Montemanni et al. [12] showed that the best
solution (with respect to total distance) could be achieved when the number
of updates was neither too high nor too low, although it was not explicitly
investigated how (or whether) the rate of appearance of new tasks affects the
best number of updates. In Section 5.2, different numbers of updates will be
tested on various dynamic CARP instances.

3.2 Determining the Current State of the Problem

Before each solution update, the current state of the problem needs to be
determined. This involves updating the set of tasks that still need to be
serviced, the vehicles’ positions, and their remaining capacities. The current
state of the problem depends on both the changes in the problem itself and
the solutions from previous updates (which define the tasks that have been
serviced, and the vehicles’ current locations). Also, notice that parts of the
routes that have been traversed cannot be amended, so those parts should be
clearly identified to ensure that changes made to the solution are feasible. For
clarity, this section describes how the current state of the problem and the
(non-)amendable parts of the routes are determined.



6 Wasin Padungwech et al.

a1 a2 a3

Time at which
the vehicle leaves the depot

T(1)

T(2)

T(3)

Traversal without service

Traversal with service

Fig. 2: The time T (i) at which a vehicle reaches the ith task in its route.

Given the time at which the solution is updated, each route R = (vs, a1, . . . ,
an, v0) (where vs is the starting vertex of the route) is divided into two parts,
for some index ĩ and some vertex ṽs:

(vs, a1, . . . , aĩ, ṽs); (ṽs, aĩ+1, . . . , an, v0) (1)

such that the first part cannot be amended (i.e. it is fixed), whereas the second
part can still be amended. The index ĩ is thus the largest index i such that ai
has been reached by the vehicle corresponding to the route R. In other words,
the index ĩ can be determined by finding the largest index i such that

T (i) =
1

ν

i∑
k=1

[c(ak−1) +D(ak−1, ak)] ≤ tu − ts(R), (2)

where T (i) is the time at which task ai is reached (with T (0) = 0 by
convention), tu is the time of the update, ts(R) is the start time of the route
R (not all routes need to leave the depot at time 0; see Section 3.3), c(a) is
the distance of an arc a (for ease of notation, let a0 = (vs, vs) and c(a0) = 0),
D(a, b) the shortest distance from the head of an arc a to the tail of another
arc b, and ν is the vehicle speed (distance per unit time). Here it is assumed
that ν is a constant and that all vehicles travel at the same constant speed.
Inequality (2) ensures that the arc aĩ is included in the fixed part not only
when it has been serviced but also when it is being serviced at the time of
the update. This agrees with the assumption that partial service of an arc is
not allowed, from which it follows that if a vehicle is currently servicing aĩ, it
must continue the service until completion.

The starting vertex ṽs in (1) is the first vertex to be visited in the route
after the given update according to the following rules:

– If the vehicle is precisely at some vertex at the time of the update, then ṽs
is simply that vertex.



Effects of update frequencies in a dynamic capacitated arc routing problem 7

– If the vehicle is in the middle of an edge, then ṽs is the endpoint of that edge
which the vehicle is heading towards. That edge may be either a task that
is being serviced by the vehicle or an edge in the middle of a deadheading
path between two consecutive tasks ai and ai+1 for some i.

Once the fixed and the amendable parts of each route are determined, its
remaining capacity can be updated accordingly by simply subtracting the total
demand of tasks in the fixed part from the remaining capacity at the previous
update. After that, its fixed part is archived (so at the end of the planning
horizon, a complete journey of each vehicle is a concatenation of fixed parts
of the corresponding route that are archived in all updates).

The next step is to combine the amendable parts of the routes and the set
of new tasks that have appeared since the previous update.

It should be noted that even though initially (at time 0) all vehicles have
the same capacity and their routes start at the same vertex (the depot), they
can service different amounts of demands and be at different locations at later
time t > 0. This means that when updating the solution within the planning
horizon, it is possible that a route planner encounters a more general version of
the CARP, namely an open CARP with heterogeneous vehicles. Here, “open”
refers to an open route, i.e. a vehicle’s starting and ending vertices are not
necessarily the same (it could be away from the depot at the time of the
update), and “heterogeneous” means that different vehicles can have different
(remaining) capacities. These features must be taken into consideration when
integrating new tasks into a solution, as we will now consider.

3.3 Integrating New Tasks into the Solution

Once the current state of the problem has been determined, new tasks need to
be integrated into the solution to form a feasible solution subject to the current
state of the problem. One way to do so is to reconstruct the solution from
scratch: all tasks that have not been serviced are removed from the solution
and then added back to the solution according to a certain rule. Here we try
adding the tasks to the solution using a greedy algorithm, namely the Path
Scanning algorithm [7]. Although the Path Scanning algorithm was originally
designed for the standard CARP (where all vehicles have the same capacity
and start their routes from the same vertex), it can be easily adapted for an
open CARP with heterogeneous vehicles.

Obviously, reconstructing the solution from scratch is not the only way
to integrate new tasks into the solution. In Section 6, an alternative way of
integrating new tasks will be considered.

After new tasks are integrated into the solution, an attempt is then made
to improve the solution by means of a tabu search algorithm.



8 Wasin Padungwech et al.

3.4 A Tabu Search Algorithm

3.4.1 Neighbourhood Moves

Our heuristic algorithm for improving a solution is based on a metaheuristic
called tabu search [5] and involves four types of neighbourhood moves: single
insertion, double insertion, swap, and 2-opt. Details of how these moves work
can be found in the appendix. For single insertion, double insertion, and swap,
when inserting a task into a route, both directions of traversal on that task
are tested.

A neighbourhood move is said to be admissible if either it is non-tabu or it
is tabu but leads to the solution that is better that the current best solution.
In each iteration of the tabu search algorithm, all neighbourhood moves that
are both admissible and feasible with respect to the capacity constraint are
considered. Among those moves, the best move (i.e. it leads to the lowest total
distance) is selected and applied to the current solution; if there is more than
one best move, one of them is selected randomly. The next section describes
how the tabu status of neighbourhood moves are determined.

3.4.2 Determining Tabu Moves

After the best neighbourhood move in each iteration is selected, some solution
attributes corresponding to the move are recorded in a so-called tabu list
(which is initially empty). Each solution attribute that is recorded in the tabu
list remains in the list for a certain number of iterations; this number (a tabu
tenure) is to be specified. To determine whether each neighbourhood move is
tabu, solution attributes that would arise as a result of the move are checked,
and the move is regarded as tabu if all of those attributes are currently in the
tabu list.

Recording solution attributes: Let R = (vs, a1, . . . , an, v0) be a route. When
task ai is removed from route R by either a Single Insertion, Double Insertion,
or Swap move, two pairs (ai−1, ai) and (ai, ai+1) are recorded in the tabu list
(that is, each pair of consecutive tasks involving the move task is recorded).
For ease of notation, let a0 = vs (the starting vertex) and an+1 = v0 (the
depot at the end of the route).

For 2-opt, the pair of tasks next to the cutting position in each route is
recorded in the tabu list. More precisely, if a 2-opt move cuts a route R =
(vs, a1, . . . , an, v0) into two parts (vs, a1, . . . , ai−1) and (ai, . . . , an, v0), then a
pair (ai−1, ai) is recorded.

Let ã denote the opposite direction of traversal on task a. Due to symmetry
of routes in an undirected graph, for any tasks a and b, the pair (ã, b̃) is
regarded as identical to the pair (b, a).

Determining tabu status of moves: A Single Insertion move that inserts task t
into a route (vs, b1, . . . , bn, v0) between tasks bj−1 and bj is tabu if both pairs



Effects of update frequencies in a dynamic capacitated arc routing problem 9

(bj−1, t) and (t, bj) are currently in the tabu list. For a Double Insertion or
Swap move, two pairs corresponding to each inserted task are checked, and
the move is tabu if all the pairs are currently in the tabu list.

A 2-opt move is tabu if the pairs of tasks next to the joining
positions in both routes are currently in the tabu list. More precisely,
consider a 2-opt move that modifies two routes (vs1 , a1, . . . , an1

, v0) and
(vs2 , b1, . . . , bn2

, v0) and gives two new routes, namely (vs1 , . . . , ai−1, bj , . . . , v0)
and (vs2 , . . . , bj−1, ai, . . . , v0). This 2-opt move is tabu if both (ai−1, bj) and
(bj−1, ai) are currently in the tabu list.

A pseudocode for the whole dynamic CARP solver is given in Algorithm
1.

Algorithm 1 Configuration of the dynamic CARP solver

1: construct an initial solution S by the Path Scanning algorithm
2: apply the tabu search algorithm to S
3: for each update time (see Section 3.1) do
4: let T be the set of new tasks that appear since last update (or since the beginning

if this is the first update)
5: if let T is not empty then
6: identify the fixed part and the starting vertex of each route for the current update

(see Section 3.2)

7: remove tasks from the non-fixed part of each route and add them to the set of
tasks T

8: reconstruct the solution S with the set of tasks T by the Path Scanning algorithm
(see Section 3.3)

9: apply the tabu search algorithm to (the amendable part of) S (see Section 3.4)

4 Generation of Dynamic CARP Instances

To test variants of the dynamic CARP solver, a set of dynamic CARP instances
is required. There exists a benchmark instance generator for dynamic CARPs
with various types of changes in the literature [8]. However, this generator
explicitly specifies the number of updates, the time of each update, and a set
of changes that need to be considered at each update. In contrast, for the
dynamic CARP being considered here, the appearance time of each new task
is given as part of the problem, whereas the number of updates and the time of
each update are variables that are specified by the user. The set of new tasks
to be considered in each update then depends on these decisions. To the best
of our knowledge, there are no instances for this type of dynamic CARP at
the time of writing. Consequently, this section describes how new instances for
this type of dynamic CARP were generated for the experiments in this paper.

Before introducing a way of generating dynamic CARP instances, it is
useful to know how to measure “dynamism,” which will help to classify those
instances according to how changes occur. A task that appears after time 0



10 Wasin Padungwech et al.

will be called a dynamic task. The degree of dynamism (DoD) of a dynamic
CARP instance is then defined as the ratio of the number of dynamic tasks to
the number of all tasks, including those that appear at time 0. This follows the
definition of the degree of dynamism for dynamic vehicle routing given Lund
et al. [10].

Our dynamic CARP instances were generated based on existing static
CARP instances. Given a static CARP, a dynamic CARP instance can be
obtained by first splitting tasks into two groups, static tasks (appearance time
= 0) and dynamic tasks, according to the degree of dynamism, and then
assigning a random appearance time t ∈ {1, 2, . . . , T} to each dynamic task
(recall that T is the length of the planning horizon). For an instance with the
degree of dynamism δ, dnt×δe tasks are randomly chosen to be dynamic tasks,
where nt is the number of all tasks in that instance.

To allow meaningful comparison of total distances on dynamic CARP
instances with different degrees of dynamism, our instances were generated
with the following property: a task that is dynamic on an instance with smaller
δ is also dynamic and has the same appearance time on an instance with larger
δ. By doing so, a feasible solution at the end of the planning horizon on an
instance with larger δ is also feasible on an instance with smaller δ. To see
this, let I1, I2 be dynamic CARP instances that are generated in the same
execution with the DoD on I1 smaller than that on I2. Let S1, S2 be feasible
solutions at the end of the planning horizon on I1, I2, respectively. Because
the appearance time of any task, say t, in I2 is no less than the appearance
time of the same task t in I1, the service on t in S2 starts no earlier than the
appearance time of t in S1 (notice that the time at which the service on a
given task starts must be greater than or equal to the appearance time of the
same task). Thus, the solution S2 would also be feasible in the instance I1. It
follows that the optimal total distance on an instance with larger DoD is no
less than the optimal total distance on an instance with smaller DoD that is
based on the same static CARP instance and the same appearance times.

For experiments in this paper, a set of dynamic CARP instances were
generated based on 20 existing static CARP instances from the BMCV
dataset [1]. Details of these static CARP instances are shown in Table
1. The best known lower and upper bounds on these instances are taken
from http://logistik.bwl.uni-mainz.de/benchmarks.php (last accessed
23 March 2018). Here, the length of the planning horizon is set to 500, which
is roughly equal to the average route cost in optimal solutions on the static
CARP instances (the last column in Table 1); this helps prevent the planning
horizon from being so long that a new task appears after all vehicles return to
the depot (with the vehicle speed being 1 unit distance per unit time). In total,
360 dynamic CARP instances1 were generated: 20 static CARP instances × 9
degrees of dynamism (δ = 0.1, 0.2, . . . , 0.9) × 2 rounds of generating dynamic
CARP instances (with different sets of dynamic tasks and their appearance
times in different rounds).

1 These instances may be accessed from https://sites.google.com/view/wasinpad/home.



Effects of update frequencies in a dynamic capacitated arc routing problem 11

Table 1: Characteristics of static CARP instances on which a generation of
dynamic CARP instances is based; LB and UB are the best known lower and
upper bounds, respectively (LB is omitted when UB is optimal), and nveh is the
least number of vehicles needed (total demand divided by capacity, rounded
up to the nearest integer); the capacity is 300 for all instances

Instance
Number of

vertices
Number of

edges
Number of

tasks
LB UB

Total
demand

nveh
UB
nveh

C01 69 98 79 4150 2490 9 461.1
C04 60 84 72 3510 2170 8 438.8
C09 76 117 97 5245 5260 3440 12 438.3
C11 83 118 94 4615 4630 2825 10 463.0
C12 62 88 72 4240 2630 9 471.1
C15 97 140 107 4920 4940 3080 11 449.1
C21 60 84 76 3970 2245 8 496.3
C23 78 109 92 4075 4085 2395 8 510.6
C24 77 115 84 3400 2040 7 485.7
E01 73 105 85 4900 4910 2975 10 491.0
E04 70 99 77 4155 2545 9 461.7
E09 93 141 103 5805 5820 3585 12 485.0
E11 80 113 94 4650 2820 10 465.0
E12 74 103 67 4180 2485 9 464.4
E15 85 126 107 4205 2615 9 467.2
E18 78 110 88 3835 2225 8 479.4
E19 77 103 66 3235 1800 6 539.2
E21 57 82 72 3730 2025 7 532.9
E23 93 130 89 3710 2280 8 463.8
E24 97 142 86 4020 2235 8 502.5

5 Comparison of Variants of the Dynamic CARP Solver

This section presents an analysis of how the dynamic CARP solutions can
be affected by adjusting two key components of the dynamic CARP solver:
the number of iterations of tabu search in each update, and the frequency
of solution updates. Several variants of the dynamic CARP solver are tested
on the instances generated in Section 4. Due to the stochastic nature of the
algorithm, each variant is run 20 times on each dynamic CARP instance and
its performance on that instance is assessed based on average results over 20
runs.

The algorithm performance on a given dynamic CARP instance will be
measured in relation to a posteriori lower bound, which is the best known
lower bound on the corresponding static CARP instance (in other words, when
all tasks are treated as if they are all known in advance). More precisely, the
algorithm performance will be reported in the form of percentage deviations
from a posteriori lower bounds:

percentage deviation =

(
solution cost− a posteriori lower bound

a posteriori lower bound

)
× 100.

(3)



12 Wasin Padungwech et al.

5.1 The Number of Iterations of Tabu Search in Each Update

In the static CARP, executing tabu search for more iterations will give a
better (or at least equally good) solution. In the dynamic CARP, however,
it is not guaranteed that a better solution at one update leads to a better
solution at a subsequent update (an example is given in Section 2.2). Thus,
it remains unclear whether executing tabu search for more iterations in each
update would give a better solution (with respect to total distance) at the end
of the planning horizon. This section presents a comparison between variants
of the dynamic CARP solver that differ in how long tabu search is executed
in each update.

Notice that the number of tasks that remain to be serviced can vary over
time as new tasks appear and existing tasks are serviced. It is anticipated that
the number of iterations that tabu search would need to improve a solution
varies with the number of tasks. For this reason, the maximum iteration limit
for the tabu search algorithm in each update is given in the form of k×nt, where
nt is the number of tasks in the given update (that are not in fixed parts of the
routes; see Section 3.2 for the description of a fixed part of a route) and k is a
constant to be specified. In this section, four different maximum iteration limits
(corresponding to k = 10, 25, 50, and 100) are tested with three regular update
schedules (5, 10, and 20 updates), giving 12 variants of the dynamic CARP
solver in total. Each variant is tested on three scenarios: “low,” “moderate,”
and “high” dynamism, represented by dynamic CARP instances with degrees
of dynamism δ = 0.2, 0.5, and 0.8, respectively. The tabu tenure is set to half
the number of tasks, following the choice of the tabu tenure chosen by Brandão
and Eglese [2].

Fig. 3 shows distributions of percentage deviations over 40 instances given
by each variant of the dynamic CARP solver; the percentage deviations are
computed from solution costs (total distances) at the end of the planning
horizon. The experimental results in Fig. 3 show little improvement due to
increasing the maximum iteration limit across different degrees of dynamism.
Furthermore, a two-tailed Wilcoxon signed-rank test was conducted to make a
comparison between each pair of maximum iteration limits (with a Bonferroni
correction, resulting in a significance level of 0.05/6 ≈ 0.0083). Table 2
shows that a higher maximum iteration limit does not consistently lead
to statistically significant improvement. This suggests that increasing the
maximum iteration limit is not a reliable way to improve the performance
of the dynamic CARP solver.

Fig. 4 shows averages of elapsed time for executing each variant of the
dynamic CARP solver in the whole planning horizon (i.e. accumulating
computation time from all updates). It can be seen that a higher iteration
limit indeed leads to a greater amount of elapsed time on average, suggesting
that the lack of significant improvement from the use of a higher iteration
limit observed in Fig. 3 is unlikely to be caused by premature termination (i.e.
tabu search terminating before reaching the maximum iteration limit due to
the absence of admissible solutions).



Effects of update frequencies in a dynamic capacitated arc routing problem 13

5 updates 10 updates 20 updates
Number of updates

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri 

lo
we

r b
ou

nd

10nt 25nt 50nt 100nt

(a) Degree of dynamism = 0.2

5 updates 10 updates 20 updates
Number of updates

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri 

lo
we

r b
ou

nd

10nt 25nt 50nt 100nt

(b) Degree of dynamism = 0.5

5 updates 10 updates 20 updates
Number of updates

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Pe
rc

en
ta

ge
 d

ev
ia

tio
n

fro
m

 a
 p

os
te

rio
ri 

lo
we

r b
ou

nd

10nt 25nt 50nt 100nt

(c) Degree of dynamism = 0.8

Fig. 3: Distributions of average percentage deviations from a posteriori lower
bounds with respect to total distances given by the dynamic CARP solver
with different maximum iteration limits (10nt, 25nt, 50nt, and 100nt, where
nt is the number of tasks) for various degrees of dynamism



14 Wasin Padungwech et al.

10nt 25nt 50nt 100nt

Maximum iteration limit

0

50

100

150

200

250

300

350

400

450

Ti
m

e 
(s

ec
on

ds
)

5 updates
10 updates
20 updates

(a) Degree of dynamism = 0.2

10nt 25nt 50nt 100nt

Maximum iteration limit

0

50

100

150

200

250

300

350

400

450

Ti
m

e 
(s

ec
on

ds
)

5 updates
10 updates
20 updates

(b) Degree of dynamism = 0.5

10nt 25nt 50nt 100nt

Maximum iteration limit

0

50

100

150

200

250

300

350

400

450

Ti
m

e 
(s

ec
on

ds
)

5 updates
10 updates
20 updates

(c) Degree of dynamism = 0.8

Fig. 4: Average elapsed time taken by each variant of the dynamic CARP
solver in the whole planning horizon; black vertical lines show one standard
deviation from each side of the averages



Effects of update frequencies in a dynamic capacitated arc routing problem 15

Table 2: Medians of percentage deviations from a posteriori (“static CARP”)
lower bounds given by the dynamic CARP solver with different maximum
iteration limits

Degree of dynamism Update schedule
Maximum iteration limit

10nt 25nt 50nt 100nt

0.2 5 updates 26.5 26.9 26.3 26.1b

10 updates 27.1 26.8 25.6 26.0
20 updates 26.4 25.6 25.8 26.3a

0.5 5 updates 29.5 29.6 28.7a 27.8a

10 updates 30.1 29.1 30.1 29.9a

20 updates 30.3 30.1 29.9a 29.2a

0.8 5 updates 28.9 28.8 28.1a 27.3a,b

10 updates 28.9 29.3 27.4a 28.7a,b

20 updates 29.8 30.2 29.3 29.2
a significantly better than the maximum iteration limit 10nt
b significantly better than the maximum iteration limit 25nt

based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction
(for 6 pairwise comparisons), resulting in a significance level of 0.05/6 ≈ 0.0083

It was also observed in Table 2 that the median of percentage deviations
increases when using a higher maximum iteration limit in some cases. This
illustrates a striking difference between the static CARP and the dynamic
CARP: running an algorithm for the static CARP for more iterations would
never lead to a worse solution. In contrast, this can occur in the dynamic
CARP due to the existence of changes in the problem. Moreover, as executing
tabu search with different numbers of iterations generally leads to different
solutions, this leads to different problem states (i.e. sets of tasks to be serviced,
vehicles positions and capacities). This means that, even though they are based
on the same tabu search algorithm, dynamic CARP solvers with different
maximum iteration limits generally encounter different sequences of static
CARPs over the planning horizon. This allows the relative performance of
difference variants of the dynamic CARP solvers to vary and, in some cases,
allows the variant with a higher iteration limit to return a worse solution. This
further emphasises the need to devise a way to reliably improve the dynamic
CARP solver rather than simply increasing the maximum iteration limit.

5.2 Update Schedules

We now turn our attention to the effect of changing the update schedule.
For more comprehensive results, three regular update schedules (with 5,
10, and 20 updates) were tested on a wider range of degrees of dynamism
δ = 0.1, 0.2, . . . , 0.9. The maximum number of iterations for the tabu search
algorithm at each update was set to 50nt, where nt is the number of tasks.
The experimental results with respect to total distances given by different



16 Wasin Padungwech et al.

Table 3: Medians of percentage deviations from a posteriori lower bounds
given by the dynamic CARP solver with different update schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 23.4 23.0a 22.2a

0.2 26.3 25.6 25.8
0.3 28.5 29.1 28.6
0.4 29.1 28.6 29.5
0.5 28.7c 30.1 29.9
0.6 28.1b,c 29.1 29.8
0.7 28.2b,c 29.6 29.0
0.8 28.1 27.4c 29.3
0.9 24.9b,c 26.1 28.0

a significantly better than the 5-update schedule
b significantly better than the 10-update schedule
c significantly better than the 20-update schedule
based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction
(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

update schedules are shown in Fig. 5(a). Also, a two-tailed Wilcoxon signed-
rank test was conducted to compare each pair of the update schedules and
the test results are shown in Table 3. It was found that the best update
schedule with respect to total distance varies with the degree of dynamism. For
relatively low degrees of dynamism, a more frequent update schedule tends to
perform better. In particular, the 10-update and the 20-update schedules are
significantly better than the 5-update schedule on the instances with the degree
of dynamism = 0.1. As the degree of dynamism increases, the performance
of different update schedules becomes more and more similar to each other.
Then, for relatively high degrees of dynamism, a less frequent update schedule
generally performs better; in some cases, the 5-update schedule is significantly
better than the 10-update and the 20-update schedules.

The experimental results in terms of service completion times are shown in
Fig. 5(b). A similar Wilcoxon signed-rank test was also conducted to compare
each pair of the update schedules in terms of service completion times, and
the test results are shown in Table 4. The results suggest that a less frequent
update schedule tends to result in a later service completion time, especially
when the degree of dynamism is relatively low. In fact, the service completion
time given by the 5-update schedule is significantly worse than the 10-update
and the 20-update schedules on the instances with degrees of dynamism in the
range 0.1 to 0.4. For relatively high degrees of dynamism (≥ 0.5), however, the
service completion times for different update schedules are generally similar to
each other, and no significant difference between the results of different update
schedules were found in most cases.

As we have seen in Fig. 5(a), updating the solution many times generally
leads to relatively poor results for relatively high degrees of dynamism. A
possible cause of this is the current way of integrating new tasks - that



Effects of update frequencies in a dynamic capacitated arc routing problem 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0
Pe

rc
en

ta
ge

 d
ev

ia
tio

n
fro

m
 a

 p
os

te
rio

ri 
lo

we
r b

ou
nd

5 updates 10 updates 20 updates

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n 
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g 
ho

riz
on

)

5 updates 10 updates 20 updates

(b)

Fig. 5: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances (a) and distributions of service completion times
(b) given by different update schedules over 40 instances for each degree of
dynamism (0.1, 0.2, . . . , 0.9)

is, the solution is reconstructed from scratch before tabu search is applied
in each update. As a result, any knowledge that tabu search has gained in
previous stages about the problem (e.g. promising or unpromising sequences
of tasks that should be serviced in the same route) is not transferred to future
updates. In this case, a less frequent update would allow the solver to collect
more information about new tasks for each update, which could then help
the algorithm find better solutions. On the other hand, increasing the update



18 Wasin Padungwech et al.

Table 4: Medians of service completion times (as multiples of the planning
horizon length) given by the dynamic CARP solver with different update
schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 1.89 1.87a 1.80a

0.2 2.17 2.11a 2.09a

0.3 2.29 2.24a 2.22a

0.4 2.38 2.27a 2.35a

0.5 2.39 2.37 2.36
0.6 2.37 2.35 2.37
0.7 2.35 2.39 2.35
0.8 2.41 2.38a 2.36a

0.9 2.40 2.38 2.38
a significantly better than the 5-update schedule
based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction
(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

frequency results in less information about new tasks in each update, and
consequently the solver is more susceptible to making poor decisions when
amending the solution in each update due to limited information.

To understand the effect of update schedules observed in the case of
relatively low degrees of dynamism, it should be noted that for some of the
dynamic CARP instances considered here, some updates are omitted due to
the absence of new tasks, especially when the degree of dynamism is low. This
is illustrated by Fig. 6, which shows the number of actual updates, i.e. those in
which there exist new tasks, under different update schedules on the dynamic
CARP instances considered here across different degrees of dynamism. Notice
that the difference between the numbers of actual updates for different update
schedules is relatively small for low degrees of dynamism. Also notice that fewer
updates are omitted as the degree of dynamism increases. In fact, no updates
under the 5-update and the 10-update schedules are omitted for sufficiently
large degrees of dynamism.

When the degree of dynamism is low, the solver does not suffer much from
updating the solution too frequently even if a frequent update schedule is used;
this is due to the absence of new tasks in some updates in the dynamic CARP
instances considered here. In fact, a more frequent update schedule means
that there are more updates arranged throughout the planning horizon, which
allows new tasks to be added to the solution more promptly. The effect of
this is particularly evident in Fig. 5(b): the service tends to be completed at
an earlier time under a more frequent update schedule. Furthermore, since
more and more parts of the routes would be fixed as vehicles travel along their
routes, adding new tasks to the solution at an earlier time would allow more
possibilities to amend the solution, hence a greater chance of finding better
solutions.



Effects of update frequencies in a dynamic capacitated arc routing problem 19

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

0

5

10

15

20

Nu
m

be
r o

f u
pd

at
es

5 updates 10 updates 20 updates

Fig. 6: The number of updates in which new tasks exist on 40 dynamic CARP
instances generated in Section 4 for each degree of dynamism (0.1, 0.2, . . . ,
0.9); note that some box plots are reduced to single lines due to zero variance

It is worth reminding ourselves at this stage that the above comparison of
different update schedules is based on the dynamic CARP solver in which an
initial solution in each update is reconstructed from scratch. The next section
proposes another way of integrating new tasks to the dynamic CARP solution
in each update and investigates whether it is beneficial to retain solutions
from previous updates as opposed to solving the problem in each update from
scratch.

6 An Alternative Method of Integrating New Tasks

In previous sections, as well as in existing work on the dynamic CARP in
the literature [9], the problem at each update is solved from scratch. This
section proposes a novel concept that aims to retain vehicle routes that
have been improved by the dynamic CARP solver throughout the planning
horizon: in each update, instead of reconstructing a solution from scratch (the
“Reconstruction method”), new tasks are inserted into existing routes one by
one in a random order. This alternative method will be called the Random
Insertion method. The motivation behind this idea is that the solution has
been improved by tabu search in previous updates and so would be likely to
contain some favourable characteristics (such as certain sequences of tasks),
which would be lost if the solution was reconstructed from scratch. The
Random Insertion method attempts to integrate new tasks into a solution
in such a way that retains most characteristics of the solution given by the
previous update.

The Random Insertion method works as follows. First, new tasks are
arranged in a random order; they are then added to a given solution in that



20 Wasin Padungwech et al.

order by means of a greedy method: that is, each task is added to a given
solution in a way that results in the least possible increase in the total distance.
To find such a cheapest way to insert a task, let D(a, b) denote the shortest
distance from the head of task a to the tail of task b for any tasks a, b. For a
route R = (vs, a1, . . . , an, v0) and a task a′, the cost (or more precisely, change
in the total distance of the solution) incurred by inserting task a′ into route
R between tasks aj and aj+1 for some j ∈ {0, 1, . . . , n} is equal to

D(aj , a
′) +D(a′, aj+1)−D(aj , aj+1), (4)

where, for ease of notation, a0 = (vs, vs) and an+1 = (v0, v0). For each new
task, all routes with sufficient capacities are considered, and the task is inserted
into the route that results in the cheapest insertion cost according to the
expression (4)2. If there are many routes into which the task can be inserted
with the cheapest cost, then one of them is chosen randomly. If there are
no routes with sufficient capacities, then a new route is created for the task
being considered. A description for the Random Insertion method is given in
Algorithm 2. The Random Insertion method is implemented in place of the
Reconstruction method in the dynamic CARP solver (see Lines 7 and 8 in
Algorithm 1).

Algorithm 2 The Random Insertion method

1: given a set of new tasks T , and a set of routes S
2: for each task t ∈ T (in a random order) do
3: if there exists a route with sufficient remaining capacity to service t then
4: insert t into one of the routes in S that incurs the cheapest cost (if there is more

than one such route, choose one of them randomly)
5: else
6: add t to a new route

6.1 Computational Results

We now look at the performance of the dynamic CARP solver with different
update schedules when the Random Insertion method is used in place of the
Reconstruction method. Figures 7(a) and 7(b) show the performance of the
dynamic CARP solver using the Random Insertion method with different
update schedules based on two measures, namely total distances and service
completion times, respectively. Statistical significance of the results with
respect to total distances and service completion times are shown in Table
5 and Table 6, respectively.

The experimental results show that when the Random Insertion is
implemented in place of the Reconstruction method, a more frequent update

2 Note that the cost of servicing task a′ is omitted in the expression (4) because it is
independent of the position of insertion and thus has no effect on the best insertion position.



Effects of update frequencies in a dynamic capacitated arc routing problem 21

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0
Pe

rc
en

ta
ge

 d
ev

ia
tio

n
fro

m
 a

 p
os

te
rio

ri 
lo

we
r b

ou
nd

5 updates 10 updates 20 updates

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Degree of dynamism

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Se
rv

ice
 c

om
pl

et
io

n 
tim

e
(×

 le
ng

th
 o

f p
la

nn
in

g 
ho

riz
on

)

5 updates 10 updates 20 updates

(b)

Fig. 7: Distributions of percentage deviations from a posteriori lower bounds
with respect to total distances (a) and distributions of service completion times
(b) given by different update schedules with the Random Insertion method
over 40 instances for each degree of dynamism (0.1, 0.2, . . . , 0.9)

schedule generally leads to better solutions across different degrees of
dynamism. This is different from the results with the Reconstruction method
seen previously in Section 5.2, where the best update schedule varies with the
degree of dynamism. A possible reason for this is that the Random Insertion
method allows the solver to retain a solution that has been improved from
previous updates. This means that an initial solution in each update has
a higher chance of already containing promising features (such as certain



22 Wasin Padungwech et al.

Table 5: Medians of percentage deviations from a posteriori lower bounds
given by the dynamic CARP solver with the Random Insertion method and
different update schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 19.5 17.8a 17.6a,b

0.2 23.0 22.3a 21.5a,b

0.3 27.4 26.0a 24.9a,b

0.4 28.6 27.8 27.3a,b

0.5 29.7 28.7a 27.4a

0.6 29.5 28.1 27.3a

0.7 29.1 27.8a 28.7a

0.8 28.1 27.4a 27.6a

0.9 26.8 26.6 25.8
a significantly better than the 5-update schedule
b significantly better than the 10-update schedule
based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction
(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

Table 6: Medians of service completion times (as multiples of the planning
horizon length) given by the dynamic CARP solver with the Random Insertion
method and different update schedules

Degree of dynamism
Update schedule

5 updates 10 updates 20 updates

0.1 1.85 1.81a 1.79a

0.2 2.13 2.08a 1.97a,b

0.3 2.24 2.17a 2.11a,b

0.4 2.32 2.25a 2.23a,b

0.5 2.34 2.26a 2.19a,b

0.6 2.35 2.26a 2.21a,b

0.7 2.34 2.26a 2.21a,b

0.8 2.35 2.27a 2.22a,b

0.9 2.31 2.32a 2.22a,b

a significantly better than the 5-update schedule
b significantly better than the 10-update schedule
based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction
(for 3 pairwise comparisons), resulting in a significance level of 0.05/3 ≈ 0.017

sequences of tasks to be serviced in the same route). Consequently, there is
not as much need to collect a lot of information about new tasks before each
update in order to obtain high quality solutions. In this case, the benefit of
accumulating information about new tasks in each update appears to be less
prominent than the benefit of adding new tasks to the solution promptly. This
is particularly evident when comparing the service completion times for the
Reconstruction method and the Random Insertion method; see Fig. 5(b) and
Fig. 7(b).



Effects of update frequencies in a dynamic capacitated arc routing problem 23

So far the update schedules have been compared based on the same method
of integrating new tasks. It is also interesting to compare 6 variants of the
dynamic CARP solver (3 update schedules × 2 methods of integrating new
tasks) all together; in particular, this would allow us to clearly see how
the performance of the dynamic CARP solver is affected by the method of
integrating new tasks. By comparing Fig. 5(a) and Fig. 7(a), we found that
the Random Insertion generally gave better solutions than the Reconstruction
method. In fact, using the Random Insertion with 20 updates is the most
promising variant of the dynamic CARP solver; it is significantly better than
the other variants in most cases (see Tables 7 and 8). This further highlights
the benefits of retaining the solution from previous updates compared with
solving the problem at each update from scratch.

7 Conclusion

This paper concerns a heuristic algorithm for solving the dynamic CARP.
It begins by describing the main components of a dynamic CARP solver,
including an update schedule, how the current state of the problem can
be determined, a method of integrating new tasks into the solution, and a
heuristic algorithm for improving the solution, which in this paper is based on
tabu search. The purpose of this paper is to investigate how the performance
of a heuristic algorithm for solving the dynamic CARP can be affected by
adjusting its configuration. In particular, here we have considered adjusting 3
components of the solver: a maximum iteration limit for tabu search in each
update, the frequency of solution updates, and a method of integrating new
tasks to an existing solution. An analysis has been conducted to compare
several options of these components and to investigate how each of the
components could affect the solution quality with respect to total distance
and service completion time.

Regarding the maximum iteration limit, experimental results show that
increasing the maximum iteration limit for tabu search in each update yields
little improvement. Moreover, a larger maximum iteration limit can sometimes
even give worse results. This suggests that to consistently achieve a better
solution in the dynamic CARP, it is not sufficient to rely solely on running
the tabu search algorithm at each update for more iterations. This suggests
the need to improve the dynamic CARP solver by other means.

Two ways of amending the dynamic CARP have been investigated:
adjusting the frequency of solution updates and the way of integrating
new tasks to the solution in each update. Here we consider 3 regular
update schedules (with 5, 10, and 20 update) and 2 methods of integrating
new tasks (the Reconstruction method and the Random Insertion method).
Computational results show that the effect of adjusting the frequency of
solution updates and the way of integrating new tasks to the solution in each
update varies with the degree of dynamism, i.e. the ratio of the number of



24 Wasin Padungwech et al.

dynamic tasks (known after vehicles leave the depot at the beginning of the
planning horizon) to the number of all tasks in the whole the planning horizon.

More precisely, for relatively low degrees of dynamism (up to 0.4 for
the instances considered here), a more frequent update schedule tends to
give better results, regardless of the method of integrating new tasks.
Nevertheless, the Random Insertion method yields more promising results
than the Reconstruction method. In contrast, for relatively high degrees of
dynamism (at least 0.5 for the instances considered here), the performance of
different update schedules depends on the method of integrating new tasks.
With the Reconstruction method, a less frequent update schedule tends to
give better results. In contrast, with the Random Insertion method, a more
frequent update schedule tends to give better results.

Among all variants of the dynamic CARP solver considered, the Random
Insertion method with 20 updates give the best results; it is significantly better
than the other variants in many cases (see Tables 7 and 8). This highlights
the benefit of retaining solutions from previous updates as opposed to solving
the problem at each update from scratch.

Acknowledgements Support from the Royal Thai Government (studentship to Wasin
Padungwech) is acknowledged. Comments from anonymous reviewers are also greatly
appreciated.

Appendix: Neighbourhood moves in the tabu search algorithm

Recall that a CARP solution is a set of routes, and a route can be represented
by a sequence of tasks with specified directions (preceded by its starting
vertex and followed by the depot v0). Let R1 = (vs1 , a1, . . . , an1 , v0) and
R2 = (vs2 , b1, . . . , bn2 , v0) be two routes, for some tasks a1, . . . , an1 , b1, . . . , bn2 ,
some vertices vs1 , vs2 , and some positive integers n1, n2. For ease of notation,
an1+1 and bn2+1 are identified with the depot v0 at the end of the routes.

– Single Insertion: remove a task from one route and insert it in another
route. Given a removal index i (1 ≤ i ≤ n1) and an insertion index j
(1 ≤ j ≤ n2 + 1), remove ai from R1 and insert it in front of bj in R2.

– Double Insertion: remove two tasks from one route and insert them in
another route. Given two removal indices i1, i2 (1 ≤ i1 < i2 ≤ n + 1) and
two insertion indices j1, j2 (1 ≤ j1, j2 ≤ n2 + 1), remove ai1 and ai2 from
R1 and insert them in R2 in front of bj1 and bj2 , respectively. If j1 = j2, i.e.
ai1 , ai2 are inserted at the same position, both possible orders (ai1 followed
by ai2 or vice versa) are considered.

– Swap: swap tasks between two routes (one task from each route). Given
two removal indices i, j (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) and two insertion indices
i′, j′ (1 ≤ i′ ≤ n1 + 1, 1 ≤ j′ ≤ n2 + 1) such that i 6= i′ and j 6= j′, remove
ai from R1 and place it in front of bj′ in R2; remove bj from R2 and place
it in front of ai′ in R1.



Effects of update frequencies in a dynamic capacitated arc routing problem 25

Table 7: Medians of percentage deviations from a posteriori lower bounds given
by the dynamic CARP solver with different update schedules and different
methods of integrating new tasks

Degree of dynamism
Reconstruction Random Insertion

5 updates 10 updates 20 updates 5 updates 10 updates 20 updates

0.1 23.4 23.0a 22.2a 19.5abc 17.8abcd 17.6abcde

0.2 26.3 25.6 25.8 23.0abc 22.3abcd 21.5abcde

0.3 28.5 29.1 28.6 27.4ab 26.0abcd 24.9abcde

0.4 29.1 28.6 29.5 28.6 27.8bc 27.3abcde

0.5 28.7 30.1 29.9 29.7 28.7bc 27.4abcd

0.6 28.1c 29.1 29.8 29.5 28.1 27.3c

0.7 28.2bcd 29.6 29.0 29.1 27.8d 28.7bcd

0.8 28.1 27.4 29.3 28.1 27.4cd 27.6cd

0.9 24.9c 26.1 28.0 26.8 26.6 25.8c

a significantly better than the Reconstruction method with 5 updates
b significantly better than the Reconstruction method with 10 updates
c significantly better than the Reconstruction method with 20 updates
d significantly better than the Random Insertion method with 5 updates
e significantly better than the Random Insertion method with 10 updates
based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction (for 15 pairwise comparisons),
resulting in a significance level of 0.05/15 ≈ 0.0033

– 2-Opt: cut two routes each into two subroutes and re-connect subroutes to
obtain two new routes. Given two cutting indices i, j (1 ≤ i ≤ n1 + 1, 1 ≤
j ≤ n2 + 1), cut R1 into two parts (vs, a1, . . . , ai−1) and (ai, . . . , an1

, v0)3

and cut R2 in a similar fashion. Then, join one part of R1 with one part
of R2 (and join the remaining parts together). Note that there are two
possible ways to join the parts, as illustrated in Fig. 8.

These four types of neighbourhood moves have been used in the literature
(see, for example, Beullens et al. [1], Brandão and Eglese [2]), although some
moves are performed in a slightly different way in this paper. For a double
insertion move, removed tasks do not need to be consecutive (i.e. i2 is not
necessarily equal to i1 + 1) and they do not need to be inserted at the same
position (i.e. j2 is not necessarily equal to j1). For 2-opt, it is allowed that all
tasks in one route (e.g. when i = 1) is moved to another route.

To avoid unnecessary computation, 2-opt moves that have essentially no
effect to the solution are omitted (e.g. i = j = 1 with a particular way of
joining routes simply results in renumbering routes). The 2-opt moves that
resemble other neighbourhood moves are also omitted (e.g. i = n1 and j = n2
with a particular way of joining routes resembles a swap move).

References

1. P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden.
A guided local search heuristic for the capacitated arc routing problem.
European Journal of Operational Research, 147(3):629–643, 2003.

3 If i = 1, then the route R1 is divided into (vs) and (a1, . . . , v0). If i = n1 + 1, then the
route is divided into (vs, . . . , an1 ) and (v0).



26 Wasin Padungwech et al.

ai–1
ai

bj–1

bj

ai–1 ai

bj–1

bj

ai–1
ai

bj–1

bj

>
>

>

>

>
>

>

>

> >

>

>

a1 … ai–1 ai … an

b1 … bj–1 bj … bn

a1 … ai–1 bj … bn

b1 … bj–1 ai … an

a1 … ai–1 bj–1 … b1

an … ai bj … bn

~ ~

~ ~
An endpoint of a task
The depot

~

~

Fig. 8: Two possible ways of joining parts of routes as a result of a 2-opt move;
tasks that are removed from their original routes are highlighted; ã denotes
the opposite direction of traversal on task a

Table 8: Medians of service completion times (as multiples of the planning
horizon length) the dynamic CARP solver with different update schedules
and different methods of integrating new tasks

Degree of dynamism
Reconstruction Random Insertion

5 updates 10 updates 20 updates 5 updates 10 updates 20 updates

0.1 1.89 1.87a 1.80ad 1.85 1.81ad 1.79abd

0.2 2.17 2.11ad 2.09ad 2.13 2.08ad 1.97abcde

0.3 2.29 2.24a 2.22a 2.24a 2.17abcd 2.11abcde

0.4 2.38 2.27a 2.35a 2.32a 2.25abcd 2.23abcd

0.5 2.39 2.37 2.36 2.34 2.26abcd 2.19abcd

0.6 2.37 2.35 2.37 2.35 2.26abcd 2.21abcd

0.7 2.35 2.39 2.35 2.34 2.26abcd 2.21abcde

0.8 2.41 2.38 2.36a 2.35a 2.27abcd 2.22abcde

0.9 2.40 2.38 2.38 2.31 2.32abcd 2.22abcde

a significantly better than the Reconstruction method with 5 updates
b significantly better than the Reconstruction method with 10 updates
c significantly better than the Reconstruction method with 20 updates
d significantly better than the Random Insertion method with 5 updates
e significantly better than the Random Insertion method with 10 updates
based on a two-tailed Wilcoxon signed-rank test with a Bonferroni correction (for 15 pairwise comparisons),
resulting in a significance level of 0.05/15 ≈ 0.0033



Effects of update frequencies in a dynamic capacitated arc routing problem 27

2. J. Brandão and R. Eglese. A deterministic tabu search algorithm for the
capacitated arc routing problem. Computers & Operations Research, 35
(4):1112–1126, 2008.

3. Z.-L. Chen and H. Xu. Dynamic column generation for dynamic vehicle
routing with time windows. Transportation Science, 40(1):74–88, 2006.

4. E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

5. F. Glover. Tabu search—part i. ORSA Journal on Computing, 1(3):190–
206, 1989.

6. B. L. Golden and R. T. Wong. Capacitated arc routing problems.
Networks, 11(3):305–315, 1981.

7. B. L. Golden, J. S. DeArmon, and E. K. Baker. Computational
experiments with algorithms for a class of routing problems. Computers
& Operations Research, 10(1):47–59, 1983.

8. M. Liu, H. K. Singh, and T. Ray. A benchmark generator for dynamic
capacitated arc routing problems. In Evolutionary Computation (CEC),
2014 IEEE Congress on, pages 579–586. IEEE, 2014.

9. M. Liu, H. K. Singh, and T. Ray. A memetic algorithm with a new
split scheme for solving dynamic capacitated arc routing problems. In
Evolutionary Computation (CEC), 2014 IEEE Congress on, pages 595–
602. IEEE, 2014.

10. K. Lund, O. B. Madsen, and J. M. Rygaard. Vehicle routing with varying
degree of dynamism. 1996.

11. M. Monroy-Licht, C. A. Amaya, A. Langevin, and L.-M. Rousseau.
The rescheduling arc routing problem. International Transactions in
Operational Research, 2016.

12. R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati.
Ant colony system for a dynamic vehicle routing problem. Journal of
Combinatorial Optimization, 10(4):327–343, 2005.

13. L. M. Moreira, J. F. Oliveira, A. M. Gomes, and J. S. Ferreira. Heuristics
for a dynamic rural postman problem. Computers & Operations Research,
34(11):3281–3294, 2007.

14. H. N. Psaraftis. A dynamic programming solution to the single vehicle
many-to-many immediate request dial-a-ride problem. Transportation
Science, 14(2):130–154, 1980.

15. M. Tagmouti, M. Gendreau, and J.-Y. Potvin. A dynamic capacitated
arc routing problem with time-dependent service costs. Transportation
Research Part C: Emerging Technologies, 19(1):20–28, 2011.

16. A. Yazici, G. Kirlik, O. Parlaktuna, and A. Sipahioglu. A dynamic
path planning approach for multirobot sensor-based coverage considering
energy constraints. IEEE Transactions on Cybernetics, 44(3):305–314,
2014.


