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Abstract 14 

Eye movements are vital for human vision, and it is therefore important to understand how 15 

observers decide where to look. Meaning maps (MMs), a technique to capture 16 

the distribution of semantic importance across an image, have recently been proposed to 17 

support the hypothesis that meaning rather than image features guide human gaze. MMs 18 

have the potential to be an important tool far beyond eye-movements research. Here, we 19 

examine central assumptions underlying MMs. First, we compared the performance of MMs 20 

in predicting fixations to saliency models, showing that DeepGaze II – a deep neural network 21 

trained to predict fixations based on high-level features rather than meaning – outperforms 22 

MMs. Second, we show that whereas human observers respond to changes in meaning 23 

induced by manipulating object-context relationships, MMs and DeepGaze II do not. 24 

Together, these findings challenge central assumptions underlying the use of MMs to 25 

measure the distribution of meaning in images. 26 

Keywords: eye movements, natural scenes, saliency, deep neural networks, meaning maps 27 

 28 
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Human eyes resolve fine detail only in a small, central part of the visual field, with resolution 31 

dropping off rapidly in the periphery. To sample details, we move our eyes to orient the 32 

high-resolution part of our visual system successively to different parts of a visual scene. 33 

Information about these small scene parts is extracted during fixations – short periods in 34 

which the eyes are relatively stable. Thus, due to the structure of our visual system, human 35 

vision depends on eye movements. How the brain decides where to look in a visual scene is 36 

therefore an important question. A long-standing hypothesis suggests that semantic content 37 

of image regions is important in guiding eye movements. Recent work presented meaning 38 

maps (MMs) as a tool to test this hypothesis (Henderson & Hayes, 2017, 2018). This 39 

technique aims to index the spatial distribution of meaning across an image, which has 40 

potential applications far beyond eye-movement research. Here, we assess and challenge 41 

central assumptions of this novel tool. 42 

A classic finding in eye-movement research shows that the specific task of an observer has 43 

an influence on where they direct their eyes (Yarbus, 1967; Hayhoe & Ballard, 2005). But in 44 

everyday life, we frequently move our eyes without any goal other than to explore the 45 

environment. In the lab, this behavior is examined in free-viewing paradigms, during which 46 

eye movements are recorded while images are viewed without an explicit task (Koehler, 47 

Guo, Zhang, & Eckstein, 2014, but see Tatler, Hayhoe, Land, & Ballard, 2011). To explain 48 

what guides eye movements during free viewing, two opposing accounts have been put 49 

forward. 50 

According to the first account, eye movements are guided primarily by image characteristics 51 

(Borji, Sihite, & Itti, 2013; Itti & Koch, 2001; Parkhurst, Law, & Niebur, 2002). Potential 52 

support for this view comes from saliency models: algorithms, which exclusively use visual 53 

features of an image to predict human fixations. Although early models, which used only 54 

simple features such as local intensity or colors (Itti & Koch, 2000), are now deemed only 55 

moderately successful (Bylinskii et al., 2014), more recent saliency models achieve a 56 

remarkably high performance (Kümmerer, Wallis, Gatys, & Bethge, 2017). These models 57 

harness deep convolutional neural networks – biologically inspired machine learning 58 

algorithms, that somewhat resemble the human visual system (Kietzmann, McClure, & 59 

Kriegeskorte, 2019). However, even such models rely solely on visual features, albeit high-60 

level ones. 61 
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In contrast to the idea underlying saliency models, several authors have argued that during 62 

free viewing, eye movements are mainly guided by the semantic content of the visual scene 63 

(Henderson, Malcolm, & Schandl, 2009; Nyström & Holmqvist, 2008; Onat, Açik, Schumann, 64 

& König, 2014; Rider, Coutrot, Pellicano, Dakin, & Mareschal, 2018; Stoll, Thrun, Nuthmann, 65 

& Einhäuser, 2015). This perspective differs fundamentally from the saliency-based 66 

approach. Attributing meaning to certain parts of the scene is impossible without prior 67 

knowledge of the world, i.e., a factor that is independent of the visual input (Hegde & 68 

Kersten, 2010; Teufel, Dakin, & Fletcher, 2018). Consequently, the notion that semantic 69 

content guides eye-movements is inconsistent with the idea that the allocation of fixations 70 

is dependent solely on the distribution of image features. Given that meaning is not image-71 

computable, the notion that semantic content guides eye-movements is inconsistent with 72 

the idea that the eye-movements are dependent solely on the distribution of image 73 

features. 74 

A string of recent studies has claimed to provide support for the role of meaning in driving 75 

eye movements (Hayes & Henderson, 2019; Henderson & Hayes, 2017, 2018; Henderson, 76 

Hayes, Rehrig, & Ferreira, 2018; Peacock, Hayes, & Henderson, 2018). These studies 77 

(reviewed in Henderson, Hayes, Peacock, & Rehrig, 2019) are based on a novel technique 78 

called meaning maps (MMs). A MM for a given image is created by breaking it down into 79 

small isolated patches, which are rated for their meaningfulness independently from the 80 

rest of the visual scene. These ratings are pooled together into a smooth map, which is 81 

supposed to capture the distribution of meaning across the image. Compared to outputs 82 

from a simple saliency model (GBVS, Harel et al., 2006), MMs were more predictive of 83 

human fixations. On that basis it has been claimed that meaning guides human fixations in 84 

natural scene viewing (Henderson & Hayes, 2017, 2018). Here, we examined central 85 

predictions of this claim. 86 

First, if MMs measure meaning and if meaning guides human eye-movements, MMs should 87 

be better in predicting locations of fixations than saliency models because these models rely 88 

solely on image features. Therefore, we compared MMs to a range of classic and state-of-89 

the-art models. We replicate the finding that MMs perform better than some of the most 90 

basic saliency models. Contrary to the prediction, however, DeepGaze II (DGII; Kümmerer, 91 
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Wallis, & Bethge, 2016; Kümmerer et al., 2017), a model based on a deep convolutional 92 

neural network, outperforms MMs. 93 

A second prediction is that if MMs are sensitive to meaning and if meaning guides human 94 

gaze, differences in eye movements that result from changes in meaning should be reflected 95 

in equivalent differences in MMs. We probed this prediction experimentally using a well-96 

established effect: the same object, when presented in an atypical context (e.g., a shoe on a 97 

bathroom sink) attracts more fixations than when presented in a typical context because of 98 

the change in the semantic object-context relationship (Henderson, Weeks, & Hollingworth, 99 

1999; Öhlschläger & Võ, 2017). Replicating previous studies, image regions attracted more 100 

fixations when they contained context-inconsistent compared to context-consistent objects. 101 

Crucially, however, MMs of the modified scenes did not attribute more 'meaning' to these 102 

regions. DGII also failed to adjust its predictions accordingly. 103 

Together, these findings suggest that semantic information contained in visual scenes is 104 

critical for the control of eye movements. However, this information is captured neither by 105 

MMs nor DGII. We suggest that similar to saliency models, MMs index the distribution of 106 

visual features rather than meaning. 107 

 108 

Method 109 

We conducted a single experiment in which human observers free-viewed natural scenes 110 

while their eye-movements were being recorded. The obtained data was analyzed in two 111 

complimentary ways. First, we compared how well MMs and different saliency models 112 

predict locations of human fixations in natural scenes. Subsequently, we assessed the 113 

sensitivity of MMs and the best-performing saliency model to manipulations of scene 114 

meaning. The data, the code to create MMs, and all openly available resources used in the 115 

study can be accessed via the links provided in the Supplement. 116 
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  117 

Fig. 1. Illustration of sample stimuli in (a) the Consistent and (b) the Inconsistent condition 118 

with the Critical Region outlined in yellow and (c, d) human fixations recorded in both 119 

conditions. In this example, a hair brush on a bathroom sink (a) – an object consistent with 120 

the scene context – has been exchanged for a shoe (b) to introduce semantic inconsistency. 121 

  122 

Stimuli. We used images from two conditions of the SCEGRAM database (Öhlschläger & Võ, 123 

2017): the Consistent and the Semantically Inconsistent conditions (called ‘Inconsistent’ 124 

here). In the Consistent condition (used in both analyses), scenes contain only objects that 125 

are typical for a given context. In the Inconsistent condition (used only in the second 126 

analysis), one of the objects is contextually inconsistent. For example, a hairbrush in the 127 

context of a bathroom sink from the Consistent condition is replaced with a flip-flop in the 128 

Inconsistent condition (see Figs. 1a and 1b). Such changes in object-context relationship 129 

alter the meaning attached to the manipulated object. For every scene, we indexed the 130 

location of the consistent and inconsistent objects with the superimposed bounding boxes 131 

for both objects (see Figs. 1a and 1b). We refer to this location as the Critical Region, 132 

because it is the only part of the image that changes between Consistent and Inconsistent 133 

conditions. We used 36 selected scenes in both conditions (72 photographs in total, listed in 134 
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the Supplement together with the selection criteria). We also replicated the main finding of 135 

the first analysis in an additional set of 30, very different, images (reported in the 136 

Supplement). 137 

 138 

Procedure. The procedure consisted of 3 blocks, interleaved with breaks. Each participant 139 

viewed all images from both conditions (Consistent and Inconsistent) and was instructed to 140 

‘look carefully’ at each of them. Experimental blocks began with an eye tracker 141 

calibration/validation. Within each block, observers free-viewed a series of 24 photographs 142 

from both SCEGRAM conditions, each for 7 seconds. After image offset, observers were 143 

required to press a button to view the next image. Then, a fixation point appeared centrally 144 

on a screen and once observers fixate on it (as determined online by their eye-trace), the 145 

actual image was displayed. Before starting the experiment, observers viewed a sample 146 

image in an identical regime to familiarize themselves with the procedure. Each stimulus 147 

was shown once and the order of presentation was fully randomized. The stimuli were 148 

presented against a uniform grey background and had a width of 688 pixels and a height of 149 

524 pixels, which subtended approximately 19.7 and 15 degrees of visual angle, 150 

respectively. Our choice of task (free viewing) and stimulus parameters for size and 151 

presentation time were adopted from the original study developing the SCEGRAM stimuli 152 

(Öhlschläger & Võ, 2017). These design characteristics fall within the typical range used in 153 

this literature (e.g. Wilming et al., 2017 ). 154 

 155 

Observers. 20 volunteers (3 male; mean age 19.4) recruited from the Cardiff University 156 

undergraduate population took part in the study. All reported normal or corrected-to-157 

normal vision, provided written consent, and received course credits in return for 158 

participation. The study was approved by the Cardiff University School of Psychology 159 

Research Ethics Committee. The primary units of interest in our analyses were the 160 

distributions of fixations over images. The number of observers we recruited guarantees 161 

that including more observers would not change these distributions significantly 162 

(demonstrated in the Supplement). 163 

 164 
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Apparatus. The study was conducted in a dimly lit room. SCEGRAM images from both 165 

conditions were presented on an LCD monitor (Iiyama ProLite B2280HS, resolution 1920 by 166 

1080 pixels, 21 inches diagonal). Chin and forehead rests were used to ensure that 167 

observers maintained the constant distance of 49 cm from the screen. Their eye movements 168 

were recorded with the frequency of 500 Hz using an EyeLink 1000+ eye tracker placed on a 169 

tower mount. The experiment was controlled by custom-written Matlab (R2017a version) 170 

scripts using Psychophysics Toolbox Version 3 (Kleiner, Brainard, & Pelli, 2007). 171 

 172 

 173 

Fig. 2. Illustration of the stimuli and procedure used for creating meaning maps. (a) Grids of 174 

equally spaced circles were used to cut images into fine and coarse patches (only the latter 175 

are illustrated here). The red circle indicates a sample patch in the grid. (b) Here, the sample 176 

patch is highlighted in one of the scenes from the Consistent condition. (c) Patches were 177 

presented in isolation and rated for their meaningfulness by three independent observers 178 

on a scale from 1 to 6. The panel has illustrative purpose only – the scale presented to 179 

observers included additional labels (ranging from ‘Very Low’ to ‘Very High’). (d) Illustration 180 

of a meaning map with greyscale values indicating ‘meaningfulness’. (e) Simplifying 181 

illustration of how meaning maps are generated from ratings. For simplicity sake, only two 182 

patches are shown (step 1). Each patch is rated in isolation (step 2; here only one rating per 183 

patch is shown). All pixels within an image area are then assigned average rating values, 184 



Pedziwiatr et al. 

8 
 

taking into account all ratings for patches that overlap with this area (step 3). For the area of 185 

the original patch (step 4), all pixels are then averaged and the resulting value is assigned to 186 

the center of the patch (step 5). Finally, the patch centers were used as interpolation nodes 187 

for thin-plate spline interpolation producing a smooth distribution of values over the image 188 

(not illustrated). This procedure was conducted separately for the fine and coarse grid, and 189 

the meaning map for a given image was created by averaging the two outcomes and 190 

normalizing the result to a range between 0 and 1. 191 

 192 

Creating MMs. To create MMs for our stimuli, we followed the procedure described by 193 

Henderson & Hayes (2017, 2018; for details see Fig. 2). Each image was segmented into 194 

partially overlapping patches of two sizes: fine patches had a diameter of 107 pixels (3 195 

degrees of the visual angle, or 16 % of the image width), coarse patches of 247 pixels (7 196 

degrees or 36% of the image width) (Fig. 2a and b). Their centers were 58 pixels (fine) and 197 

97 pixels (coarse) apart from each other. 198 

Next, we collected meaningfulness ratings from human subjects for all patches. Each patch 199 

was presented in isolation and rated for its meaningfulness on a 6 point Likert scale (Fig. 2). 200 

As in Henderson and Hayes (2017), we used a Qualtrics survey completed by naive 201 

observers recruited via the crowdsourcing platform Amazon Mechanical Turk (see 202 

Supplement for eligibility criteria). Each participant provided ratings for 305 or 303 patches 203 

of both sizes (selected randomly from all images), on average spent approximately 14 min 204 

on the task, and received 2.18 USD as remuneration. In total, 69 individuals were used as 205 

raters, with three individuals rating each individual patch. The collected ratings were then 206 

used to create MMs (see Fig. 2). 207 

When creating MMs for images from both conditions, we exploited the fact that 208 

photographs from the Consistent and Inconsistent conditions differ only in the Critical 209 

Region (the part of the image containing the manipulated object) while the remaining parts 210 

overlap. We collected meaningfulness ratings for the patches belonging to overlapping 211 

areas only once, and the separate sets of ratings for Consistent and Inconsistent condition 212 

were collected only for those patches that contained at least one pixel belonging to the 213 

Critical Region. In total, the number of patches rated in the study amounted to 7013: 4840 214 
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fine patches (of which 520 belonged to the images from the Inconsistent condition) and 215 

2173 coarse patches (445 Inconsistent). 216 

 217 

Saliency models. In the first analysis, we compared predictive performance of MMs to four 218 

saliency models of different complexity. The first two models – GBVS (Harel et al., 2006) and 219 

AWS (Garcia-Diaz, Fdez-Vidal, Pardo, & Dosil, 2012) – rely on simple visual features, such as 220 

local colors and edge orientations, and share the assumption that fixations land on image 221 

regions distinct from their surroundings in terms of values of these features. By contrast to 222 

GBVS, AWS includes a statistical whitening procedure to improve performance. Both these 223 

models were previously used to estimate the influence of image features relative to 224 

cognitive factors on the deployment of fixations: GBVS in the previous studies with MMs, 225 

AWS elsewhere (Stoll et al., 2015). 226 

Two other models that we compared to MMs – ICF and DeepGaze II (DGII) – were designed 227 

in a data-driven manner (Kümmerer et al., 2017). Both have the same architecture, 228 

consisting of a fixed network that extracts sets of features from images and a readout 229 

network that is trained on human fixations to combine the features in a way to maximize 230 

the models’ predictive power. While the fixed network of ICF extracts only simple visual 231 

features (local intensity and contrast), DGII is tuned to features extracted by a deep 232 

convolutional neural network pre-trained for object recognition (VGG-19; Simonyan & 233 

Zisserman, 2014). The key characteristic of these models that distinguishes them from 234 

models such as GBVS and AWS is that they have been trained on human fixations. 235 

Specifically, during the training phase, the read-out network receives its respective features 236 

as an input, generates a prediction about where human observers will look in the image, 237 

and gradually adjusts its parameters based on feedback comparing its prediction to human 238 

fixation data to maximise the predictive power of each model. Importantly, the readout 239 

network has the same architecture and number of trainable parameters for both DGII and 240 

ICF. The only difference between the models is the input features, both of which are not 241 

trained on human fixation data. 242 

All saliency models output smooth maps that predict the probability of image regions to be 243 

fixated. Human observers have the tendency to look at the center of images (Tatler, 2007), 244 
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and therefore this probability is usually higher in the central region of the image. This 245 

‘center bias’ has important consequences for the evaluation of saliency models. Their 246 

performance differs depending on whether they are evaluated using a metric expecting 247 

some form of this bias or not (Kümmerer, Wallis, & Bethge, 2018). Here, for the sake of 248 

simplicity, we do not incorporate center bias in the models or in the MMs (unlike the 249 

original authors) and use an appropriate metric for this situation (see Performance metrics 250 

section). Importantly, analyses addressing the issue of center bias in a more extensive way 251 

(reported in the Supplement) provide only further support for our conclusions. 252 

 253 

Data pre-processing. Fixation locations from the eye tracker recordings were extracted 254 

using the algorithm provided by the device manufacturer operating with the default 255 

parameter values. Thereby, we obtained a discrete distribution of fixations on each image 256 

(see Fig. 1c and 1d). Then, in line with the previous MMs studies, we smoothed these 257 

discrete distributions with a Gaussian filter with a cutoff frequency of -6 dB, using the 258 

function provided by Bylinskii and colleagues (2014). 259 

Next, smooth distributions from fixations, models, and MMs were separately normalized to 260 

a range from 0 to 1 for each image. Finally, for each scene, histograms of all distributions 261 

from both conditions were matched to histograms of smoothed fixations from Consistent 262 

condition using the Matlab imhistmatch function, as in the original MMs studies. Histogram 263 

matching makes distributions directly comparable as it ensures that they differ only with 264 

respect to their shape, and not their total mass. 265 

 266 

Performance metrics. To compare the ability of MMs and models to predict locations of 267 

human fixations in Experiment 1, we use two well-established metrics (Bylinskii, Judd, Oliva, 268 

Torralba, & Durand, 2016): Correlation and Shuffled Area Under ROC curve (sAUC; Zhang, 269 

Marks, Tong, Shan, & Cottrell, 2007) with the implementations provided by Bylinskii and 270 

colleagues (2014). 271 

Correlation, used in the previous studies on MMs, is calculated as Pearson's linear 272 

correlation coefficient between a smoothed distribution of observers’ fixations over the 273 
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image and predictions of a saliency model or MMs. We additionally used sAUC (Zhang et al., 274 

2008), which, unlike Correlation, guarantees that the measured differences in performance 275 

between models are driven by their sensitivity to factors guiding fixations, and not by the 276 

degree to which they include human center bias in their predictions, even implicitly 277 

(Kümmerer, Wallis, & Bethge, 2015; Kümmerer et al., 2018). 278 

 279 

Comparing meaning maps and saliency models – results 280 

In the first analysis, we compared performance of four saliency models to MMs in predicting 281 

human fixations in the Consistent condition, i.e., when viewing typical scenes with no 282 

obvious object-context inconsistencies (Tab. 1, Fig. 3). If human gaze is guided by meaning, 283 

and if MMs provide an index for the distribution of meaning, we would expect MMs to 284 

outperform all saliency models because these models are based solely on image features. 285 

Please note that for the sake of this comparison, we aggregated fixations from all observers 286 

for each image and analyzed the data on a per-image basis, similarly to the original MMs 287 

studies. 288 

 289 
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 290 

 291 

Fig. 3. Performance of MMs and saliency models in predicting human fixations according to 292 

(a) Correlation and (b) sAUC metrics. Note that according to both metrics DGII predicted 293 

human fixations better than MMs. Asterisks indicate p-values from statistical tests 294 

comparing MMs to different models (reported in Table 1.): * indicates p ≤ .05, ** p ≤ .01, 295 

*** ≤ .001 and ‘n.s.’ indicates the lack of statistical significance. Grey lines connect values 296 

obtained for individual images. Black vertical bars indicate 95% confidence intervals for the 297 

medians. 298 

 299 

Predictive power. Correlation and sAUC values obtained for MMs and for each of the 300 

models were compared using Bonferroni-corrected paired Wilcoxon tests (Fig. 3; Tab. 1). 301 

We used non-parametric tests because for some of the distributions the assumptions of 302 

normality was not met. For the same reason we chose a median as a measure of centrality 303 

(we calculate confidence intervals for median using a bootstrapping method – see details in 304 
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the Supplement). Additionally, we calculated JZS Bayes Factor (Rouder, Speckman, Sun, 305 

Morey, & Iverson, 2009) to quantify the evidence for (or against) the differences between 306 

models and MMs (Tab. 1). While deviations from normality can be problematic for Bayes 307 

factor analyses, they are most likely not an issue in the current situation: the Bayes factors 308 

for the key finding are large and the deviations from normality are small. 309 

As shown in Tab. 1 and on Fig. 3, according to both measures, MMs outperformed GBVS in 310 

predicting human fixations, thereby replicating the results of Henderson and Hayes (2017, 311 

2018) using new images and new participants. Contrary to expectations, however, both 312 

metrics indicated that DGII predicted fixations better than MMs. Furthermore, performance 313 

of AWS and MMs did not differ significantly irrespective of the metrics. Finally, MMs 314 

outperformed ICF according to Correlation, but not sAUC. In fact, for the latter metric, JZS-315 

Bayes Factor indicated support for the null hypothesis. 316 

 317 

Table 1. Comparison of Predictive Power of Saliency Models and MMs Using Correlation and 318 

sAUC. 319 

Model Median of 

prediction values 

with 95% 

confidence intervals 

Median of 

differences from 

MMs with 95% 

confidence intervals 

 

W statistic 

p-value 

(Bonferroni-

corrected) 

JZS Bayes 

Factor 

Correlation      

DGII 0.83 [0.78, 0.87] 0.07 [0.03, 0.11] 526 0.00738 32.26 

MMs 0.77 [0.72, 0.81] – – – – 

AWS 0.73 [0.67, 0.76] -0.06 [-0.12, -0.01] 192 0.10412 1.48 

ICF 0.68 [0.61, 0.71] -0.12 [-0.18, -0.06] 144 0.00936 16.90 

GBVS 0.62 [0.56, 0.68] -0.11[-0.26, -0.05] 94 < .001 396.96 

sAUC      

DGII 0.79 [0.77, 0.82] 0.06 [0.05, 0.08] 662 < .001 > 1000 

MMs 0.73 [0.69, 0.76] – – – – 

AWS 0.75 [0.72, 0.77] 0.02 [0.01, 0.04] 490 0.0507 0.60 

ICF 0.74 [0.70, 0.76] 0.01 [-0.01, 0.02] 383 1.00 0.19 

GBVS 0.64 [0.60, 0.66] -0.10 [-0.12, -0.08] 13 < .001 > 1000 

 320 
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Semi-partial correlations. Because predictions of models and MMs overlap, we quantified 321 

their distinct predictive power using semi-partial correlations. We conducted these analyses 322 

for GBVS (used in the original MMs studies) and DGII (the only model which markedly 323 

outperformed MMs). 324 

For each scene from the Consistent condition, we calculated two semi-partial correlations 325 

with the distribution from smoothed fixations: one for MMs while controlling for GBVS, and 326 

one for GBVS while controlling for MMs (see Fig. 4). Consistent with findings by Henderson 327 

and Hayes (2018), MMs explain more unique variance than GBVS (Fig. 6a), as indicated by 328 

the significantly higher coefficients in the former than the latter case (mean difference 0.28, 329 

95% confidence interval (CI) [0.17, 0.39]; paired t-test, t(35) = 5.22, p < .001). Interestingly, 330 

the identical analysis with DGII revealed that DGII explained significantly more unique 331 

variance than MMs (mean difference 0.15, 95% CI [0.07, 0.24]; t(35) = 3.60, p < .001, see 332 

also Fig. 4b). 333 

 334 

 335 

Fig. 4. Comparison of semi-partial correlations with smoothed human fixations for (a) MMs 336 

and GBVS and for (b) MMs and DGII. The obtained coefficients were significantly higher 337 

when assessing MMs while controlling for GBVS compared to when assessing GBVS when 338 

controlling for MMs. The opposite was true for the analyses with DGII. All figure 339 

characteristics are as in Fig. 3. except that means instead of medians are presented. 340 

 341 
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Internal replication. To demonstrate the generalizability of our conclusions beyond 342 

SCEGRAM images, we replicated the main results with a different stimulus set (see the 343 

Supplement). 344 

 345 

Comparing meaning maps and saliency models – discussion 346 

If human gaze is guided by meaning, and if MMs index the distribution of meaning across an 347 

image, MMs should outperform saliency models that are exclusively based on image 348 

features. Our first analysis showed that this prediction does not hold. In fact, DGII generated 349 

better predictions and explained more unique variance than MMs. Therefore, at least one of 350 

the two premises of our prediction is wrong: either human eye-movements are not sensitive 351 

to meaning or MM do not index meaning. The second analysis allowed us to distinguish 352 

between these alternatives. 353 

 354 

Analyzing the effects of semantic inconsistencies within scenes – method 355 

In the second analysis, we assessed how human observers, DGII, and MMs respond to 356 

experimental changes in meaning induced by altered object-context relationships. We used 357 

eye-movement data from both the Consistent and the Inconsistent condition. These 358 

conditions differed solely in the Critical Region, an area that either contained an object that 359 

was either consistent with the scene context or induce semantic conflict. For each scene, we 360 

calculated the mass of the distributions of human gaze, DGII, and MMs falling into the 361 

Critical Region, respectively, and divided it by the Region’s area for normalization. Our 362 

primary interest was the comparison between conditions: to the extent to which humans, 363 

DGII, and MMs are sensitive to meaning, they should fixate more (humans) or predict more 364 

fixations (DGII and MMs) on the Critical Region in the Inconsistent than the Consistent 365 

condition. 366 

 367 

Analyzing the effects of semantic inconsistencies within scenes – results 368 
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Our comparison indicated that, as predicted, observers fixated more on inconsistent than 369 

consistent objects (Fig. 5a). By contrast, behavior of both MMs and DGII did not change 370 

across conditions (Fig. 5b and c). These impressions were confirmed by a 2x3 ANOVA, with 371 

condition (Consistent vs. Inconsistent) as a within-subjects factor and the distribution source 372 

(human fixations vs. MMs vs. DGII) as a between-subjects factor. We found a statistically 373 

significant main effect of distribution source, F(2, 105) = 13.09, p < .001, ω2 = 0.16 and 374 

condition, F(1, 105) = 7.41 p = 0.0076  X, ω2 = 0.005. These main effects were qualified by a 375 

significant interaction, F(2, 105) = 16.90, p < .001 X, ω2 = 0.026. Tukey post-hoc tests showed 376 

that human observers looked more at the Critical Regions in the Inconsistent, than the 377 

Consistent condition, t(105) = -6.22, p < .001. In contrast, no significant differences between 378 

conditions were found for DGII, t(105) = -0.09 p = 1.0, and MMs, t(105) = 1.60 p = 0.6028. 379 

Comparisons within conditions indicated that human fixations differed from MMs in the 380 

Inconsistent condition, t(129.91) = 5.78 p < .001, but not the Consistent condition, t(129.91) 381 

= 2.16 p = 0.2662. A significant difference between DGII and human fixations was detected 382 

in both Consistent, t(129.91) = -2.96 p = 0.0420, and Inconsistent conditions, t(129.91) = -383 

5.79 p < .001. 384 

 385 

 386 

Fig. 5. Normalized distribution mass falling within Critical Regions in both conditions for (a) 387 

smoothed human fixations, (b) MMs, and (c) DGII. All figure characteristics are as in Fig. 3. 388 

 389 
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Additionally, conditions differed regarding the number of fixations per image, t(35) = 5.67 p 390 

< .001. On average, there were 6% fewer fixations in the Inconsistent condition. This 391 

excludes the possibility that higher number of fixations in this condition might drive the 392 

observed increase in the distribution mass falling within the Critical Regions. 393 

Any systematic differences in object size between Consistent and Inconsistent conditions 394 

also could affect our results because larger objects may attract more fixations solely 395 

because they occupy a larger image area. However, this factor was minimized by showing 396 

each object in a consistent and an inconsistent context. Yet, the same object might be 397 

shown in a slightly different position in the two conditions and might therefore occupy 398 

slightly different amounts of the image. This was, however, not the case: the JZS Bayes 399 

Factor of 4.26 indicated that the two conditions did not differ in the size of the bounding 400 

boxes of each manipulated object (objects in the Inconsistent condition were on average 401 

1562.28 pixels larger; 95% confidence interval: [-2582.74, 5707.29]). 402 

Next, please note that we employed a within-subject design, which might have led to carry-403 

over effects: observer viewing a given scene in the Inconsistent condition first could be 404 

biased to look at the Critical Region in the Consistent condition when they viewed the same 405 

scene for a second time. Note that even if this unwanted phenomenon occurred despite a 406 

randomised order of stimuli presentation, it could only decrease the magnitude of the 407 

effects of interest. 408 

Finally, it is possible that our observers implicitly engaged in a task. Specifically, once the 409 

observers realized that the stimuli contain object-context inconsistencies, they might have 410 

started actively searching for them. Engaging in this semantic oddball-search task would 411 

result in very different spatial distributions of fixations compared to the ones that would be 412 

obtained during free-viewing. This prediction was not supported by our findings: we 413 

replicated our main experiment in a different set of observers with images that did not 414 

contain semantic inconsistencies, and found that DGII still predicted fixation locations better 415 

than MMs. This separate data set, therefore, suggests that observers did not engage in an 416 

oddball search task and that the superiority of DGII is not specific to SCEGRAM images only 417 

(details to be found in the Supplement). 418 
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To summarize, semantic changes induced by altering object-context relationships elicited 419 

changes in distributions of human fixations, but neither MMs nor DGII could predict them. 420 

These results suggest that both models might be sensitive to image features, which are 421 

frequently correlated with image meaning, rather than to meaning itself. 422 

 423 

Discussion 424 

A long-standing debate in visual perception concerns the extent to which visual features vs. 425 

semantic content guide human eye-movements in free viewing of natural scenes. To 426 

distinguish these hypotheses, indexing the distributions both of features and meaning 427 

across an image is critical. While image-based saliency models have been used to index 428 

features for two decades, measuring semantic importance has been difficult until meaning 429 

maps (MMs) have recently been proposed. Here, we assessed the extent to which MMs 430 

indeed capture the distribution of meaning across an image. First, we demonstrate that 431 

despite the purported importance of meaning as measured by MMs for gaze control, MMs 432 

are not better predictors of locations of human fixations than at least some saliency models, 433 

which are based solely on image features. In fact, DeepGaze II (DGII), a model using deep 434 

neural network features, outperformed MMs. Second, we assessed the sensitivity of human 435 

eye-movements, MMs, and DGII to changes in image meaning induced by violations of 436 

typical object-context relationships. Observers fixated more often on regions containing 437 

objects inconsistent with scene context (thus replicating previous findings) but these regions 438 

were not indexed as more meaningful by MMs, or as more salient by DGII. Together, these 439 

findings challenge central assumptions of MMs, suggesting that they are insensitive to the 440 

semantic information contained in the stimulus. 441 

The good performance of DGII in predicting human gaze might be attributable to the high-442 

level features it extracts from images. Three other models, which use low-level features, 443 

failed to decisively outperform MMs. However, unlike two of them (GBVS and AWS), DGII is 444 

trained with data on human fixations to optimize performance (Kümmerer et al., 2016, 445 

2017). Yet, training alone cannot explain the difference in performance. The third low-level 446 

feature model (ICF) is trained in the same way (Kümmerer et al., 2017) but still achieves a 447 

lower performance than DGII. These findings suggest that feature type is indeed critical for a 448 
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model’s performance. Importantly, however, while DGII uses high-level features transferred 449 

from a deep neural network trained on object recognition (Simonyan & Zisserman, 2014), 450 

this is not equivalent to indexing meaning. Rather, the good performance of DGII is likely 451 

due to meaning supervening on, or correlating with, some of the features indexed by this 452 

model. 453 

Correlation between visual features and meaning as the source of good performance in 454 

saliency models has already been considered by the authors of MMs (Henderson & Hayes, 455 

2017). Our findings suggest that MMs might share this characteristic with saliency models. 456 

Specifically, the ratings used to construct MMs might be based on visual properties in such a 457 

way that highly structured patches that contain high-level features receive high ratings. 458 

These features often correlate with meaning, but in and of themselves do not amount to 459 

meaning. According to this interpretation, both DGII and MMs index high-level features. 460 

Their success in predicting human behavior derives from the typically strong correlation 461 

between high-level features and meaning, with a higher correlation for the features 462 

extracted by DGII than MMs. 463 

An alternative interpretation of the finding that DGII outperforms MMs is that image 464 

features rather than meaning guide human fixations. However, this interpretation is 465 

inconsistent with our second analysis. Here, observers clearly exhibited sensitivity to 466 

meaning, as indicated by changes in gaze-patterns elicited by introducing semantic 467 

inconsistencies into the images. This experimental manipulation targets a type of meaning 468 

that is based on how objects relate to the broader context in which they occur. While 469 

specific, it is precisely this kind of meaning that is of high theoretical importance in eye-470 

movement research (Henderson, 2017; 429 Henderson et al., 2009). Natural scenes are  471 

composed of multiple objects, and the physical and semantic relationships between these 472 

objects as well as their relationship to the scene gist, determine the meaning of a scene 473 

(Kaiser et al., 2019; Malcolm et al., 2016; Võ et al., 2019) . Thus, the fact that MMs are not 474 

sensitive to the meaning derived from object-context relationships seriously limits their 475 

usefulness. 476 

It is, however, possible that – as has been already suggested (Henderson et al., 2018) – MMs 477 

capture some form of ‘local’ meaning that is important for oculomotor control. Evaluating 478 
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our results in this respect is complicated by the correlation between features and meaning 479 

(Elazary & Itti, 2008), which we already alluded to above. Yet, at the very least, the fact that 480 

MMs do not consistently outperform even simple saliency models such as AWS that by 481 

design rely on low-level image features warrants caution. This finding indicates that either 482 

the purported kind of meaning indexed by MMs is not of primary importance for guidance 483 

of eye-movements, or that it is almost perfectly correlated with the features indexed by  484 

models such as AWS. A similar issue relates to DGII: while our study shows that this model 485 

does not index meaning derived from object-context relationships, one might argue that it 486 

acquires sensitivity to some (local) form of meaning by virtue of being trained on human 487 

data. Specifically, if eye-movements are guided by the semantic content of images, then 488 

training on eye-movement data might lead to developing ‘meaning-sensitivity’ in the model. 489 

While this scenario cannot be ruled out for the same reasons as in the case of MMs, recall 490 

that the ICF model – which uses simpler features than DGII – is also trained on human data 491 

but fails to reach the high performance of DGII. Therefore, if the high performance of DGII is 492 

based on some form of ‘local’ meaning, then it is not training per se that leads to the 493 

development of this meaning but an interaction of training and specific features. 494 

If nothing else, these considerations indicate the urgent need for developing a more 495 

nuanced conceptual approach and terminology to capture the intricacies of different types 496 

of ‘meaning’, and a more appropriate language to talk about the relationship between 497 

‘features’ and ‘meaning’. Without a clearer theoretical framework, it will be difficult to 498 

experimentally settle debates regarding the role of ‘meaning’ in natural scene perception. 499 

In any case, the insensitivity to semantic inconsistencies reveals inherent limitations of both 500 

MMs and DGII. The way in which MMs are constructed implicitly assumes that meaning is a 501 

local image-property, which is not true for object-context (in)consistency. This limitation 502 

may potentially be alleviated by ‘contextualized MMs’ (Peacock, Hayes, & Henderson, 503 

2019), a recently suggested modification of the ‘standard’ MMs. These novel maps are 504 

created from meaningfulness ratings by observers who see the whole scenes from which 505 

the to-be-rated patches were derived. It is yet to be seen what this approach can reveal 506 

about fixation selection beyond the fact that humans asked to indicate meaningful or 507 

interesting regions within scenes highlight areas, which tend to be frequently fixated by 508 

other observers (Nyström & Holmqvist, 2008; Onat et al., 2014). DGII, in turn, does not 509 
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explicitly encode semantic information, and was not trained on the relationship between 510 

eye movements and semantic (in)consistency. But its failure highlights an opportunity to 511 

improve saliency models by incorporating semantic relationships (Bayat, Koh, Nand, Pereira, 512 

& Pomplun, 2018). 513 

Taken together, our results suggest that, contrary to their core promise as a methodology, 514 

meaning maps (MMs) do not offer a way to measure the spatial distribution of meaning 515 

across an image. Instead of meaning per-se, they seem to index high-level features that 516 

have the potential to carry meaning in typical natural scenes. They share this characteristic 517 

with state-of-the-art saliency models, which are easier to use, do not require human 518 

annotation, and yet predict locations of human fixations better than MMs. 519 

 520 

References 521 

Bayat, A., Koh, D. H., Nand, A. K., Pereira, M., & Pomplun, M. (2018). Scene Grammar in 522 

Human and Machine Recognition of Objects and Scenes. In Proceedings of the IEEE 523 

Conference on Computer Vision and Pattern Recognition Workshops. 524 

https://doi.org/10.1109/CVPRW.2018.00268 525 

Borji, A., Sihite, D. N., & Itti, L. (2013). Objects do not predict fixations better than early 526 

saliency : A re-analysis of Einhauser et al.’s data. Journal of Vision, 13(2013), 1–4. 527 

https://doi.org/10.1167/13.10.18 528 

Bylinskii, Z., Judd, T., Borji, A., Itti, L., Durand, F., Oliva, A., & Torralba, A. (2014). MIT Saliency 529 

Benchmark Results. Retrieved from http://saliency.mit.edu/ 530 

Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., & Durand, F. (2016). What do different 531 

evaluation metrics tell us about saliency models? ArXiv. Retrieved from 532 

http://arxiv.org/abs/1604.03605 533 

Elazary, L., & Itti, L. (2008). Interesting objects are visually salient. Journal of Vision, 8(3), 1–534 

15. https://doi.org/10.1167/8.3.3 535 

Garcia-Diaz, A., Fdez-Vidal, X. R., Pardo, X. M., & Dosil, R. (2012). Saliency from hierarchical 536 

adaptation through decorrelation and variance normalization. Image and Vision 537 



Pedziwiatr et al. 

22 
 

Computing, 30(1), 51–64. https://doi.org/10.1016/j.imavis.2011.11.007 538 

Harel, J., Koch, C., & Perona, P. (2006). Graph-Based Visual Saliency. Advances in Neural 539 

Information Processing Systems 19, 19, 545–552. https://doi.org/10.1.1.70.2254 540 

Hayes, T. R., & Henderson, J. M. (2019). Center bias outperforms image salience but not 541 

semantics in accounting for attention during scene viewing. Attention, Perception, & 542 

Psychophysics. https://doi.org/https://doi.org/10.3758/s13414-019-01849-7 543 

Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive 544 

Sciences, 9(4). https://doi.org/10.1016/j.tics.2005.02.009 545 

Hegde, J., & Kersten, D. (2010). A Link between Visual Disambiguation and Visual Memory. 546 

Journal of Neuroscience, 30(45), 15124–15133. 547 

https://doi.org/10.1523/JNEUROSCI.4415-09.2010 548 

Henderson, J. M. (2017). Gaze Control as Prediction. Trends in Cognitive Sciences, 21(1), 15–549 

23. https://doi.org/10.1016/j.tics.2016.11.003 550 

Henderson, J. M., & Hayes, T. R. (2017). Meaning-based guidance of attention in scenes as 551 

revealed by meaning maps. Nature Human Behaviour, 1(October). 552 

https://doi.org/10.1038/s41562-017-0208-0 553 

Henderson, J. M., & Hayes, T. R. (2018). Meaning guides attention in real-world scene 554 

images: Evidence from eye movements and meaning maps. Journal of Vision, 18(6), 10. 555 

https://doi.org/10.1167/18.6.10 556 

Henderson, J. M., Hayes, T. R., Peacock, C. E., & Rehrig, G. (2019). Meaning and Attentional 557 

Guidance in Scenes : A Review of the Meaning Map Approach. Vision, 3(2). 558 

Henderson, J. M., Hayes, T. R., Rehrig, G., & Ferreira, F. (2018). Meaning Guides Attention 559 

during Real-World Scene Description. Scientific Reports, 8(1), 13504. 560 

https://doi.org/10.1038/s41598-018-31894-5 561 

Henderson, J. M., Malcolm, G. L., & Schandl, C. (2009). Searching in the dark: Cognitive 562 

relevance drives attention in real-world scenes. Psychonomic Bulletin & Review, 16(5), 563 

850–856. https://doi.org/10.3758/PBR.16.5.850 564 

Henderson, J. M., Weeks, P. A., & Hollingworth, A. (1999). The effects of semantic 565 



Pedziwiatr et al. 

23 
 

consistency on eye movements during complex scene viewing. Journal of Experimental 566 

Psychology: Human Perception and Performance, 25(1), 210–228. 567 

https://doi.org/10.1037/0096-1523.25.1.210 568 

Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of 569 

visual attention. Vision Research, 40(10–12), 1489–1506. 570 

https://doi.org/10.1016/S0042-6989(99)00163-7 571 

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews 572 

Neuroscience, 2(3), 194–203. https://doi.org/10.1038/35058500 573 

Kaiser, D., Quek, G. L., Cichy, R. M., & Peelen, M. V. (2019). Object Vision in a Structured 574 

World. Trends in Cognitive Sciences, 23(8), 672–685. 575 

https://doi.org/10.1016/j.tics.2019.04.013 576 

Kietzmann, T. C., McClure, P., & Kriegeskorte, N. (2019). Deep Neural Networks in 577 

Computational Neuroscience. In Oxford Research Encyclopedia of Neuroscience. 578 

Kleiner, M., Brainard, D., & Pelli, D. G. (2007). What’s new in psychtoolbox-3? Perception, 579 

36(1). 580 

Koehler, K., Guo, F., Zhang, S., & Eckstein, M. P. (2014). What do saliency models predict? 581 

Journal of Vision, 14(3). https://doi.org/10.1167/14.3.14 582 

Kümmerer, M., Wallis, T. S. A., & Bethge, M. (2015). Information-theoretic model 583 

comparison unifies saliency metrics. Proceedings of the National Academy of Sciences, 584 

112(52), 16054–16059. https://doi.org/10.1073/pnas.1510393112 585 

Kümmerer, M., Wallis, T. S. A., & Bethge, M. (2016). DeepGaze II: Reading fixations from 586 

deep features trained on object recognition, 1–16. Retrieved from 587 

http://arxiv.org/abs/1610.01563 588 

Kümmerer, M., Wallis, T. S. A., & Bethge, M. (2018). Saliency Benchmarking Made Easy: 589 

Separating Models, Maps and Metrics. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. 590 

Weiss (Eds.), Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer 591 

Science (Vol. 11220, pp. 798–814). Springer. https://doi.org/10.1007/978-3-030-01270-592 

0_47 593 



Pedziwiatr et al. 

24 
 

Kümmerer, M., Wallis, T. S. A., Gatys, L. A., & Bethge, M. (2017). Understanding Low- and 594 

High-Level Contributions to Fixation Prediction. In The IEEE International Conference on 595 

Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2017.513 596 

Malcolm, G. L., Groen, I. I. A., & Baker, C. I. (2016). Making Sense of Real-World Scenes. 597 

Trends in Cognitive Sciences, 20(11), 843–856. 598 

https://doi.org/10.1016/j.tics.2016.09.003 599 

Nyström, M., & Holmqvist, K. (2008). Semantic override of low-level features in image 600 

viewing–both initially and overall. Journal of Eye Movement Research, 2(2), 1–11. 601 

https://doi.org/10.16910/jemr.2.2.2 602 

Öhlschläger, S., & Võ, M. L. H. (2017). SCEGRAM: An image database for semantic and 603 

syntactic inconsistencies in scenes. Behavior Research Methods, 49(5). 604 

https://doi.org/10.3758/s13428-016-0820-3 605 

Onat, S., Açik, A., Schumann, F., & König, P. (2014). The contributions of image content and 606 

behavioral relevancy to overt attention. PLoS ONE, 9(4). 607 

https://doi.org/10.1371/journal.pone.0093254 608 

Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of 609 

overt visual attention. Vision Research, 42(1), 107–123. https://doi.org/10.1016/S0042-610 

6989(01)00250-4 611 

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2018). Meaning guides attention during 612 

scene viewing, even when it is irrelevant. Attention, Perception, and Psychophysics, 20–613 

34. https://doi.org/10.3758/s13414-018-1607-7 614 

Peacock, C. E., Hayes, T. R., & Henderson, J. M. (2019). The role of meaning in attentional 615 

guidance during free viewing of real-world scenes. Acta Psychologica, 198(June). 616 

https://doi.org/10.1016/j.actpsy.2019.102889 617 

Rider, A. T., Coutrot, A., Pellicano, E., Dakin, S. C., & Mareschal, I. (2018). Semantic content 618 

outweighs low-level saliency in determining children’s and adults’ fixation of movies. 619 

Journal of Experimental Child Psychology, 166, 293–309. 620 

https://doi.org/10.1016/j.jecp.2017.09.002 621 



Pedziwiatr et al. 

25 
 

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for 622 

accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 623 

225–237. https://doi.org/10.3758/PBR.16.2.225 624 

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale 625 

Image Recognition. CoRR, Abs/1409.1556. Retrieved from 626 

http://arxiv.org/abs/1409.1556 627 

Stoll, J., Thrun, M., Nuthmann, A., & Einhäuser, W. (2015). Overt attention in natural scenes: 628 

Objects dominate features. Vision Research, 107, 36–48. 629 

https://doi.org/10.1016/j.visres.2014.11.006 630 

Tatler, B. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing 631 

position independently of motor biases and image feature distributions. Journal of 632 

Vision, 7(4), 1–17. https://doi.org/10.1167/7.14.4 633 

Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural 634 

vision: Reinterpreting salience. Journal of Vision, 11(5), 5–5. 635 

https://doi.org/10.1167/11.5.5 636 

Teufel, C., Dakin, S. C., & Fletcher, P. C. (2018). Prior object-knowledge sharpens properties 637 

of early visual feature- detectors. Scientific Reports, (June), 1–12. 638 

https://doi.org/10.1038/s41598-018-28845-5 639 

Võ, M. L. H., Boettcher, S. E., & Draschkow, D. (2019). Reading scenes: how scene grammar 640 

guides attention and aids perception in real-world environments. Current Opinion in 641 

Psychology, 29, 205–210. https://doi.org/10.1016/j.copsyc.2019.03.009 642 

Wilming, N., Onat, S., Ossandón, J. P., Açik, A., Kietzmann, T. C., Kaspar, K., Gameiro, R. R., 643 

Vormberg, A., & König, P. (2017). An extensive dataset of eye movements during viewing of 644 

complex images. Scientific Data, 4, 1–11. https://doi.org/10.1038/sdata.2016.126 645 

Zhang, L., Tong, M. H., Marks, T. K., & Cottrell, G. W. (2008). SUN: A Bayesian framework for 646 

saliency using natural statistics. Journal of Vision, 8(32). https://doi.org/10.1167/8.7.32 647 


