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Abstract
Asymmetry of striatal dopaminergic deficits and motor symptoms is a typical characteristic of idiopathic Parkinson’s disease 
(PD). This study aims to characterise the trend of asymmetry in moderate-stage PD. We performed a 19-month longitudinal 
study in 27 patients with PET-CT imaging and appropriate clinical assessments. 11C-PE2I non-displaceable binding potential 
 (BPND) was calculated bilaterally for the striatum at baseline and follow-up to estimate the in vivo density of striatal dopamine 
transporters (DAT). Changes in striatal 11C-PE2I  BPND over time were more prominent in the ipsilateral as compared to 
contralateral side. Changes in MDS-UPDRS-III (motor component of the Movement Disorders Society Unified PD Rating 
Scale) were not different between the clinically most and least affected body sides. Our data support that the asymmetry in 
striatal dopaminergic degeneration becomes less prominent in moderate-stage PD. In contrast, during the above period, the 
asymmetry of motor symptoms was maintained between the clinically most and least affected body sides.
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Introduction

Asymmetry of striatal dopaminergic deficits and subsequent 
lateralisation of motor symptoms are key features of idi-
opathic Parkinson’s disease (PD) [1] and as such are con-
sidered supporting factors during the diagnostic process [2]. 
Remarkably, after decades of research, the underlying causes 
of PD asymmetry remain poorly understood. Some consider 
it coincidental, while others have drawn links to handedness, 
certain genetic loci and environmental factors [3–6].

Asymmetry of motor symptoms has been shown to cor-
respond to asymmetry of striatal dopaminergic deficits in 
early PD [7, 8]. PET studies show that the degree of asym-
metry in striatal dopamine transporter (DAT) tracer binding 
becomes less prominent over the course of the disease [7, 9]. 
However, clinical studies indicate that the motor symptoms 
retain asymmetry over many years [10, 11].

To our knowledge, there are currently no longitudinal 
studies evaluating the progression of asymmetry in clinical 
symptoms and dopaminergic integrity in moderate PD. To 
address this, we performed serial clinical ratings and dopa-
minergic brain imaging over a 19-month period. To evaluate 
dopaminergic terminal integrity, we use 11C-PE2I  [11C N-(3-
iodopro-2E-enyl)-2β-carbomethoxy-3β-(4ʹ-methylphenyl) 
nortropane] PET, which has been shown to have high speci-
ficity for the dopamine transporter (DAT) [12]. To monitor 
clinical progression, we use the Movement Disorders Soci-
ety Unified PD Rating Scale (MDS-UPDRS) [13].

Based on previous reports [7, 10, 11, 14], we hypoth-
esise that in moderate PD, the decline of striatal DAT den-
sity in the ipsilateral side is greater than in the contralateral 
side, and that the asymmetry of striatal DAT degeneration 
becomes less marked over 19 months. We expect the pro-
gress of clinical scores to occur in a similar pattern between 
the clinically most and least affected body sides.
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Methods

Participants

Patients with idiopathic PD were recruited from special-
ist movement disorders clinics. All patients fulfilled the 
Queen Square Brain Bank diagnostic criteria for idi-
opathic PD [15], did not have a history of depression and/
or cognitive impairment (Mini-Mental State Examination 
scores < 26) and were not being treated with medications 
acting directly on the serotonergic system or dopamine 
transporters. Levodopa equivalent doses (LED) were 
calculated using conversion factors reported in a previ-
ous study [16]. The OFF medication state was defined by 
the withdrawal of dopaminergic medication for at least 
24 h for standard release and 48 h for prolonged-release 
preparations.

Clinical characteristics

Motor severity was evaluated using the motor component 
of the MDS-UPDRS scale (MDS-UPDRS-III) [13] and 
staging was assessed with the modified Hoehn & Yahr 
(H&Y) rating scale [17]. The same clinical team per-
formed baseline and follow-up clinical assessments whilst 
participants were in the OFF medication state. To iden-
tify the clinically most and least affected body sides at 
enrolment, lateralization scores were calculated separately 
based on bilateral components of the MDS-UPDRS-III 
(rigidity, finger tapping, hand movements, pronation-supi-
nation movements of hands, toe tapping, leg agility, pos-
tural or kinetic tremor of the hands, rest tremor amplitude; 
maximum lateralized score = 44) [18].

All patients provided their written consent. This study 
was carried out in accordance with the Declaration of Hel-
sinki and was approved by the Health Research Authority, 
the NRES Research Ethics Committees of the UK (REC 
12/EE/0096 and 10/H0805/73), and the UK Administra-
tion of Radioactive Substances Advisory Committee.

11C‑PE2I PET‑CT and MRI acquisition 
and pre‑processing

All scans were conducted at Invicro Ltd Research Imag-
ing Facility in London, UK. Patients underwent 11C-PE2I 
PET-CT and MR imaging twice: at baseline and follow-up 
(after 19 months) in the OFF medication state.

MRI scans were acquired on a 3T Siemens Mag-
netom Trio system with 32-channel head coil. 
T1-weighted magnetization-prepared rapid acquisition 

gradient-echo (MPRAGE) images were obtained (repeti-
tion time = 2300 ms, time echo = 2.98 ms, flip angle of 9°, 
time to inversion = 900 ms, slice thickness, 1 mm; matrix 
size, 240 × 256  mm) for co-registration with the PET 
images. One whole-brain volume was acquired consisting 
of 160 slices lasting 301 s.

11C-PE2I PET scans were obtained on a Siemens 
Biograph TruePoint HI-REZ 6 PET/CT system (Sie-
mens Healthcare). A low-dose CT transmission scan 
(0.36  mSv) was performed for attenuation-correc-
tion purposes. 11C-PE2I (mean radioactivity dose of 
319.25 ± 38.77 MBq) was intravenously administered as 
a bolus injection and dynamic emission data were acquired 
for 90 min after injection. 26 temporal frames were recon-
structed using a filtered back-projection algorithm (direct 
inversion Fourier transform; matrix size: 128 × 128, zoom: 
2.6, 5 mm transaxial Gaussian filter, pixel size: 2 mm iso-
tropic). All PET imaging analyses were carried out using 
Molecular Imaging and Kinetic Analysis Toolbox software 
package for academic use (MIAKAT™: www.miaka t.org), 
implemented in MATLAB (Mathworks, Natick, MA) and 
utilising FSL 6.0 (FMRIB Image Analysis Group, Oxford, 
UK) [19] and SPM12 (Statistical Parametric Mapping, 
Wellcome Trust Centre for Neuroimaging, London, UK) 
functions.

Structural MPRAGE images were segmented and rigid-
registered to the standard Montreal Neurological Institute 
(MNI) template. Registered MPRAGE images were then 
used to manually trace striatal (putamen and caudate) 
regions of interest (ROIs) in Analyze 11.0 (Biomedical 
Imaging Resource, Mayo Clinic). An MNI-based regional 
atlas (CIC Atlas v1.2; GlaxoSmithKline Clinical Imaging 
Centre, London, UK) was non-linearly warped to the reg-
istered MPRAGE images to define the cerebellum, which 
was used as the reference region. Rigid-body registered 
segmentation images were used to enable masking of the 
gray matter of cerebellum.

Dynamic PET images were motion-corrected by rigid 
registration to reference frame 16, chosen due to its high 
signal-to-noise ratio [12]. Signal-averaged (summed) 
images were then created and co-registered to the corre-
sponding MPRAGE images. The parameters were applied 
to the realigned dynamic PET images so that all images 
were in mutual space. Regional time-activity curves were 
created from the realigned and registered dynamic PET 
frames. The simplified reference tissue model with the cer-
ebellar grey matter as reference region was used to calcu-
late regional 11C-PE2I non-displaceable binding potential 
 (BPND) [20–22]. We calculated 11C-PE2I  BPND values for 
the putamen and caudate bilaterally. The contralateral 
and ipsilateral striatal ROIs were defined according to the 
clinically most affected body side at baseline.

http://www.miakat.org
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Statistical analyses

All statistical analyses were performed using SPSS v22.0 
(SPSS Statistics for Macintosh; IBM Corp., Armonk, 
NY). Three-way repeated-measures analysis of covari-
ance (ANCOVA) was conducted with 11C-PE2I  BPND 
as the dependent variable, age and gender as covariates, 
and three factors: time (baseline, follow-up), side (con-
tralateral, ipsilateral), and region (putamen, caudate). 
Further two-way repeated ANCOVAs were performed for 
the caudate and putamen separately, each including time 
(baseline, follow-up) and side (contralateral, ipsilateral) 
and co-varying for age and gender. Two-way repeated 
ANCOVA was also used to examine the effect of time 
(baseline, follow-up) and side (contralateral, ipsilateral) on 
MDS-UPDRS-III scores, controlling for age and gender. 
Bonferroni adjustments were applied where appropriate. 
The level of statistical significance was set at α = 0.05. 
Normal distribution was evaluated using Shapiro–Wilk 
test and visually by means of residual QQ plots.

The relationships between lateralised 11C-PE2I  BPND 
values and corresponding MDS-UPDRS-III motor scores 
were examined using Pearson’s correlation coefficient. 
Correlations between changes (follow-up—baseline) in lat-
eralised 11C-PE2I  BPND values and corresponding changes 
in MDS-UPDRS-III motor scores were conducted using 
Spearman’s rho, as several variables demonstrated signifi-
cant deviation from normality (Shapiro–Wilk, p < 0.05) 
[23]. Comparisons of H&Y staging between baseline and 
follow-up were performed with Wilcoxon signed-rank test.

Results

Participant characteristics

Demographic and clinical characteristics of PD patients are 
summarised in Table 1. 36 PD patients were recruited at 
baseline. Of those, 9 participants were lost to follow-up at 
19 months, thus leaving 27 evaluable patients for inclusion 
in this study. As expected, at the end of the follow-up period, 
all PD patients (n = 27) were on significantly higher levo-
dopa equivalent doses (LED) and had higher MDS-UPDRS-
III scores (p < 0.05). During this period, the H&Y staging 
remained unchanged (p > 0.05).

(Table 1).

Clinical data analyses

The progression of motor severity (MDS-UPDRS-III 
scores) over 19 months is shown in Table 2 and Fig. 1. 
Repeated ANCOVA did not reveal a time × side interac-
tion for MDS-UPDRS-III scores [F (1, 24) = 0.54, p = 0.47], 

showing that the changes in MDS-UPDRS-III scores over 
time were not significantly different between the clinically 
most and least affected body sides. A significant main effect 
of side was observed [F (1, 24) = 142.78, p < 0.001], with 
higher MDS-UPDRS-III scores found for the clinically 
most as compared to least affected body sides. A significant 
main effect of time [F (1, 24) = 11.02, p < 0.05] indicated 

Table 1  Patient demographics and clinical characteristics at baseline 
and follow-up

LED levodopa equivalent doses, ns not significant, MDS-UPDRS 
Movement Disorders Society Unified Parkinson’s Disease Rating 
Scale; MDS-UPDRS-III motor component of MDS-UPDRS; MMSE 
Mini-Mental State Examination
*Significant at p < 0.05; comparison between follow-up and baseline; 
paired sample t tests or Wilcoxon signed-rank test

Baseline 
(n = 27)
Mean, SD

Follow-up 
(n = 27)
Mean, SD

Statistical 
signifi-
cance

Age (years) 55.18, 6.82 56.73, 6.73 –
Disease duration 

(years)
5.53, 1.88 7.08, 1.87 –

LEDTOTAL (mg) 694.21, 350.82 837.17, 363.19 *
LEDLdopa (mg) 398.48, 346.76 508.21, 396.86 *
MDS-UPDRS-III 31.59, 10.70 36.37, 10.15 *
Hoehn and Yahr scale 1.96, 0.19 2.04, 0.19 ns
MMSE 29.74, 0.57 29.74, 0.64 ns

Table 2  MDS-UPDRS-III and striatal 11C-PE2I  BPND values at base-
line and follow-up

BPND non-displaceable binding potential, MDS-UPDRS Move-
ment Disorders Society Unified Parkinson’s Disease Rating Scale, 
MDS-UPDRS-III motor component of MDS-UPDRS, least affected 
the least clinical affected body side, most affected the most clinical 
affected body side
* Significant at p < 0.05; **significant at p < 0.01; ***significant at 
p < 0.001; comparison between the follow-up and baseline; paired 
sample t tests

Baseline
Mean, SD

Follow-up
Mean, SD

Statistical 
signifi-
cance

MDS-UPDRS-III 
(19.31 months ± 4.15)

 Most affected 23.93, 7.37 26.59, 6.76 *
 Least affected 16.22, 5.65 19.75, 7.09 **

11C-PE2I  BPND
(18.93 months ± 3.68)
Putamen
 Contralateral 1.22, 0.07 1.07, 0.06 ***
 Ipsilateral 1.71, 0.09 1.47, 0.08 ***

Caudate
 Contralateral 2.06, 0.15 1.81, 0.12 **
 Ipsilateral 2.65, 0.17 2.33, 0.15 **
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that MDS-UPDRS-III scores were higher at follow-up than 
at baseline (Table 2).

Striatal 11C‑PE2I  BPND analyses

The decline in 11C-PE2I  BPND values over 19 months is 
shown in Table 2 and Fig. 1. Three-way repeated-measures 
ANCOVA, did not reveal a significant time × side × region 
interaction for 11C-PE2I  BPND values [F (1, 24) = 1.10, 
p = 0.31] nor a significant time × region interaction across 
levels of side (contralateral, ipsilateral) [F (1, 24) = 0.14, 
p = 0.71]. However, there was a significant time × side 
interaction on 11C-PE2I  BPND values across levels of region 
(putamen, caudate) [F (1, 24) = 4.38, p < 0.05]. A main effect 
of region [F (1, 24) = 89.91, p < 0.001] indicated 11C-PE2I 
 BPND values were significantly lower in the putamen as com-
pared to the caudate.

Two-way repeated-measures ANCOVAs were also con-
ducted for the putamen and caudate, separately. For the puta-
men, a significant time × side interaction [F (1, 24) = 6.32, 
p < 0.05] revealed uneven effects of time on 11C-PE2I  BPND 
values between contralateral and ipsilateral sides. Significant 
simple effects of time (p < 0.001) were observed, with sig-
nificantly lower 11C-PE2I  BPND values at the follow-up time 
point in the contralateral putamen (baseline: 1.22 ± 0.07; 

follow-up: 1.07 ± 0.06) and the ipsilateral putamen (baseline: 
1.71 ± 0.09; follow-up: 1.47 ± 0.08). Additionally, putaminal 
11C-PE2I  BPND values were significantly lower in the con-
tralateral as compared to the ipsilateral side at both baseline 
and follow-up (p < 0.001). Further paired t tests showed that 
the mean change in 11C-PE2I  BPND values from baseline was 
less prominent in the contralateral putamen (− 0.15 ± 0.16) 
than in the ipsilateral putamen (− 0.24 ± 0.21) (t26 = − 2.51, 
p < 0.05). The mean differences of 11C-PE2I  BPND values 
between the contralateral and ipsilateral putamen were sig-
nificantly smaller at follow-up (0.40 ± 0.22) than at base-
line (0.49 ± 0.29) (t26 = 2.51, p < 0.05). In the caudate, there 
was a significant time × side interaction, suggesting that 
the effects of time on 11C-PE2I  BPND values were different 
between contralateral and ipsilateral sides [F (1, 24) = 5.05, 
p < 0.05]. Simple effects of time (p < 0.001) were detected, 
with significantly lower 11C-PE2I  BPND values at follow-
up in both the contralateral caudate (baseline: 2.06 ± 0.15; 
follow-up: 1.81 ± 0.12) and ipsilateral caudate (baseline: 
2.65 ± 0.17; follow-up: 2.33 ± 0.15). We also noted signif-
icant simple effects of side (p < 0.001), in which caudate 
11C-PE2I  BPND was lower in the contralateral side at both 
baseline and follow-up time points. Paired t tests showed 
that the mean changes in 11C-PE2I  BPND values from base-
line were significantly smaller in the contralateral caudate 

Fig. 1  Changes in striatal 11C-PE2I  BPND values and motor severity 
(MDS-UPDRS-III scores) over 19  months. A significant time × side 
interaction was observed for striatal 11C-PE2I  BPND values (p < 0.05; 
repeated measure analysis of covariance; a, b) but not for MDS-
UPDRS-III scores (c). Dots represent the individual patients; lines 

connect baseline and follow-up mean values. BPND non-displaceable 
binding potential, MDS-UPDRS Movement Disorders Society Unified 
Parkinson’s Disease Rating Scale, MDS-UPDRS-III motor component 
of MDS-UPDRS, least affected the least clinical affected body side, 
most affected the most clinical affected body side
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(0.25 ± 0.33) than the ipsilateral caudate (0.32 ± 0.43) 
(t26 = − 2.25, p < 0.05). The mean differences of 11C-PE2I 
 BPND values between the contralateral and ipsilateral cau-
date were significantly smaller at follow-up (0.52 ± 0.27) 
than at baseline (0.59 ± 0.30) (t26 = 2.25, p < 0.05) (Fig. 1).

Correlations

At baseline, significant negative correlations were found 
between lateralised 11C-PE2I  BPND values and correspond-
ing MDS-UPDRS-III scores of the clinically most (caudate: 
r = − 0.35, p < 0.05; putamen: r = − 0.33, p < 0.05) and least 
affected body sides (caudate: r = − 0.35, p < 0.05; putamen: 
r = − 0.38, p < 0.05). At the follow-up time point, lateralised 
11C-PE2I  BPND values did not significantly correlate with 
corresponding motor scores.

Lateralised changes in caudate 11C-PE2I  BPND val-
ues from baseline negatively correlated with correspond-
ing changes in MDS-UPDRS-III scores of the clinically 
most (r = − 0.46, p < 0.05) and least affected body sides 
(r = − 0.39, p < 0.05). Changes in MDS-UPDRS-III scores 
of the most affected side negatively correlated with changes 
in 11C-PE2I  BPND values in the corresponding putamen 
(r = − 0.62, p < 0.01); however, no such correlation was 
found for the least affected putamen.

Discussion

In this study, we assessed striatal dopaminergic decline and 
motor symptom progression in moderate PD over 19 months. 
We found that the effect of time on striatal 11C-PE2I  BPND 
values was more pronounced in the ipsilateral as compared 
to the contralateral side. However, our data showed no dif-
ferential effect of time on MDS-UPDRS-III scores between 
the clinically most and least affected body sides.

Most imaging studies on PD progression have approached 
striatal DAT degeneration without taking into account PD-
related asymmetry [24]. To our knowledge, there have been 
only two longitudinal imaging studies in the literature that 
discuss PD asymmetry with respect to striatal imaging data 
[7, 9]. Nandhagopal and colleagues [7] proposed that the 
rate of dopaminergic decline is faster in the ipsilateral than 
in the contralateral striatum, especially in early and mod-
erate stages of PD. However, the integrity of dopaminer-
gic terminals was evaluated using 11C-methylphenidate, 
which may yield biased values depending on the severity 
of dopaminergic denervation [25]. Simuni and colleagues 
[9] noted that in the early stages of PD, changes in DAT 
binding in the ipsilateral putamen were more pronounced 
as compared to reductions seen in the contralateral putamen 
after a 5-year follow-up period. Nevertheless, in the latter 
report, the authors showed data only for the contralateral 

putamen, excluding useful information from the other stri-
atal ROIs [9].

With respect to motor symptoms, a number of studies 
evaluating PD patients over a wide range of disease dura-
tions demonstrate retention of asymmetry over many years 
[10, 11]. However, two interesting studies [26, 27] using 
multiple regression analyses and focussing on the earlier 
stages of PD showed that shorter disease duration and 
younger age at onset correlate with higher motor symptom 
asymmetry. These results suggest that the progression of 
motor severity might not be similar across sides at the initial 
stages of the disease.

Our data demonstrate that the asymmetry of motor symp-
toms remains over 19 months in moderate PD. In contrast, a 
significant time-side interaction for 11C-PE2I demonstrates 
that striatal DAT asymmetry becomes less prominent over 
the same period. That we found significant inverse rela-
tionships between striatal DAT density and motor severity 
at baseline, and negative correlations between changes in 
11C-PE2I  BPND values and corresponding changes in motor 
scores, support the validity of this biomarker for tracking 
progression in moderate-stage PD. The mismatch of asym-
metry trends between clinical and PET imaging data, and the 
failure to find a significant correlation between DAT den-
sity and corresponding motor scores at the follow-up time 
point, however, suggests differential patterns of progression 
for each aspect of the disease. Previous work describes three 
distinct phases of motor progression [28–30]; there is a sig-
nificant improvement in motor scores attributed to treatment 
effects during the first two years following diagnosis, then 
motor scores remain relatively stable for a number of years 
from early to moderate PD, followed by a significant wors-
ening of motor function in the moderate/advanced stages 
[28–30]. In contrast, the progressive decline in DAT density 
has been characterised as following an exponential decay 
function [31, 32]. Previous multi-tracer PET studies show 
that in the early stages of PD, dopaminergic compensatory 
adjustments, namely downregulation of DAT and upregu-
lation of aromatic amino acid decarboxylase (AADC), are 
more prominent in the contralateral as compared to the ipsi-
lateral striatum [31, 32]. However, as the disease progresses, 
these asymmetric compensatory responses are observed to 
decline [31]. Thus, the convergence of DAT density between 
the sides observed in the current report may be explained by 
a ‘floor effect’ limiting the continual reductions of the con-
tralateral striatum in moderate PD. The exact mechanisms 
underlying the non-linear pattern in longitudinal compensa-
tory evolution are unclear, but might be related to progres-
sive and abnormal protein accumulation of α-synuclein [33] 
and/or chronic use of anti-parkinsonian medication [34]. Our 
results are in line with previous evidence, demonstrating that 
the development of each disease characteristic progresses 
according to different patterns. Aside from the degeneration 
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of dopamine transporters, there are likely multiple other fac-
tors contributing to the pattern of motor progression, includ-
ing functional changes within and beyond the dopaminergic 
system. Identification of novel factors for improved predic-
tion of motor progression including those related to age, sex, 
baseline motor scores, cognitive function, clinical subtypes, 
imaging tracer (pre-and post-synaptic dopaminergic mark-
ers) and CSF biomarkers (α-synuclein, β-amyloid, and tau) 
is warranted.

We did not calculate an average rate of change for  BPND 
values and MDS-UPDRS-III scores, as we do not assume 
a linear progression model of DAT decline in the course of 
PD [35]. We do not believe that aging can explain the cur-
rent results as previous work demonstrates that age-related 
physiological decline occurs symmetrically [36]. The dura-
tion of the follow-up period (19 months) may be viewed as 
a methodological limitation. Although it would be ideal to 
continue with a third follow-up scan and/or include longer 
intervals between visits, we believe that the 19-month period 
was sufficient to reveal the change in  BPND values and MDS-
UPDRS-III scores in this cohort for the aims of the current 
study [12]. We believe that a larger number of participants 
would add validity to the robustness of our results. Neverthe-
less, we acknowledge the limitations that relate to feasibility 
issues, specific to the study population and the risks associ-
ated with exposure to additional ionising radiation.

We propose that while asymmetry in both striatal dopa-
minergic degeneration and motor symptoms continues to 
occur in moderate PD, its magnitude may change over the 
course of the disease.
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