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We introduce a new theoretical and computational framework for treating molecular

quantum mechanics without the Born-Oppenheimer approximation. The molecular

wavefunction is represented in a tensor-product space of electronic and vibrational

basis functions, with electronic basis chosen to reproduce the mean-field electronic

structure at all geometries. We show how to transform the Hamiltonian to a fully

second quantized form with creation/annihilation operators for electronic and vi-

brational quantum particles; paving the way for polynomial-scaling approximations

to the tensor-product space formalism. In addition, we make a proof-of-principle

application of the new ansatz to the vibronic spectrum of C2.
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I. INTRODUCTION

From the physical viewpoint chemistry is just the motion of electrons and nuclei, instanta-

neously attracting and repelling each other through Coulomb forces. This can be elegantly

summarised in a molecular Hamiltonian,

Hmol = Te + Tn + Vee + Ven + Vnn (1)

where T and V are kinetic energy and Coulomb operators. The subscripts e and n represent

electrons and nuclei, and their pairs indicate interaction of respective particles. All that is

required from a quantum chemist is to solve the formidable time-dependent or -independent

Schrödinger equation (SE) for a molecular wavefunction, Ψmol, and any desired observable

properties can then be obtained.

Quantum chemists have risen to the task and developed an impressive arsenal of methods

and approaches for solving the SE. The Born-Oppenheimer (BO) approximation lays the

foundation on which most other methods are built.1–3 It uses the disparity between electron

and nuclear masses to justify separation of their dynamics. The electrons are said to follow

the nuclear motion instantaneously, and the electronic structure is governed only by the

clamped nuclei Hamiltonian,

He = Te + Vee + Ven + Vnn. (2)

Solution of the corresponding electronic SE leads to adiabatic states ΨP and potential en-

ergy hyper-surfaces (PES) E
(e)
P . There are well known hierarchies of methods that allow

calculation of ground and excited states with increasing accuracy.

The only thing left is to solve for the nuclear wavefunction, defined on a chosen PES ac-

cording to a simplified molecular SE

(E
(e)
P + Tn)ΦP,Q = EP,Q

mol ΦP,Q, (3)

where the grouped index P,Q indicates that for each electronic state P there is a spectrum

of nuclear states Q. The overall molecular wavefunction becomes a simple product ΨP,Q
mol =

ΨPΦP,Q.

This procedure can explain a large part of molecular spectroscopy and chemical reactivity.

But, just as the BO approximation is uniformly understood, accepted and taught to all
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students of chemistry, so is the fact that it often fails. There are a range of effects, from

Jahn-Teller and intensity borrowing, to chemiluminescent reactions and electron transfer

processes, that require mixing of different electronic states.

To go beyond the BO approximation, the molecular wavefunction can be expressed using

the Born-Huang (BH) ansatz,4

Ψi
mol =

Na∑
P

ΨPΦi
P (4)

where ΨP are the adiabatic solutions to electronic SE. The nuclear wavefunction can now

be defined and, in the case of a time-dependent problem, evolve on a manifold of PESs

governed by Hmol. The fact that ΨP depends parametrically on nuclear geometry introduces

the nuclear kinetic energy coupling (NKEC) term

ΛPQ = 〈ΨP |Tn |ΨQ〉 , (5)

which is responsible for non-adiabatic coupling (NAC). It is well known that the strength of

ΛPQ depends on the energy separation of the states P,Q, and diverges when they become

degenerate, forming a so-called conical intersections.5–7 To avoid instabilities, as well as

to support the fitting of smooth geometry-dependent parameters to carry the electronic

energies, it is more common to use a set of pseudo-diabatic states that are defined by finding a

unitary transformation of the chosen adiabatic states that gives Λ = 0. While in general this

cannot be done exactly,8 there are procedures for defining approximate transformations.9–17

The necessity for diabatization is a consequence of starting with the BO approximation.

The usual assumption that the clamped nuclei Hamiltonian constitutes the dominant term

becomes invalid when close-lying states give rise to large or divergent Λ, whereas in the

pseudo-diabatic representation all of the NKEC is moved into the electronic Hamiltonian,

which is no longer diagonal in that basis. While experience has shown that this procedure

works well for molecular systems, one has to wonder whether it remains so when system

size increases and the band structure begins to appear. In this paper, we explore whether

more nuanced theories can be developed to treat nuclear and electron dynamics on the same

footing by detaching ourselves from the BO approximation.

Not surprisingly, methods based on a similar line of thought already exist in the literature.

We follow Mátyus in calling them pre-BO theories.18 Often, the terms non-BO or beyond
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BO are also used, but we find that those terms would encompass the traditional approaches

based on Born-Huang ansatz which break the BO approximation and include NKEC term.

One family of pre-BO approaches is based on diagonalising Hmol directly in a basis of explic-

itly correlated Gaussians.18–22 The basis functions depend on all inter-particle distances and

can achieve extremely accurate results. However, because of the factorial cost for variational

solutions, such calculations are limited to few-atom systems.

Another prominent family of methods generalises the orbital picture to the nuclei. We will

call them nuclear orbital (NO) based methods in this manuscript. They treat each nucleus

as a quantum particle alongside the electrons, and solve generalised Hartree-Fock (HF) equa-

tions in a basis of single particle functions.23–27 For electrons, these are the standard atomic

orbitals (AO) resulting in molecular orbitals (MO); for the nuclei, an analogous basis of

Gaussian type functions is used, resulting in nuclear orbitals. The molecular Hilbert space

is spanned by symmetrised products of nuclear and molecular orbitals, so that particles

follow correct fermionic or bosonic statistics depending on their spin. This rather inge-

nious treatment allows the full machinery of electronic structure theory to be applied, na-

tively accounting for electron and nuclear dynamics. Some of the methods already reported

include HF,24,25 many-body perturbation theory,28–30 Configuration Interaction (CI),31–33

density-matrix renormalization group,34 multi-configuration self-consistent-field,25 coupled

cluster,28,35,36 time dependent HF37 and some explicitly correlated variants.38–40

This framework cannot, however, be applied to the whole molecular system in a general

manner. The centres of the AO basis functions are fixed in space, and although the exact

position can be optimised variationally they are no longer clamped to the nuclei. During

nuclear dynamics the electron density is polarised away from AO centres, leading to strong

electron-nuclear coupling.33,41–43 This results in slow convergence with respect to the AO

basis, which is trying to describe both electron-electron and electron-nucleus cusps. Explic-

itly correlated methods can help to reduce basis set dependence at the cost of increased

complexity. Overall, this approach is best for small nuclei like H.27

Similar ideas can be found in the world of theoretical attosecond spectroscopy, where the en-

ergy bandwidth of a pulse covers multiple electronic states and can lead to photoionisation.44

Strong coupling to an external pulse causes significant changes in electronic and nuclear dy-

namics, necessitating multiconfigurational representation of the wavefunction. But, since the
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time scale of a pulse is larger than typical vibrational motion, one can begin by adopting the

clamped nuclei approximation. Such a framework is implemented in the multiconfiguration

time-dependent Hartree-Fock (MCTDHF) method,45–48 which defines propagation of the

electronic wavefunction in a basis of Slater determinants with time-dependent MOs. How-

ever, electron dynamics can be strongly effected by the nuclei49 and there are at least two

related methods for treating the whole system quantum mechanically and expressing Ψmol as

an outer product of electron and nuclear basis functions. Kato and Yamanouchi developed

an extended MCTDHF method by using a basis of Slater determinants with time-dependent

nuclear orbitals for the protons and keeping heavy nuclei clamped.49–51 In another work, Nest

developed multiconfiguration electron-nuclear dynamics method, which instead works with

vibrational coordinates of the whole molecule and uses Hartree products of time-dependent

vibrational single particle functions as a basis.52–54 Both approaches use geometry indepen-

dent MOs and share limitations of NO based methods to strong electron-nuclear correlation,

which can however be assumed to be less important on short time scale.

In the same spirit, Haxton et al. developed an interesting ansatz for including quantum

treatment of nuclei into MCTDHF, but specialised to diatomic molecules only.55 By adopt-

ing prolate spheroidal coordinates for electrons, they could define atom-centred AOs that

correctly reproduce electron-nucleus cusps, and derived an efficient procedure for evaluating

overlap and Hamiltonian matrix elements. The nuclear wavefunction was defined using the

vibrational stretching coordinate, instead of treating each nucleus individually as in NO

based methods. This method showed rapid convergence in vibronic states of HD+, HD, H2

and LiH,55 but did not perform as well at calculating the dissociative photoionization cross

section of H2
+.56 It was conjectured that prolate spheroidal coordinates do not behave phys-

ically in the asymptotic region, and some alternatives were suggested. Nonetheless, one of

the important contributions of this work is to show that one can choose geometry-dependent

AOs that satisfy key physical conditions to get around the strong electron-nuclear coupling.

There are many other approaches to treating non-adiabatic effects, such as path-integral

molecular dynamics,57–63 path-integral Monte-Carlo,64–66 quantum Monte-Carlo67,68 and

wavepacket methods,69–73 however, as they are not directly related to current work, we will

not discuss them in detail.

Our interest in this topic, and the purpose of this manuscript, is to begin defining a new
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ansatz for solving the molecular problem in a manner that is general and extendable to

large systems. Like NO based methods, we want to take advantage of the great progress in

electronic structure theory by adopting single particle basis functions and working in second

quantization. To ensure that AOs have a consistent, if not exact, description of electron-

nucleus cusp, we follow the lead of Haxton et al.55 and adopt traditional AO basis fixed to

the nuclei. We set a physical condition that should be satisfied by a successful choice of

MOs that they should have correct HF energy at all geometries. This might appear to take

us back to the problem of NKEC term in Eq. (5), which is known to be unstable in the BH

ansatz. However, unlike solutions of clamped nuclei Hamiltonian which are usually unique,

the HF energy is invariant to MO rotations within occupied-occupied and virtual-virtual

blocks. We explore the conjecture that there is always a well defined choice of MOs, which

could be based on principles of locality or diabaticity,10 that has well behaved NKEC term.

For the nuclear degrees of freedom, we choose to work with vibrational coordinates, but

leave basis functions undefined until applications. Choosing a geometry-dependent set of

orbitals means that the molecular Hamiltonian is a many-body operator and its integration

over nuclear degrees of freedom has to be obtained numerically. We note however, that this

is not a major weakness, since integration can be done through quadrature and there are

many highly efficient methods for solving the HF equations.

Introducing a new ansatz necessarily raises a myriad of questions and many technical details

have to be worked out and tested. We do not attempt to cover everything in a single

manuscript; instead we here concentrate on the basic methodology and a simple showcase

application. We envision that on this foundation we can build a hierarchy of methods using

many-body theory that can tackle large systems at various levels of accuracy, just as in

electronic structure theory.74 This framework would be particularly suited to study non-

adiabatic effects in spectroscopy of large conjugated systems (e.g. conducting polymers,

organic semiconductors). After reviewing some background theory in Section II, we show

how to quantize electronic and nuclear degrees of freedom and derive our molecular second

quantized Hamiltonian in Section III. In Section IV we discuss how the choice of MOs affects

the wavefunction and behaviour of the NKEC terms. It also contains a rather unintuitive

conclusion that our ansatz is not invariant to the choice of MOs, except for in the limit of

infinite basis. Finally, in Section V we show results for a proof-of-concept application to the
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vibronic spectrum of C2.

II. BACKGROUND THEORY

A. Molecular Hamiltonian

We start with a Hamiltonian in the molecular frame containing Nn nuclei and Ne electrons

with electronic positions denoted as x. The nuclear degrees of freedom are described by Nv

mass weighted rectilinear vibrational coordinates, X.3

Hmol = He + Tn (6)

He = −1

2

Ne∑
i

∇2
i + Vnn (X) + Ven (x,X) + Vee (x) (7)

Tn = −1

2
∇n ·∇n (8)

where He is the clamped nuclei electronic Hamiltonian; Tn is the nuclear kinetic energy

(NKE) operator; Vnn, Vne, Vee are Coulomb operators for nuclear-nuclear, electron-nuclear

and electron-electron interaction; ∇n = {∇κ, κ = 1, Nv} and ∇ indicates a partial derivative

with respect to an electronic or vibrational coordinate, depending on context.

In the first instance we choose to ignore the rotational-vibrational coupling, mass polarization

and Watson terms. The following derivation can be generalised to include these effects and

use a different set of nuclear coordinates, but the current choices should suffice for many

systems.

We are looking for solutions to the time-independent Schrödinger equation,

HmolΨmol = EmolΨmol (9)

where the molecular wavefunction, Ψmol (x,X), contains all information about nuclear and

electronic structure, and Emol is the energy eigenvalue of this state.

Let us introduce many-particle basis functions ΦP (X) for vibrations and ΨP (x;X) for

electrons, where semicolon implies parametric dependence. We reserve capitalised Latin

letters P,Q,R, . . . as indices of many-particle basis functions, with bold-face font when
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particles are distinguishable, for example collection of vibrational modes. In the follow-

ing, we will suppress showing geometry dependence of quantities unless it is not clear from

context, or to highlight important relationships. The vibrational basis is assumed orthonor-

mal over X,
∫

Φ∗P ΦQ dX = δPQ, and electronic basis is orthonormal over electronic space,∫
Ψ∗PΨQ dx = δPQ, for each X. We make no other assumption about the nature of basis func-

tions at this point, and we should note that the special case of a geometry independent elec-

tronic basis (e.g. plane-waves) conforms to our specification, albeit in a trivial manner. Then

the molecular Hilbert space, Hmol, is spanned by their direct product, ΨP (x;X) ΦQ (X). In

Dirac notation, |ΨP ,ΦQ〉 = |ΨP 〉 |ΦQ〉 without specifying the order of integration.

The matrix elements of Hmol in this basis are,

HPQ,RS = 〈ΨP ,ΦR|Hmol |ΨQ,ΦS〉

= 〈ΦR|HPQ (X) |ΦS〉 ,
(10)

where integration over electrons is carried out first, leading to

HPQ = H
(e)
PQ + TnδPQ −

1

2
ΛPQ, (11)

with the first term coming from the clamped nuclei Hamiltonian Eq. (7)

H
(e)
PQ (X) = 〈ΨP |He (x,X) |ΨQ〉 . (12)

The second term in Eq. (11) is the NKE operator, now acting only on the vibrational basis,

since integration over the electronic coordinates has already occurred. The third term is the

nuclear kinetic energy coupling (NKEC), which arises from Tn acting on |ΨQ〉. It can be

written as

ΛPQ =2FPQ ·∇n +GPQ

=
Nv∑
κ

(
2F

(κ)
PQ∇κ +G

(κ)
PQ

) (13)

where F and G, commonly known as vector and scalar coupling terms, have the following

definition,

F
(κ)
PQ = 〈ΨP |∇κΨQ〉 (14)

G
(κ)
PQ =

〈
ΨP

∣∣∇2
κΨQ

〉
. (15)
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Some of their properties are readily evident. Firstly, due to the orthonormality condition,

F
(κ)
PQ = −F (κ)∗

QP , (16)

which shows that the matrix F (κ) is anti-Hermitian for all X.

By differentiation of Eq. (14), the scalar coupling term can be decomposed into anti-

Hermitian and Hermitian matrices,

G
(κ)
PQ =

[
∇κF

(κ)
PQ

]
−K(κ)

PQ (17)

where ∇κ does not operate outside of square brackets and the Hermitian matrix K(κ) is as

follows,

K
(κ)
PQ = 〈∇κΨP |∇κΨQ〉 . (18)

This means that in general GPQ 6= GQP and, after integration over vibrational degrees of

freedom,

GPQ,RS 6= GQP,SR, (19)

thus making it non-Hermitian in the molecular Hilbert space,Hmol.
9 The notation in Eq. (19)

follows from Eq. (10), with implicit complex conjugation of relevant basis functions when

indices are swapped.

The overall contribution from Λ is of course Hermitian, revealing that there are cancellations

among components of F (κ)∇κ and G. We can carry them out explicitly by substituting

Eq. (17) into Eq. (13) and rewriting Λ with individually Hermitian terms

ΛPQ =
Nv∑
κ

(O
(κ)
PQ −K

(κ)
PQ), (20)

with a new intermediate term

O
(κ)
PQ = 2F

(κ)
PQ∇κ +

[
∇κF

(κ)
PQ

]
. (21)

It is clear that

K
(κ)
PQ,RS = K

(κ)
QP,RS = K

(κ)
PQ,SR = K

(κ)
QP,SR, (22)

which together with Eq. (16) gives

O
(κ)
PQ,RS = −O(κ)

QP,RS = −O(κ)
PQ,SR = O

(κ)
QP,SR. (23)

These symmetries are conserved for any form of K(κ) and F (κ) with conditions that K
(κ)
PQ =

K
(κ)
QP and Eq. (16) are satisfied. That guarantee makes us prefer Eq. (20) when deriving our

Hamiltonian in later sections.
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B. Born-Huang ansatz and the Born-Oppenheimer approximation

A good choice of electronic basis is essential for compact representation of Ψmol. Born and

Huang proposed to use solutions of clamped nuclei Hamiltonian,4

HeΨ̃P (x;X) = E
(e)
P (X) Ψ̃P (x;X) (24)

where the eigenvalue E
(e)
P is the potential energy hypersurface for state P . The electronic

basis Ψ̃P (x;X) is often referred to as adiabatic and it depends on X parametrically.

For each adiabatic state there is a corresponding nuclear state, Φ̃P ,

Ψmol =
∑
P

Ψ̃P Φ̃P

=
∑
P

∑
Q

CP,QΨ̃PΦQ

(25)

where second equality arises from expanding nuclear states in a basis. By construction,

the first term in Eq. (10) no longer couples different electronic states, H
(e)
PQ = E

(e)
P δPQ, and

non-adiabatic effects are solely due to NKEC term, Λ.

Using an extension of the Hellman-Feynman theory, the off-diagonal elements of the vector

coupling term can be shown to be,75

FPQ =

〈
Ψ̃P

∣∣∣∇nHe

∣∣∣Ψ̃Q

〉
E

(e)
Q − E

(e)
P

(26)

which is generally non-zero. Through resolution of identity and assuming a complete basis,

KPQ = −
∑
R

FPR · FRQ (27)

which makes it clear that the behaviour of Λ is dominated by F.

Because of the disparity between electron and nuclear masses, Λ should make a relatively

small contribution compared to H
(E)
PQ . In fact, Born and Oppenheimer used PT to show

that energy contribution from Λ is of the order O(me/mn), where me is electron mass and

mn is nucleus mass.1 However, it is clear from Eq. (26) that it becomes larger for close

lying electronic states. In particular, special treatment is necessary when two or more states

become degenerate with non-zero numerator in Eq. (26) and form conical intersections.5–7
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For many chemical systems, it becomes sensible to make the Born-Oppenheimer approxima-

tion and ignore Λ in its entirety.1 Then, the molecular Hamiltonian does not couple different

electronic states and Ψmol can be written exactly as,

Ψi
mol = Φ̃iΨ̃i (28)

where i is a collective index.

The electronic and nuclear problems decouple and after solving Eq. (24) for all relevant

conformations, the nuclear problem becomes,

(W (X) + Tn)Φ̃i = Ei
molΦ̃i (29)

where W = E
(e)
i . The electrons can be said to follow the nuclei adiabatically, adjusting

instantaneously to changes in nuclear positions.

An improvement to BO approximation can be made while retaining exact form of Eqs. (28)

and (29), by including the diagonal component of Λ. This can be achieved by letting,

W = E
(e)
i +

1

2

Nv∑
κ

K
(κ)
ii (30)

where the last term is often called adiabatic or diagonal BO correction (DBOC).19

The off-diagonal elements of Λ, often called non-adiabatic elements, can play an essential

role in physical effects such as radiationless decay. However, instead of working with them

directly it is more common to move into a diabatic basis.

The pseudo-diabatic basis, Ψ̃d, can be defined as a unitary transformation of the chosen

finite set of adiabatic states,

Ψ̃d
P =

∑
Q

UQP Ψ̃Q (31)

such that the vector coupling becomes zero by satisfying the following condition,7

∑
κ

(
F (κ)U +∇κU

)
= 0 (32)

All of the non-adiabatic coupling is moved into H
(e)
PQ which now contains off-diagonal ele-

ments.
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In general this transformation cannot be defined exactly without a complete basis.8 There

are a variety of methods that can satisfy Eq. (32) approximately, without the strict equality,

to define quasi-diabatic states.9–17

Approaches reviewed in this section form the traditional set of tools. The BO approximation

is always made as the first step, with post-BO corrections introduced for more difficult cases.

This is very effective when only a few states need to be coupled for capturing the underlying

physics or when non-adiabatic coupling is small.

III. FULLY SECOND QUANTIZED MOLECULAR HAMILTONIAN

We start with the molecular Hamiltonian of Eq. (6) and normal mode coordinates, X. Each

vibrational mode, κ, has a basis of Mκ modals, {φκp (Xκ) , p = 1,Mκ}. The functional form

of modals is not important for the derivation, but some common choices include harmonic

oscillator functions, or solutions of the vibrational self-consistent-field problem.76 In the

following, we will use small Latin letters p, q, r, . . . to denote indices of single-particle basis,

and adopt an implicit summation convention for the indices of second quantized orbitals.

The many-particle vibrational basis functions are a direct product of modals,

ΦP (X) = φ1
P 1

(X1)φ
2
P 2

(X2) . . . φ
Nv
PNv

(XNv) (33)

The electronic basis functions are the traditional Slater determinants,

ΨP (x;X) = A
[
ψP1 (x1;X)ψP2 (x2;X) . . . ψPNe (xNe ;X)

]
(34)

where A is an antisymmetrizing operator and ψp (x;X) are fully geometry dependent or-

thonormal MOs. The choice of MOs should provide a good static description of electronic

structure at all X. Using orbitals satisfying the HF equations and AOs fixed to the nu-

clei is one such choice, although their exact definition is not important for the rest of the

derivation.

At this point, we can start deriving a second quantized molecular Hamiltonian, Ĥmol, by

requiring that it generates the same Hamiltonian matrix. This can be carried out in steps,
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first quantizing the electrons and then vibrations,

〈ΨP ,ΦR|Hmol (x,X) |ΨQ,ΦS〉 = 〈ΨP ,ΦR| Ĥmol (X) |ΨQ,ΦS〉

= 〈ΨP ,ΦR| Ĥmol |ΨQ,ΦS〉
(35)

A. Quantizing the electronic degrees of freedom

Quantizing electronic degrees of freedom in the clamped nuclei Hamiltonian, leads to the

familiar expression

Ĥe = h0 (X) + hpq (X) a†paq +
1

2
gpqrs (X) a†pa

†
rasaq (36)

where h0 = Vnn (X) is the nuclear-nuclear repulsion energy, hpq and gpqrs are core and

electron-repulsion integrals (ERI), respectively, a† and a are the usual fermionic creation

annihilation operators.

hpq =

∫
ψ∗p (x1)

(
−1

2
∇2

x1
−

Nn∑
κ

Zκ
R1,κ

)
ψq (x1) dx1 (37)

where Zκ is the nuclear charge and R1,κ is the electron-nucleus distance, and parametric

dependence on X is not shown.

gpqrs =

∫ ∫
ψ∗p (x1)ψq (x1)

1

r12
ψ∗r (x2)ψs (x2) dx1dx2 (38)

where r12 is the inter-electron distance and ERIs are geometry dependent because the AOs,

and therefore the MOs, move with the nuclei.

Quantization of NKEC terms, Eq. (20), was done by firstly deriving Slater-Condon rules

for matrix elements in Eqs. (14) and (18), and formulating second quantized operators

that reproduce them. Similar procedures have previously been applied to derive diagonal

Born-Oppenheimer corrections.77,78

F̂ (κ) = f (κ)
pq (X) a†paq (39)

K̂(κ) = k(κ)pq (X) a†paq − d(κ)pqrs (X) a†pa
†
rasaq (40)

where new one-electron integrals are introduced,

f (κ)
pq =

∫
ψ∗p (∇κψq) dx1 (41)
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k(κ)pq =

∫ (
∇κψ

∗
p

)
(∇κψq) dx1 (42)

d(κ)pqrs = f (κ)
pq f

(κ)
rs (43)

From MO the orthonormality condition we know that f (κ) is anti-hermitian, f
(κ)
pq = −f (κ)∗

qp ,

and k(κ) is hermitian by definition, k
(κ)
pq = k

(κ)∗
qp .

To simplify notation, let us sum all K̂(κ) from Eq. (40) into a single term,

K̂ = kpq (X) a†paq − dpqrs (X) a†pa
†
rasaq (44)

kpq =
Nv∑
κ

k(κ)pq (45)

dpqrs =
Nv∑
κ

d(κ)pqrs (46)

At this point, it is important to realise that a† and a are applied only to products of elec-

tronic basis functions, and have the effect of converting one such orbital product into another

one. They themselves do not explicitly reference nuclear geometry, but the resulting orbital

product will have a changed geometry dependence as a consequence of the dependence of

the basis functions on geometry. This dependence will appear in second-quantized formula-

tions via the integrals of relevant operators in the basis set, with the integrals carrying all

functional dependence on X, such that

[
∇κF̂

(κ)
]

=
[
∇κf

(κ)
pq

]
a†paq (47)

We can construct the NKEC term in Eq. (20),

Ô(κ) = 2F (κ)∇κ +
[
∇κF

(κ)
]

(48)

Λ̂ =
Nv∑
κ

Ô(κ) − K̂ (49)

Now we have a partially quantized molecular Hamiltonian,

Ĥmol (X) = Ĥe (X)− 1

2
Λ̂ (X) + Tn (50)
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We can write it in full form,

Ĥmol (X) =Tn + h0 (X) +

(
hpq (X) +

1

2
kpq (X)

)
a†paq

−
Nv∑
κ

(
f (κ)
pq (X)∇κ +

1

2

[
∇κf

(κ)
pq (X)

])
a†paq

+
1

2
gpqrs (X) a†pa

†
rasaq −

1

2
dpqrs (X) a†pa

†
rasaq

(51)

where we grouped together terms of the same symmetry. This is an appropriate point to

apply the frozen-core (FC) approximation, which is described in Appendix A. Since the

Hamiltonian remains of the same form we continue without changing notation.

B. Quantizing the vibrational degrees of freedom

For the sake of quantizing over vibrational modes Eq. (50) is just a many-body vibrational

operator. There are at least two ways to perform this transformation. One could follow the

approach described by Hirata and treat vibrations as phonons, using harmonic oscillator

modal basis and corresponding raising and lowering “ladder” operators.79 It would require

approximating Ĥmol in Eq. (50) with a Taylor series expansion around the reference geometry

X0 up to finite order, but theoretically allows use of an infinite vibrational basis. However,

truncation of the Hamiltonian could lead to instabilities and make it quasi-bound, as is often

the case in vibrational problems.80 It could still be an interesting approach with some model

systems or with generalisations of this Hamiltonian to solids where its truncation is more

likely to be bound.

The second approach, which we follow in this article, is to apply quantisation over arbitrary

modals, following the approach of Christiansen.76 The key idea is to avoid the introduction

of phonons, but instead to deal directly with the truncated Hilbert space defined by the

chosen basis set in each vibrational coordinate. Second quantization can then be introduced

via excitation operators that act in the usual way on wavefunctions that are linear combina-

tions of these basis functions76,81. A feature of this approach is that the entire single-mode

space can be reached through a single excitation operator, rather than having to apply

multiple ladder operators, which can be an advantage in formulating compact approximate

many-body theories such as coupled-cluster. In contrast to normal identical-particle second
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quantization, the Hilbert space is not part of an arbitrary-particle-number Fock space, since

all whole-system wavefunctions of interest lie in the tensor-product space where the basis

functions for any given vibrational mode appear exactly once. However, in developing any

many-body theory it is usually convenient to be able to manipulate annihilation and creation

operators separately. This can be achieved by defining a fictitious Fock space generated by

annihilators and creators that are defined such that normal-ordered annihilator-creator pairs

are identical to the excitation operator. This definition is sufficient but not unique, since

the Hamiltonian contains only normal-ordered single excitations; in particular the field op-

erators can be defined to be either bosonic (as in Ref. 76) or fermionic, with generalised

commutation relationships[
bκi , b

λ†
j

]
±

= δκ,λδi,j,
[
bκi , b

λ
j

]
± =

[
bκ†i , b

λ†
j

]
±

= 0, (52)

where [x, y]± = xy± yx is the commutator (bosons) or anticommutator (fermions). Bosonic

and fermionic creation/annihilation operators also commute,[
bκ†i , a

†
p

]
±

=
[
bκ†i , ap

]
±

=
[
bκi , a

†
p

]
± = [bκi , ap]± = 0, (53)

and once again we can instead choose anticommutation, provided this is done consistently

throughout, in particular with a defined order of modes and electrons in the tensor-product

space. Finally, although the intention of the above is to support manipulations of the

Hilbert space, vibrational modes can formally be introduced by acting with the creators on

a vacuum.

Using the many body expansion (MBE),82 we introduce a decomposition of any operator

Ω (X) into a sum of n-body operators, Ωκ,λ,··· (Xκ, Xλ, · · ·), where n is the number of modes

referenced:

Ω (X) = Ω0 + Ω[1] (X) + Ω[2] (X) + · · · (54)

Ω0 = Ω
(
X0
)

(55)

Ω[1] (X) =
Nv∑
κ

Ωκ (Xκ) (56)

Ω[2] (X) =
Nv∑
κ<λ

Ωκ,λ (Xκ, Xλ) (57)

Ωκ (Xκ) = Ω (Xκ)− Ω0 (58)
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Ωκ,λ (Xκ, Xλ) = Ω (Xκ, Xλ)− Ωκ − Ωλ − Ω0 (59)

where Ω (Xκ) is a 1-D slice through mode κ, i.e. setting all Xλ = 0, λ 6= κ. Similarly,

Ω (Xκ, Xλ) is a 2-D plane through modes κ, λ. The superscript [n] indicates that only n-

body operators are involved. If carried to completion MBE is exact by definition. However,

unlike Taylor expansion it can be truncated without introducing artificial instabilities.

We can require that the SQ operator, Ω̂, has the same matrix elements,

〈ΦP |Ω (X) |ΦQ〉 = 〈ΦP | Ω̂ |ΦQ〉 (60)

leading to the following form,

Ω̂ = Ω0 +
Nv∑
κ

Mκ∑
p,q

Ωκ
pqb

κ†
p b

κ
q +

Nv∑
κ<λ

Mκ∑
p,q

Mλ∑
r,s

Ωκ,λ
pq,rsb

κ†
p b

κ
q b
λ†
r b

λ
s + · · · (61)

with multidimensional integrals

Ωκ
pq =

〈
φκp
∣∣Ωκ

∣∣φκq〉 (62)

Ωκ,λ
pq,rs =

〈
φκpφ

λ
r

∣∣Ωκ,λ
∣∣φκqφλs〉 . (63)

The subscript indices for distinguishable particles are separated by commas, with super-

scripts identifying individual modes.

The kinetic energy operator in Eq. (8) can be quantized without MBE,

T̂n =
Nv∑
κ

Mκ∑
p,q

tκpqb
κ†
p b

κ
q (64)

with NKE integrals,

tκpq = −1

2

〈
φκp
∣∣∇2

κ

∣∣φκq〉 . (65)

In the following, we quantize different components of Ĥmol (X), carrying the MBE up to

first order only.

The clamped nuclei Hamiltonian in Eq. (36) and K̂ (X) in Eq. (44) become, in second-

quantized first-order MBE form,

Ĥ0
e = h00 + h0pqa

†
paq +

1

2
g0pqrsa

†
pa
†
rasaq (66)

Ĥκ
e = hκ0,pqb

κ†
p b

κ
q + hκpq,rsa

†
paqb

κ†
r b

κ
s +

1

2
gκpqrs,tua

†
pa
†
rasaqb

κ†
t b

κ
u (67)

K̂0 = k0pqa
†
paq − d0pqrsa†pa†rasaq (68)

K̂κ = kκpq,rsa
†
paqb

κ†
r b

κ
s − dκpqrs,tua†pa†rasaqb

κ†
t b

κ
u (69)
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For the operator Ô(κ) in Eq. (48), noting the discussion after Eq. (21), we apply MBE to

f
(κ)
pq ,

f (κ)
pq ≈ f (κ),0

pq +
Nv∑
λ

f (κ),λ
pq . (70)

Substituting Eq. (70) into Eq. (48), using Eq. (39) and Eq. (47), and organising the result

by level of mode coupling, we get

Ô
(κ)
MBE1 = Ô

(κ),[1]
MBE1 + Ô

(κ),[2]
MBE1, (71)

Ô
(κ),[1]
MBE1 = 2a†paqf

(κ),0
pq ∇κ + 2a†paqf

(κ),κ
pq ∇κ + a†paq

[
∇κf

(κ),κ
pq

]
, (72)

Ô
(κ),[2]
MBE1 = 2a†paq

Nv∑
λ 6=κ

(
f (κ),λ
pq

)
∇κ, (73)

where the subscript MBE1 indicates that Eq. (70) was used. Since we are not currently

interested in two-mode coupling terms Ô
(κ),[2]
MBE1 can be ignored, without loss of overall Her-

miticity.

After defining the following integrals,

λ(κ),0pq,rs = f (κ),0
pq 〈φκr | ∇κ |φκs 〉 , (74)

λ(κ),κpq,rs = 〈φκr | f (κ),κ
pq ∇κ +

1

2

[
∇κf

(κ),κ
pq

]
|φκs 〉 (75)

we can write Eq. (72) in fully second quantized form,

Ô
(κ),[1]
MBE1 = 2

(
λ(κ),0pq,rs + λ(κ),κpq,rs

)
a†paqb

κ†
r b

κ
s (76)

Now we can write the complete Ĥmol operator with up to one-mode coupling,

Ĥmol = T̂n + Ĥ0
mol +

Nv∑
κ

Ĥκ
mol, (77)

Ĥ0
mol = h00 +

(
h0pq +

1

2
k0pq

)
a†paq +

1

2
g0pqrsa

†
pa
†
rasaq −

1

2
d0pqrsa

†
pa
†
rasaq, (78)

Ĥκ
mol = hκ0,pqb

κ†
p b

κ
q +

(
hκpq,rs +

1

2
kκpq,rs

)
a†paqb

κ†
r b

κ
s −

(
λ(κ),0pq,rs + λ(κ),κpq,rs

)
a†paqb

κ†
r b

κ
s

+
1

2
gκpqrs,tua

†
pa
†
rasaqb

κ†
t b

κ
u −

1

2
dκpqrs,tua

†
pa
†
rasaqb

κ†
t b

κ
u.

(79)
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IV. CHOICE OF MOLECULAR ORBITALS

A. Relation to BH ansatz

Consider a molecular system with some choice of AO basis. We can construct a set of MOs

ψp (x;X) and SD basis ΨP (x;X) in Eq. (34), which defines the electronic Hilbert space at

each X. While there are many schemes for generating MOs, the BH ansatz is completely

defined by the AO basis alone. Any variation in MOs is just a linear rotation leading to the

same solution of Eq. (24),

Ψ̃P =
∑
Q

CPQ (X) ΨQ (x;X) . (80)

This invariance to the choice of MOs is a very desirable feature, which is preserved in

many approximate methods for solving the electronic SE. By definition, this extends to the

molecular Hilbert space.

Solution to the molecular SE with BH ansatz can be expressed in SD basis using Eq. (80),

Ψ̃mol =
∑
P

∑
Q

C̃Q,PΦQ (X) Ψ̃P (x;X)

=
∑
P

∑
Q

C
′

Q,P (X) ΦQ (X) ΨP (x;X) ,
(81)

where the new expansion coefficients, C
′
Q,P (X) =

∑
R C̃Q,RCRP (X), are geometry depen-

dent.

To understand the relation between BH and our ansatze, we can consider projection of Ψ̃mol

onto our Hilbert space,

Ψmol =
∑
P

∑
Q

|ΨP ,ΦQ〉 〈ΨP ,ΦQ|Ψ̃mol〉

=
∑
P

∑
Q

KQ,PΦQ (X) ΨP (x;X) ,
(82)

with

KQ,P =
∑
R

〈ΦQ|C
′

R,P (X) |ΦR〉 .

Due to geometric dependence of CI coefficients C
′
, the projection in Eq. (82) is exact only

in the limit of a complete vibrational basis. As a consequence, our ansatz is not invariant

to the choice of MOs.
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The vibrational basis functions are playing a dual role, simultaneously describing the vi-

brational structure and any changes in CI coefficients due to choice of MOs and electron

correlation. If there is an artificial strong geometry dependence of MOs, it would need a

large vibrational basis to counteract it. This could be a big weakness in our approach if the

wavefunction converges slowly with increasing vibrational basis. However, even in a finite

basis the variational principle still holds when the full Hamiltonian is used.

At this point it is important to note that simply ignoring NKEC terms in our ansatz does

not lead to the BO solutions, even in a complete basis. This is because truncation of the

Hamiltonian breaks the variation principle, and different choices of MOs would lead to

different Hamiltonians.

B. Canonical HF MOs

If we use real canonical HF MOs as our basis, we can express vector coupling terms in Eq.

(41) analytically by applying generalised Hellman-Feynman theory75

f (κ)
pq =

〈ψp| ∇κF |ψq〉
εq − εp

, (83)

where F is the Fock operator and ε are orbital energies. Clearly, the vector coupling terms

once again diverge at degeneracies. However, the points of degeneracy for MOs are not

necessarily the same as conical intersections with BO states.

We could of course choose a different set of MOs, for example by rotating the occupied and

virtual orbitals among themselves. This could be done based on principles of locality or

diabaticity.10 As we noted in previous section our ansatz is not invariant to the choice of

MOs even with a fixed AO basis, and different MOs could have a varying rate of convergence

with respect to vibrational basis. This requires a careful analysis which we defer to a later

publication. In the current manuscript we use canonical MOs to investigate dependence on

the size of vibrational basis.
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V. APPLICATION TO C2

The derivation of the second quantized Hamiltonian in Eqs. (77), (78) and (79) is formally

exact. We have carried out the MBE only to the first level, but the same procedure can be

applied to derive higher-level coupling terms. The main point which requires clarity is what

effect the MOs have on the final solution. In Section IV A we have shown that our ansatz is

not invariant to the choice of MOs unless the vibrational basis is complete. And, in Section

IV B we discussed some potential instabilities in the Hamiltonian with canonical MOs. In

this section, we address both points with a proof of concept application of our ansatz, testing

how quickly the vibrational basis converges and whether there are any instabilities arising

from NKEC terms.

The vibronic spectrum of C2 presents an ideal test case. Ignoring coupling to rotations and

translations, it is a 1-mode system, making the Hamiltonian in Eq. (77) exact within the

basis set limit. Furthermore, the spectrum is complicated by an avoided crossing between

the ground state X1Σ+
g that couples non-adiabatically through the C–C stretch to excited

state B
′1Σ+

g .83 The next excited state that can couple, D
1
Σ+
g , is high in energy and one

expects that it can be ignored.84 Thus we can use two-state BH ansatz as a reference to

study the vibronic spectrum in the region of avoided crossing.

To measure the extent of NAC, we define a vibrational density matrix

ρκpq = 〈Ψmol| bκ†p bκq |Ψmol〉 , (84)

and since there is only one mode we will drop the superscript κ.

By analogy with natural orbitals in electronic structure theory, the eigenfunctions of ρpq

provide the most compact vibrational basis for representation of Ψmol. The eigenvalues,

σ, play a similar role to electronic natural orbital occupation numbers. If Ψmol can be

represented as a simple product as in Eq. (28) then σ = {1, 0, 0, . . . }. Otherwise, there is

more than one non-zero value and, since there is only one mode, this must be a result of

NAC. Thus σ provides a direct measure of NAC that does not depend on electronic basis.
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A. Reference calculations with Born-Huang ansatz

We used the cc-pVDZ AO basis85 with only s and p functions. MOs were defined by solving

the spin-restricted Hartree-Fock equations. The two lowest energy MOs were kept frozen,

leaving 16 active MOs. The stationary states of the clamped nuclei Hamiltonian Eq. (24)

were found by obtaining the eigensolutions of the Full CI problem, and the elements of

the molecular Hamiltonian H
(e)
PQ and ΛPQ were constructed on a grid as a function of C–

C distance, RCC , with step size ∆RCC = 0.01 Å. The vector and scalar coupling terms,

Eqs. (14) and (18), were calculated by finite difference with a 5-point stencil and a step

size of 0.005Å. All electronic structure calculations were performed using PySCF86 with

modifications to include core orbitals in the overlap of FCI wavefunctions. The resultant

surfaces are shown in Fig. 1.

We used C mass, mC = 12.011 u, equilibrium C–C bond length Req = 1.2755Å, and normal

mode coordinate

Q = (RCC −Req)/
√
µ (85)

where µ = mC/2 is the reduced mass.

The vibrational basis consisted of 101 distributed Gaussians,87

χν (Q) =

(
2γ

π

) 1
4

exp
[
γ(Q−Qν)

2
]
, (86)

using an equidistant grid from ∆RCC = −0.3Å to 1.0Å inclusive, and γ = 1/∆Q2 =

0.151358, where ∆Q is the step size along the normal mode coordinate. This grid covers

the region of the avoided crossing at around ∆RCC = 0.5Å. The number of distributed

Gaussians was chosen to converge the first 30 vibronic states to within 1 cm−1.

An orthonormal set of vibrational basis functions, φp =
∑

ν Cνpχν , was defined by solving

the BO vibrational problem for the electronic ground state, Eq. (29). This basis was used

with both Born-Huang and our ansätze.

The molecular Hamiltonian matrix was constructed by interpolating surfaces in Fig. 1 and

numerically integrating matrix elements in Eq. (10). It was than diagonalised for the refer-

ence vibronic states. This procedure was done with Mathematica.88

The vibronic states were assigned based on the population of electronic states. The ener-
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FIG. 1: Components of Hmol in Eq. (10) for C2 with ∆RCC = RCC −Req. (a) Potential

energy surfaces, (b) F12 term in Eq. (14), (c) off-diagonal elements of K in Eq. (18), (d)

diagonal elements of K in Eq. (18). Derivatives in F and K are with respect to Q in Eq.

(85).

getic contributions from Λ were decomposed into DBOC, Eq. (30), O term, Eq. (21), and

off-diagonal elements of K, Eq. (18). The first is just the adiabatic correction and the last

two lead to non-adiabatic coupling. The level of non-adiabaticity was measured using eigen-

values, σ, of the vibrational density matrix, ρpq. Since there are only two electronic states

there can be at most two non-zero eigenvalues. The results are summarised in Table I.

The first 19 states have relatively small non-adiabatic coupling, judging by values of σ. The

DBOC is almost a constant offset in this region, within a few cm−1. The last 10 states have

strong non-adiabatic coupling which does not always map to a large contribution from the

O term. The off-diagonal elements of K make a negligible contribution for all states. It is
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TABLE I: Vibronic states of C2 using Born-Huang ansatz, M = 101. The first column

indicates state number, ν, with assignment in the footnote either to ground X1Σ+
g or

excited B
′1Σ+

g electronic states. The second column shows energy of each state relative to

ground state energy at equilibrium, E = −75.649896Eh. Columns 3 and 5 show the

energetic contributions (cm−1) from diagonal and off-diagonal elements of K, respectively,

and column 4 shows contributions from O term in Eq. (20). Columns 6 and 7 are the two

largest eigenvalues of vibrational density matrix Eq. (84), ordered by magnitude.

ν E/cm−1 KPP OPQ KPQ σ1 σ2 ν E/cm−1 KPP OPQ KPQ σ1 σ2

1a 920 122.2 0.0 0.0 1.00 0.00 16a 21944 126.8 -10.5 0.0 1.00 0.00

2a 2701 122.2 -0.1 0.0 1.00 0.00 17b 22646 122.7 1.2 0.0 1.00 0.00

3a 4457 122.3 -0.2 0.0 1.00 0.00 18a 23345 129.3 -18.5 0.0 1.00 0.00

4a 6186 122.4 -0.4 0.0 1.00 0.00 19b 23831 123.4 3.4 0.0 1.00 0.00

5a 7889 122.5 -0.5 0.0 1.00 0.00 20a 24703 133.2 -35.9 0.0 0.98 0.02

6a 9565 122.5 -0.7 0.0 1.00 0.00 21b 24996 125.0 10.9 -0.0 0.99 0.01

7a 11214 122.7 -0.9 0.0 1.00 0.00 22a 25999 137.6 -77.2 0.1 0.86 0.14

8a 12835 122.8 -1.1 0.0 1.00 0.00 23b 26159 128.8 36.8 -0.1 0.87 0.13

9a 14428 123.0 -1.5 0.0 1.00 0.00 24b 27191 138.6 -107.2 0.1 0.54 0.46

10a 15992 123.3 -2.0 0.0 1.00 0.00 25a 27358 138.1 46.1 -0.1 0.53 0.47

11a 17528 123.7 -2.9 0.0 1.00 0.00 26b 28315 141.9 -112.0 0.1 0.67 0.33

12a 19034 124.3 -4.2 0.0 1.00 0.00 27a 28552 144.1 29.8 -0.1 0.65 0.35

13b 20199 122.0 0.1 0.0 1.00 0.00 28b 29425 145.8 -118.4 0.1 0.65 0.35

14a 20507 125.2 -6.5 0.0 1.00 0.00 29a 29691 144.5 23.2 0.0 0.62 0.38

15b 21436 122.2 0.4 0.0 1.00 0.00 30b 30534 147.0 -118.8 0.0 0.56 0.44

a Dominant electronic state X1Σ+
g

b Dominant electronic state B
′1Σ+

g

important to note that the energies have almost no dependence on number of vibrational

basis functions, M . For example, using the minimal basis, M = ν, to calculate state ν leads

to maximum error of 0.5 cm−1 with most deviations within 0.1 cm−1. This is the benefit of

using solutions of vibrational problem for the ground state as our basis.
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B. Convergence of our ansatz with vibrational basis

We used the same MOs and vibrational basis in our ansatz as with BH calculations. The

integrals fpq and kpq, in Eqs. (41) and (45), were calculated with finite difference of analytical

MO overlaps. We used a 5-point stencil with a step size of 0.005 a0 along the normalised

normal mode coordinate. They were evaluated on a grid and interpolated with a cubic

spline using SciPy.89 Integrals between distributed Gaussians were evaluated with 6 point

Gauss-Hermite quadrature and an overlap threshold of 10−7. During integration, elements

of the electronic Hamiltonian Eq. (36) were calculated on the fly.

We implemented a general full CI procedure in our general configuration interaction (gci)

code. The full CI vector is represented as contiguous blocks of electronic CI vectors with

each block corresponding to a different vibrational basis function. This allows Hamiltonian

operation on CI vector to be implemented as a nested loop over pairs of vibrational basis

functions in the input and result vectors, followed by extraction of relevant electronic Hamil-

tonian, 〈ΦP | Ĥmol |ΦQ〉, and using a standard routine for operation of electronic Hamiltonian

on an electronic CI vector. The overall procedure can be easily parallelised over vibrational

basis functions.

Using energies from the BH ansatz as a reference, we calculated differences from our ansatz

with M vibrational basis functions. Results for the first and last 15 states are shown in

Table II and Table III, respectively. Blank spaces indicate that M is too small to form a

vibrational state ν on the electronic ground state X1Σ+
g , that is ν > M . Note that this also

applies to vibronic states which are assigned to an excited electronic state B
′1Σ+

g , because

the vibrational basis is ill-suited for those states and that fact overshadows any lack of

invariance to the rotation of MOs that is the current focus.

Looking along each column, it is evident that the convergence is fairly rapid. Only a few

extra basis functions are required to ensure convergence within 1 cm−1. The errors due to

vibrational basis incompleteness also reduce for higher energy states. This is presumably

because the basis is already flexible enough. More localised vibronic states require smaller

bases, as can be seen from rows ν = 13, 15 in Table II. They are the vibrational ground and

first excited states of B
′1Σ+

g , which are both much more localised than for example state

ν = 14 in the same table.
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TABLE II: Energy difference between vibronic states calculated with the Born-Huang

ansatz and with our ansatz, Eour(ν,M)− EBH(ν), in cm−1, for increasing vibrational basis

set size, M .

ν
M

1 2 3 4 5 10 15 20

1 206.3 2.5 0.1 0.0 0.0 0.0 0.0 0.0

2 406.5 7.2 0.3 -0.1 -0.1 -0.1 -0.1

3 603.7 14.1 0.7 -0.2 -0.2 -0.2

4 799.8 23.0 -0.3 -0.3 -0.3

5 995.7 -0.3 -0.3 -0.3

6 -0.3 -0.4 -0.4

7 0.7 -0.5 -0.5

8 7.8 -0.6 -0.6

9 91.0 -0.6 -0.6

10 1965.0 -0.6 -0.7

11 0.3 -0.8

12 4.1 -0.8

13 0.0 0.0

14 29.9 -0.9

15 -0.1 -0.1

Table IV summarises converged results with our ansatz. It includes three eigenvalues of

vibrational density matrix, because this ansatz is not limited to just two electronic states. It

is evident that a third state becomes significant at higher energies. There is a close energetic

agreement with maximum difference of 1.1 cm−1. The small difference is not surprising, since

the BH ansatz only contains two electronic states and our ansatz is in the full space. We

used a minimal AO basis to explore how the agreement improves when more electronic states

are included in the BH ansatz (see Supplementary Material). With two states, the energy

differences are very similar with maximum deviation of 1.1 cm−1 and root-mean-squared-

deviation (RMSD) of 0.7 cm−1. The RMSD reduces down to 0.3 cm−1 with four states,
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TABLE III: Energy difference between vibronic states calculated with the Born-Huang

ansatz and with our ansatz, Eour(ν,M)− EBH(ν), in cm−1, for increasing vibrational basis

set size, M .

ν
M

20 25 30 35

16 -0.7 -1.0 -1.0 -1.0

17 -0.2 -0.2 -0.2 -0.2

18 0.3 -1.0 -1.1 -1.1

19 -0.3 -0.3 -0.3 -0.3

20 5.0 -1.1 -1.1 -1.1

21 -0.3 -0.3 -0.3

22 -1.0 -1.2 -1.2

23 -0.4 -0.4 -0.4

24 -0.6 -1.1 -1.1

25 0.0 -0.6 -0.6

26 -1.0 -1.1

27 -0.7 -0.8

28 -1.0 -1.1

29 -0.7 -0.9

30 32.4 -1.1

which shows that the deviation is due to different electronic spaces.

It is interesting to note that all NKEC terms lead to an almost constant offset and, except

for k0, are generally quite small. In this respect, canonical MOs form a more stable basis

than the BH ansatz, which shows a more chaotic energy decomposition in Table I due to

the avoided crossing.

We repeated the calculations without any NKEC terms in the Hamiltonian. Table V shows

how the energies relative to ground state with this approximation compare to those with BH

ansatz. There is an excellent energetic agreement and the σ values are consistent with results
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TABLE IV: Vibronic states of C2 using our ansatz, M = 35. The first column indicates

state number, ν; the second column shows the energy difference relative to the

Born-Huang ansatz, ∆E(ν) = Eour(ν)− EBH(ν). Later columns show energetic

contributions from different terms in Eqs. (78) and (79). The last three columns show the

largest eigenvalues of vibrational density matrix Eq. (84), ordered by magnitude.

ν ∆E/cm−1 k0 k1 λ d0 d1 σ1 σ2 σ3

1 0.0 122.3 0.0 -1.9 -0.2 0.0 1.00 0.00 0.00

2 -0.1 122.3 0.0 -2.0 -0.2 0.0 1.00 0.00 0.00

3 -0.2 122.3 0.1 -2.1 -0.2 0.0 0.99 0.01 0.00

4 -0.3 122.2 0.1 -2.2 -0.2 0.0 0.99 0.01 0.00

5 -0.3 122.2 0.2 -2.3 -0.2 0.0 0.99 0.01 0.00

6 -0.4 122.2 0.2 -2.3 -0.2 0.0 0.99 0.01 0.00

7 -0.5 122.2 0.2 -2.4 -0.2 0.0 0.99 0.01 0.00

8 -0.6 122.2 0.3 -2.4 -0.2 -0.1 0.98 0.02 0.00

9 -0.6 122.2 0.3 -2.5 -0.2 -0.1 0.98 0.02 0.00

10 -0.7 122.2 0.3 -2.5 -0.2 -0.1 0.98 0.02 0.00

11 -0.8 122.2 0.3 -2.5 -0.2 -0.1 0.97 0.03 0.00

12 -0.9 122.2 0.3 -2.5 -0.2 -0.1 0.97 0.03 0.00

13 0.0 122.8 1.4 -1.6 -2.5 -0.7 1.00 0.00 0.00

14 -0.9 122.2 0.3 -2.5 -0.2 -0.1 0.97 0.03 0.00

15 -0.1 122.8 1.4 -1.6 -2.5 -0.7 0.99 0.01 0.00

16 -1.0 122.2 0.2 -2.4 -0.3 -0.1 0.96 0.04 0.00

17 -0.2 122.8 1.3 -1.6 -2.5 -0.7 0.99 0.01 0.00

18 -1.1 122.2 0.2 -2.4 -0.3 -0.1 0.95 0.05 0.00

19 -0.3 122.7 1.2 -1.6 -2.5 -0.7 0.98 0.02 0.00

20 -1.1 122.2 0.3 -2.3 -0.4 -0.1 0.92 0.07 0.01

21 -0.3 122.7 1.1 -1.6 -2.4 -0.6 0.96 0.03 0.01

22 -1.2 122.3 0.3 -2.0 -0.7 -0.2 0.78 0.19 0.02

23 -0.4 122.6 0.9 -1.8 -2.1 -0.5 0.83 0.15 0.01

24 -1.1 122.5 0.6 -1.7 -1.5 -0.4 0.58 0.40 0.01

25 -0.6 122.4 0.6 -2.1 -1.3 -0.3 0.54 0.43 0.02

26 -1.1 122.5 0.6 -1.7 -1.8 -0.4 0.69 0.28 0.02

27 -0.8 122.4 0.5 -2.0 -1.2 -0.3 0.63 0.34 0.02

28 -1.1 122.5 0.5 -1.8 -1.6 -0.4 0.66 0.31 0.02

29 -0.9 122.4 0.5 -1.8 -1.4 -0.3 0.64 0.33 0.02

30 -1.1 122.4 0.4 -1.9 -1.3 -0.3 0.61 0.36 0.02

from the full Hamiltonian in Table IV, indicating that the wavefunction did not deteriorate.
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TABLE V: Difference in vibronic spectrum with M = 35 and NKEC terms ignored in our

ansatz, ∆E(ν) = (Eour(ν)−Eour(ν = 1))− (EBH(ν)−EBH(ν = 1)). The last three columns

show largest eigenvalues of vibrational density matrix Eq. (84), ordered by magnitude.

ν ∆E/cm−1 σ1 σ2 σ3

1 0.0 1.00 0.00 0.00

2 0.0 1.00 0.00 0.00

3 0.0 0.99 0.01 0.00

4 0.0 0.99 0.01 0.00

5 0.0 0.99 0.01 0.00

6 0.0 0.99 0.01 0.00

7 0.0 0.99 0.01 0.00

8 0.0 0.98 0.02 0.00

9 0.0 0.98 0.02 0.00

10 0.0 0.98 0.02 0.00

11 -0.0 0.97 0.03 0.00

12 -0.1 0.97 0.03 0.00

13 0.8 1.00 0.00 0.00

14 -0.1 0.97 0.03 0.00

15 0.9 0.99 0.01 0.00

16 -0.1 0.96 0.04 0.00

17 0.9 0.99 0.01 0.00

18 -0.2 0.95 0.05 0.00

19 0.9 0.98 0.02 0.00

20 -0.2 0.92 0.07 0.01

21 1.0 0.96 0.03 0.01

22 -0.2 0.78 0.19 0.02

23 0.9 0.83 0.15 0.01

24 0.3 0.58 0.40 0.01

25 0.5 0.54 0.43 0.02

26 0.5 0.69 0.28 0.02

27 0.3 0.63 0.34 0.02

28 0.5 0.66 0.31 0.02

29 0.3 0.64 0.33 0.02

30 0.4 0.61 0.36 0.02

VI. CONCLUSIONS

In this paper, we have introduced a new computational framework for treating molecular

quantum mechanics without the Born-Oppenheimer approximation. The assumption of the
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conventional Born-Huang approach, that an accurate non-adiabatic treatment can be ob-

tained with just a few clamped-nucleus states, is removed by construction. Additionally,

the method avoids instabilities in the Hamiltonian matrix elements and need for diabati-

zation, by adopting a more flexible choice of electronic basis. Instead of requiring that

adiabatic states exactly reproduce the static electronic structure at all geometries, as in the

Born-Huang ansatz, we only require that the mean-field structure is captured, by using a

basis of Slater determinants. These advantages come at the cost of introducing a very large

combined electron-nuclear tensor-product space in which the wavefunction is expanded, and

the cost of solving the full configuration interaction problem in this space is even greater

than the similarly-factorial-scaling electronic full CI. The scaling with vibrational degrees of

freedom can be reduced somewhat by using a truncated many-body expansion. We derived

a fully second quantized molecular Hamiltonian in Eqs. (77), (78), (79) with single par-

ticle creation/annihilation operators for electrons and different vibrational modes. It lays

the foundation for polynomial-scaling approximations to the tensor-product space formal-

ism, similar to conventional approaches to electronic structure such as coupled-cluster and

many-body perturbation theories. We have presented a proof-of-principle example where

there is only one vibrational mode but significant non-adiabatic effects, and have shown

that the tensor-product framework yields additional characterisation of the vibronic inter-

action via the vibrational reduced density matrix. Future efforts will focus on realising

practical approximations that can be deployed on larger molecules.

SUPPLEMENTARY MATERIAL

See Supplementary Material for vibronic spectrum calculations using a minimal AO basis

with up to 4 states in the BH ansatz.
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Appendix A: Frozen Core Approximation

After quantizing electronic degrees of freedom, we can adopt a frozen core Hamiltonian by

including the effect of fixed doubly occupied core orbitals.90–92 In the following we assume

there are nc core orbitals and use letters i, j for their indices. Spin summation over core

orbitals is also carried out.

Freezing core orbitals leaves the Hamiltonian of the same form as in Eq. (51), but core

orbitals are excluded from the summation; the modified energy hc0 is used instead of h0,

hc0 = 2
nc∑
i

(hii + kii) +
nc∑
ij

(2giijj − gijji − dijji), (A1)

and modified core integrals hcpq are used instead of hpq,

hcpq = hpq + kpq +
nc∑
i

(2giipq − giqpi − diqpi). (A2)

REFERENCES

1M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).

2B. T. Sutcliffe, in Potential Energy Surfaces , Lecture Notes in Chemistry, edited by A. F.

Sax (Springer, Berlin, Heidelberg, 1999) pp. 61–96.

3C. J. Ballhausen and A. E. Hansen, Annu. Rev. Phys. Chem. 23, 15 (1972).

4M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press,

London, 1956).
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64I. Kylänpää, M. Leino, and T. T. Rantala, Phys. Rev. A 76, 052508 (2007).
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