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LARGE DEVIATIONS FOR RANDOM WALKS UNDER
SUBEXPONENTIALITY: THE BIG-JUMP DOMAIN

BY D. DENISOV,1 A. B. DIEKER2 AND V. SHNEER1

Heriot-Watt University, IBM Research and EURANDOM

For a given one-dimensional random walk {Sn} with a subexponential
step-size distribution, we present a unifying theory to study the sequences
{xn} for which P{Sn > x} ∼ nP{S1 > x} as n → ∞ uniformly for x ≥ xn. We
also investigate the stronger “local” analogue, P{Sn ∈ (x, x + T ]} ∼ nP{S1 ∈
(x, x + T ]}. Our theory is self-contained and fits well within classical results
on domains of (partial) attraction and local limit theory.

When specialized to the most important subclasses of subexponential dis-
tributions that have been studied in the literature, we reproduce known theo-
rems and we supplement them with new results.

1. Introduction. In general, it poses a challenge to find the exact asymptot-
ics for probabilities that tend to zero. However, due to the vast set of available
tools, a great deal is known about probabilities arising from a one-dimensional
random walk {Sn}. For instance, under Cramér’s condition on the step-size distri-
bution, the famous Bahadur–Ranga Rao theorem describes the deviations of Sn/n

from its mean; see, for instance, Höglund [22]. Other random walks with well-
studied (large) deviation behavior include those with step-size distributions for
which Cramér’s condition does not hold.

Large deviations under subexponentiality. The present paper studies large de-
viations for random walks with subexponential step-size distributions on the real
line. These constitute a large class of remarkably tractable distributions for which
Cramér’s condition does not hold. The resulting random walks have the property
that there exists some sequence {xn} (depending on the step-size distribution) for
which [9]

lim
n→∞ sup

x≥xn

∣∣∣∣ P{Sn > x}
nP{S1 > x} − 1

∣∣∣∣ = 0.(1)

The intuition behind the factor n is that a single big increment causes Sn to become
large, and that this “jump” may occur at each of the n epochs. Given a subexponen-
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tial step-size distribution, it is our aim to characterize sequences {xn} for which (1)
holds. In other words, we are interested in (the boundary of) the big-jump domain.

The big-jump domain has been well studied for special classes of subexponen-
tial distributions. Overviews are given in Embrechts, Klüppelberg and Mikosch
[14], Section 8.6, S. Nagaev [33] and Mikosch and A. Nagaev [30]. Due to
its importance in applications (e.g., [10]), there is a continuing interest in this
topic. Work published after 2003 includes Baltrūnas, Daley and Klüppelberg [2],
Borovkov and Mogulśkiı̆ [7], Hult et al. [23], Jelenković and Momčilović [25],
Konstantinides and Mikosch [27], Ng et al. [35] and Tang [44]. Finally, we also
mention the important articles by Pinelis [38, 39] and Rozovskii [40, 41]. Pinelis
studies large deviations for random walks in Banach spaces, while Rozovskii in-
vestigates general deviations from the mean, beyond the big-jump domain. Our
paper owes much to Rozovskii’s work.

Novelties. Although the sequences for which (1) holds have been characterized
for certain subclasses of subexponential distributions, the novelty of our work is
twofold:

• we present a unified theory within the framework of subexponentiality, which
fits well within classical results on domains of (partial) attraction and local limit
theory, and

• we also study the local analogue of (1); that is, for a given T > 0, we study the
x-domain for which P{Sn ∈ (x, x + T ]} is uniformly approximated by nP{S1 ∈
(x, x + T ]}.

When specialized to the classes of subexponential distributions studied in the lit-
erature, our theory reproduces the sharpest known results with short proofs. More-
over, in some cases it allows to improve upon the best-known boundaries by several
orders of magnitude, as well as to derive entirely new results.

By presenting a unified large-deviation theory for subexponential distributions
in the big-jump domain, we reveal two effects which play an equally important
role. The first effect ensures that having many “small” steps is unlikely to lead to
the rare event {Sn > x}, and the second effect requires that the step-size distribution
be insensitive to shifts on the scale of fluctuations of Sn; the latter is known to
play a role in the finite-variance case [25, 31]. Since one of these effects typically
dominates, this explains the inherently different nature of some of the big-jump
boundaries found in the literature.

It is instructive to see how these two effects heuristically solve the large-
deviation problem for centered subexponential distributions with unit variance.
In this context, the many-small-steps-effect requires that x ≥ Jn, where Jn sat-
isfies J 2

n ∼ −2n log[nP{S1 > Jn}] as n → ∞ [here f (x) ∼ g(x) stands for
limx f (x)/g(x) = 1]. In fact, Jn usually needs to be chosen slightly larger. On
the other hand, the insensitivity-effect requires that x ≥ In, where In satisfies
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P{S1 > In − √
n} ∼ P{S1 > In}. After overcoming some technicalities, our the-

ory allows us to show that (1) holds for xn = In + Jn. We stress, however, that not
only do our results apply to the finite-variance case, but that seemingly “exotic”
step-size distributions with infinite mean fit seamlessly into the framework.

The second novelty of our work, the investigation of local asymptotics, also
has far-reaching consequences. A significant amount of additional arguments are
needed to prove our results in the local case, but local large-deviation theorems are
much stronger than their global counterparts. Let us illustrate this by showing that
our local results under subexponentiality immediately yield interesting and new
theorems within the context of light tails. Indeed, given γ > 0 and a subexponential
distribution function F for which L(γ ) = ∫

e−γyF (dy) < ∞, consider the random
walk under the measure P∗ determined by

P∗{S1 ∈ dx} = e−γ xF (dx)∫
R

e−γyF (dy)
.

Distributions of this form belong to the class which is usually called S(γ ) (but
S(γ ) is larger; see [13]). Suppose that for any T > 0, we have P{Sn ∈ (x, x+T ]} ∼
nP{S1 ∈ (x, x + T ]} uniformly for x ≥ xn, where {Sn} is a P-random walk with
step-size distribution F and {xn} does not depend on T . Using our local large-
deviation results and an elementary approximation argument, we readily obtain
that

lim
n→∞ sup

x≥xn

∣∣∣∣ P∗{Sn > x}
nL(γ )1−nP∗{S1 > x} − 1

∣∣∣∣ = 0.

Apart from the one-dimensional random-walk setting, our techniques seem to
be suitable to deal with a variety of problems outside the scope of the present
paper. For instance, our arguments may unify the results on large deviations for
multidimensional random walks [4, 23, 32]. Stochastic recurrences form another
challenging area; see [27].

Outline. This paper is organized as follows. In Section 2, we introduce four
sequences that facilitate our analysis. We also state our main result and outline the
idea of the proof. Sections 3–5 contain the proofs of the claims made in Section 2.
Two sequences are typically hardest to find, and we derive a series of useful tools
to find these sequences in Sections 6 and 7. As a corollary, we obtain a large-
deviation result which allows one to conclude that (1) holds with xn = an for
some a > 0. In Sections 8 and 9, we work out the most important special cases
of our theory. An Appendix treats some notions used in the body of the paper.
Appendix A focuses on Karamata theory, while Appendix B discusses the class of
subexponential densities.
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2. Main result and the idea of the proof. We first introduce some notation.
Throughout, we study the random walk {Sn ≡ ξ1 + · · · + ξn} with generic step ξ .
Let F be the step-size distribution, that is, the distribution of ξ . We also fix some
T ∈ (0,∞], and write F(x + �) for P{x < ξ ≤ x + T }, which is interpreted as
F(x) ≡ P{ξ > x} if T = ∞. Apart from these notions, a crucial role in the present
paper is also played by G(x) ≡ P{|ξ | > x}, and the truncated moments μ1(x) ≡∫
|y|≤x yF (dy) and μ2(x) ≡ ∫

|y|≤x y2F(dy).
We say that F is (locally) long-tailed, written as F ∈ L�, if F(x + �) > 0

for sufficiently large x and F(x + y + �) ∼ F(x + �) for all y ∈ R. Since this
implies that x �→ F(logx + �) is slowly varying, the convergence holds locally
uniformly in y. The distribution F is (locally) subexponential, written as F ∈ S�,
if F ∈ L� and F (2)(x + �) ∼ 2F(x + �) as x → ∞. Here F (2) is the twofold
convolution of F . In the local case, for F supported on [0,∞), the class S� has
been introduced by Asmussen, Foss and Korshunov [1].

Throughout, both f (x) � g(x) and f (x) = o(g(x)) as X → ∞ are short-
hand for limx→∞ f (x)/g(x) = 0, while f (x)  g(x) stands for g(x) � f (x).
We write f (x) = O(g(x)) if lim supx→∞ f (x)/g(x) < ∞, and f (x) � g(x) if
f (x) = O(g(x)) and g(x) = O(f (x)).

With the only exception of our main theorem, Theorem 2.1, all proofs for this
section are deferred to Section 3. The proof of Theorem 2.1 is given in Section 4
(global case) and Section 5 (local case).

2.1. Four sequences; main result. Our approach relies on four sequences as-
sociated to F .

Natural scale. We say that a sequence {bn} is a natural-scale sequence if
{Sn/bn} is tight. Recall that this means that for any ε > 0, there is some K > 0
such that P{Sn/bn ∈ [−K,K]} > 1 − ε for all n. An equivalent definition is that
any subsequence contains a subsequence which converges in distribution. Hence,
if Sn/bn converges in distribution, then {bn} is a natural-scale sequence. For in-
stance, if E{ξ} = 0 and E{ξ2} < ∞, then b ≡ {√n} is a natural-scale sequence by
the central limit theorem.

Due to their prominent role in relation to domain of partial attractions, natural-
scale sequences have been widely studied and are well understood; necessary and
sufficient conditions for {bn} to be a natural-scale sequence can be found in Sec-
tion IX.7 of Feller [17]. We stress, however, that we allow for the possibility that
Sn/bn converges in distribution to a degenerate limit; this is typically ruled out
in much of the literature. To give an example, suppose that E{ξ} = 0 and that
E{|ξ |r} < ∞ for some r ∈ [1,2). Then b ≡ {n1/r} is a natural-scale sequence since
Sn/n1/r converges to zero by the Kolmogorov–Marcinkiewicz–Zygmund law of
large numbers.
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We now collect some facts on natural-scale sequences. First, by the lemma in
Section IX.7 of [17] (see also Jain and Orey [24]), we have

lim
K→∞ sup

n
nG(Kbn) = 0(2)

for any natural-scale sequence. The next exponential bound lies at the heart of the
present paper.

LEMMA 2.1. For any natural-scale sequence {bn}, there exists a constant C ∈
(0,∞) such that for any n ≥ 1, c ≥ 1 and x ≥ 0,

P{Sn > x, ξ1 ≤ cbn, . . . , ξn ≤ cbn} ≤ C exp
{
− x

cbn

}
and

P{|Sn| > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn} ≤ C exp
{
− x

cbn

}
.

Insensitivity. Given a sequence b ≡ {bn}, we say that {In} is a b-insensitivity
sequence if In  bn and

sup
x≥In

sup
0≤t≤bn

∣∣∣∣F(x − t + �)

F(x + �)
− 1

∣∣∣∣ → 0.(3)

The next lemma shows that such a sequence can always be found if F is a
(locally) long-tailed distribution.

LEMMA 2.2. Let {bn} be a given sequence for which bn → ∞. We have F ∈
L� if and only if there exists a b-insensitivity sequence for F .

Truncation. Motivated by the relationship between insensitivity and the class
L�, our next goal is to find a convenient way to think about the class of (locally)
subexponential distributions S�.

Given a sequence {bn}, we call {hn} a b-truncation sequence for F if

lim
K→∞ lim sup

n→∞
sup
x≥hn

nP{S2 ∈ x + �,ξ1, ξ2 ∈ (−∞,−Kbn) ∪ (hn,∞)}
F(x + �)

= 0.(4)

It is not hard to see that nF(hn) = o(1) for any b-truncation sequence. We will
see in Lemma 2.3(ii) below that a b-truncation sequence is often independent of
{bn}, in which case we simply say that {hn} is a truncation sequence. The reason
for including the factor n in the numerator is indicated in Section 2.2.

At first sight, this definition may raise several questions. The following lemma
therefore provides motivation for the definition, and also shows that it can often be
simplified. In Section 6, we present some tools to find good truncation sequences.
For instance, as we show in Lemma 6.2, finding a truncation sequence is often
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not much different from checking a subexponentiality property; for this, standard
techniques can be used.

Recall that a function f is almost decreasing if f (x) � supy≥x f (y).

LEMMA 2.3. Let {bn} be a natural-scale sequence.

(i) F ∈ S� if and only if F ∈ L� and there exists a b-truncation sequence
for F .

(ii) If x �→ F(x + �) is almost decreasing, then {hn} can be chosen indepen-
dently of b. Moreover, in that case, {hn} is a truncation sequence if and only if

lim
n→∞ sup

x≥hn

nP{S2 ∈ x + �,ξ1 > hn, ξ2 > hn}
F(x + �)

= 0.

Small steps. We next introduce the fourth and last sequence that plays a central
role in this paper. For a given sequence h ≡ {hn}, we call the sequence {Jn} an h-
small-steps sequence if

lim
n→∞ sup

x≥Jn

sup
z≥x

P{Sn ∈ z + �,ξ1 ≤ hn, . . . , ξn ≤ hn}
nF(x + �)

= 0.(5)

Note that the inner supremum is always attained for z = x if T = ∞. Moreover, in
conjunction with the existence of a sequence for which (1) holds, (7) below shows
that it is always possible to find a small-steps sequence for a subexponential distri-
bution. Since it is often nontrivial to find a good h-small-steps sequence, Section 7
is entirely devoted to this problem.

Main results. The next theorem is our main result.

THEOREM 2.1. Let {bn} be a natural-scale sequence, {In} be a b-insensitivity
sequence, {hn} be a b-truncation sequence and {Jn} be an h-small-steps sequence.
If hn = O(bn) and hn ≤ Jn, we have

lim
n→∞ sup

x≥In+Jn

∣∣∣∣PSn ∈ x + �

nF(x + �)
− 1

∣∣∣∣ = 0.

The next subsection provides an outline of the proof of this theorem; the full
proof is given in Sections 4 and 5. In all of the examples worked out in Sec-
tions 8 and 9, In and Jn are of different orders, and the boundary In + Jn can be
replaced by max(In, Jn). Our proof of the theorem, however, heavily relies on the
additive structure given in the theorem.

In a variety of applications with E{ξ} = 0, one wishes to conclude that P{Sn ∈
na + �} ∼ nP{ξ1 ∈ na + �} for a > 0. As noted, for instance, by Doney [11] and
S. Nagaev [34], it is thus of interest whether na lies in the big-jump domain. Our
next result shows that this can be concluded under minimal and readily verified
conditions. The definition of O-regular variation is recalled in Appendix A; further
details can be found in Chapter 2 of Bingham, Goldie and Teugels [3].
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COROLLARY 2.1. Assume that E{ξ} = 0 and E{|ξ |κ} < ∞ for some 1 < κ ≤
2. Assume also that x �→ F(x+�) is almost decreasing and that x �→ xκF (x+�)

either belongs to Sd or is O-regularly varying. If furthermore

lim
x→∞ sup

0≤t≤x1/κ

∣∣∣∣F(x − t + �)

F(x + �)
− 1

∣∣∣∣ = 0,(6)

then for any a > 0,

lim
n→∞ sup

x≥a

∣∣∣∣ P{Sn ∈ nx + �}
nP{ξ1 ∈ nx + �} − 1

∣∣∣∣ = 0.

2.2. Outline and idea of the proof of Theorem 2.1. The first ingredient in the
proof of Theorem 2.1 is the representation

P{Sn ∈ x + �}
= P{Sn ∈ x + �,B1, . . . ,Bn} + nP{Sn ∈ x + �, B̄1,B2, . . . ,Bn}(7)

+
n∑

k=2

(
n

k

)
P{Sn ∈ x + �, B̄1, . . . , B̄k,Bk+1, . . . ,Bn},

where we set Bi = {ξi ≤ hn}. To control the last term in this expression, we use
a special exponential bound. Note that this bound is intrinsically different from
Kesten’s exponential bound (e.g., [14], Lemma 1.3.5), for which ramifications can
be found in [42].

LEMMA 2.4. For k ≥ 2, set

ε�,k(n) ≡ sup
x≥hn

P{Sk ∈ x + �,ξ1 > hn, ξ2 > hn, . . . , ξk > hn}
F(x + �)

and

η�,k(n,K) ≡ sup
x≥hn

P{Sk ∈ x + �,ξ2 < −Kbn, . . . , ξk < −Kbn}
F(x + �)

.

Then we have ε�,k(n) ≤ ε�,2(n)k−1 and η�,k(n,K) ≤ η�,2(n,K)k−1.

Our next result relies on this exponential bound, and shows that the sum in (7) is
negligible when {hn} is a truncation sequence. In this argument, the factor n in the
numerator of (4) plays an essential role. The next lemma is inspired by Lemma 4
of Rozovskii [40].

LEMMA 2.5. If F ∈ L� and nε�,2(n) = o(1) for some sequence {hn}, then
we have as n → ∞, uniformly for x ∈ R,

P{Sn ∈ x + �}
= P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn}(8)

+ nP{Sn ∈ x + �,ξ1 > hn, ξ2 ≤ hn, . . . , ξn ≤ hn}(1 + o(1)
)
.
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If x is in the “small-steps domain,” that is, if x ≥ Jn, then the first term is small
compared to nF(x +�). Therefore, proving Theorem 2.1 amounts to showing that
the last term in (8) behaves like nF(x + �).

This is where insensitivity plays a crucial role. Intuitively, on the event
B2, . . . ,Bn, Sn − ξ1 stays on its natural scale: |Sn − ξ1| = O(bn). Therefore,
Sn ∈ x + � is roughly equivalent with ξ1 ∈ x ± O(bn) + � on this event. In
the “insensitive” domain (x ≥ In), we know that F(x ± O(bn) + �) ≈ F(x + �),
showing that the last term in (8) is approximately nF(x + �).

3. Proofs for Section 2. In this section we prove all claims in Section 2 except
for Theorem 2.1. Throughout many of the proofs, for convenience, we omit the
mutual dependence of the four sequences. For instance, an insensitivity sequence
should be understood as a b-insensitivity sequence for some given natural-scale
sequence {bn}.

Throughout this section, we use the notation of Lemma 2.4, and abbreviate
ε�,k(n) by εk(n) if T = ∞. This is shortened further if k = 2; we then simply
write ε(n).

PROOF OF LEMMA 2.1. We derive a bound on P{Sn > x, |ξ1| ≤ cbn, . . . ,

|ξn| ≤ cbn}, which implies (by symmetry) the second estimate. A simple variant
of the argument yields the first estimate.

Suppose that {Sn/bn} is tight. The first step in the proof is to show that

lim
K→∞ lim inf

n→∞ P{Sn ∈ [−K2bn,K
2bn], |ξ1| ≤ Kbn, . . . , |ξn| ≤ Kbn} = 1.(9)

To see this, we observe that

P{Sn ∈ [−K2bn,K
2bn], |ξ1| ≤ Kbn, . . . , |ξn| ≤ Kbn}

≥ P{Sn ∈ [−K2bn,K
2bn]} − [1 − P{|ξ1| ≤ Kbn, . . . , |ξn| ≤ Kbn}].

By first letting n tend to infinity and then K , we see that the first term tends to 1
by the tightness assumption, and the second term tends to zero by (2).

We next use a symmetrization argument. Let S′
n be an independent copy of

the random walk Sn, with step sizes ξ ′
1, ξ

′
2, . . . . By (9), there exists a constant

K > 0 such that P{S′
n ≤ K2bn, |ξ ′

1| ≤ Kbn, . . . , |ξ ′
n| ≤ Kbn} ≥ 1/2. On putting

S̃n = Sn − S′
n and ξ̃i = ξi − ξ ′

i , we obtain

P{Sn > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn}
≤ 2P{Sn > x, |ξ1| ≤ cbn, . . . , |ξn| ≤ cbn, S

′
n ≤ K2bn,

|ξ ′
1| ≤ Kbn, . . . , |ξ ′

n| ≤ Kbn}
≤ 2P{S̃n > x − K2bn, |̃ξ1| ≤ (c + K)bn, . . . , |̃ξn| ≤ (c + K)bn}.
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By the Chebyshev inequality, this is further bounded by

2 exp
{
−sx + sK2bn + n log

∫ (c+K)bn

−(c+K)bn

eszF̃ (dz)

}
for all s ≥ 0. Here, F̃ denotes the distribution of ξ1 − ξ2. We use this inequality for
s = 1/(cbn), implying that sK2bn is uniformly bounded in n and c ≥ 1. It remains
to show that the same holds true for the last term in the exponent.

The key ingredient to bound this term is the assumption that {Sn/bn}, and hence
its symmetrized version {S′

n/bn}, is tight. In the proof of the lemma in Section IX.7
of [17], Feller shows that there then exists some c0 such that

A0 ≡ sup
n

n
E{min(̃ξ2, (c0bn)

2)}
b2
n

< ∞.

It is convenient to also introduce B0 ≡ supy≤K+1(e
y − 1 − y)/y2. In conjunction

with the symmetry of F̃ , this immediately yields, for any c ≥ 1,

n log
∫ (c+K)bn

−(c+K)bn

eszF̃ (dz) ≤ n

∫ (c+K)bn

−(c+K)bn

eszF̃ (dz) − n

≤ n

∫ (c+K)bn

−(c+K)bn

[esz − 1 − sz]F̃ (dz)

≤ B0n

∫ (c+K)bn

−(c+K)bn
z2F̃ (dz)

c2b2
n

.

Now, if 1 ≤ c < c0 − K , we bound this by B0nb−2
n

∫ c0bn−c0bn
z2F̃ (dz) ≤ A0B0. In

the complementary case c ≥ c0 − K , we use the monotonicity of the function
x �→ x−2E{min(̃ξ2, x2)} to see that

n

∫ (c+K)bn

−(c+K)bn
z2F̃ (dz)

c2b2
n

≤ (c + K)2

c2 n
E{min(̃ξ2, (c + K)2b2

n)}
(c + K)2b2

n

≤ (1 + K)2n
E{min(̃ξ2, c2

0b
2
n)}

c2
0b

2
n

,

which is bounded by A0(1 + K)2/c2
0. �

PROOF OF LEMMA 2.2. Since bn → ∞, it is readily seen that F ∈ L�

if {In} is an insensitivity sequence. For the converse, we exploit the fact that
x �→ F(logx +�) is slowly varying. The uniform convergence theorem for slowly
varying functions (see, e.g. Bingham, Goldie and Teugels [3], Theorem 1.2.1) im-
plies that there exists some function A, increasing to +∞, such that for z → ∞,

sup
x≥z

sup
0≤y≤A(z)

∣∣∣∣F(x − y + �)

F(x + �)
− 1

∣∣∣∣ → 0.
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To complete the proof, it remains to choose In = A−1(bn). �

PROOF OF LEMMA 2.3. We shall first prove (ii), for which it is sufficient to
show that nη�,2(n,K) vanishes as first n → ∞ and then K → ∞. Observe that

nP{S2 ∈ x + �,ξ2 < −Kbn} = n

∫ −Kbn

−∞
F(dy)F (x − y + �)

≤ nF(−Kbn) sup
y≥x

F (y + �),

which is (up to multiplication by a finite constant) bounded by nF(−Kbn)F (x +
�) for large x as F(· + �) is almost decreasing. The claim therefore follows from
(2).

Let us now prove (i). Let F ∈ S�. From F ∈ L� we deduce that we can find
some function h with h(L) ≤ L/2 and h(L) → ∞ such that

lim
L→∞ sup

x≥L

sup
y∈[−h(L),h(L)]

∣∣∣∣F(x + y + �)

F(x + �)
− 1

∣∣∣∣ = 0.(10)

We start by showing that

lim
L→∞ sup

x≥L

P{S2 ∈ x + �,ξ1 > L,ξ2 > L}
F(x + �)

(11)

= lim
L→∞ sup

x≥2L

P{S2 ∈ x + �,ξ1 > L,ξ2 > L}
F(x + �)

= 0.

The first equality is only nontrivial if T = ∞, and can be deduced by considering
L ≤ x < 2L and x ≥ 2L separately. Next note that for x ≥ 2L, since h(2L) ≤ L,

P{S2 ∈ x + �,ξ1 > L,ξ2 > L}
(12)

≤ P{S2 ∈ x + �} − 2P{S2 ∈ x + �,ξ2 ≤ h(2L)}.
We deduce (11) from the definitions of h and F ∈ S�.

In the global case T = ∞, (11) guarantees the existence of a truncation se-
quence for any F ∈ S� in view of part (ii) of the lemma. Slightly more work is
required to prove this existence if T < ∞, relying on the bound

P{S2 ∈ x + �,ξ1, ξ2 ∈ (−∞,−Kbn) ∪ (hn,∞)}
≤ P{S2 ∈ x + �,ξ1, ξ2 > hn}(13)

+ 2P{S2 ∈ x + �,ξ1 < −Kbn}.
As for the second term, we note that for any x  bn

2P{S2 ∈ x + �,ξ1 < −Kbn} = 2P{S2 ∈ x + �,ξ1 ≤ Kbn}
− 2P{S2 ∈ x + �, |ξ1| ≤ Kbn}

≤ P{S2 ∈ x} − 2P{S2 ∈ x + �, |ξ1| ≤ Kbn}.
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With (10), we readily find some hn  bn such that P{S2 ∈ x + �, |ξ1| ≤ Kbn} is
asymptotically equivalent to G(Kbn)F (x + �) uniformly for x ≥ hn. We may as-
sume without loss of generality that n|PS2 ∈ x/F (x +�)−2| → 0 in this domain,
so that by (2) the second term on the right-hand side of (13) is o(1/n)F (x + �)

uniformly for x ≥ hn, as first n → ∞ and then K → ∞. In view of (11), we
may also assume without loss of generality that P{S2 ∈ x + �,ξ1, ξ2 > hn} is
o(1/n)F (x + �) uniformly for x ≥ hn.

We have now shown that truncation sequences can be constructed if F ∈ S�,
and we proceed to the proof of the converse claim under the assumption F ∈ L.
Suppose that we are given some {hn} and {bn} such that (4) holds. For x ≥ 2hn,
we have

0 ≤ P{S2 ∈ x + �} − 2P{S2 ∈ x + �,ξ1 ∈ [−Kbn,hn]} ≤ η�,2(n,K)F (x + �).

Again with (10), we readily find some fn  hn such that P{S2 ∈ x + �,ξ1 ∈
[−Kbn,hn]} is asymptotically equivalent to F(x + �) uniformly for x ≥ fn.
Therefore F ∈ S�. �

PROOF OF LEMMA 2.4. We only show that the first inequality holds; the sec-
ond is simpler to derive and uses essentially the same idea.

Consider the global case T = ∞. We prove the inequality by induction. For
k = 2, the inequality is an equality. We now assume that the assertion holds for
k − 1 and we prove it for k. Recall that Bj = {ξj ≤ hn}. First, for x < khn,

P{Sk > x, B̄1, . . . , B̄k} = F(hn)
k ≤ εk−1(n)F

(
(k − 1)hn

)
F(hn)

≤ εk−1(n)ε(n)F (khn) ≤ ε(n)k−1F(x).

Second, for x ≥ khn,

P{Sk > x, B̄1, . . . , B̄k}
= P{ξk > x − hn}P{Sk−1 > hn, B̄1, . . . , B̄k−1}

+
∫ x−hn

hn

F (dz)P{Sk−1 > x − z, B̄1, . . . , B̄k−1}

≤ εk−1(n)

(
F(x − hn)F (hn) +

∫ x−hn

hn

F (dz)F (x − z)

)
≤ εk−1(n)ε(n)F (x) ≤ ε(n)k−1F(x).

This proves the assertion in the global case.
In the local case T < ∞, we again use induction. We may suppose that hn > T .

For k = 2, the claim is trivial. Assume now that it holds for k − 1 and prove the
inequality for k. First, for x < khn −T , it is clear that P{ξ1 > hn, ξ2 > hn, . . . , ξk >



LARGE DEVIATIONS UNDER SUBEXPONENTIALITY 1957

hn,Sk ∈ x + �} = 0. Second, for x ≥ khn − T ,

P{Sk ∈ x + �,ξ1 > hn, ξ2 > hn, . . . , ξk > hn}
≤

∫ x−(k−1)hn+T

hn

F (dy)

× P{Sk−1 ∈ x − y + �,ξ1 > hn, . . .}

≤ ε�(n)k−2
∫ x−(k−1)hn+T

hn

F (dy)F (x − y + �)

≤ ε�(n)k−2
∫ x−hn

hn

F (dy)F (x − y + �),

where the latter inequality follows from the fact that (k −1)hn −T ≥ hn for k > 2.
Now note that∫ x−hn

hn

F (dy)F (x − y + �)

≤ P{S2 ∈ x + �,ξ1 > hn, ξ2 > hn} ≤ ε�(n)F (x + �),

and the claim follows in the local case. �

We separately prove Lemma 2.5 in the global case and the local case.

PROOF OF LEMMA 2.5: THE GLOBAL CASE. The assumption F ∈ L is not
needed in the global case. For k ≥ 2, we have

P{Sn > x, B̄1, . . . , B̄k,Bk+1, . . . ,Bn}
= P{B̄1, . . . , B̄k}P{Sn − Sk > x − hn,Bk+1, . . . ,Bn}

+ P{Sn > x,Sn − Sk ≤ x − hn, B̄1, . . . , B̄k,Bk+1, . . . ,Bn}.
We write P1 and P2 for the first and second summands respectively. Since F(hn) ≤
ε(n), the first term is estimated as follows:

P1 ≤ ε(n)k−1P{Sn − Sk > x − hn, B̄1,Bk+1, . . . ,Bn}.
Lemma 2.4 is used to bound the second term:

P2 =
∫ x−hn

−∞
P{Sn − Sk ∈ dz,Bk+1, . . . ,Bn}P{Sk > x − z, B̄1, . . . , B̄k}

≤ ε(n)k−1
∫ x−hn

−∞
PSn − Sk ∈ dz,Bk+1, . . . ,BnF (x − z)

= ε(n)k−1P{ξ1 + Sn − Sk > x,Sn − Sk ≤ x − hn, B̄1,Bk+1, . . . ,Bn}.
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By combining these two estimates, we obtain that

P{Sn > x, B̄1, . . . , B̄k,Bk+1 . . . ,Bn}
≤ ε(n)k−1P{ξ1 + Sn − Sk > x, B̄1,Bk+1, . . . ,Bn}.

Further,

P{Sn > x, B̄1,B2, . . . ,Bn}
≥ P{Sn > x, B̄1,B2, . . . ,Bn, ξ2 ≥ 0, . . . , ξk ≥ 0}
≥ P{ξ1 + Sn − Sk > x, B̄1,B2, . . . ,Bn, ξ2 ≥ 0, . . . , ξk ≥ 0}
= P{ξ1 + Sn − Sk > x, B̄1,Bk+1, . . . ,Bn}P{0 ≤ ξ2 ≤ hn}k−1.

If n is large enough, then P{0 ≤ ξ2 ≤ hn} ≥ P{ξ1 ≥ 0}/2 ≡ β . Therefore, it follows
from the above inequalities that

P{ξ1 + Sn − Sk > x, B̄1,Bk+1, . . . ,Bn}

≤ P{Sn > x, B̄1,B2, . . . ,Bn}
(

1

β

)k−1

.

As a result, we have, for sufficiently large n,

n∑
k=2

(
n

k

)
P{Sn > x, B̄1, . . . , B̄k,Bk+1, . . . ,Bn}

≤ P{Sn > x, B̄1,B2, . . . ,Bn}
n∑

k=2

(
n

k

)(
ε(n)

β

)k−1

= o(n)P{Sn > x, B̄1,B2, . . . ,Bn},
as desired. �

PROOF OF LEMMA 2.5: THE LOCAL CASE. We may assume that hn > T

without loss of generality. The exponential bound of Lemma 2.4 shows that, for
k ≥ 2,

P{Sn ∈ x + �, B̄1, . . . , B̄k,Bk+1, . . . ,Bn}
= P{Sn ∈ x + �,Sn − Sk ≤ x − hn, B̄1, . . . , B̄k,Bk+1, . . . ,Bn}
=

∫ x−hn

−∞
P{Sn − Sk ∈ dz,Bk+1, . . . ,Bn}P{Sk ∈ x − z + �, B̄1, . . . , B̄k}

≤ ε�(n)k−1
∫ x−hn

−∞
PSn − Sk ∈ dz,Bk+1, . . . ,BnF (x − z + �)

≤ ε�(n)k−1P{ξ1 + Sn − Sk ∈ x + �, B̄1,Bk+1, . . . ,Bn}.
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Let x1 > 0 be a constant such that F(0, x1] ≡ β > 0. Then, for n large enough so
that hn > x1,

P{ξ1 + Sn − Sk ∈ x + �, B̄1,Bk+1, . . . ,Bn}
= β1−kP{ξ1 + Sn − Sk ∈ x + �, B̄1,Bk+1, . . . ,Bn,0 < ξ2, . . . , ξk ≤ x1}
≤ β1−kP

{
Sn ∈ (

x, x + (k − 1)x1 + T
]
,

B̄1,Bk+1, . . . ,Bn,0 < ξ2, . . . , ξk ≤ x1
}

≤ β1−kP
{
Sn ∈ (

x, x + (k − 1)x1 + T
]
, B̄1,B2, . . . ,Bn

}
.

Furthermore, we have

P
{
Sn ∈ (

x, x + (k − 1)x1 + T
]
, B̄1,B2, . . . ,Bn

}
=

∫ x−hn+(k−1)x1+T

−∞
P

{
ξ1 > hn, ξ1 ∈ (

x − y, x − y + (k − 1)x1 + T
]}

× P{Sn − ξ1 ∈ dy,B2, . . . ,Bn}.

The condition F ∈ L� ensures that we can find some x0 such that for any x ≥
x0, the inequality F(x + T + �) ≤ 2F(x + �) holds. Assuming without loss of
generality that x1/T is an integer, this implies that for y ≤ x −hn + (k − 1)x1 +T

and n large enough so that hn ≥ x0,

P
{
ξ1 > hn, ξ1 ∈ (

x − y, x − y + (k − 1)x1 + T
]}

= P
{
ξ1 ∈ (

max(hn, x − y), x − y + (k − 1)x1 + T
]}

≤
(k−1)x1/T∑

j=0

F
(
max(hn, x − y) + jT + �

)

≤
(k−1)x1/T∑

j=0

2jF
(
max(hn, x − y) + �

)
≤ 2(k−1)x1/T +1F

(
max(hn, x − y) + �

)
.

Upon combining all inequalities that we have derived in the proof, we conclude
that for large n, uniformly in x ∈ R,

P{Sn ∈ x + �, B̄1, . . . , B̄k,Bk+1, . . . ,Bn}

≤ 2ε�(n)k−1P{Sn ∈ x + �, B̄1,B2, . . . ,Bn}
(

2x1/T

β

)k−1

.

The proof is completed in exactly the same way as for the global case. �
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PROOF OF COROLLARY 2.1. Let a > 0 be arbitrary, and note that it suffices
to prove the claim for a replaced by 2a. By the Kolmogorov–Marcinkiewicz–
Zygmund law of large numbers or the central limit theorem we can take bn =
(na)1/κ . We readily check with (6) that {In ≡ an} is an insensitivity sequence,
and next show that {Jn ≡ an} is a small-steps sequence. Observe that we may set
hn = (na)1/κ by Lemma 6.1 or Lemma 6.2 below. Therefore, we conclude with
Lemma 2.1 that

sup
x≥an

sup
z≥x

P(Sn ∈ z + �,ξ1 ≤ (na)1/κ , . . . , ξn ≤ (na)1/κ)

F (x + �)

= O(1) sup
x≥an

e−x1−1/κ

F (x + �)
.

Now we exploit the insensitivity condition (6) to prove that this upper bound
vanishes. It implies that for any δ > 0, there exists some x0 = x0(δ) > 0 such that

inf
x≥x0

F(x + �)

F(x − x1/κ + �)
≥ 1 − δ.

In particular, F(x + �) ≥ (1 − δ)x
1−1/κ

F (x/2 + �) for x/2 ≥ x0. Iterating, we
obtain

F(x + �)

F(x0 + �)
≥ (1 − δ)x

1−1/κ+(x/2)1−1/κ+(x/4)1−1/κ+··· = ex1−1/κ ln(1−δ)/(1−2−(1−1/κ)).

Since we may choose δ > 0 small enough, we conclude that e−x1−1/κ = o(F (x +
�)) uniformly for x ≥ an. It remains to apply Theorem 2.1. �

4. Proof of Theorem 2.1: the global case. We separately prove the upper and
lower bounds in Theorem 2.1, starting with the lower bound.

PROOF OF THEOREM 2.1: LOWER BOUND. For any K > 0 and x ≥ 0, we
have

P{Sn > x}
≥ nP

{
Sn > x, ξ1 > Kbn, |ξ2| ≤

√
Kbn, . . . , |ξn| ≤

√
Kbn

}
≥ nP{ξ > x + Kbn}P{

Sn−1 > −Kbn, |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn

}
.

Now let ε > 0 be arbitrary, and fix some (large) K such that

lim inf
n→∞ P

{
Sn−1 ∈ [−Kbn,Kbn], |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn

}
(14)

≥ 1 − ε/2,
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which is possible by (9). Since {In} is an insensitivity sequence, provided n is
large enough, we have F(x − bn) ≤ (1 + ε)1/KF (x) for any x ≥ In. In particular,
F(x + Kbn) ≥ (1 + ε)−1F(x) for x ≥ In. Conclude that for any x ≥ In,

P{Sn > x}
nP{ξ > x} ≥ (1 + ε)−1P

{
Sn−1 > −Kbn, |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn

}
,

which must exceed (1 + ε)−1(1 − ε) for large enough n. �

PROOF OF THEOREM 2.1: UPPER BOUND. Since {Jn} is a small-steps se-
quence, it suffices to focus on the second term on the right-hand side of (8).

Fix some (large) K , and suppose throughout that x ≥ In + Jn. Recall that Bi =
{ξi ≤ hn}. Since In  bn and hn = O(bn), we must have x − Jn ≥ hn for large n.
We may therefore write

P{Sn > x, B̄1,B2, . . . ,Bn}
(15)

=
∫ x−Jn

hn

+
∫ ∞
x−Jn

F (du)P{Sn − ξ1 > x − u,B2, . . . ,Bn}.
For u in the first integration interval, we clearly have x − u ≥ Jn, so that by con-
struction of {Jn} and {hn}, for large n,∫ x−Jn

hn

F (du)P (Sn−1 > x − u,B1, . . . ,Bn−1)

≤ e−Kn

∫ x−Jn

hn

F (du)F (x − u) ≤ e−Kn

∫ x−hn

hn

F (du)F (x − u)

≤ e−KnP{S2 > x, ξ1 > hn, ξ2 > hn} ≤ e−KF(x),

where we also used the assumption Jn ≥ hn.
In order to handle the second integral in (15), we rely on the following fact. As

{In} is an insensitivity sequence, we have for large n,

sup
u≥In

F (u)

F (u + bn)
≤ e1/K2

.(16)

We next distinguish between two cases: Jn ≤ Kbn and Jn > Kbn. In the first
case, since x − Jn ≥ In, (16) can be applied iteratively to see that

F(x − Jn) ≤ eJn/(K2bn)F (x) ≤ e1/KF (x).(17)

Now note that the second integral in (15) is majorized by P{ξ > x −Jn} and hence
by e1/KF (x).

Slightly more work is needed if Jn > Kbn. First write the last integral in (15)
as

∫ x−Kbn

x−Jn
+ ∫ ∞

x−Kbn
. Since x −Kbn > x −Jn ≥ In, the argument of the preceding

paragraph shows that P{ξ > x − Kbn} ≤ e1/KF (x). This must also be an upper
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bound for the integral
∫ ∞
x−Kbn

, so it remains to investigate the integral
∫ x−Kbn

x−Jn
,

which is bounded from above by

P{ξ > x − Jn}P{Sn−1 > Jn,B1, . . . ,Bn−1}
+

∫ Jn

Kbn

P{Sn−1 ∈ dy,B1, . . . ,Bn−1}F(x − y).

First, using hn = O(bn), select some c < ∞ such that hn ≤ cbn. Without loss of
generality, we may suppose that K2 > c. Using the first inequality in (17) and
Lemma 2.1, we see that the first term is bounded by O(1)eJn/(K2bn)−Jn/(cbn) ×
F(x) = o(1)F (x) as n → ∞. As x − Jn ≥ In, the second term is bounded by

�Jn/bn�∑
k=K

P{Sn−1/bn ∈ (k, k + 1], ξ1 ≤ hn, . . . , ξn−1 ≤ hn}F(x − kbn)

≤
�Jn/bn�∑
k=K

P{Sn−1 > kbn, ξ1 ≤ cbn, . . . , ξn−1 ≤ cbn}F(x − kbn)

≤ C

�Jn/bn�∑
k=K

e−k/cek/K2
F(x) ≤ C

e−K/c+1/K

1 − e−1/c+1/K2 F(x),

where we have used (16) and (the first inequality of) Lemma 2.1. Since K is arbi-
trary, this proves the upper bound. �

5. Proof of Theorem 2.1: the local case. We use the following notation
throughout this section: set CK

i ≡ {−√
Kbn ≤ ξi ≤ hn} and DK

i ≡ {ξi < −√
Kbn}

for any K > 0. Recall that Bi = {ξi ≤ hn}. As in Section 4, we start with the lower
bound.

PROOF OF THEOREM 2.1: LOWER BOUND. The proof is similar to its global
analogue, again using (14) and insensitivity. First fix some ε > 0, then choose K

(fixed) as in the “global” proof. For later use, by (2) we may assume without loss
of generality that K satisfies supn nG(Kbn) < ε and that e−1/K ≥ 1 − ε.

Repeated application of “insensitivity” shows that for any y ≥ 0, provided n is
large,

inf
x≥In

F (x + y + �)

F(x + �)
≥ exp

{
− y

K2bn

}
, sup

x≥In

F (x + y + �)

F(x + �)
≤ exp

{
y

K2bn

}
.

We next distinguish between the cases Jn ≥ Kbn and Jn < Kbn. In the first
case, since we consider x ≥ In + Jn, we have x − Kbn ≥ In for large n, so that

P{Sn ∈ x + �}
≥ n

∫ Kbn

−Kbn

P
{
Sn−1 ∈ dy, |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn

}
F(x − y + �)
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≥ ne−1/KP
{
Sn−1 ∈ [−Kbn,Kbn], |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn

}
× F(x + �)

≥ ne−1/K(1 − ε)F (x + �),

where the second inequality uses the above insensitivity relations (distinguish be-
tween positive and negative y). Since e−1/K ≥ 1 − ε, this proves the claim if
Jn ≥ Kbn.

We next suppose that Jn < Kbn. Observe that then, for x ≥ In + Jn,

inf−Jn≤y≤0

F(x + y + �)

F(x + �)
≥ exp

{
− Jn

K2bn

}
≥ e−1/K.

Since hn = O(bn) and In  bn, the events CK
1 and {ξ1 > x − Jn} are disjoint for

x ≥ In + Jn, so that with the preceding display,

P{Sn ∈ x + �}
≥ n

∫ Jn

−Kbn

P{Sn−1 ∈ dy,CK
1 , . . . ,CK

n−1}F(x − y + �)

≥ ne−1/KF (x + �)P{Sn−1 ∈ [−Kbn,Jn],CK
1 , . . . ,CK

n−1}
≥ n(1 − ε)F (x + �)P{Sn−1 ∈ [−Kbn,Jn],CK

1 , . . . ,CK
n−1}.

We need two auxiliary observations before proceeding. First, by construction of
K , we have

P{Sn−1 < −Kbn,C
K
1 , . . . ,CK

n−1}
≤ P

{|Sn−1| > Kbn, |ξ1| ≤
√

Kbn, . . . , |ξn−1| ≤
√

Kbn

} ≤ ε.

Furthermore, by definition of Jn, we have for large n,

P{Sn−1 > Jn,C
K
1 , . . . ,CK

n−1}
≤ P{Sn−1 > Jn, ξ1 ≤ hn, . . . , ξn−1 ≤ hn}

=
∞∑

k=0

P{Sn−1 ∈ Jn + kT + �,ξ1 ≤ hn, . . . , ξn−1 ≤ hn}

≤ εn

∞∑
k=0

F(Jn + kT + �) = εnF(Jn) ≤ εnF (hn) ≤ ε,

since nF(hn) = o(1).
The inequalities in the preceding two displays show that

P{Sn−1 ∈ [−Kbn,Jn],CK
1 , . . . ,CK

n−1} ≥ P{CK
1 }n−1 − 2ε,

and by construction of K we may infer that P{CK
1 } ≥ 1 − F(hn) − G(Kbn) ≥

1 − 2ε/n, so that P{CK
1 }n−1 must exceed e−3ε if n is large. �
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The proof of the upper bound is split into two lemmas, Lemma 5.1 and
Lemma 5.2. First note that by Lemma 2.5 and the definition of Jn, it suffices to
show that

lim sup
n→∞

sup
x≥In+Jn

P{Sn ∈ x + �,ξ1 > hn, ξ2 ≤ hn, . . . , ξn ≤ hn}
F(x + �)

≤ 1.

We prove this by truncation from below. The numerator in the preceding display
can be rewritten as

P{Sn ∈ x + �, B̄1,C
K
2 , . . . ,CK

n }
(18)

+
n∑

k=2

(
n − 1
k − 1

)
P{Sn ∈ x + �, B̄1,D

K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n }.

The first probability in this expression is taken care of by the next lemma.

LEMMA 5.1. Under the assumptions of Theorem 2.1, we have

lim sup
K→∞

lim sup
n→∞

sup
x≥In+Jn

P{Sn ∈ x + �, B̄1,C
K
2 , . . . ,CK

n }
F(x + �)

≤ 1.

PROOF. This is similar to the “global” proof of Theorem 2.1, but some new
arguments are needed. We follow the lines of the proof given in Section 4.

Fix some (large) K > 1. Suppose that n is large enough such that

sup
x≥In

F (x + bn + �)

F(x + �)
≤ e1/K2

.(19)

In order to bound the probability

P{Sn ∈ x + �,hn < ξ1 ≤ x − min(Jn,Kbn),C
K
2 , . . . ,CK

n }
≤ P{Sn ∈ x + �,hn < ξ1 ≤ x − min(Jn,Kbn),B2, . . . ,Bn},

exactly the same arguments work as for the global case.
Moreover, after distinguishing between Jn > Kbn and Jn ≤ Kbn, it is not hard

to see with (19) that for x ≥ In + Jn and n large,

P{Sn ∈ x + �,x − min(Jn,Kbn) < ξ1 ≤ x + Kbn,C
K
2 , . . . ,CK

n }

=
∫ min(Jn,Kbn)+T

−Kbn

P{Sn−1 ∈ dy,CK
1 , . . . ,CK

n−1}F(x − y + �)

≤ e1/KP{Sn−1 ∈ [−Kbn,min(Jn,Kbn) + T ],CK
1 , . . . ,CK

n−1}F(x + �),

which is majorized by e1/KF (x + �).
It remains to investigate the regime ξ1 > x + Kbn. Since hn = O(bn), we may

assume without loss of generality that hn ≤ √
Kbn. Exploiting the insensitivity
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inequality (19) and the second inequality of Lemma 2.1, we see that for x ≥ In

and n large enough,

P{Sn ∈ x + �,ξ1 > x + Kbn,C
K
2 , . . . ,CK

n }

≤
∫ T −Kbn

−∞
P
{
Sn−1 ∈ dy, |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn

}
× F(x − y + �)

≤ e1/K2
∞∑

k=K−1

P
{|Sn−1| > kbn, |ξ1| ≤

√
Kbn, . . . , |ξn−1| ≤

√
Kbn

}
× F(x + kbn + �)

≤ Ce1/K2
∞∑

k=K−1

e−k/
√

Kek/K2
F(x + �)

= Ce1/K2 e−(K−1)/
√

K+(K−1)/K2

1 − e−1/
√

K+1/K2
F(x + �).

It is not hard to see (e.g., with l’Hôpital’s rule) that the prefactor can be made
arbitrarily small. �

The next lemma deals with the sum over k in (18). Together with Lemma 5.1, it
completes the proof of Theorem 2.1 in the local case.

LEMMA 5.2. Under the assumptions of Theorem 2.1,

lim sup
n→∞

sup
x≥In+Jn

∑n
k=2

(n−1
k−1

)
P{Sn ∈ x + �, B̄1,D

K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n }

F(x + �)

converges to zero as k → ∞.

PROOF. The kth term in the sum can be written as

P{Sn ∈ x + �, B̄1,D
K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n }

= P{Sn ∈ x + �, B̄1,D
K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n ,Sn − Sk ≤ x − hn}(20)

+ P{Sn ∈ x + �, B̄1,D
K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n ,Sn − Sk > x − hn}.

As for the first term, we know that by definition of η�,k ,

P{Sn ∈ x + �,Sn − Sk ≤ x − hn, B̄1,D
K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n }

=
∫ x−hn

−∞
P{Sn − Sk ∈ dy,CK

k+1, . . . ,C
K
n }
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× P{Sk ∈ x − y + �, B̄1,D
K
2 , . . . ,DK

k }

≤ η�,k

(
n,

√
K

)
P{ξ1 + Sn − Sk ∈ x + �, B̄1,C

K
k+1, . . . ,C

K
n }.

The arguments of the proof of Lemma 2.5 in the local case can be repeated to see
that there exists some γ > 0 independent of K , n and x, such that for any x,

P{ξ1 + Sn − Sk ∈ x + �, B̄1,C
K
k+1, . . . ,C

K
n }

≤ 2γ k−1P{Sn ∈ x + �, B̄1,C
K
2 , . . . ,CK

n }.
As n → ∞ and then K → ∞, the probability on the right-hand side is bounded by
F(x + �) in view of Lemma 5.1. We use the assumption on η�,2(n,K) to study
the prefactor: with Lemma 2.4 and some elementary estimates, we obtain

lim
K→∞ lim sup

n→∞

n∑
k=2

(
n − 1
k − 1

)
γ k−1η�,k

(
n,

√
K

) = 0.

We now proceed to the second term on the right-hand side of (20):

P{Sn ∈ x + �,Sn − Sk > x − hn, B̄1,D
K
2 , . . . ,DK

k ,CK
k+1, . . . ,C

K
n }

≤
∫ hn+T

−∞
P{Sk ∈ dy, B̄1,D

K
2 , . . . ,DK

k }

× P{Sn − Sk ∈ x − y + �,CK
k+1, . . . ,C

K
n }

≤ P{B̄1,D
K
2 , . . . ,DK

k } sup
z>x−hn−T

P{Sn − Sk ∈ z + �,CK
k+1, . . . ,C

K
n }.

Since {bn} and {hn} are natural-scale and truncation sequences, respectively, the
first probability is readily seen to be o(n−k) as first n → ∞ and then K → ∞.

In order to investigate the supremum in the preceding display, we choose x0 > 0
such that F(x0 + �) ≡ β > 0. Without loss of generality, we may assume that
hn > x0. Then we have

P{Sn − Sk ∈ z + �,CK
k+1, . . . ,C

K
n }

= β−kP{Sn − Sk ∈ z + �,CK
k+1, . . . ,C

K
n , ξ1 ∈ x0 + �, . . . , ξk ∈ x0 + �}

≤ β−kP{Sn ∈ z + kx0 + (k + 1)�,

CK
k+1, . . . ,C

K
n , ξ1 ∈ x0 + �, . . . , ξk ∈ x0 + �}

≤ β−k
k∑

j=0

P{Sn ∈ z + kx0 + jT + �,CK
1 , . . . ,CK

n }

≤ 2kβ−k sup
u>z

P{Sn ∈ u + �,CK
1 , . . . ,CK

n },
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showing that

sup
z>x−hn−T

P{Sn − Sk ∈ z + �,CK
k+1, . . . ,C

K
n }

≤ 2kβ−k sup
z>x−hn−T

P{Sn ∈ z + �,CK
1 , . . . ,CK

n }.

This implies that, uniformly for x ≥ In + Jn, as n → ∞ and then K → ∞,
n∑

k=2

(
n − 1
k − 1

)
P{Sn ∈ x + �, B̄1,D2, . . . ,Dk,C

K
k+1, . . . ,C

K
n ,Sn − Sk > x − hn}

=
n∑

k=2

(
n − 1
k − 1

)
o(n−k)kβ−k sup

z>x−hn−T

P{Sn ∈ z + �,CK
1 , . . . ,CK

n }

= o(1/n) sup
z>x−hn−T

P{Sn ∈ z + �,CK
1 , . . . ,CK

n }

≤ o(1/n) sup
z>x−hn−T

P{Sn ∈ z + �,ξ1 ≤ hn, . . . , ξn ≤ hn}

≤ o(1)F (x − hn − T + �),

where we have used the definition of the small-steps sequence {Jn}, in conjunction
with the assumptions that hn = O(bn) and In  bn.

Since Jn ≥ hn, we clearly have x − hn ≥ In in the regime x ≥ In + Jn. There-
fore, insensitivity shows that F(x −hn − T +�) = O(1)F (x +�), and the claim
follows. �

6. On truncation sequences. It is typically nontrivial to choose good trun-
cation and small-steps sequences. Therefore, we devote the next two sections to
present some techniques which are useful for selecting {hn} and {Jn}. The present
section focuses on truncation sequences {hn}. We give two tools for selecting trun-
cation sequences.

We first investigate how to choose a truncation sequence in the presence of O-
regular variation (see Appendix A).

LEMMA 6.1. If x �→ F(x +�) is almost decreasing and O-regularly varying,
then {hn} is a truncation sequence if nF(hn) = o(1).

PROOF. Let us first suppose that T = ∞. Using Lemma 2.3(ii), the claim is
proved once we have shown that ε�,2(n) = o(1/n) if nF(hn) = o(1). To this end,
we write

P{S2 > x, ξ1 > hn, ξ2 > hn} ≤ 2P{ξ1 > x/2, ξ2 > hn} = 2F(hn)F (x/2),

and note that for x ≥ hn, F(x/2) = O(F(x)) as a result of the assumption that F

is O-regularly varying.
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For the local case, it suffices to prove that nε�,2 = o(1) if nF(hn) = o(1). Since
the mapping x �→ F(x + �) is O-regularly varying, the uniform convergence the-
orem for this class (Theorem 2.0.8 in [3]) implies that supy∈[1/2,1] F(xy + �) ≤
CF(x +�) for some constant C < ∞ (for large enough x). Therefore, if n is large,
we have for x ≥ hn,

P{S2 ∈ x + �,ξ1 > hn, ξ2 > hn}
≤ 2P{S2 ∈ x + �,hn < ξ1 ≤ x/2 + T , ξ2 > x/2}
≤ 2

∫ x/2+T

hn

F (dy)F (x − y + �),

which is bounded by 2CF(hn)F (x + �); the claim follows. �

The next lemma is our second tool for selecting truncation sequences. For the
definition of Sd , we refer to Appendix B.

LEMMA 6.2. Let x �→ F(x +�) be almost decreasing, and suppose that x �→
xrF (x+�) belongs to Sd for some r > 0. Then any {hn} with lim supn→∞ nh−r

n <

∞ is a truncation sequence.

PROOF. Set H(x) ≡ xrF (x + �), and first consider T = ∞. It follows from
F ∈ L that for large n∫ x/2

hn

F (x − y)F (dy) ≤
�x/2�∑
i=�hn�

F(x − i)F (i, i + 1]

≤
�x/2�∑
i=�hn�

F(x − i)F (i)

≤ 2
�x/2�∑
i=�hn�

∫ i+1

i
F (x − y)F (y) dy

≤ 2
∫ x/2

hn

F (x − y)F (y) dy.

By Lemma 2.3(ii) and the above arguments, we obtain

ε�,2(n) = sup
x≥2hn

F (x/2)2 + 2
∫ x/2
hn

F (x − y)F (dy)

F (x)

≤ 2 sup
x≥2hn

F (x/2)2 + 2
∫ x/2
hn

F (x − y)F (y) dy

F (x)
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≤ 2r+1

hr
n

sup
x≥2hn

(
H(x/2)2 + ∫ x/2

hn
H(x − y)H(y)dy

H(x)

)
.

We now exploit the assumption that H ∈ Sd . First observe that
∫ x/2
x/2−T H(y)H(x−

y)dy = o(H(x)) if H ∈ Sd , implying H(x/2)2 = o(H(x)) in conjunction with
H ∈ L. We deduce that for any M > 0,

ε�,2(n) ≤ o(h−r
n ) + O(h−r

n ) sup
x≥2hn

∫ x/2
M H(y)H(x − y)dy

H(x)
,

so that ε�,2(n) = o(h−r
n ).

Let us now turn to the case T < ∞. Note that by Lemma 2.3(ii), we exploit the
long-tailedness of x �→ F(x + �) to obtain, for large n,

ε�,2(n) ≤ sup
x≥2hn−T

2
∫ (x+T )/2
hn

F (x − y + �)F(dy)

F (x + �)

≤ 4 sup
x≥2hn

∫ x/2
hn

F (x − y + �)F(dy)

F (x + �)
.

An elementary approximation argument, again relying on the long-tailedness as-
sumption, shows that uniformly for x ≥ 2hn,∫ x/2

hn

F (x − y + �)F(dy) ∼ 1

T

∫ x/2

hn

F (y + �)F(x − y + �)dy.

The rest of the proof parallels the global case. �

7. On small-steps sequences. In this section, we investigate techniques that
are often useful for selecting small-steps sequences {Jn}. That is, we derive bounds
on P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn} under a variety of assumptions.

We first need some more notation. Write ϕn = E{eξ/hn; ξ ≤ hn}, and let
{ξ (n)

i }∞i=1 be a sequence of “twisted” (or “tilted”) i.i.d. random variables with dis-
tribution function

P
{
ξ (n) ≤ y

} = E{eξ/hn; ξ ≤ hn, ξ ≤ y}
ϕn

.

We also put S
(n)
k = ξ

(n)
1 + · · · + ξ

(n)
k ; note that {S(n)

k } is a random walk for any n.
Next we introduce a sequence {an} which plays an important role in the theory

of domains of (partial) attraction. First define Q(x) ≡ x−2μ2(x) + G(x). It is not
hard to see that Q is continuous, ultimately decreasing and that Q(x) → 0 as
x → ∞. Therefore, the solution to the equation Q(x) = n−1, which we call an, is
well defined and unique for large n.
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LEMMA 7.1. We have the following exponential bounds.

(i) If E{ξ} = 0 and E{ξ2} = 1, then for any ε > 0 there exists some n0 such
that for any n ≥ n0 and any x ≥ 0,

P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn}
≤ exp

{
− x

hn

+
(

1

2
+ ε

)
n

h2
n

}
P
{
S(n)

n ∈ x + �
}
.

(ii) If hn ≥ an and n|μ1(an)| = O(an), then there exists some C < ∞ such
that for any n ≥ 1 and any x ≥ 0,

P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn} ≤ C exp
{
− x

hn

}
P
{
S(n)

n ∈ x + �
}
.

(iii) If E{ξ} = 0 and x �→ F(−x) is regularly varying at infinity with index −α

for some α ∈ (1,2), then for any ε > 0 there exists some n0 such that for any
n ≥ n0 and any x ≥ 0,

P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn}
≤ exp

{
− x

hn

+ n

h2
n

∫ hn

0
u2F(du) + (1 + ε)

(2 − α)

α − 1
nF(−hn)

}
× P

{
S(n)

n ∈ x + �
}
.

(iv) If x �→ F(−x) is regularly varying at infinity with index −α for some α ∈
(0,1), then for any ε > 0 there exists some n0 such that for any n ≥ n0 and any
x ≥ 0,

P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn}
≤ exp

{
− x

hn

+ n

hn

∫ hn

0
uF(du)

+ n

h2
n

∫ hn

0
u2F(du) − (1 − ε)(1 − α)nF(−hn)

}
× P

{
S(n)

n ∈ x + �
}
.

PROOF. We need to investigate n logϕn under the four sets of assumptions of
the lemma, since

P{Sn ∈ x + �,ξ1 ≤ hn, . . . , ξn ≤ hn} = ϕn
nE

{
e−S

(n)
n /hn;S(n)

n ∈ x + �
}

≤ e−x/hn+n logϕnP
{
S(n)

n ∈ x + �
}
.

We start with (i). Since ey ≤ 1 + y + y2/2 + |y|3 for y ≤ 1, some elementary
bounds in the spirit of the proof of Lemma 2.1 show that

n logϕn ≤ n

∫ hn

−hn

[ez/hn − 1]F(dz) ≤ nμ1(hn)

hn

+ nμ2(hn)

2h2
n

+ nμ3(hn)

h3
n

,
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where μ3(hn) = ∫ hn−hn
|z|3F(dz). It follows from E{ξ2} = 1 that μ3(hn) =

o(hn). Indeed, if E{ξ2} < ∞, then E{ξ2f (|ξ |)} < ∞ for some function f (x) ↑
∞, x/f (x) ↑ ∞, so that

μ3(hn) =
∫ hn

−hn

|z|3F(dz) ≤ hn

f (hn)

∫ hn

−hn

z2f (z)F (dz) = O(1)
hn

f (hn)
= o(hn).

One similarly gets μ1(hn) = o(1/hn), relying on E{ξ} = 0. This proves the first
claim.

For (ii), we use similar arguments and the inequality ey − 1 ≤ y + y2 for y ≤ 1.
From hn ≥ an it follows that

nμ1(hn)

hn

+ nμ2(hn)

h2
n

≤ n|μ1(an)| + n
∫ hn
an

yF (dy)

hn

+ nQ(hn)

≤ n|μ1(an)|
an

+ nF(an) + nQ(hn).

The first term is bounded by assumption and the other two are both bounded by
nQ(an) = 1.

To prove the third claim, we use E{ξ} = 0 to write

n logϕn ≤ n

∫ hn

−∞
(eu/hn − 1 − u/hn)F (du)

= n

(∫ 0

−∞
+

∫ hn

0

)
(eu/hn − 1 − u/hn)F (du).

After integrating the first integral by parts twice, we see that∫ 0

−∞
(eu/hn − 1 − u/hn)F (du) = h−2

n

∫ 0

−∞
eu/hn

(∫ u

−∞
F(t) dt

)
du.

By Karamata’s theorem, u �→ ∫ −u
−∞ F(t) dt is regularly varying at infinity with in-

dex −α + 1. We can thus apply a Tauberian theorem (e.g., [3], Theorem 1.7.1) to
obtain for n → ∞,

h−2
n

∫ 0

−∞
eu/hn

(∫ u

−∞
F(t) dt

)
du ∼ h−1

n (2 − α)

∫ −hn

−∞
F(t) dt

∼ (2 − α)

α − 1
F(−hn).

We finish the proof of the third claim by observing that∫ hn

0
(eu/hn − 1 − u/hn)F (du) ≤ h−2

n

∫ hn

0
u2F(du).

Part (iv) is proved similarly, relying on the estimate

n logϕn ≤ n

(∫ 0

−∞
+

∫ hn

0

)
(eu/hn − 1)F (du).
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After integrating the first integral by parts and applying a Tauberian theorem, we
obtain

n

∫ 0

−∞
(eu/hn − 1)F (du) = −nh−1

n

∫ 0

−∞
eu/hnF (u)du ∼ −(1 − α)nF(−hn).

The integral over [0, hn] can be bounded using the inequality ey − 1 ≤ y + y2 for
y ≤ 1. �

In order to apply the estimates of the preceding lemma, we need to study
P{S(n)

n ∈ x + �}. If T = ∞, it is generally sufficient to bound this by 1, but
in the local case we need to study our “truncated” and “twisted” random walk
{S(n)

k } in more detail. Therefore, we next give a concentration result in the spirit
of Gnedenko’s local limit theorem. However, we do not restrict ourselves to distri-
butions belonging to a domain of attraction. Instead, we work within the more
general framework of Griffin, Jain and Pruitt [18] and Hall [19]. Our proof is
highly inspired by these works, as well as by ideas of Esseen [15], Feller [16]
and Petrov [36].

We need the following condition introduced by Feller [16]:

lim sup
x→∞

x2G(x)

μ2(x)
< ∞,(21)

which also facilitates the analysis in [18, 19]. This condition is discussed in more
detail in Section 9.1.

PROPOSITION 7.1. Suppose that we have either:

1. E{ξ2} < ∞ and E{ξ} = 0, or
2. E{ξ2} = ∞ and (21) holds.

Let T < ∞. There exist finite constants C,C′ such that, for all large n,

sup
x∈R

P
{
S(n)

n ∈ x + �
} ≤ C

hn

+ C′

an

.

PROOF. Throughout, C and C ′ denote strictly positive, finite constants that
may vary from line to line.

Let ξ
(n)
s denote the symmetrized version of ξ (n), that is, ξ (n)

s = ξ
(n)
1 −ξ

(n)
2 , where

the ξ
(n)
i are independent. For any ε > 0, we have the Esseen bound (see Petrov [36],

Lemma 1.16 for a ramification)

sup
x∈R

P
{
S(n)

n ∈ x + �
} ≤ Cε−1

∫ ε

−ε

∣∣E{
eitξ (n)}∣∣n dt.



LARGE DEVIATIONS UNDER SUBEXPONENTIALITY 1973

Since x ≤ exp[−(1 − x2)/2] for 0 ≤ x ≤ 1 and |E{eitξ (n)}|2 = E{cos tξ
(n)
s }, this is

further bounded by

Cε−1a−1
n

∫ εan

−εan

∣∣E{
eitξ (n)/an

}∣∣n dt

≤ Cε−1a−1
n

∫ εan

0
exp

[−(n/2)E
{
1 − cos

(
tξ (n)

s /an

)}]
dt

≤ Cε−1h−1
n + Cε−1a−1

n

∫ εan

an/hn

exp
[−(n/2)E

{
1 − cos

(
tξ (n)

s /an

)}]
dt.

Now note that for h−1
n ≤ t ≤ ε, provided ε is chosen small enough,

E
{
1 − cos

(
tξ (n)

s

)} ≥ Ct2E
{(

ξ (n)
s

)2; ∣∣ξ (n)
s

∣∣ ≤ t−1}
≥ Cϕ−2

n t2
∫
x,y≤hn

|x−y|≤t−1

(x − y)2e(x+y)/hnF (dx)F (dy)

≥ Cϕ−2
n t2

∫
|x|≤t−1/2,|y|≤t−1/2

(x − y)2e(x+y)/hnF (dx)F (dy)

≥ Ct2e−t−1/hn[μ2(t
−1/2) − μ1(t

−1/2)2]
≥ Ct2μ2(t

−1/2) − Ct2μ1(t
−1/2)2.

If limx→∞ μ2(x) < ∞ and limx→∞ μ1(x) = 0, then it is clear that we can select
ε so that, uniformly for t ≤ ε,

μ2(t
−1/2) − μ1(t

−1/2)2 ≥ μ2(t
−1/2)/2.

The same can be done if μ2(x) → ∞. Indeed, let a > 0 satisfy G(a) ≤ 1/8.
Application of the Cauchy–Schwarz inequality yields for t < 1/(2a),

μ1(t
−1/2)2 = (

μ1(t
−1/2) − μ1(a) + μ1(a)

)2

≤ 2
(
μ1(t

−1/2) − μ1(a)
)2 + 2μ1(a)2

≤ 2μ2(t
−1/2)G(a) + 2μ1(a)2 ≤ μ2(t

−1/2)/4 + 2μ1(a),

and the assumption μ2(x) → ∞ shows that we can select ε small enough so that
this is dominated by μ2(t

−1/2)/2 for t ≤ ε.
Having seen that E{1 − cos(tξ (n)

s )} ≥ Ct2μ2(t
−1/2), we next investigate the

truncated second moment. To this end, we use (21), which always holds if E{ξ2} <

∞, to see that there exists some C′ such that t2μ2(t
−1/2)/2 ≥ C′Q(t−1/2).

We conclude that there exist some ε,C,C′ ∈ (0,∞) such that

sup
x∈R

P
{
S(n)

n ∈ x + �
} ≤ Cε−1h−1

n + Cε−1a−1
n

∫ 2εan

2an/hn

exp[−C′nQ(ant
−1)]dt.



1974 D. DENISOV, A. B. DIEKER AND V. SHNEER

In order to bound the integral, we use the following result due to Hall [19]. Under
(21), there exists some k ≥ 1 such that for large enough n,∫ 2εan

k
exp[−C′nQ(ant

−1)]dt ≤ C.

If 2an/hn ≥ k, this immediately proves the claim. In the complementary case, we
bound the integral over [2an/hn, k] simply by k. �

8. Examples with finite variance. After showing heuristically how Jn can be
chosen, this section applies our main result (Theorem 2.1) to random walks with
step-size distributions satisfying E{ξ} = 0 and E{ξ2} = 1. Clearly, {Sn/

√
n} is then

tight and thus one can always take bn = √
n as a natural-scale sequence.

Our goals are to show that our theory recovers many known large-deviation
results, and that it fills gaps in the literature allowing new examples to be worked
out. In fact, finding big-jump domains with our theory often essentially amounts
to verifying whether the underlying step-size distribution is subexponential.

8.1. A heuristic for choosing Jn. Before showing how Jn can typically be
guessed in the finite-variance case, we state an auxiliary lemma of which the proof
contains the main idea for the heuristic. Observe that the function g in the lemma
tends to infinity as a consequence of the finite-variance assumption.

LEMMA 8.1. Consider F for which E{ξ} = 0 and E{ξ2} = 1. Let g satisfy
− log[x2F(x +�)] ≤ g(x) for large x and suppose that g(x)/x is eventually non-
increasing.

Let a sequence {Jn} be given.

(i) If T = ∞, suppose that

lim sup
n→∞

g(Jn)

J 2
n /n

<
1

2
.(22)

(ii) If T < ∞, suppose that

lim sup
n→∞

g(Jn)

J 2
n /n + logn

<
1

2
.

If {hn = n/Jn} is a truncation sequence, then {Jn} is a corresponding small-steps
sequence.

PROOF. Let ε > 0 be given. First consider the case T = ∞. By Lemma 7.1(i),
we have to show that the given hn and Jn satisfy

sup
x≥Jn

(
− x

hn

+
(

1

2
+ ε

)
n

h2
n

− logF(x) − logn

)
→ −∞.(23)
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Next observe that Jn  √
n, for otherwise g(Jn) would be bounded; this is impos-

sible in view of the assumption on Jn. Therefore, not only g(x)/x is nondecreasing
for x ≥ Jn, but the same holds true for log[x2/n]/x. This yields, on substituting
hn = n/Jn,

sup
x≥Jn

(
− x

hn

− logF(x) − logn

)
≤ sup

x≥Jn

x

(
−Jn

n
+ g(Jn)

Jn

+ log[J 2
n /n]

Jn

)
,

and the supremum is attained at Jn since the expression between brackets is neg-
ative as a result of our assumption on Jn. Conclude that the left-hand side of (23)
does not exceed

−1 − ε

2

J 2
n

n
+ g(Jn) − log

J 2
n

n
,

which tends to −∞ if ε is chosen appropriately.
The local case T < ∞ is similar. By Proposition 7.1 and Lemma 7.1(i), it now

suffices to show

sup
x≥Jn

(
− x

hn

+
(

1

2
+ ε

)
n

h2
n

− logF(x + �) − logn − loghn

)
→ −∞.

With the above arguments and the identity 2 loghn = logn− log(J 2
n /n), it follows

that the expression on the left-hand side is bounded by

−1 − ε

2

[
J 2

n

n
+ logn

]
+ g(Jn) − 1

2
log

J 2
n

n
,

and the statement thus follows from the assumption on Jn as before. �

The idea of the above proof allows to heuristically find the best possible small-
steps sequence in the finite-variance case. Let us work this out for T = ∞. Use
(23) to observe that Jn is necessarily larger than or equal to(

1

2
+ ε

)
n

hn

− hn logn − hn logF(Jn).

Set ε = 0 for simplicity, and then minimize the right-hand side with respect to hn.
We find that the minimizing value (i.e., the best possible truncation sequence) is

hn =
√

n

−2 log[nF(Jn)] .

Since hn = n/Jn according to the above lemma, this suggests that the following
asymptotic relation holds for the best small-steps sequence:

Jn ∼
√

−2n log[nF(Jn)].(24)

We stress that a number of technicalities need to be resolved before concluding
that any Jn satisfying this relation constitutes a small-steps sequence; the heuristic
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should be treated with care. In fact, one typically needs that Jn is slightly bigger
than suggested by (24). Still, we encourage the reader to compare the heuristic
big-jump domain with the big-jump domain that we find for the examples in the
remainder of this section.

8.2. O-regularly varying tails. In this subsection, it is our aim to recover
A. Nagaev’s classical boundary for regularly varying tails from Theorem 2.1. In
fact, we work in the more general setting of O-regular variation.

PROPOSITION 8.1. Suppose that E{ξ} = 0 and E{ξ2} = 1. Moreover, let x �→
F(x + �) be O-regularly varying with upper Matuszewska index αF and lower
Matuszewska index βF .

1. If T = ∞, suppose that αF < −2, and let t > −βF − 2.
2. If T < ∞, suppose that αF < −3, and let t > −βF − 3.

The sequence {hn ≡ √
n/(t logn)} is a truncation sequence. Moreover, for this

choice of h, {Jn ≡ √
tn logn} is an h-small-steps sequence.

PROOF. We first show that {hn} is a truncation sequence, for which we use
the third part of Lemma 2.3. In the global case, Theorem 2.2.7 in [3] implies that
for any ε > 0, we have F(x) ≤ xαF +ε for large x. By choosing ε small enough,
we get nF(hn) = o(1) since αF < −2. For the local case, we first need to apply
Theorem 2.6.3(a) in [3] and then the preceding argument; this yields that for any
ε > 0, F(x) ≤ x1+αF +ε provided x is large. Then we use αF < −3 to choose ε

appropriately.
Our next aim is to show that {Jn} is a small-steps sequence. We only do this

for T = ∞; the complementary case is similar. Fix some ε > 0 to be deter-
mined later. Again by Theorem 2.2.7 in [3], we know that − log[x2F(x)] is dom-
inated by (−2 − βF + ε) logx, which is eventually nonincreasing on division by
x. Application of Lemma 8.1 shows that it suffices to choose an ε > 0 satisfy-
ing

lim sup
n→∞

(−2 − βF + ε) logJn

J 2
n /n

<
1

2
,

and it is readily seen that this can be done for Jn given in the proposi-
tion. �

With the preceding proposition at hand, we next derive the Nagaev boundary
from Theorem 2.1. Indeed, as soon as an insensitivity sequence {In} is determined,
we can conclude that P{Sn ∈ x + �} ∼ nF(x + �) uniformly for x ≥ In + Jn,
where the sequence {Jn} is given in Proposition 8.1. Since Jn depends on some t

which can be chosen appropriately, the above asymptotic equivalence holds uni-
formly for x ≥ Jn if Jn  In.
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A class of distributions for which we can immediately conclude that Jn  In

is constituted by the requirement that x �→ F(x + �) is intermediate regularly
varying (see Appendix A). Then any In  bn can be chosen as an insensitivity
sequence; see Corollary 2.2I in [8].

The next theorem is due to A. Nagaev in the global case with regularly varying
F ; see [14], Theorem 8.6.2 or Ng et al. [35]. In the local regularly varying case, it
goes at least back to Pinelis [37].

THEOREM 8.1. Let the assumptions of Proposition 8.1 hold, and suppose that
x �→ F(x + �) is intermediate regularly varying at infinity.

With t chosen as in Proposition 8.1, we have P{Sn ∈ x + �} ∼ nF(x + �)

uniformly for x ≥ √
tn logn.

8.3. Logarithmic hazard function. In this subsection, we consider step-size
distributions with

F(x + �) = p(x)e−c logβ x,

where β > 1, c > 0 and p is O-regularly varying with p ∈ L. Note that lognor-
mal distributions as well as Benktander Type I step-size distributions fit into this
framework. Lemma B.1 with R(x) = z(x) = c logβ x shows that x �→ F(x + �)

belongs to the class Sd of subexponential densities.
We first select a small-steps sequence.

PROPOSITION 8.2. Suppose that E{ξ} = 0 and E{ξ2} = 1, and consider the
above setup. Let t > 21−βc.

The sequence {hn ≡
√

n/(t logβ n)} is a truncation sequence, and {Jn ≡√
tn logβ n} is a corresponding small-steps sequence.

PROOF. We only consider the global case, since the same arguments are used
in the local case.

The family of distributions we consider is closed under multiplication by a
polynomial. Moreover, x �→ F(x + �) is almost decreasing. To see this, write
F(x + �) = p(x)xηx−ηe−c logβ x and choose η ∈ R so that p(x)xη is almost de-
creasing; this can be done since the upper Matuszewska index of p is finite. Mem-
bership of Sd in conjunction with Lemma 6.2 shows that {hn} is a truncation se-
quence.

To show that {Jn} is a corresponding small-steps sequence, we note that p(x) ≤
xc′

for some c′ ∈ R provided x is large [3], Theorem 2.2.7. We next use Lemma 8.1
with g(x) = c′ logx + c logβ x. �

Theorem 2.1 yields the big-jump domain as soon as an insensitivity sequence is
selected. This is readily done if p is intermediate regularly varying, and we now
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work out this special case. First note that

F(x − √
n + �)

F(x + �)
= p(x − √

n)

p(x)
exp

(
c
[
logβ x − logβ(

x − √
n
)])

.

Next observe that, by the uniform convergence theorem for regularly varying func-
tions [3], Theorem 1.5.2, x  √

n,

logβ x − logβ(
x − √

n
) ≤ β

√
n sup

x−√
n≤y≤x

y−1 logβ−1 y

∼ βx−1√n logβ−1 x,

and a matching lower bound is derived similarly. This shows that, although the
ratio of the p-functions converges uniformly to 1 in the domain x  √

n, the anal-
ogous domain for the logβ -functions is smaller. We conclude that any In with√

n logβ−1 In = o(In) is an insensitivity sequence; in particular we may choose

any In satisfying In 
√

n log2β−2 n.
We have thus proved the following theorem, which is new in the local case.

As noted in [30], the “global” part (ii) can be deduced from Lemma 2A in Ro-
zovskii [40]. The first part should be compared to Corollary 1 of [40], where a
partial result is obtained.

THEOREM 8.2. Let the assumptions of Proposition 8.2 hold, and suppose that
p is intermediate regularly varying at infinity.

With t chosen as in Proposition 8.2, we have P{Sn ∈ x + �} ∼ nF(x + �):

(i) uniformly for x ≥
√

tn logβ n if 1 < β < 2, and

(ii) uniformly for x ≥ xn for any xn 
√

n log2β−2 n if β ≥ 2.

8.4. Regularly varying hazard function. In this subsection, we consider step-
size distributions with

F(x + �) = p(x)e−R(x),

where R is differentiable. We suppose that p is O-regularly varying with p ∈ L,
and that R′ is regularly varying with index β − 1 for some β ∈ (0,1). In particular,
by Karamata’s theorem, R is regularly varying with index β . Note that Weibull as
well as Benktander Type II step-size distributions fit into this framework. More-
over, Lemma B.1 with z(x) = xα for some α ∈ (β,1) implies that x �→ F(x + �)

belongs to Sd .

PROPOSITION 8.3. Suppose that E{ξ} = 0 and E{ξ2} = 1, and consider the
above setup.

For any ε > 0, the sequence {hn ≡ n(1−β−ε)/(2−β)} is a truncation sequence,
and {Jn ≡ n(1+ε)/(2−β)} is a corresponding small-steps sequence.
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PROOF. Along the lines of the proof of Proposition 8.2. In Lemma 8.1, we use
g(x) = xβ+ε2

. �

In the above proposition, we have not given the best possible small-steps se-
quence, as any insensitivity sequence is asymptotically larger than Jn. To see this
when p is intermediate regularly varying, note that for x  √

n

F(x − √
n + �)

F(x + �)
= p(x − √

n)

p(x)
eR(x)−R(x−√

n) ≤ (
1 + o(1)

)
e
√

n supx−√
n≤y≤x R′(y)

.

Since R′ is regularly varying, we have supx−√
n≤y≤x R′(y) ∼ R′(x) if x  √

n. A

lower bound is proved along the same lines. The observation R′(x) � x−1R(x) al-
lows to show that In  Jn, and the next theorem follows on applying Theorem 2.1.

THEOREM 8.3. Let the assumptions of Proposition 8.3 hold, and suppose that
p is intermediate regularly varying at infinity.

For any {xn} with xn/R(xn)  √
n, we have P{Sn ∈ x + �} ∼ nF(x + �) uni-

formly for x ≥ xn.

8.5. “Light” subexponential tails. In this subsection, we consider “light”
subexponential step-size distributions with

F(x + �) = p(x)e−cx log−β x,

where β > 0, c > 0 and p is O-regularly varying. On setting R(x) = cx log−β x

and noting that yR′(y) = R(y)−βR(y)/ logy, we find with Lemma B.2 that x �→
F(x +�) belongs to Sd . The small-step sequence found in the next proposition is
not the best possible, but it suffices for our purposes.

PROPOSITION 8.4. Suppose that E{ξ} = 0 and E{ξ2} = 1, and consider the
above setup.

The sequence {hn ≡ √
n} is a truncation sequence, and {Jn ≡ exp((c +

ε)1/βn1/(2β))} is a corresponding small-steps sequence for any ε > 0.

PROOF. We only consider the global case, since the local case is similar. The
arguments in the proof of Proposition 8.2 yield that {hn} is a truncation sequence.
To show that {Jn} is a corresponding small-steps sequence, we note that with
Lemma 7.1(i), for x ≥ exp((c + ε)1/βn1/(2β)),

P{Sn > x, ξ1 ≤ √
n, . . . , ξn ≤ √

n}
nF(x)

≤ O(n−1) exp
(−n−1/2x − logF(x + �)

)
≤ O(n−1) exp

(−x[n−1/2 − (c + ε/2) log−β x]),
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which is o(1) since log−β(x) ≤ (c + ε)−1n−1/2. �

When p is intermediate regularly varying, we find an insensitivity sequence
as in the previous two subsections, so that the next theorem follows from Theo-
rem 2.1. To the best of our knowledge, the theorem is the first large-deviation result
for (special cases of) the family under consideration.

THEOREM 8.4. Let the assumptions of Proposition 8.4 hold, and suppose that
p is intermediate regularly varying at infinity.

For any {xn} with xn  n1/(2β), we have P{Sn ∈ x +�} ∼ nF(x +�) uniformly
for x ≥ exp(xn).

9. Examples with infinite variance. It is the aim of this section to work out
our main theorem for classes of step-size distributions with infinite variance. Kara-
mata’s theory of regular variation and its ramifications provide the required addi-
tional structure.

9.1. Infinite variance and a heavy right tail. Having investigated the case
where F is attracted to a normal distribution, it is natural to also study the com-
plementary case. We work within the framework of Karamata theory; see Appen-
dix A.

We need three assumptions. Our main assumption is that

G(x) � x−2μ2(x).(25)

It is a well-known result due to Lévy that the “lower bound” part ensures that F

does not belong to the domain of partial attraction of the normal distribution. For
more details we refer to Maller [28, 29]. Note that the “upper bound” part is ex-
actly (21); it is shown by Feller [16] that this is equivalent with the existence of
sequences {En} and {Fn} such that every subsequence of {Sn/En − Fn} contains a
further subsequence, say {nk}, for which Snk

/Enk
− Fnk

converges in distribution
to a nondegenerate random variable. In that case, {Sn/En − Fn} is called stochas-
tically compact. Note that the required nondegeneracy is the only difference with
{Sn/En − Fn} being stochastically bounded; further details can, for instance, be
found in Jain and Orey [24].

When interpreting (25), it is important to realize the following well-known
fact. If F is attracted to a stable law with index α ∈ (0,2), then the tails
must be regularly varying, and application of Karamata’s theorem shows that
αG(x) ∼ (2 − α)x−2μ2(x). Therefore, our assumption (25) is significantly more
general.

Our second assumption is that the left tail of F is not heavier than the right tail:

lim sup
x→∞

G(x)

F (x)
< ∞.(26)
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In the next subsection, we investigate the complementary case with a heavier left
tail.

Our third assumption, which is formulated in terms of the an defined in Sec-
tion 7, ensures that F is sufficiently centered:

lim sup
n→∞

n|μ1(an)|
an

< ∞.(27)

This assumption often follows from (25), as shown in the next lemma. The lemma
also records other important consequences of (25), and relies completely on the
seminal work on O-regular variation by Bingham, Goldie and Teugels [3]. Item
(i) is due to Feller [16], but the reader is advised to also refer to the extended and
corrected treatment in [3].

LEMMA 9.1. Equation (25) is equivalent to the following two statements:

(i) μ2 is O-regularly varying with Matuszewska indices 0 ≤ βμ2 ≤ αμ2 < 2.
(ii) G is O-regularly varying with Matuszewska indices −2 < βG ≤ αG ≤ 0.

Moreover, under (25), we automatically have (27) if either βG > −1, or if αG < −1
and E{ξ} = 0.

PROOF. All cited theorems in this proof refer to [3]. The equivalence of (25)
and (i), (ii) follows from Theorem 2.6.8(c) and Theorem 2.6.8(d). If βG > −1,
then we have lim supx→∞ x−1 ∫ x

0 yG(dy)/G(x) < ∞ by Theorem 2.6.8(d). Sim-
ilarly, if E{|ξ |} < ∞ and αG < −1, then lim supx→∞ x−1 ∫ ∞

x yG(dy)/G(x) < ∞
by Theorem 2.6.7(a), (c). �

The next proposition gives appropriate truncation and small-steps sequences.

PROPOSITION 9.1. Suppose that (25), (26) and (27) hold. Moreover, if T <

∞, suppose that x �→ F(x + �) is O-regularly varying with upper Matuszewska
index strictly smaller than −1.

Given some {tn} with nG(tn) = o(1), there exists some γ > 0 such that, with

hn ≡ tn

−2γ log[nG(tn/2)] ,

{hn} is a truncation sequence. Moreover, {Jn ≡ tn/2} is then an h-small-steps se-
quence.

PROOF. We first show that {hn} is a truncation sequence. Our assumption on
F(x + �) guarantees that it is almost decreasing. In view of Lemmas 6.1 and 9.1,
it suffices to show that nF(hn) = o(1). The first step is to prove that hn → ∞, for
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which we use the bound G(x) ≥ x−2 for large x (see Theorem 2.2.7 in [3]): we
have that

hn ≥ tn

−2γ log[4nt−2
n ] ≥ tn

−2γ log(n) + 4γ log(tn/2)
≥ tn

4γ log(tn/2)
,

which exceeds any given number for large n. Relying on the fact that hn → ∞, the
Potter-type bounds of Proposition 2.2.1 in [3] yield that for some C′ > 0, provided
n is large, G(tn/2)/G(hn) ≥ C′(tn/(2hn))

−2. Hence, by definition of hn, as n →
∞,

nG(hn) ≤ (C′)−1(−2γ log[nG(tn/2)])2
nG(tn/2) = o(1).

This proves in particular that nF(hn) = o(1), so that {hn} is a truncation sequence.
We now prove that {tn/2} is a small-steps sequence. The idea is to apply

Lemma 7.1(ii), for which we need hn ≥ an. In fact, we have hn  an; this follows
from the fact that nG(an) is bounded away from zero [note that G(x) � Q(x)

by (25)] in conjunction with our observation that nG(hn) = o(1). Throughout the
proof, let C < ∞ be a generic constant which can change from line to line.

First consider the global case T = ∞. Lemma 7.1(ii) shows that for any x ≥ 0,

sup
z≥x

P{Sn > z, ξ1 ≤ hn, . . . , ξn ≤ hn} ≤ C exp(−x/hn).

This shows that for γ > 2, by (26), the aforementioned Potter-type bound and
the definition of hn,

sup
x≥Jn

sup
z≥x

P{Sn > z, ξ1 ≤ hn, . . . , ξn ≤ hn}
nF(x)

≤ C sup
x≥1

e−(tn/(2hn))x

nG(xtn/2)
≤ C sup

x≥1
x2e(1/2)γ log[nG(tn/2)]x exp(−(tn/(4hn)x)

nG(tn/2)

≤ C sup
x≥1

x2e−x exp(−(tn/(4hn))

nG(tn/2)
≤ C(nG(tn/2))γ /2−1 = o(1).

Similar ideas are used to prove the local case, but now we also need the con-
centration result of Proposition 7.1. Since hn  an, we use this proposition in
conjunction with Lemma 7.1(ii) to conclude that

sup
z≥x

P{Sn ∈ z + �,ξ1 ≤ hn, . . . , ξn ≤ hn} ≤ Ca−1
n exp(−x/hn).

To prove the proposition, by (26) it therefore suffices to show that for some γ > 0,

(nF (tn/2))γ = o
(
nanF (tn/2 + �)

)
.

The assumption on F(x + �) is equivalent with F(x) � xF(x + �) by Corol-
lary 2.6.4 of [3]. Therefore, it is enough to prove the above equality with F(tn/2 +
�) replaced by t−1

n F (tn/2).
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On combining the assumption on F(x + �) with (26), we obtain G(x) �
F(x) � xF(x + �). Hence, G has bounded decrease, which implies (see Proposi-
tion 2.2.1 of [3]) that there exists some η > 0 such that

tn

an

[nF(tn/2)]γ−1 ≤ tn

an

[nG(tn/2)]γ−1 ≤ C
tn

an

([
tn

an

]−η

nG(an)

)γ−1

≤ C
tn

an

([
tn

an

]−η

nQ(an)

)γ−1

.

This upper bound vanishes if we choose γ > 1 + 1/η. �

Let us now define bn ≡ hn. Since {Sn/an} is tight under the assumptions of the
preceding proposition (see, e.g., [24], Proposition 1.2), and since we have shown
in its proof that bn  an, we immediately conclude that Sn/bn converges in distri-
bution to zero. In particular, {bn} is a natural-scale sequence.

It remains to choose a corresponding insensitivity sequence. This can immedi-
ately be done under the assumption that x �→ F(x + �) is intermediate regularly
varying (see Appendix A). Indeed, since bn � tn/2, we may set In = tn/2 and
conclude with Corollary 2.2I of [8] that {In} is an insensitivity sequence.

We have proved that the next theorem follows from Theorem 2.1. The theorem
has a long history. In the global regularly varying case, it is due to Heyde [21];
S. Nagaev [34] ascribes it to Tkachuk. For a recent account, see Borovkov and
Boxma [6]. Heyde [20] studies the nonregularly varying case, but only proves the
right order of P{Sn > x}; related results have been obtained by Cline and Hs-
ing [9]. In the local case, only the regularly varying case has been investigated.
Our theorem then reproduces the large-deviation theorem in Doney [12] in the
infinite-mean case, while significantly improving upon the results in Doney [11]
in the complementary case.

THEOREM 9.1. Let the assumptions of Proposition 9.1 hold, and suppose that
x �→ F(x + �) is intermediate regularly varying at infinity.

For any {xn} with nF(xn) = o(1), we have P{Sn ∈ x + �} ∼ nF(x + �) uni-
formly for x ≥ xn.

9.2. Finite mean, infinite variance, and a heavy left tail. In this subsection,
we investigate the case when the left tail is heavier than the right tail, and this tail
causes ξ to be integrable yet to have an infinite second moment. It is our aim to
recover the big-jump result derived by Rozovskii [41] in this context, and to extend
it to the local case.

More precisely, we assume that:

• x �→ F(−x) is regularly varying at infinity with index −α for some α ∈ (1,2),
• x �→ F(x) is regularly varying at infinity with index −β for some β > α, and
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• E{ξ} = 0.

Under these assumptions, F belongs to the domain of attraction of the α-stable
law with a Lévy measure that vanishes on the positive half-line. The theory on
domains of attraction (e.g., [17], Section XVII.5) immediately implies that {bn}
determined by (3 − α)nμ2(bn) = (α − 1)b2

n is a natural-scale sequence. Note
that this sequence is regularly varying with index 1/α, and that nG(bn) tends to
a constant. The next proposition shows how {hn} and {Jn} can be chosen under a
condition which should be compared with [41], (1.19).

PROPOSITION 9.2. Suppose that the above three assumptions hold, and that

lim sup
n→∞

F(−bn/[logn]1/α)

(logn)F (−bn)
≤ 1.(28)

Furthermore, if T < ∞, suppose that F(x + �) is regularly varying.
The sequence {hn ≡ (

β−α
α−1 logn)−1/αbn} is a truncation sequence. Moreover,

given t > 1, if we set

Jn = t

(
β − α

α − 1
logn

)(α−1)/α

bn,

then {Jn} is an h-small-steps sequence.

PROOF. To see that {hn} is a truncation sequence, we use Lemma 6.1 and the
elementary bounds

nF(hn) ≤ nh−3β/4−α/4
n ≤ h−(β−α)/2

n h−β/4−3α/4
n ≤ h−(β−α)/2

n nF (−hn)

≤ 2(logn)h−(β−α)/2
n nF (−bn) ≤ 4(logn)h−(β−α)/2

n ,

where we have used (28). Since {hn} is regularly varying with index 1/α, this
upper bound tends to zero.

We next concentrate on {Jn}, for which we use Lemma 7.1(iii). Choose 0 <

4ε < t − 1. If
∫ ∞

0 u2F(du) = ∞, application of Karamata’s theorem (on the right
tail) shows that

h−2
n

∫ hn

0
u2F(du) = (

1 + o(1)
)
F(hn) = o(F (−hn)).

We reach the same conclusion in the complementary case
∫ ∞

0 u2F(du) < ∞. Us-
ing (28) we obtain that, for large n,

n

h2
n

∫ hn

0
u2F(du) + (1 + ε)

(2 − α)

α − 1
nF(−hn)

≤ (1 + 2ε)
(2 − α)

α − 1
nF(−hn) ≤ (1 + 3ε)

1

α

F(−hn)

F (−bn)
≤ t

β − α

α(α − 1)
logn.(29)
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We now have all the prerequisites to prove the claim in the global case, that is, for
T = ∞. Indeed, we need to show that, for the {hn} and {Jn} given above,

sup
x≥Jn

[
− x

hn

+ t
β − α

α(α − 1)
logn − logn − logF(x)

]
→ −∞.

Fix some 0 < η < (t − 1)(β − α). The elementary estimate F(x) ≥ x−β−η (for
large x) yields an upper bound for which the supremum is attained at Jn for large n.
We conclude that the left-hand side of the preceding display is bounded from above
by

−Jn

hn

+ t
β − α

α(α − 1)
logn − logn +

(
β + η

α

)
logn

= −(t − 1)
β − α

α
logn + η

α
logn → −∞.

It remains to treat the local case T < ∞, for which we use similar arguments
based on Chebyshev’s inequality. The bound (29), in conjunction with Proposi-
tion 7.1(ii) and the fact that hn ≤ bn, shows that it suffices to prove

sup
x≥Jn

[
− x

hn

+ t
β − α

α(α − 1)
logn − logn − logF(x + �) − loghn

]
→ −∞.

The index of regular variation of x �→ F(x + �) is necessarily −β − 1 by Kara-
mata’s theorem. We can now repeat the reasoning for the global case, observing
that − loghn + logJn = o(logJn). �

To gain some intuition for the above proposition, it is instructive to see how {hn}
and {Jn} arise as a result of an optimization procedure similar to the finite-variance
heuristic given at the end of Section 7. Suppose for simplicity that F(−x) = x−α

and that 1 + o(1) may be read as 1. The last but one bound in (29) shows that Jn

must exceed bα
nh−α+1

n − hn logn + β/αhn logn. Now optimize this bound with
respect to hn to find the sequences of the proposition.

We also remark that our reasoning immediately allows for a relaxation of the
assumptions on the right tail, for instance in terms of O-regular variation. In fact,
the proof shows that Karamata assumptions on the right tail can be avoided alto-
gether by assuming that

∫ ∞
0 u2F(du) < ∞, and then replacing β in the statement

by inf{γ : lim infx→∞ xγ F (x) > 0}. Still, regular variation of the left tail is essen-
tial in order to apply Lemma 7.1(iii), which relies on a Tauberian argument.

The next theorem is a corollary of the preceding proposition in conjunction with
Theorem 2.1. In the global case it has been obtained by Rozovskii [41], Corol-
lary 2A.

THEOREM 9.2. Let the assumptions of Proposition 9.2 hold. For any t > 1,
we have P{Sn ∈ x + �} ∼ nF(x + �) uniformly for x ≥ t (

β−α
α−1 logn)(α−1)/αbn.
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9.3. Infinite mean and a heavy left tail. In this subsection we consider the case
when the left tail is heavier than the right tail, and when ξ fails to be integrable.
This situation has recently been studied by Borovkov [5]; we include it here to
show an interesting contrast with the preceding subsection, which is perhaps sur-
prising in view of the unified treatment in Section 9.1 for balanced tails.

We assume that:

• x �→ F(−x) is regularly varying at infinity with index −α for some α ∈ (0,1),
and

• x �→ F(x) is regularly varying at infinity with index −β for some β > α.

Under these assumptions, F is in the domain of attraction of the unbalanced α-
stable law, and {bn} with bn = inf{x :F(−x) < 1/n} is a natural-scale sequence.

The following proposition shows that, in the present situation, one can take a
small-steps sequence which is fundamentally different from the one in Section 9.2.

PROPOSITION 9.3. Suppose that the above two assumptions hold. If T < ∞,
also suppose that F(x + �) is regularly varying.

The sequence {hn ≡ n1/β} is a truncation sequence. Moreover, for any given
ε > 0, the sequence {Jn ≡ n1/β+ε} is an h-small-steps sequence.

PROOF. The proof is modeled after the proof of Proposition 9.2. It becomes
clear with Lemma 6.1 that {hn} is a natural-scale sequence.

We next apply Lemma 7.1(iv). If
∫ ∞

0 uF(du) = ∞, we apply Karamata’s theo-
rem and see that nh−1

n

∫ hn

0 uF(du) is o(nF (−hn)); otherwise we conclude this im-

mediately. Similarly, nh−2
n

∫ hn

0 u2F(du) is always o(nF (−hn)). This shows that,
for sufficiently large n, n log

∫ hn−∞ eu/hnF (du) ≤ 0. Therefore, if T = ∞, it suffices
to observe that hn, Jn satisfy

lim
n→∞ sup

x≥Jn

exp(−x/hn)

nx−β−ε
= 0.

The local case is similar. �

The next theorem, which is new in the local case, immediately follows from the
preceding proposition in conjunction with Theorem 2.1.

THEOREM 9.3. Let the assumptions of Proposition 9.3 hold. For any {xn} with
nF(−xn) = o(1), we have P{Sn ∈ x + �} ∼ nF(x + �) uniformly for x ≥ xn.

APPENDIX A: SOME NOTIONS FROM KARAMATA THEORY

We recall some useful notions from Karamata theory for the reader’s conve-
nience. A positive, measurable function f defined on some neighborhood of infin-
ity is O-regularly varying (at infinity) if

0 < lim inf
x→∞

f (xy)

f (x)
≤ lim sup

x→∞
f (xy)

f (x)
< ∞.
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This is equivalent to the existence of some (finite) αf ,βf with the following
properties. For any α > αf , there exists some C = C(α) such that for any
Y > 1, f (xy)/f (x) ≤ C(1 + o(1))yα uniformly in y ∈ [1, Y ]. Similarly, for any
β < βf , there exists some D = D(β) such that for any Y > 1, f (xy)/f (x) ≥
D(1 + o(1))yβ uniformly in y ∈ [1, Y ]. The numbers αf and βf are called the
upper and lower Matuszewska indices, respectively. We refer to [3], Chapter 2 for
more details.

A positive, measurable function f defined on some neighborhood of infinity is
intermediate regularly varying (at infinity) if

lim
y↓1

lim inf
x→∞

f (xy)

f (x)
= lim

y↓1
lim sup
x→∞

f (xy)

f (x)
= 1.

Intermediate regular variation has been introduced by Cline [8]. Cline also shows
that an intermediate regularly varying function is necessarily O-regularly varying.
Note that regular variation implies intermediate regular variation.

APPENDIX B: THE CLASS Sd OF SUBEXPONENTIAL DENSITIES

We say that a function H : R → R+ belongs to the class Sd if H ∈ L and

lim
x→∞

∫ x/2
0 H(y)H(x − y)dy

H(x)
=

∫ ∞
0

H(y)dy < ∞.

It is important to realize that it is possible to determine whether H belongs to Sd by
considering its restriction to the positive half-line. Under the extra assumptions that
H be monotone and supported on the positive half-line, the requirement H ∈ L is
redundant and the class is usually referred to as S∗.

This section aims to present criteria for assessing whether a function H ∈ L of
the form

H(x) = p(x)e−R(x)(30)

belongs to Sd , where p is O-regularly varying.

LEMMA B.1. Consider H ∈ L of the form (30), where p is O-regularly vary-
ing. Suppose that there exists an eventually concave function z ≥ 0 such that
lim supxz′(x)/z(x) < 1 and the function R(x)/z(x) is eventually nonincreasing.
If, moreover, R(x)  logx, then we have H ∈ Sd .

PROOF. It follows from H ∈ L that there is some h with h(x) ≤ x/2, h(x) →
∞, and H(x − y) ∼ H(x) uniformly for y ≤ h(x). Therefore, we have∫ h(x)

0
H(y)H(x − y)dy ∼ H(x)

∫ h(x)

0
H(y)dy

∼ H(x)

∫ ∞
0

H(y)dy.
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It therefore suffices to show that the integral over the interval (h(x), x/2] is
o(H(x)). Exploiting the assumptions on R and z, the proof of Theorem 2 of
Shneer [43] in conjunction with Property 2 in [42] shows that there exists an
α ∈ (0,1) such that R(x) − R(x − y) ≤ αyR(x)/x for 0 ≤ y ≤ x/2 for large x.
Moreover, since x �→ R(x)/x is ultimately nonincreasing, we have R(x) − R(x −
y) − R(y) ≤ (α − 1)R(y) for h(x) ≤ y ≤ x/2. The imposed O-regular variation
of p implies supu∈[1/2,1] p(ux)/p(x) = O(1) and p(x) ≤ xη for some η < ∞ and
large enough x, showing that∫ x/2

h(x) H(y)H(x − y)dy

H(x)
≤

∫ x/2

h(x)

p(y)p(x − y)

p(x)
e−(1−α)R(y) dy

≤ O(1)

∫ x/2

h(x)
p(y)e−(1−α)R(y) dy

≤ O(1)

∫ x/2

h(x)
y−2 dy,

where we have also used R(x)  logx to obtain the last inequality. �

The next lemma is inspired by Theorem 3.6(b) of Klüppelberg [26].

LEMMA B.2. Consider H ∈ L of the form (30), where p is O-regularly vary-
ing. Suppose that R is differentiable and that R′ is ultimately nonincreasing. If∫ ∞
M eyR′(y)H(y) dy < ∞ for some M < ∞, then H ∈ Sd .

PROOF. As in the proof of the previous lemma, it suffices to bound H(y) ×
H(x − y)/H(x) for y ∈ (h(x), x/2]. We have x − y ≥ y for y ≤ x/2, implying
that

R(x) − R(x − y) ≤ yR′(x − y) ≤ yR′(y).

Note that p(x − y)/p(x) = O(1) uniformly for y ≤ x/2 since p is O-regular
varying, yielding∫ x/2

h(x) H(y)H(x − y)dy

H(x)
≤ O(1)

∫ ∞
h(x)

eyR′(y)H(y) dy,

which vanishes by assumption. �
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