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Abstract  

Recent progress in understanding pathological changes in the nervous system and 

in certain other body systems (e.g. immune system) that lead to the development 

and progression of amyotrophic lateral sclerosis (ALS) revealed a number of 

molecular and cellular processes that can potentially be used as therapeutic 

targets. Many of these processes are compromised not only in ALS but also in 

other diseases and a repertoire of drugs able to restore, at least partially, their 

functionality has been developed. In this review, we briefly describe current 

approaches to the repurposing of such “old” drugs for treatment of patients with 

ALS.  
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Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron 

disease, a condition characterised by selective damage to lower and upper motor 

neurons1. Death of lower motor neurons in the spinal cord and brainstem nuclei 

causes progressive muscle weakness, pareses, paralyses and ultimately, death of 

ALS patients typically 3-5 years after manifestation of first symptoms of the 

disease2,3. The incidence of ALS in Europe and North America is quite stable at 

the rate of approximately 1.5 to 3 new cases per 100 000 persons per year4,5.  

Degeneration of lower motor neurons is commonly accompanied by degeneration 

of upper motor neurons in the primary motor cortex and profound 

neuroinflammatory reaction in all affected regions of the nervous system3. 

Another histopathological hallmark of ALS is the presence in degenerating 

neurons of ubiquitinated inclusions that often contain aggregated TDP-43 protein 

or its fragments6. 

Although most of ALS cases are sporadic (sALS), there are between 5 and 10 per 

cent of familial cases (fALS) caused by various, mainly autosomal dominant 

mutations7. The fALS-linked genes encode proteins involved in many important 

cellular functions, including but not limited to RNA metabolism, proteostasis and 

regulation of cytoskeleton dynamics1,7-9. This suggests that motor neurons are 

intrinsically vulnerable cells whose homeostasis can be easily disrupted with 

dramatic consequences for their physiology and that such disruptions can be 

caused by malfunction of diverse intracellular processes. Consequently, 

molecular targets for the disease modifying therapy might be different not only 

for various forms of fALS but also for different cases of sALS10-12. We still do 

not understand well enough molecular and cellular processes involved in ALS 

pathogenesis and therefore, how therapeutic targets should be chosen. Not 

surprisingly, a disease-modifying therapy for ALS remains only a dream and even 



therapies that can significantly prolong survival of patients or slow down the 

disease progression are not yet available. Only two drugs, riluzole (Rilutek, 

Teglutik) and edaravone (Radicava, Radicut), are currently approved for the 

treatment of ALS. 

Riluzole does prolong patients’ survival but only slightly, while edaravone slows 

down the disease progression but this effect is marginal. Importantly, there is no 

clear understanding of why these drugs provide observed though small, clinical 

benefits, in other words, what molecular mechanisms are responsible for the 

effects of riluzole and edaravone. A number of reviews summarise experimental 

and clinical data, and discuss various hypotheses regarding possible molecular 

targets and mechanisms of action of both drugs (for recent examples see 

references13-17). Therefore, this review will not touch on these subjects any further 

but will focus on several other therapeutic approaches that have been suggested 

and tested for treatments of ALS patients, specifically on those that employ 

repurposing of drugs already used to treat other diseases (Supplementary table 1).  

Because ALS is a multifactorial disease18, a number of diverse targets and 

therapeutic approaches were suggested and tested in clinical trials. According to 

ClinicalTrials.gov, more than 530 clinical trials have been registered so far. 

Approximately half of these trials were dealing with potentially disease-

modifying therapies: 199 (37%) trials of drugs and 39 (7%) trials of other types 

of biomedical therapeutic approaches, for example, antibodies and stem cells. 

The rest of trials examined the efficiency of new medical equipment, procedures, 

diagnostic methods, early disease biomarkers, etc. 

An active search for new disease-modifying therapies started at the beginning of 

the century as reflected by initially gradually increasing and lately stably high 

number of clinical trials for drugs and other therapeutic approaches registered 

each year (Figure 1). At present, 63 clinical trials of drugs are still active, most 

of them (52%) are in the Phase II and 18% in the Phase III (Figure 2A). Majority 



of clinical trials for biomedical therapeutic approaches are still in the Phase I 

(67%) but several have already reached Phases II and III (Figure 2B).  

 

Drugs used for treatment of psychiatric disorders 

These groups of drugs are actively used for treatment of patients with psychiatric 

disorders but a growing body of evidence linking ALS with these disorders 

suggest certain common underlying mechanisms and therefore, potentially 

disease-modifying effects of neuroleptics and antidepressants for at least some 

groups of ALS patients. 

Psychiatric problems are quite common in ALS patients and in some cases occurs 

before the development of motor symptoms. This is not restricted to the well-

known overlap of clinical patterns and pathomechanism of ALS and fronto-

temporal lobar degeneration (FTLD)19-21. Patients diagnosed with schizophrenia-

like psychosis, bipolar disorder, depression and anxiety have a higher risk of 

developing ALS within 1-5 years after manifestation of psychiatric symptoms22. 

Relatives of ALS patients more often suffer from schizophrenia, obsessive-

compulsive disorder, autism, suicide and alcoholism23,24. Genome-wide 

association studies (GWAS) revealed genetic correlation between ALS and 

schizophrenia (14.3%)25. The highest association was demonstrated for C9orf72 

locus whose mutation is the most common cause of both fALS and sALS26-31. 

Between other genes that have been found associated with both diseases are 

several previously known ALS risk genes and several new, including those 

associated not only with schizophrenia but also with other neurodevelopmental 

disorders, for example autism-linked CNTN6 gene, encoding contactin 6, a cell 

adhesion protein32. 

Results of several clinical trials indirectly confirm a notion about an overlap of 

molecular mechanisms involved in ALS and certain psychiatric disorders and 

consequently, common therapeutic targets. For instance, a complementation of 

an antipsychotic risperidone treatment with riluzole alleviated negative 



symptoms in chronic schizophrenia patients33. All 13 compounds selected from a 

set of 3850 repurposing drugs due to their ability to prevent paralyses in two 

models of TDP-43-ALS (C. elegans expressing TARDBPA315T and D. rerio 

expressing TARDBPG348C) appeared to be known neuroleptics34. Further studies 

revealed pimozide as a neuroleptic with the most profound effect in the 

TARDBPG348C zebrafish system, which was also evident in two other fALS 

models, D. rerio expressing FUSR521H and SOD1G93A. Results of studies in C. 

elegans and zebrafish models led to the suggestion that pimozide improves 

synaptic transmission in neuromuscular junctions (NMJ), which was confirmed 

in experiments on neuromuscular preparations of extensor digitorum longus of 

SOD1G37R mice, where pimozide normalised electrophysiological parameters of 

neuromuscular synaptic transmission34. As a neuroleptic, pimozide specifically 

targets dopamine D2 receptors but its effect on NMJs can be explained by an 

ability to block T-type of Ca2+ channels34-37. In a pilot 6-week randomized 

controlled trial of sporadic ALS patients pimozide showed an ability to preserve 

decremental responses that worsened in some muscle groups (e.g. compound 

motor action potential for right abductor pollicis brevis and MRC sum score for 

muscle strength), which suggested protection against decline of impaired NMJ 

transmission34. These encouraging results stimulated a new clinical trial to assess 

effects of chronic pimozide administration on safety, tolerability and clinical 

outcome measures in 100 ALS patients that started in the autumn of 2017 and 

should be finished in 2020 (NCT03272503). Publication of results and 

conclusions about the feasibility of pimozide use for ALS treatment is expected 

soon. However, expectations are low due to a drawback that occurred already 

after the start of this trial. In 2018 the same group published results of experiments 

with chronic pimozide administration in two mouse models expressing either 

TDP-43A315T or SOD1G93A. Unexpectedly, pimozide aggravated pathology in both 

models. Significant increase of pathogenic protein aggregate accumulation in the 

nervous system, worsening of the neuromuscular connectivity and consecutively, 



motor functions and reduced lifespan were observed for pimozide-treated 

compared to vehicle-treated animals38. Reasons for a damaging effect of chronic 

pimozide treatment on mouse models of ALS pathology are not clear but these 

latest observations cast doubts on the future of this drug for ALS treatment. 

Mood stabilisers is another group of drugs that are commonly used for treatment 

of psychiatric diseases and considered as potential disease-modifying treatments 

for ALS. In particular, lithium, an inhibitor of glycogen synthase kinase 3 (GSK-

3), and valproic acid, an inhibitor of histone deacetylases (HDACs), have been 

tested in animal models and ALS clinical trials. The rationale for testing these 

drugs was their neuroprotective potential, that has been linked to their ability to 

interfere with many pathways and processes involved in neuronal death, 

including excitotoxicity39, expression of glutamatergic postsynaptic density 

proteins of Homer family40,41, aberrant Notch signalling42, apoptosis43, 

endoplasmic reticulum stress (ERS) and autophagy39,44. Moreover, a synergistic 

effect of these two drugs has been demonstrated45,46. Marked neuroprotection 

observed for therapeutically-relevant doses of lithium in SOD1G93A mouse 

model47 triggered several clinical trials in patients with ALS. In some of these 

trials, lithium slowed down the disease progression47-49, but no improvement was 

observed in other trials50-55. Further studies revealed that only patients 

homozygous for C allele of UNC13A locus, which is known to be genetically 

linked to ALS and FTLD56-58, response to lithium therapy59. Cotreatment with 

lithium and valproic acid has also been tested in animal models40,60 and used in a 

small size clinical trial in patients with sALS that revealed increased survival and 

signs of neuroprotection although doses used were too high and caused side-

effects that forced termination of the trial61. Results of another clinical trial of 

lithium and valproic acid cotreatment (NCT03204500) are not yet published. 

Chemical structures of drugs described in this section are shown in 

Supplementary Figure S1. 

 



Drugs targeting endoplasmic reticulum stress 

Protein misfolding, formation of unfolded protein oligomers, higher order 

aggregates and finally, large intracellular inclusions are biochemical and 

histopathological hallmarks of ALS28,62,63. Accumulation of unfolded proteins 

and products of their aggregation causes various intracellular stress reactions, 

including endoplasmic reticulum stress (ERS) and triggers unfolded protein 

response (UPR), a mechanism that enables cells to restore its protein homeostasis 

and survive for some time under conditions of mild to moderate stress. This is 

achieved by activation of intracellular processes controlling protein folding and 

degradation64,65. However, in conditions of chronic and strong stress UPR 

initiates apoptotic death of affected cells66,67.   

ERS is believed to be one of important mechanisms regulating sensitivity of 

motor neurons to pathological changes associated with ALS68,69. Evidence for 

ERS in neurons affected by ALS pathology was obtained by analysis of post 

mortem samples of fALS and sALS patients and in various cell and animal 

models of the disease70-73. Moreover, mutations in genes PDIA1 and PDIA3, 

whose protein products are ER-residing molecular chaperones that prevent the 

formation of protein aggregates, have been associated with ALS74,75.  

A controllable switching of ERS-triggered UPR from its adaptive to apoptotic 

programme is regarded as a promising approach for treatment of ALS as well as 

other neurodegenerative conditions76,77. Several intracellular pathways associated 

with ERS and UPR has been suggested as targets for ALS drugs.  

A dual leucine zipper kinase (DLK) is a part of the intracellular signalling 

network that modulates cell response to ERS via c-Jun N-terminal kinases (JNK) 

and protein kinase R-like endoplasmic reticulum kinase (PERK). Upregulation of 

DLK in mammalian nervous system causes axonal degeneration and death of 

neurons, whereas its pharmacological inhibition or knockout of the encoding 

gene have neuroprotective effect in several models of neurodegeneration, 

including SOD1G93A mouse model78-81. Therefore, a number of DLK inhibitors 



are currently tested as potential drugs for various neurodegenerative diseases and 

there is an ongoing Phase I clinical trial for one of them, GDC-0134 

(NCT02655614). 

Tauroursodeoxycholic acid (TUDCA), a minor component of bile used in 

ancient Asian pharmacopoeias, possesses a chemical chaperone activity that can 

reduce ERS and alleviate cell death by stimulation UPR without activation of a 

proapoptotic branch of the  PERK-eIF2α-ATF4-CHOP pathway82-85. In an initial 

clinical trial significantly higher Amyotrophic Lateral Sclerosis Functional 

Rating Scale Revised (ALSFRS-R) parameters and slower disease progression 

has been  demonstrated for a group of ALS patients treated with a combination 

of TUDCA and riluzole than for control riluzole and placebo group86,87. Some 

effect of another bile component and molecular chaperone, ursodeoxycholic acid 

(UDCA) was observed in a separate clinical trial86,87. However, the group sizes 

in both were too small to make strong conclusions about the usefulness of these 

molecular chaperones for treatment of ALS patients88. Sodium phenylbutyrate 

(Buphenyl, Ammonaps, triButyrate), a compound used to treat urea cycle 

disorders, is another molecular chaperone, that also acts as an inhibitor of 

HDAC89. It has successfully passed efficiency testing in SOD1G93A mouse model 

as well as safety and tolerability tests in patients90-94. A combination of 

tauroursodeoxycholic acid and sodium phenylbutyrate, AMX0035, is now tested 

in a large CENTAUR Phase II clinical trial (NCT03127514). Although full 

results of this trial are yet to be published, according to the recent announcement 

AMX0035 statistically significantly slowed ALS disease progression as 

measured by the ALSFRS-R. 

Arimoclomol, originally developed as a candidate drug for treatment of insulin 

resistance and diabetic complications has later been suggested for use in various 

lysosomal storage diseases and protein aggregation diseases, including ALS. 

Such diversity is due to the mechanism of arimoclomol action as a coinducer of 

heat shock proteins (HSPs). Following encouraging results obtained in various 



cell and animal models, including SOD1G93A mice95, and a suggestion from the 

first clinical trial on SOD1-ALS patients that arimoclomol treatment might have 

a therapeutic benefit96, a Phase III randomised, placebo-controlled trial of 

Arimoclomol in ALS (NCT03491462) started in July 2018.  

A potential problem with using coinducers of HSPs as ALS drugs is that motor 

neurons have a high intrinsic threshold of stress-induced HSPs upregulation97,98 

and are relatively resistant to arimoclomol and other HSP coinducers99. It has 

been suggested that the combination of coinducers of HSPs and HDAC inhibitors 

might have a strong synergistic effect and should be considered in future clinical 

trials100. Chemical structures of drugs described in this section are shown in 

Supplementary Figure S3. 

 

Drugs targeting excitotoxicity 

A common feature of virtually all ALS cases is altered excitability, particularly 

cortical hyperexcitability, that believed to be a crucial element in 

pathomechanism of the disease leading to excitotoxicity within affected neuronal 

circuits and ultimate death of motor neurons101,102. Consequently, compounds 

affecting neuronal excitability and/or neuronal synaptic transmission are credible 

candidates for drugs capable to prevent motor neuron death in ALS. 

Ezogabine (Potiga) or retigabine (Trobalt), an anticonvulsant used for the 

treatment of epilepsy, decreases neuronal excitability due to its activity as an 

opener of KV7 (KCNQ) family of potassium channels103. A single dose of this 

drug significantly decreased excitability parameters in a study performed on a 

small group of ALS patients104. According to still unpublished data reported at 

the Motor Neurone Disease Association Symposium in December 2018, in a 

Phase II trial (NCT02450552) chronic administration of the drug is well tolerated 

by patients with ALS and decreases excitability of both upper and lower motor 

neurons105. 



Another anticonvulsant used for treatment of seizures and neuropathic pain, 

lacosamide (Vimpat), decreases neuronal excitability by interaction with two 

types of molecules: it enhances the slow but not affects fast inactivation of 

voltage-gated sodium channels, and improves neuronal connectivity via 

modulation of activity of collapsin response mediator protein 2 (CRMP-2), 

although the impact of these mechanisms is not obvious106. Nevertheless, 

neuroprotective effects demonstrated in previous studies107-109 stimulated 

lacosamide testing for treatment of ALS patients and a Phase I/II open-label 

clinical trial (NCT03186040) is ongoing. 

Results of a recently completed clinical trial (NCT01811355) demonstrated that 

mexiletine (Mexitil, NaMuscla) effectively reduces muscle cramp frequency and 

severity in ALS patients110,111. The mechanism of this drug action is believed to 

be related to its ability to reduce persistent sodium currents by blocking sodium 

channels. It has been also demonstrated that mexiletine can cross blood brain 

barrier (BBB) and enter the nervous system112. However, treatment with 

mexiletine does not affect ALS progression111,113. It should be noted that riluzole 

also reduces persistent sodium currents but does not have any effect on muscle 

seizures114,115 and does not potentiate the effect of mexiletine when used in 

combination110. 

Ranolazine (Ranexa) is used to treat chronic angina. In heart muscles, ranolazine 

reduces intracellular calcium levels pathologically increased due to hyperactive 

persistent or late inward sodium current. In addition to inhibition of sodium 

channels the drug affects the delayed rectifier current, i.e. potassium channels116-

118. The ability to reduce excitability of the nervous system cells119,120 makes 

ranolazine a prospective drug for treatment of neuropathic pain121,122 and 

epilepsy123,124. Ranolazine also has anti-inflammatory activity and increases 

survival of astrocytes in primary cultures, which led to suggestion that it might 

have a neuroprotective activity125. A Phase II clinical trial on patients with ALS 

(NCT03472950) is currently on the way. 



An antagonist of N-methyl-D-aspartate (NMDA) receptors memantine is an 

approved drug for alleviating symptoms of Alzheimer’s disease (AD) and is 

currently considered as a treatment for ALS. Although in previous studies 

memantine increased the lifespan of model animals126,127, preliminary data of a 

Phase II clinical trial (NCT02118727) did not show its efficacy in patients with 

ALS128,129. Glutamate release by astrocytes is stimulated by prostaglandine E2, a 

product of a reaction catalysed by cyclooxygenase-2 (COX-2)130,131. This is the 

rationale for testing COX-2 inhibitor celecoxib (Celebrex, Onsenal, etc.), a 

nonsteroidal anti-inflammatory drug used for treatment of pain and inflammation 

in various types of arthritis and certain other conditions in ALS patients. Despite 

promising results obtained in animal models of ALS132-134, celecoxib in 

combination with creatinine and/or minocycline failed to show efficacy in a 

Phase II clinical trial (NCT00355576)135. Currently, a combination of celecoxib 

with an antibiotic ciprofloxacin is being assessed in Phase I (NCT04090684) and 

Phase II (NCT04165850) clinical trials. 

Excitotoxicity and ERS both augment repeat associated non-AUG-dependent 

(RAN) translation, a process coupled with accumulation of toxic dipeptides 

(DPRs) from ALS-associated C9orf72 locus carrying hexanucleotide repeat 

expansion136-138. Metformin, a drug used to treat or decrease the risk of the 

development of the type 2 diabetes, is considered to be an attenuator of RAN 

translation and thus, might be an option for treatment of certain forms of ALS as 

well as other neurodegenerative diseases139,140. A Phase II clinical trial of 

metformin in C9orf72 positive ALS patients (NCT04220021) is currently 

ongoing and two other drugs used to treat depression, trazodone and 

dibenzoylmethane, has been shown to reduce DPR levels in cellular models and 

suggested as potential treatments for C9-ALS140,141. 

Existing evidence suggests that in certain circumstances motor neurons of ALS 

patients can be hypoactive142,143. A switch from a hyperactive to hypoactive status 

is associated with the late stages of the disease144,145. Consequently, it is feasible 



to suggest that blockers of voltage-activated potassium channels might be used 

for therapeutic increase of motor neuron excitability in relevant patient groups142. 

4-aminopiridine (Aminopyridine, dalfampridine, etc.), a potent convulsant that 

in appropriate doses is used to improve walking capacity of patients with multiple 

sclerosis, now is testing for use in other neuromuscular disorders, including 

primary lateral sclerosis and ALS145, including a Phase I clinical trial 

(NCT02868567).  

It has been hypothesised that a specific mechanism behind glutamate 

excitotoxicity in ALS is reduced editing of a Q/R site in glutamate ionotropic 

receptor AMPA type subunit 2 (GRIA2), which causes increased calcium entry 

in neurons. Such decreased editing and reduced activity of an editing enzyme 

ADAR2 has been found in motor neurons of ALS patients146-149. In neurons of 

ALS/FTLD patients with C9orf72 mutation ADAR2 changes its normally nuclear 

localisation to cytoplasmic150. Moreover, ADAR2 dysfunction can cause TDP-43 

pathology by increasing activity of a calcium-dependent protease calpain that cut 

TDP-43 molecule with production of an aggregation-prone fragment151-153. These 

studies became a basis for testing perampanel (Fycompa), a selective non-

competitive antagonist of AMPA receptors used for treatment of epilepsy, as a 

potential ALS drug. Studies on mice with conditional inactivation of ADAR2 in 

motor neurons demonstrated an ability of perampanel to prevent ALS phenotype 

progression, reduce the TDP-43 pathology and associated death of motor 

neurons154. In ongoing Phase II clinical trial this drug is tested in patients with 

ALS (NCT03377309). Chemical structures of drugs described in this section are 

shown in Supplementary Figure S3. 

 

Drugs targeting oxidative stress 

Neurons are susceptible to oxidative stress and therefore it is another obvious 

therapeutic target in neurodegenerative diseases, including ALS. Despite failure 

of clinical trials for a number of antioxidants, including vitamin E, acetylcysteine 



and L-methionine155,156, this approach is still considered feasible and testing of 

other antioxidants are in progress. Additional inspiration for further search of 

effective antioxidant therapy is the known ability of edaravon, a drug recently 

approved for treatment of ALS patients, to scavenge free radicals17,157,158. 

Common causes of neuronal oxidative stress are disturbances in metabolism of 

metal ions, primarily copper, iron and zinc. For example, iron ions were found 

accumulating in the nervous system of ALS patients and blood concentration of 

ferritin reversely correlated with their survival159-162. Chelating agents can be used 

to ameliorate the consequences of metal ions accumulation163-166. 

Neuroprotective effect obtained in animal models of ALS and a small Phase II 

clinical trial (NCT02164253) of deferiprone, a chelator of iron ions used for 

treatment of thalassemia167,168, encouraged further assessment of this drug for 

elimination of excess iron from the brain without changes in systemic iron levels 

in a larger Phase II clinical trial (NCT03293069). 

An alternative approach is normalisation of function of Cu-deficient SOD1, an 

enzyme associated with ALS pathology, by delivery of copper ion to this protein. 

For this purpose, the use of a copper-containing compound CuII(atsm) 

(bis(thiosemicarbazone)copper(II)compound)169-173, originally developed as a 

PET imaging agent174-176 has been suggested. An additional benefit of using 

CuII(atsm) is its ability to inhibit ferroptosis, a specific mechanism of cell death 

caused by Fe-dependent lipid peroxidation177. Released results of a Phase I 

clinical trial (NCT02870634) suggested that CuII(atsm) treatment can slow 

disease progression and improve the respiratory and cognitive function of ALS 

patients178, which justified treatment extension study (Phase II, NCT03136809) 

for patients participated in the Phase I as well as additional larger Phase II study 

(NCT04082832). 

A natural antioxidant urate has a neuroprotective activity179-181, including 

neuroprotection against excitotoxicity182. A blood level of urate is a prognostic 

factor for survival in ALS patients and its high level correlates with a lower risk 



of ALS development183-188. Moreover, edaravon increases urate blood level in 

ALS patients189,190. As a precursor of urate, inosine stimulates its production and 

thus, treatment with inosine might have a neuroprotective effect in ALS. 

However, it should be noted that such effect might be due to the involvement of 

this nucleoside in multiple other intracellular processes. Many suggested 

applications of inosine for treatment of various medical conditions are often not 

scientifically justified but following successful demonstration that inosine is well 

tolerated and does raise blood urate levels in patients with ALS in a Phase I 

clinical trial (NCT02288091)191 it is being tested in a Phase II trial 

(NCT03168711). Chemical structures of drugs described in this section are 

shown in Supplementary Figure S4. 

 

Drugs targeting neuroinflammation 

Neuroinflammation is a typical characteristic of various neurodegenerative 

diseases, including ALS192,193. Activation of astrocytes and microglial cells that 

can be detected in the nervous system even at early stages of the disease by 

histological analysis of autopsies or positron emission tomography (PET) is the 

hallmark of neuroinflammation but infiltration of the nervous system by the 

peripheral immune system, including monocytes, neutrophils, T and B cells has 

also been demonstrated194-196. Moreover, neurodegeneration is often 

accompanied by systemic inflammation, i.e. changes in populations of peripheral 

lymphocytes and monocytes, and increased levels of blood cytokines193,197-199. 

Although it is still not clear whether these inflammatory reactions are 

consequences, important elements of pathogenesis or even main causes of the 

disease, it is now commonly accepted that anti-inflammatory therapy should be 

an important part of ALS treatment. A number of specific drugs that affect 

immune reactions either inside the nervous system or at the systemic level are 

currently considered as potential options for combating ALS200. 



A drug used in Japan for treatment of asthma and post-stroke patients, MN-166 

(Ibudilast), is a low molecular mass inhibitor of cyclic nucleotide 

phosphodiesterases (PDE-4 and PDE-10), macrophage migration inhibitory 

factor (MIF) and toll-like receptor 4201,202 that can cross BBB. It has been shown 

that MN-166 suppresses glial cell activation203-206 and protects cultured neurons 

against glutamate toxicity207. Results of recent Phase II/III clinical trials 

(NCT02238626, NCT04057898) demonstrated that MN-166 taken in 

combination with riluzole improves Amyotrophic Lateral Sclerosis Assessment 

Questionnaire 5 (ALSAQ-5) and ALSFRS-R scores of ALS patients with a short 

(less than 600 days from onset) history of the disease208. Further Phase III clinical 

trial of MN-166 administered in combination with riluzole is planned. Also, a 

Phase I/II of MN-166 alone (NCT02714036) for treatment of ALS patients is 

ongoing. 

Another drug that produced promising results in both animal studies and clinical 

trials (Phase II/III: NCT02588677 and ongoing Phase III: NCT03127267, both in 

combination with riluzole), is masitinib (AB1010)209,210. Under the brand name 

Masivet this drug was used for a number of years in veterinary practice for 

treatment of mast cell tumours. Masitinib is an inhibitor of several tyrosine 

kinases, including c-Kit, PDGFR, Lck, FAK and FGFR3. It has been given a 

status of an orphan drug and tested for treatment of various diseases. It also 

suppresses proliferation and migration of microglia and expression of 

inflammatory mediators by inhibiting another tyrosine kinase, colony-stimulating 

factor 1R receptor (CSF-1R)209. 

Reduced number and function of regulatory T lymphocytes (Tregs) that suppress 

microglia activation has been observed in patients with ALS211,212. This triggered 

the development of several approaches for the correction of this deficiency. 

Interleukin-2 (IL-2), which is used to treat several oncological conditions, in low 

doses increases the activity of Tregs and therefore a combination of autologous 



Tregs infusion and IL-2 administration is currently tested in a Phase II clinical 

trial (NCT04055623)213,214.   

Dimethyl fumarate can stimulate Tregs formation and, under the brand name 

Tecfidera, is successfully used for treatment of relapsing forms of multiple 

sclerosis. First results of Phase II clinical study (ACTRN12618000534280) 

suggest that tecfidera treatment is able to slow ALS progression215.  

Suppression of inflammatory neurotoxic T cells responses is a well-known 

activity of rapamycin (Rapamune, Sirolimus), a drug already used as a 

therapeutic treatment for many conditions that benefit from immunosuppression. 

However, rapamycin is also able to stimulate autophagy, another mechanism that 

might be used for combating neurodegenerative diseases, including ALS. 

Inhibition of the mammalian target of rapamycin (mTOR) and consequent 

activation of autophagy significantly reduce accumulation of pathological 

inclusions and slow pathology progression in rapamycin-treated animals 

modelling ALS pathology216-222.   

The ability of rapamycin to suppress neuroinflammation and activate autophagy 

makes it particularly attractive drug for ALS treatment, although potentially 

serious obstacles are poor penetration of BBB and potential general toxicity. 

Nevertheless, a Phase II (NCT03359538) is ongoing and results are expected next 

year223. 

Colchicine, a drug that is used to treat gout, is another example of dual-action 

compound224,225. In addition to the anti-inflammatory effect that is known for 

many hundred years, colchicine has been recently shown to upregulate the 

expression of a heat shock protein B8 (HSPB8) and thus, stimulate the clearance 

of pathological protein aggregates in various systems, including cellular and 

animal models of ALS226. Colchicine has serious side effects at high doses but is 

tolerated at low doses and its Phase II clinical trial (NCT03693781) on patients 

with ALS has recently started227. Chemical structures of drugs described in this 

section are shown in Supplementary Figure S5. 



 

Drugs targeting endogenous retroviruses 

Increased expression of human endogenous retrovirus HERV-K transcripts in the 

neural tissues228 and increased activity of reverse transcriptase, a common 

retroviral marker, in blood229-232 of some but not all patients with ALS233,234 

suggest a role of endogenous retrovirus activation or antiviral immune response 

triggered by viral double-stranded RNA in ALS pathogenesis235. Therefore, 

antiretroviral therapy using already available drugs is considered as a potential 

approach for treatment of ALS patients exhibiting activation of endogenous 

retroviruses233,236-238.  

In a recently completed Phase IIa clinical trial (NCT02868580), safety, 

tolerability and efficacy of a long-term, 24 months, antiretroviral therapy 

(Triumeq, a combination of two nucleoside analogue reverse-transcriptase 

inhibitors lamivudine and abacavir, and a HIV-1 integrase strand transfer 

inhibitor dolutegravir) for ALS patients have been demonstrated.  A 

downregulation of HERV-K expression was accompanied by a decline in 

ALSFRS-R progression rate239, which provides a rationale for conducting further 

Phase III trials of Triumeq. Another combination of antiretroviral drugs (a 

protease inhibitor darunavir, its booster ritonavir, an integrase inhibitor 

dolutegravir and a nucleoside analogue reverse-transcriptase inhibitor 

Tenofovir alafenamide) is currently tested in a Phase I clinical trial 

(NCT02437110). Chemical structures of drugs described in this section are 

shown in Supplementary Figure S6. 

 

Is there a perspective for other "old" drugs to be repurposed for ALS 

treatment? 

The answer to this question is a definite “yes”, there are still a number of drugs 

with proven or suggested mechanisms of action that make them good candidates 

for testing as potential disease-modifying or at least slowing disease progression 



in ALS. Example of such drug is Dimebon (Latrepirdine, Supplementary Figure 

S7), an approved antihistamine drug that has demonstrated some promise in the 

Phase II of clinical trials for mild-to-moderate Alzheimer’s disease240,241 and 

other gamma-carbolines242-244. Although not tested so far, these compounds seem 

to be promising candidates for ALS clinical trials because they were shown to 

efficiently ameliorate pathological aggregation of TDP-43 and other ALS-related 

aggregation-prone proteins in several in vitro and in vivo systems244-250. 

Similarly, future studies in ALS models might reveal other “old drugs” or their 

derivates that deserve to be further tested in clinical trials. Hopefully, some of 

these drugs will become components of successful ALS treatment schemes. 

 

Conclusions 

It becomes increasingly clear that on its own neither of “old” (and probably 

neither of any “new”) drugs is able to cure patients with ALS by reversing the 

disease or halting its advancement. However, more complex therapeutic 

approaches based on using combinations of drugs that have different targets and 

thus affect different pathways and mechanisms compromised by the disease 

might significantly improve patients’ conditions and slow down the disease 

progression. Together with the progress of early diagnostics of ALS, such a 

multitarget approach might even prevent any further loss of motor neuron 

function and consequently, stop the disease progression for a long time, if not 

completely.  
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Figure 1. The number of clinical trials for potential ALS drugs and other 

therapeutic approaches registered in the ClinicalTrials.gov database over the last 

27 years. 

  



 

 

Figure 2. Distribution of currently active clinical trials for drugs (A) and 

biomedical therapeutic approaches (B) between phases of trails. 

 

  



 

 

Figure S1. Available structures for drugs used for treatment of psychiatric 

disorders. 

  



 

Figure S2. Available structures for drugs targeting endoplasmic reticulum stress. 

  



 

Figure S3. Available structures for drugs targeting excitotoxicity. 

  



 

Figure S3 (continues). Available structures for drugs targeting excitotoxicity. 

  



 

Figure S4. Available structures for drugs targeting oxidative stress. 

  



 

Figure S5. Available structures for drugs targeting neuroinflamation. 

  



 

 

Figure S6. Available structures for drugs targeting endogenous retroviruses. 

  



 

Figure S7. Structure of Dimebon. 

 

  



Supplementary table 1. The list of drugs that are currently being tested in clinical 

trials and their anticipated mechanism of action for ALS treatment 

Drugs Anticipated mechanism of action for 

ALS treatment 

References 

Pimozide Improves synaptic transmission in 

neuromuscular junctions by blocking 

of T-type of Ca2+ channels. 

34-37 

Lithium and  Valproic 

acid 

Inhibitor of glycogen synthase kinase 

3 and histone deacetylases 

respectively.  Interfere with many 

pathways involved in neuronal death. 

39-46 

GDC-0134 Inhibitor of dual leucine zipper kinase.  

Modulates cell response to  

endoplasmic reticulum stress. 

 

Tauroursodeoxycholic 

acid (TUDCA) and 

ursodeoxycholic acid 

(UDCA) 

Chemical chaperones. Alleviate  

endoplasmic reticulum stress. 

86-88 

Sodium phenylbutyrate Molecular chaperone and inhibitor of  

histone deacetylases. 

89-94 

Arimoclomol Coinducer of heat shock proteins 95, 96 

Ezogabine Opener of KV7 (KCNQ) family of 

potassium channels. Decreases 

neuronal excitability. 

103-105 

Lacosamide Enhances the slow inactivation of 

voltage-gated sodium channels and 

improves neuronal connectivity via 

modulation of activity of collapsin 

response mediator protein 2. 

Decreases neuronal excitability. 

106-109 

Mexiletine Blocks sodium channels. Reduces 

muscle cramp. 

110-113 

Riluzole Inhibits voltage-gated sodium 

channels and glutamatergic 

neurotransmission. 

 

13, 14, 16, 114, 115 

Ranolazine Inhibitor of sodium and potassium 

channels. Reduces excitability of  

nervous system cells and  also has 

anti-inflammatory activity. 

116-125 



Memantine Antagonist of N-methyl-D-aspartate 

(NMDA) receptors. 

126-129 

Celecoxib Decreases prostaglandine E2-

dependent release of glutamate by 

astrocytes via inhibiting of 

cyclooxygenase-2.  A nonsteroidal 

anti-inflammatory drug. 

130-135 

Metformin Attenuator of repeat associated non-

AUG‐dependent (RAN) translation.  

Reduces accumulation of toxic 

dipeptides from ALS-associated 

C9orf72. 

139-141 

4-aminopiridine Blocks voltage-activated potassium 

channels and therefore increases motor 

neuron excitability. 

142, 145 

Perampanel Selective non-competitive antagonist 

of AMPA receptors. 

154 

Edaravon Free radicals scavenger. 17, 157, 158 

Deferiprone Chelator of iron ions. 167, 168 

CuII(atsm) A copper-containing compound.  

Suggested for normalisation of 

function of Cu-deficient SOD1 and 

inhibition of ferroptosis. 

169-173, 178 

Inosine A precursor of a natural antioxidant 

urate. 

191 

MN-166 Inhibitor of cyclic nucleotide 

phosphodiesterases (PDE-4 and PDE-

10), macrophage migration inhibitory 

factor (MIF) and toll-like receptor 4.  

Suppresses glial cell activation and 

protects against glutamate toxicity. 

201, 204, 206-208 

Masitinib Inhibitor of tyrosine kinases.  

Suppresses proliferation and migration 

of microglia and expression of 

inflammatory mediators. 

209, 210 

Interleukin-2 (IL-2) Increases the activity of  regulatory T 

lymphocytes (Tregs). 

212, 213 

Dimethyl fumarate Stimulates Tregs formation. 215 

Rapamycin Suppressor of inflammatory 

neurotoxic T cells response and 

stimulator of autophagy. 

216-219, 222, 223 



 

 

 

Colchicine Upregulates the expression of a heat 

shock protein B8 (HSPB8) and has  an 

anti-inflammatory effect. 

226, 227 

Triumeq (lamivudine, 

abacavir, dolutegravir) 

A combination of two nucleoside 

analogue reverse-transcriptase 

inhibitors and a HIV-1 integrase strand 

transfer inhibitor, respectively. 

Antiretroviral drugs. 

239 

Darunavir, ritonavir, 

dolutegravir, Tenofovir 

alafenamide 

A protease inhibitor, its booster, an 

integrase inhibitor and a nucleoside 

analogue reverse-transcriptase 

inhibitor respectively. Antiretroviral 

drugs. 

238 


