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Driving cessation for some older adults can exacerbate physical, cognitive, and mental
health challenges due to loss of independence and social isolation. Fully autonomous
vehicles may offer an alternative transport solution, increasing social contact and
encouraging independence. However, there are gaps in understanding the impact of
older adults’ passive role on safe human–vehicle interaction, and on their well-being.
37 older adults (mean age ± SD = 68.35 ± 8.49 years) participated in an experiment
where they experienced fully autonomous journeys consisting of a distinct stop (an
unexpected event versus an expected event). The autonomous behavior of the vehicle
was achieved using the Wizard of Oz approach. Subjective ratings of trust and reliability,
and driver state monitoring including visual attention strategies (fixation duration and
count) and physiological arousal (skin conductance and heart rate), were captured
during the journeys. Results revealed that subjective trust and reliability ratings were high
after journeys for both types of events. During an unexpected stop, overt visual attention
was allocated toward the event, whereas during an expected stop, visual attention
was directed toward the human–machine interface (HMI) and distributed across the
central and peripheral driving environment. Elevated skin conductance level reflecting
increased arousal persisted only after the unexpected event. These results suggest that
safety-critical events occurring during passive fully automated driving may narrow visual
attention and elevate arousal mechanisms. To improve in-vehicle user experience for
older adults, a driver state monitoring system could examine such psychophysiological
indices to evaluate functional state and well-being. This information could then be used
to make informed decisions on vehicle behavior and offer reassurance during elevated
arousal during unexpected events.

Keywords: autonomous vehicle, eye tracking, heart rate, human–machine interaction, human–machine interface,
older adults, skin conductance level, trust
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INTRODUCTION

The private car is a vital element for the mental and physical
well-being of older adults. Due to reduced mobility, the public
transport system can be inconvenient and inaccessible (Broome
et al., 2009). For example, challenges such as walking to a bus
stop, or getting on and off a bus, can cause significant problems
for adults with mobility issues. As such, driving provides access
to local services, social events, and encourages participation in
out-of-home activities. As well as the practical benefits to driving,
research has indicated several affective advantages such as feelings
of sensation, power, and youthfulness (Eisenhandler, 1990; Steg,
2005; Bergstad et al., 2011). However, age-related declines
in cognitive, visual capacities, physical disability, and illness,
subsequently impact driving ability as it becomes more physically
and cognitively demanding. The possibility of becoming a non-
driver rises with age (Anstey et al., 2006), and some drivers
choose to restrict their driving (Dellinger et al., 2001). Driving
cessation can have a negative impact on mobility and well-being,
and feelings of isolation can be amplified (Qin et al., 2019). Some
older adults find it more difficult to leave the home and stop
participating in local or social activities (Marottoli et al., 2000),
which in turn leads to a poorer quality of life. Consequently,
ceasing driving can rapidly exacerbate physical, cognitive, and
mental health challenges, and loss of independence.

Autonomous vehicles (AVs) promise to improve driving safety
and efficiency by effectively removing the human from the
driving task altogether. The role of the human is dependent on
the level of autonomy of the vehicle. The Society of Automotive
Engineering illustrated six levels of automation, ranging from
0 “No automation,” to 5 “Full automation” (SAE, 2018). While
Levels 2 and 3 require a driver to monitor the environment and
take back control of the vehicle when requested; Levels 4 and 5
requires little to no input from the driver. As different cognitive
and physical demands of the task are replaced by automation
elements, AVs may offer an alternative transport solution for
the older population. By enabling a viable transportation option,
mobility is likely to be restored enabling older adults to lead
more independent lives (Smith and Anderson, 2017). In turn,
this should promote participation in local and social events,
encouraging feelings of social inclusion and satisfaction.

While the advent of AV technology offers many potential
advantages for an aging population, the impact of the role as
a passive driver on safe human–vehicle interaction and older
adults’ well-being is not fully understood. Previous research has
indicated the negative impact of partially automated vehicles
on safe vehicle interaction, where the human is expected
to stay ‘in-the-loop’ and take back control of the vehicle
during expected or unexpected situations. Yet during Level 5
autonomous driving, the potentially negative consequences of
a takeover request are eliminated due to the fully automatic
capabilities of the vehicle. SAE (2018) refers to the in-vehicle
user as a ‘passenger’ rather than a form of driver. Although
the negative consequences of a takeover should be eliminated,
previous research has demonstrated that full automation still has
a significant impact on cognitive and affective functional state.
From a cognitive perspective, studies have demonstrated that

automation can increase mental underload and promote deficit
attentional strategies (Young and Stanton, 2002). Automation
has also been shown to encourage complacency and overtrust of
a system (Parasuraman and Manzey, 2010), as well as increase
frustration levels, particularly when automation cannot be
overridden (Comte, 2000). These issues are potentially amplified
in an older adult population with aging-related impairments,
as they are more likely to rely on automated systems (McBride
et al., 2011), find it more difficult to perform two or more tasks
simultaneously (Kramer and Madden, 2008), and are more prone
to lack understanding of advanced technology (Mann et al.,
2007). Moreover, research has indicated that older adults have
concerns using AVs due to issues related to trust and confidence,
such as not having an operator nearby during failures (Faber and
van Lierop, 2020). As such, some autonomous driving situations
may initiate feelings of anxiety, and repeated activation of a
stress response could be potentially damaging to their health and
well-being (Cohen et al., 2007).

Considering the significant impact on a passenger’s functional
state, a driver state monitoring (DSM) system including cognitive
and affective indices to improve safety and well-being has
been proposed (Collet and Musicant, 2019). A DSM system
continuously monitors a user using a hybrid of measures
including biological (e.g., muscle activity) and physical measures
(e.g., blink frequency). By synthesizing and classifying functional
state, the system can provide feedback to the passenger or adapt
vehicle behavior. DSM systems have traditionally been applied
during manual driving scenarios to detect fatigue and inattention.
Situations such as night-time driving (Phipps-Nelson et al., 2011),
prolonged driving (Finkleman, 1994), and extreme temperatures
(Xianglong et al., 2018) can induce fatigue; whereas mobile
phones (Strayer and Drews, 2007), in-vehicle systems (Arexis
et al., 2017), and eating (Tay and Knowles, 2004) can induce
inattention. In a manual driving scenario, a DSM system can use
remote sensors to monitor fatigue behaviors such as prolonged
eyelid closures and yawning. Upon detection of these behaviors,
the system can warn the driver, or others, of the potentially
dangerous situation.

Detecting fluctuations in cognitive and affective states with
a DSM system has many potential benefits for improving
passenger well-being and safety during Level 5 driving. The
information about a passenger’s state could be used to modify
in-vehicle information or vehicle behavior. For example, the
in-vehicle system could provide reassurance at the appropriate
time to reduce stress levels. It could also adapt vehicle behavior
to improve comfort, e.g., leaving more headway between the
vehicle in front. Alternatively, the system could identify the
passenger’s cognitive load to present the optimum amount of
feedback or information. For example, it could choose between
auditory or/and visual feedback modalities depending on what
the user is doing or how they are feeling. If the system detects
lapses in attention, it could encourage automation monitoring.
Manual driving research has provided promise toward the
technical development of real-time unobtrusive sensors to detect
driver state, however, additional studies are now needed to
uncover the impact of autonomous driving scenarios on human
cognition and arousal.

Frontiers in Psychology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 571961

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-571961 September 17, 2020 Time: 18:46 # 3

Stephenson et al. Driver State Monitoring in Autonomous Driving

It is not possible to measure typical performance indicators
of functional state during Level 5 autonomous driving as the
passenger is not required to carry out manual driving behaviors
(i.e., speed or lateral position changes). Capturing the human
response in real-time may disentangle functional states during
dynamic autonomous driving scenarios. To this end, most studies
have utilized continuous measures such as eye gaze and indices of
physiological arousal.

Cognitive underload and attentional deficits during
automated driving have been demonstrated by measures of
visual attention indexed by ocular behaviors. Visual strategy
and the distribution of fixation points can provide information
about where and when participants are shifting their attention.
In general, eye gaze has been shown to be directed away from the
driving environment (De Winter et al., 2014), and horizontal gaze
dispersion is greater (Louw and Merat, 2017), when compared
to manual driving, indicating lower situation awareness and
reduced load. However, cognitive load and attentional allocation
evolves over time with changing task demands. For example,
Strauch et al. (2019) found that participants fixated in safety-
critical areas (i.e., the steering wheel and forward roadway) more
so during automated versus manual driving.

Several studies have attempted to understand the associations
between constructs related to automation monitoring and
attention itself. For example, participants with a high level
of trust tended to monitor the road less (e.g., Helldin et al.,
2013; Hergeth et al., 2016; Körber et al., 2018; Walker et al.,
2019); and longer fixation duration and higher fixation count on
the driving environment were associated with greater situation
awareness (Shinohara et al., 2017). Considering the age-related
differences in human-automation interaction, it is not clear
whether similar relationships arise in older adult populations
during Level 5 driving.

Suboptimal levels of cognitive functioning can also be assessed
via psychophysiological measures of autonomic arousal (Lohani
et al., 2019). Carsten et al. (2012) found that heart rate was
lower during autonomous driving when compared to semi-
automated and manual driving, providing further support
for cognitive underload during periods of automation. Yet,
manual driving is confounded by physical effort (e.g., moving
the steering wheel, changing gears) and cardiac activity is
likely to be modulated by motor demands (Laborde et al.,
2017). Similar to studies measuring eye gaze, research into
physiological indices have indicated that safety-critical events
impact functional state. For example, Zheng et al. (2015)
found that masseter electromyography increased, and self-
reported comfort decreased, as the headway between the lead
vehicle decreased. During unexpected takeover requests and
misleading notifications, Ruscio et al. (2017) demonstrated an
increase in sympathetic arousal measured by increased skin-
conductance response amplitude. As increases in arousal have
been linked to attention narrowing (e.g., Laumann et al., 2003),
these results suggest that the breadth of attentional focus
is limited during safety-critical events (Meinlschmidt et al.,
2019). However, Ruscio et al. (2017) employed semi-automated
driving with takeover requests. Therefore, participants were
anticipating a takeover. This is distinct to Level 5 AVs

where participants will not anticipate having any direct
control of the vehicle.

Considering the potential AV benefits for older adults,
such as maintaining mobility and independence, and the age-
related individual differences related to human-automation
collaboration, a comprehensive understanding of older adults’
psychophysiological state during periods of automated driving,
particularly during safety-critical situations, is needed. Typically,
research employs comparisons of autonomous driving to manual
driving, but does not consider the distinct physical and cognitive
demands. To this end, the aim of the present study was to
investigate visual attention and autonomic arousal responses of
older adults to a safety-critical event during a Wizard of Oz real-
world autonomous journey. Participants experienced two types
of stops: (i) one journey with the vehicle executing an unexpected
stop due to detection of a ‘hazard’ (considered the safety-critical
event) and, (ii) a different journey with an expected stop due
to route set up in a repeated measures design with participants
acting as their own controls. We monitored visual attention via
fixation duration and fixation count, as well as physiological
indices of electrodermal activity and heart rate. We also collected
retrospective self-reported trust and reliability ratings in addition
to summary qualitative feedback. We predicted the unexpected
event would narrow the focus of overt visual attention coupled
with an increase in autonomic arousal. This study formed part
of the FLOURISH AV research project1 funded by Innovate UK,
which studied older adults’ perceptions and interactions with
AVs, including the development of an HMI, through co-design
in a series of simulator and real-life studies.

MATERIALS AND METHODS

Participants
Thirty-nine adults originally participated in this study.
Two participants were excluded from all analyzes due to
the AV experiencing technical errors during the journeys,
leaving 37 participants (16 females, 21 males, mean
age ± SD = 68.35 ± 8.49 years, range 48–89 years, two
participants under 60 years). Due to recording errors during
data collection, only 30 participants’ physiological data
were subsequently analyzed (12 females, 18 males, mean
age ± SD = 69 ± 8.75 years, range 48–89 years). Due to
vision complications such as cataract (three), technical errors
including unsuccessful calibration of the eye tracker (five), and
low gaze samples (three), only 26 participants’ eye tracking
data were subsequently analyzed (12 females, 16 males, mean
age± SD = 67.19± 7.32 years, range 52–89 years).

Five participants had corrected hearing. 17 participants were
educated to degree level and 10 participants were working full-
or part-time. All but three participants held a valid driving
license, driving, and on average drove 2,500–4,900 miles a
year. No participants had any previous experience with highly
automated driving. Those with significant health conditions (e.g.,
epilepsy, neurological impairments, and coronary issues) were

1http://www.flourishmobility.com
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not permitted to take part. Participants received a £20 voucher
as compensation for their participation to cover expenses. All
participants gave written informed consent in accordance with
the Declaration of Helsinki and were fully debriefed at the end of
the study. Ethical approval was obtained by the Faculty of Health
and Applied Sciences University of the West of England Research
Ethics Committee (HAS.18.09.024).

Apparatus
Autonomous Vehicle
A Pod Zero autonomous pod provided by Aurrigo (RDM Group)
was used as the AV (see Figure 1). The Pod is a compact research
and development vehicle designed to be used in pedestrian areas
and shared pedestrian/vehicle routes. It is electrically driven
and can be used continuously for a period of 10+ hours of
normal operation. It is a four-seater vehicle, with two benches
facing each other designed similarly to a four-seater in a train.
Due to safety regulations, a safety person was always present
in the vehicle observing the environment and had access to an
emergency stop button. Four marshals supervised the front and
back of the vehicle, and the route was supervised by additional
marshals at each intersection to ensure no vehicles or pedestrians
caused an obstruction.

The autonomous behavior of the Pod was achieved using
the Wizard of Oz approach (Kelley, 1985), whereby the Pod
was remotely teleoperated in manual mode using a hand-held
wireless control unit by an operator positioned behind the
vehicle not in view of the participant. Driving the Pod in
the teleoperated mode ensured that its actions were replicable
between participants; the Pod could be made to respond similarly
to different obstacles and followed the route as planned. At the
beginning of the study, participants were told the vehicle was
run fully autonomously. During debriefing, participants were told
the Pod was operated manually by a teleoperator walking behind
and remotely controlling it during the study. As the driving route
involved a pedestrian area, the vehicle was controlled at walking
speed, approximately 3–5 mph.

Human–Machine Interface (HMI)
The human–machine interface (HMI) was presented on a
HannsG HT161HNB 15.6′′ Multi Touch Screen connected

to a Kodlix GN41 Mini PC (Windows 10, Intel Celeron
processor, 8 GB RAM, 64 GB). The design of the HMI
was informed by HMI design principles, public engagement
workshops with older adults, and feedback from previous
iterations of the HMI (Morgan et al., 2018; Eimontaite et al., 2019;
Voinescu et al., 2020).

The HMI graphical touch screen displayed the vehicle speed,
time remaining until destination, a safe stop button, a journey
map, vehicle ‘health,’ and journey set up/change options (see
Figure 1). The functionality of the safe stop button was described
to the participant at the beginning of the study, emphasizing
that pressing this icon would initiate the vehicle to stop. The
vehicle ‘health’ icon provided information about the current
working order of the automated system including the tires,
brakes, network, and battery level. During the study, the vehicle
health was always shown as being in good working order. The
HMI presented visual and audio notifications to describe the
vehicle’s behavior and journey course, such as “Turning left” and
“You have arrived at your destination.”

Journeys
Participants in the study went on six consecutive counterbalanced
journeys. Before each journey, participants were provided with
a scenario that specified the journey they were required to set
up. There were six possible destinations/stops in total: Home,
Health Center, Recycling Center, Sports Center, Sports Field, and
Post Office. Among the six journeys there was always a journey
including an expected stop, and another journey including an
unexpected stop due to the ‘hazard.’ Both journeys were of an
equivalent length and lasted for approximately 6 min. Some of
the other journeys also included other variables such as picking
up a friend. As the main focus of the current paper is to
investigate the impact of an unexpected event, other journeys
will not be described in detail. All journeys were randomized
between participants so that the unexpected stop happened
either during journey two or journey five, and the expected stop
happened during journey one, journey three, or journey four.
Overall, participants experienced approximately 60 min of the
automated driving system.

The expected stop was initiated during journey set up and
was therefore expected by the participants. A few seconds before

FIGURE 1 | Autonomous vehicle and human–machine interface. (A) Autonomous Pod utilized during the study. (B) Human–machine interface display during the
journey.
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the vehicle stopped, an HMI notification “You are arriving at
[Stop]” was shown. Once the vehicle stopped, a notification “You
have arrived at [Stop]” was shown. The HMI then displayed an
option to either resume or stop the journey. All participants
resumed the journey.

The unexpected stop was executed as an emergency stop
appearing to the participants as happening suddenly, and as such,
was not anticipated by the participants. A marshal was instructed
to answer their mobile phone and walk in front of the Pod. The
teleoperator of the Pod would then initiate the vehicle to stop. The
HMI notification “The vehicle detected a hazard in the road and
has stopped. Your journey will resume shortly” was presented on
the touch screen. Once the marshal had moved safely out the way,
the Pod would restart and continue the journey. The participant
was not required to do anything.

Procedure
Figure 2 shows a schematic of the experimental procedure.
Participants arrived and met the researcher near the student
accommodation area on the university campus, where the study
took place. Participants were reminded of the content of the
information sheet, asked about their well-being, and whether
they had any concerns or questions. They were told that the

study involved setting up a designated route on the HMI before
experiencing AV journeys around the student accommodation
area, for a total of six journeys. They signed printed copies of
the consent form and filled in the paper pre-trial questionnaires.
Next, they were shown images of the HMI and described
the overall layout. Once the physiological and eye tracking
equipment were set up, participants were taken outside and
introduced to the Pod. Participants sat inside the vehicle wearing
a seatbelt and facing forward. They were introduced to the safety
driver but were advised not to converse with them. Likewise, the
safety driver was told not to converse with the participant. Inside
the Pod, participants were shown the HMI. At the beginning
of each journey, the participant received the journey scenario
that specified the journey destination and stop if there was
one. Participants were required to set up the journey using
the HMI. During the first journey, the researcher assisted them
with setting up the journey and answering any questions they
had. All participants successfully set up the journeys throughout
the trial. Once the journey was set up, the vehicle started, and
the journey began. Participants were told they could interact
with the HMI as little or as much as they wished to. During
the journey, the HMI would present notifications describing
the journey process, such as “Turning left.” The HMI also

FIGURE 2 | Experimental procedure. (A) During the unexpected journey event, a marshal walked in front of the vehicle. The vehicle stopped and displayed a
message, “The vehicle has detected a hazard in the road. The vehicle will resume shortly.” The vehicle resumed once the roadway was clear. (B) During the
expected journey event, the vehicle came to a stop when it reached a destination. A message displayed, such as, “You have arrived at Sports Center.” The
participant was required to press “Resume” on the HMI for the vehicle to resume the journey.
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displayed a navigation map showing the vehicle route (see
Figure 1B). After each journey, participants provided verbal trust
and reliability ratings to a researcher, including a reason for their
rating. This process was repeated six times and all participants
completed six journeys. Afterward, participants left the vehicle
and filled in several post-trial questionnaires. The full testing
session, including the induction and filling out questionnaires,
lasted for approximately 150 min, depending on inter-individual
variability. We found that a significant amount of time was
required and needed to be scheduled when conducting studies
with older participants. It was important to ensure a pace that did
not increase fatigue, and enough time to reflect and discuss issues
raised and answer questions.

Measures
Trust and Reliability Ratings
We measured trust and reliability with a single-item scale to
limit interruptions to the AV journeys. Participants were asked
to rate how much they trusted the AV on a scale from 0 “Did
not trust” to 10 “Completely trust.” They were also asked how
reliable the vehicle was on a scale from 0 “Not reliable” to 10
“Completely reliable”. They were then asked to provide a reason
for their rating. Ratings were taken verbally from participants
at the end of every journey. The rating was also taken during
the pre- and post-trial questionnaire phase, where participants
were asked their current trust and reliability ratings of AVs on
a paper questionnaire.

Physiological Signals
Continuous physiological acquisition of heart rate (beats per
minute; BPM) and electrodermal activity (skin conductance
level; µS) were collected using an Empatica E4 wristband
(Empatica Inc., Cambridge, MA, United States and Milan,
Italy) to measure levels of autonomic arousal. The sampling
frequency for the electrodermal activity sensor was 4 Hz and the
photoplethysmography sensor on the Empatica measured blood
volume pulse at 64 Hz. The internal Empatica software derived
the BPM. The Empatica E4 wristband was placed on participants’
non-dominant wrist to reduce the possibility of motion artifacts.
The Empatica was fastened tightly as comfortable for the
participant, so the wristband did not move around inducing
artifacts. The E4 also collected acceleration data from a 3-axis
accelerometer, which enabled monitoring of wrist movements.
The sampling frequency of the accelerometer was 32 Hz.

An event marking button on the Empatica E4 was pressed in
front of a camera, which triggered a LED light to be illuminated
on the Empatica, and simultaneously logged a timestamp in the
data. This mode of creating a marker was done to aid the later
analysis of when events of interest (i.e., the unexpected stop)
occurred in the physiological data.

Eye Tracking
Tobii Pro Glasses 2, an eye tracking device, was used to collect
fixation metrics (Tobii Glasses Eye Tracker, Tobii Technology,
Stockholm, Sweden). The Tobii Glasses are a wearable eye tracker
worn like a pair of glasses. The design is lightweight and has
no side or bottom frame, preventing any distraction in the

participant’s visual field. The head unit is comprised of several
cameras: a high-definition camera captured the participant’s field
of view (82◦ horizontal and 52◦ vertical), and two eye tracking
sensors below each eye captured participants’ pupil diameter and
movements. To improve the accuracy of the eye tracking sensors,
near-infrared lights illuminated the pupil. The sensors have a
sampling rate of 100 Hz.

The Tobii Pro Glasses do not work with standard eyeglasses, as
glasses can create additional glint that can lead to data corruption.
Individuals wearing glasses were asked to remove them, and
a suitable prescription lens from a set supplied as part of the
Tobii kit was attached to the glasses. Once the participant was
wearing the head unit, the manufacturer’s calibration procedure
was followed which consisted of the participant fixating on a
central target. This process typically took less than 30 s. In
addition, participants were asked to view specific objects in the
environment so that the accuracy and alignment of the system
could be checked.

Pre-processing
Physiological Arousal
Data were opened and pre-processed in Microsoft Excel 2016
using Excel’s in-built functions. Electrodermal activity and heart
rate values, with corresponding timestamps, were pre-processed
separately and followed the same procedure. For electrodermal
activity (4 Hz sampling rate), every four samples were averaged
to produce one value for every second, and similarly, 1 s averages
were used to analyze heart rate data. The averaged data were
aligned to the appropriate time point, to allow for averaging
across time points of interest. Time points of interest were derived
from timestamps in a video recording and the Empatica event
marker. Z-scores were calculated to standardize the data due to
the individual variability of physiological responses (Braithwaite
et al., 2013) resulting in z-transformed skin conductance level
(zSCL) and z-transformed heart rate (zHR). For data relating
to the unexpected and expected stop, data were averaged within
two times of interest: 30 s before the stop, and 30 s after the
stop. 30 s was chosen as this is a standard epoch length used
in vigilance and psychophysiological state monitoring research
(e.g., Berry et al., 2015) and in other AV research investigating
changes in physiology in response to events (Ruscio et al., 2017).
This was also the minimum duration of recorded activity after
the specific events that was not affected by other events such as
the end of the journey.

Fixation Metrics
Eye tracking analysis was undertaken using Tobii Pro Lab
software version 1.138 (Tobii Technology, Stockholm, Sweden).
We first assessed the gaze sample percentage across the entire
recording. The eye tracking glasses captured a mean of 80%
(SD = 18%) of gaze samples.

Events were first logged to indicate the start and end of
events in the recording. Times of Interests (TOIs) were defined
by selecting the appropriate start and end event markers. This
allowed for segmentation of the data into intervals of time
relevant to subsequent data analysis. The ‘Pre-stop’ TOI was
considered the 30 s before the presentation of the notification
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when the vehicle stopped; the ‘During’ TOI consisted of the time
the notification was displayed visually (up to approximately 15 s);
the ‘Post-stop’ TOI was considered the 30 s after the presentation
of the notification. Gaze data from the recording were then
manually mapped onto an image best depicting the overall visual
view of the participant.

Next, Areas of Interests (AOIs) were defined on each
mapped image for each TOI (see Figure 3). Three AOIs
were created representing the HMI, the central view of the
driving environment, and the peripheral view of the driving
environment. To finish, the ‘I-VT Filter (Fixation)’ was applied
to the data, which set the velocity threshold parameter at 30
degrees/second. If the sample was below this threshold, it was
classified as a fixation.

Total fixation duration and total fixation count metrics were
exported from Tobii Pro Lab to Microsoft Excel 2016. Because the
time of the critical event varied across participants, and to enable
standardized comparison which took into account variability
within patterns of fixations, it was necessary to calculate fixation
count and fixation duration as a proportion of the total number of
fixations and fixation durations. Fixation duration was defined as
the amount of time spent looking at each AOI divided by the total
duration of fixations. Fixation count was defined as the number
of fixations toward each AOI divided by the total number of
fixations. Averages were then calculated for subsequent analyzes.

RESULTS

All statistical analyzes were performed using IBM SPSS
Statistics for Windows, version 26 (IBM Corp., Armonk,
NY, United States). Descriptive statistics were performed,
and normality was verified using the Shapiro–Wilk test and
visualization of QQ plots of the unstandardized residuals.
Assumptions of sphericity were tested using Mauchely’s test
and, if violated, Greenhouse–Geisser estimates were used in
the repeated measures calculations. The statistical threshold for
significance was set to two-tailed p < 0.05. Effect size was
reported as eta squared (η2) for one-way ANOVA significant
results and partial eta squared (η2

p) for two-way ANOVA
significant results (Cohen, 1988). Post hoc analyzes were run with
Bonferroni correction.

FIGURE 3 | Areas of Interest (AOI) for eye tracking analysis. (A) Central
environment. (B) Peripheral environment. (C) Human–machine interface.

For trust and reliability ratings, a one-way repeated measures
ANOVA (Journey: pre, unexpected, expected, and post) was
undertaken. A 2 (Stop: unexpected and expected) × 2 (TOI: 30 s
before and 30 s after) repeated measures ANOVA was performed
to understand the impact of an expected and unexpected stop
on heart rate and skin conductance level z scores. Two two-way
repeated measures ANOVA were undertaken on both fixation
count and fixation duration measures. The first was a 2 (Stop:
unexpected and expected) × 3 (AOI: central, peripheral, and
HMI) repeated measures ANOVA to understand the impact
of journey type on AOI. The second ANOVA was a 2 (Stop:
unexpected and expected) × 3 (TOI: pre-stop, during, and post-
stop) repeated measures ANOVA to understand the impact of
journey type on time.

Trust and Reliability Ratings
The descriptive statistics are displayed in Table 1. For
trust ratings, a significant repeated measures ANOVA
[F(2.05,73.86) = 15.05, p < 0.001, η2 = 0.295] with post hoc
comparisons revealed that trust increased significantly from
pre-all journeys to post-all journeys [p < 0.001], from pre-all
journeys to the unexpected stop [p < 0.001], and from pre-
all journeys to the expected stop [p < 0.001]. There was no
significant difference in trust ratings between the unexpected and
expected stop [p = 0.100].

For reliability, the one-way repeated measures ANOVA
model showed that the main effect for journey was significant
[F(1.44,51.79) = 25.56, p < 0.001, η2 = 0.415] and post hoc
comparisons revealed that reliability ratings increased from pre-
all journeys to post-all journeys [p < 0.001], from pre-all journeys
to the unexpected stop [p < 0.001], and from pre-all journeys to
the expected stop [p < 0.001]. Again, there was no significant
difference in reliability ratings between the unexpected and
expected stop [p = 0.100]. Overall, these findings indicate that
subjective trust and reliability increased after AV experience and
were not differentially impacted by the unexpected event.

Heart Rate
A 2 (stop: unexpected and expected)× 2 (time: pre-stop and post-
stop) repeated measures ANOVA on zHR yielded no significant
main effects of stop, time, or an interaction effect [F(1,29) ≤ 0.56,
p ≥ 0.461]. Heart rate was similar between the period before the
expected stop [M = −0.15, SD = 1.01] and after the expected
stop [M = −0.12, SD = 0.93]; and between the period before the
unexpected stop [M =−0.13, SD = 0.95], and after the unexpected
stop (M = −0.06, SD = 0.92). As illustrated in Figure 4, heart
rate increased during the unexpected stop, but this did not reach
statistical significance.

Skin Conductance Level
The ANOVA model revealed no significant main effects for stop
[F(1,29) = 0.17, p = 0.684] or time [F(1,29) = 0.37, p = 0.546].
However, the interaction effect was significant [F(1,29) = 0.98,
p = 0.019, η 2

p = 0.176].
Pairwise comparisons revealed that during the unexpected

stop, zSCL was greater following the stop [M = 0.16, SD = 0.83]
when compared to zSCL preceding the stop [M = −0.05,
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TABLE 1 | Mean (SD) of trust and reliability ratings over journeys.

Subjective rating(0–10) Journeys

Pre- Post- After an unexpected stop After an expected stop

Trust 7.11 (2.50) 9.22 (1.13) 9.16 (1.43) 9.00 (1.78)

Reliability 7.19 (2.39) 10.00 (0.88) 9.35 (1.18) 9.45 (1.02)

FIGURE 4 | Heart rate and skin conductance level during an unexpected (red) and expected (blue) stop. Gray dashed line represents the time point the vehicle
stopped. Shaded areas represent ± the standard error of the mean difference. (A) Heart rate (z-transformed). (B) Skin conductance level (z-transformed).

SD = 0.72; p = 0.043]. There was no difference in zSCL before
[M = 0.06, SD = 0.96] and after [M = −0.09, SD = 0.89]
the expected stop.

In combination with the heart rate data, these results indicate
that sympathetic arousal increased following vehicle cessation
during the unexpected stop. See Figure 4 for a depiction of the
skin conductance level response.

Fixation Count
The 2 (stop: expected and unexpected) × 3 (AOI: central
view, peripheral view, HMI) repeated measures ANOVA
yielded a significant main effect of AOI [F(1.42,35.55) = 27.74,
p < 0.001, η2

p = 0.526], and a significant two-way interaction
[F(1.52,38.10) = 28.47, p < 0.001, η2

p = 0.532]. The main effect of
the stop was not significant [F(1,25) = 0.44, p = 0.51; Table 2].

Post hoc comparisons of the two-way interaction revealed a
higher number of fixations on the central environment during
an unexpected stop compared to an expected stop [p < 0.001];
whereas fixation count was greater on the HMI area during the
expected stop, compared to the unexpected stop [p < 0.001].

Overall, during the unexpected stop, the number of fixations
were higher on the HMI area compared to the peripheral
environment [p < 0.001], and the central environment compared
to the peripheral environment [p < 0.001]. During the expected
stop, the number of fixations were higher on the HMI compared
to the central environment [p < 0.001], and the HMI compared
to the peripheral environment [p < 0.001]. In combination, these
results reveal that the number of fixations within the central
environment was higher during an unexpected stop, whereas

the number of fixations within the HMI was higher during
an expected stop.

The 2 (stop: unexpected and expected) × 3 (time: pre-stop,
during, and post-stop) repeated measures ANOVA revealed no
significant main effects of time [F(1.56,39.03) = 0.88, p = 0.399] or
stop [F(1,25) = 0.44, p = 0.513], nor a significant interaction effect
[F(1.21,30.21) = 1.45, p = 0.244; Table 3]. See Figures 5, 6 for a
depiction of the results.

Fixation Duration
The 2 (stop)× 3 (AOI) ANOVA model yielded a significant main
effect for AOI [F(1.59,39.72) = 29.23, p < 0.001, η2

p = 0.539], and
a significant interaction effect [F(1.58,39.37) = 23.27, p < 0.001,
η2

p = 0.482]. The main effect for stop was not significant
[F(1,25) = 0.44, p = 0.516; Table 2].

Post hoc comparisons revealed that fixation duration on
the HMI was longer during the expected stop compared to
the unexpected stop [p = 0.003], but longer on the central
environment during the unexpected stop compared to the
expected stop [p < 0.001]. Fixation duration on the peripheral
environment was marginally greater during the expected
compared to the unexpected stop [p = 0.055]. Additionally,
for the unexpected stop, fixation duration was shorter for the
peripheral environment when compared to the HMI [p < 0.001]
and the central environment [p < 0.001]. For the expected
stop, fixation duration was longer on the HMI compared the
peripheral environment [p < 0.001] and the central environment
[p < 0.001].

The 2 (stop) × 3 (time) repeated measures ANOVA revealed
a significant main effect of time [F(1.63,40.82) = 6.52, p = 0.006,
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TABLE 2 | Mean (SD) of fixation metrics count (%) and duration (%) across the human–machine interface (HMI), central environment, and peripheral environment during
expected and unexpected stops.

Fixation metric HMI Central environment Peripheral environment

Expected Unexpected Expected Unexpected Expected Unexpected

Fixation count (%) 52.57(30.07) 30.32(28.23) 20.70(20.02) 46.50(26.35) 17.81(20.85) 12.52(14.76)

Fixation duration (%) 32.36(27.75) 18.86(23.06) 11.99(13.86) 30.03(22.55) 8.44(11.54) 5.07(5.97)

TABLE 3 | Mean (SD) of fixation metrics count (%) and duration (%) across pre-, during, and post- expected and unexpected autonomous journeys.

Fixation metric Pre- During Post-

Expected Unexpected Expected Unexpected Expected Unexpected

Fixation count (%) 31.94(25.91) 28.87(25.68) 30.17(42.32) 30.43(31.74) 28.97(20.38) 30.04(25.03)

Fixation duration (%) 17.36(16.87) 17.58(17.79) 19.34(31.02) 19.51(25.30) 16.08(13.95) 16.88(19.27)

FIGURE 5 | Fixation count (%) during expected and unexpected events (stops). (A) Fixation count during unexpected and expected journey events over areas of
interest. (B) Fixation count during unexpected and expected journey events over times of interest. Bolded line represents the median value. Box represents the
interquartile range. Vertical lines represent the lower/upper adjacent values. ♦ represents the mean value. **p < 0.001, *p < 0.05.

η2
p = 0.207]. The main effect for stop [F(1,25) = 0.44, p = 0.516]

and the interaction effect were not significant [F(2,50) = 0.21,
p = 0.813]. Fixation duration was greater during the stop
[M = 19.96, SD = 8.42] compared to after the stop [M = 16.48,
SD = 7.72], regardless of whether it was an expected or
unexpected stop [p = 0.01]. See Table 3 for an overview of the
means and standard deviations.

In combination, these results suggest that while similar
visual demands were afforded to the scene, participants
visual attention was distinctly allocated during the unexpected
and expected stops. Fixation duration was longer on the
central environment during an unexpected stop, whereas
fixation duration was longer on the HMI during an expected
stop, indicating distinct visual attention resource allocation
between the different types of stop. The results are depicted
in Figures 7, 8.

DISCUSSION

This study sought to understand the impact of an unexpected
event during Level 5 autonomous driving on gaze behavior,
autonomic arousal, and associated trust levels. To accomplish
this, an experiment was designed where the participants
experienced what they thought were autonomous journeys
that included two stops on separate journeys: one unexpected
stop initiated by a ‘hazard,’ and one expected stop initiated
as part of the planned journey set up. Elevated electrodermal
activity persisted after the unexpected stop. Gaze fixation
metrics revealed several visual behavior differences. Overall,
participants searched the central environment, inclusive
of the ‘hazard,’ for longer during the unexpected stop,
whereas during the expected stop, the HMI area captured
visual attention, as measured by greater fixation counts and
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FIGURE 6 | Total fixation count during expected and unexpected journey events (stops). The heat map represents the summary of all gaze points in the visual
environment over three time points of interest. Colors indicate the total gaze fixations (fixation count increases from green – yellow – orange – red).

FIGURE 7 | Fixation duration (%) during unexpected and expected journey events (stops). (A) Fixation count during unexpected and expected journey events over
areas of interest. (B) Fixation count during unexpected and expected journey events over times of interest. ♦ represents the mean value. **p < 0.001, *p < 0.05.

FIGURE 8 | Total fixation duration during expected and unexpected journey events (stops). The heat map represents the summary of all fixations in the visual
environment over three time points of interest. Colors indicate the total gaze fixation duration (fixation duration increases from green – yellow – orange – red).
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longer fixation durations. Trust and reliability ratings also
increased from pre-journey values and remained high after each
type of journey.

The distribution and duration of fixations measured with
eye tracking outline the differences between the two types of
journeys: while in the unexpected stop journey participants had
longer fixation durations and greater fixation count toward the
central environment (containing the ‘hazard’), in the expected
stop visual attention was directed toward the HMI. Visual
behaviors between stops were similar over time, indicating
similar demands on visual attention. General visual scanning
behavior can be understood by fixation counts, as more shifts
within a scene are associated with a greater frequency of fixations.
Fixation duration can provide further insight by indicating
visual attention demands. Basic visual processing research has
demonstrated that fixation duration increases with visual scene
complexity (Pomplun et al., 2013) and cognitive load (Rayner,
1998), and is linked to uncertainty (Brunyé and Gardony,
2017). As such, our patterns of results imply that during
an unexpected stop, visual attention was directed toward the
central environment containing the ‘hazard,’ with the participants
searching for information, rather than focusing on other aspects
of the scene. These results are similar to research studying
ocular behavior during manual driving and hazardous situations.
The variance of fixations decreased when presented with a
critical situation (Chapman and Underwood, 1998). In contrast,
fixation duration increased coming up to, and during, a critical
situation (e.g., Chapman and Underwood, 1998; Underwood
et al., 2005). In addition, a negative relationship between
task demands during driving and visual scanning behavior
has been demonstrated, i.e., higher task demands reduced the
dispersion of visual scanning (e.g., Recarte and Nunes, 2003;
Savage et al., 2013). Moreover, Guo et al. (2019) found that
fixation frequency and duration increased during accident scenes
reflecting increased anxiety.

Searching for information related to the unexpected event
might be explained by increased anxiety (Guo et al., 2019):
the narrowing of visual attention, focusing on the hazard,
is a common feature of increased arousal and stress (Chajut
and Algom, 2003; Gable and Harmon-Jones, 2010). Moreover,
the physiological results show increased sympathetic arousal,
following the unexpected stop. Skin conductance levels increased
with vehicle braking due to the unexpected event. This
increase persisted up to 30 s, yet there was no significant
difference found during the expected stop journey. Driving
studies have indicated that high skin conductance levels are
modulated by various phenomena such as increased workload
(e.g., Mehler et al., 2012), stress (e.g., Affanni et al., 2018),
anxiety (Barnard and Chapman, 2018), and lower trust in
automation (Morris et al., 2017; see Lohani et al., 2019 for
a review). It is therefore difficult to infer specifically why
skin conductance levels rose, other than reflecting an overall
increase in sympathetic arousal. Trust ratings were high after
all journeys, implying trust levels did not modulate sympathetic
arousal. However, response bias, particularly following verbal
ratings, may have led to an overestimation of self-reported
trust. It should be noted that trust was measured retrospectively

once the vehicle had successfully completed the journey.
Factors such as trust, workload, and anxiety are time-varying,
and as such, participants may have experienced lower trust
levels during the journey, represented by heightened skin
conductance. However, as the vehicle behaved appropriately
to the unexpected event (e.g., braking and notifying the
participant), and the journey completed successfully, this
may have encouraged participants to rate their trust of
the vehicle’s behavior positively at the end of the journey
(Choi and Ji, 2015).

We did not find any statistically significant difference in
heart rate although Figure 4 shows elevated heart rate, similar
to skin conductance, for the unexpected stop compared to
the expected stop. As skin conductance is regulated by the
sympathetic nervous system, and heart rate is modulated
by both the activation and suppression of sympathetic and
parasympathetic branches of the autonomic nervous system,
respectively (Thayer et al., 2010), our results suggest that
the vehicle stopping in response to a unexpected event
might reflect a mild sympathetic dominance. Ruscio et al.
(2017) measured physiological responses to takeover requests
following various warnings. During semi-autonomous driving,
heart rate decreased relative to manual driving following
reliable warnings, misleading warnings, and no warnings. Skin
conductance response amplitude increased during misleading
warnings and no warnings. They also found that respiratory sinus
arrhythmia, an index of parasympathetic activity, increased from
manual driving to an unexpected takeover with no warning.
Their results reveal an imbalance between the parasympathetic
and sympathetic branches during takeovers preceded by a
misleading or no warning. The authors suggest that this
discrepancy may reduce attentional capacity, resulting in
cognitive overload. Although we did not measure specific or
non-specific response amplitude changes, but rather changes in
skin conductance level, our results are compatible as we found
a similar moderate effect of increased skin conductance level
following vehicle cessation without any warning (unexpected
stop). However, our results are difficult to directly compare
to Ruscio et al. (2017) findings as we did not measure
physiological responses during manual driving or initiate a
takeover request. We also did not separate parasympathetic
activity from sympathetic activity; therefore, it is not clear
whether a reduction in attentional capacity was associated with
an increase in sympathetic activation as measured by an increase
in skin conductance level.

A potential limitation in our study was the use of the
Empatica E4 for assessing autonomic arousal. Gruden et al.
(2019) recently found that manual driving-related movement
artifacts impacted heart rate variability and skin conductance
level measurements. Reasonable accuracy and reliability have
been reported for this device providing wrist movements are
low (Pietilä et al., 2017; Ragot et al., 2017), which was the
case during our study, as Level 5 driving does not require
behaviors such as changing gears. Nevertheless, we conducted
additional analyzes and confirmed that accelerometer values did
not differ between conditions (included in the Supplementary
Material). In addition, conventional physiological research
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measures from the distal or intermediate phalanges of the
ring and index fingers where there are a larger number
of active eccrine sweat glands (Freedman et al., 1994;
Boucsein, 2012). The E4, like many wearables, measures
skin conductance via wrist sensors. As the wrist is less responsive
to skin conductance, an underestimation of parameters is
expected (van Dooren and Janssen, 2012; Payne et al., 2016).
Despite this, the Empatica E4 was a relatively unobtrusive
measurement device and was sensitive to changes in skin
conductance level.

Despite the potential benefits of measuring sympathetic
arousal and ocular behavior during Level 5 driving, it is not
possible to avoid limitations inherent to skin conductance and
eye tracking measurements. Due to a one- to four- second
delay, or response latency, following a stimulus presentation
(Boucsein, 2012), skin conductance measurements should not
be used to detect time-critical events and are therefore not a
usable metric on their own for a DSM system. In addition,
it should be acknowledged that the skin conductance level
values we measured were contaminated by skin conductance
responses. If skin conductance responses were triggered by
events during the journey, this would increase the underlying
skin conductance level. Therefore, the values we report are
impacted by both tonic and phasic responses to the events.
Furthermore, it is well acknowledged that fixations cannot
occur without attention, but attention can occur without
fixations (Posner, 1980). Eye tracking is unable to detect the
periphery of a participant’s visual gaze, but stimuli can be
perceived pre-attentively in peripheral vision. Participants may
have therefore discerned the notification and inhibited saccadic
movement for further processing. Caution is therefore required
in directly attributing changes in indirect measures, such as
visual attention assessed with eye tracking, to direct measures
of central attention. A robust DSM system may consequently
benefit from including a variety of measures. The results
obtained here do show significant differences in visual gaze
behavior, perhaps reflecting changes in visual strategy as a
result of reallocation of attentional resources relating to the
unexpected event.

Although the current study attempted to produce increased
ecological validity compared to laboratory studies, safety
restrictions were put in place including the speed of the vehicle,
the safety driver, and the marshals surrounding the vehicle.
On average, the vehicle went between 3 and 5 mph. The
speed of a vehicle has been shown to correlate with self-
reported workload measures, i.e., the greater the speed, the
greater self-reported workload (Fuller, 2005). However, research
has found that this depends on the situation complexity.
Low-complexity environments including motorways at faster
speeds, or high-complexity situations including town centers
at lower speeds, may modulate load in a similar manner
(Paxion et al., 2014). In our study, the vehicle drove around
a pedestrianized area, where the speed limit was 10mph.
The vehicle shared the lane with pedestrians, cyclists, and
obstacles such as bollards. Therefore, driving at a greater
speed would not have been possible nor realistic or safe, even
during manual driving.

Finally, the results imply that the unexpected event placed
significant demands on attentional resources. However, eye
tracking is an indirect measure of attention, and as the study
mimicked Level 5 autonomous journeys, no direct performance
measure could be derived to support this view. Yet, all
participants were introduced to a “safe stop” button on the HMI,
which could be pressed at any time if they wanted the vehicle
to stop. None of the participants activated the safe stop. They
could also have accessed the “vehicle health” icon, providing
information about the overall health of the vehicle. None of the
participants accessed this icon during the times of interest. Taken
together, these findings suggest that the unexpected stop was not
perceived as particularly dangerous as neither subjective reports
nor subjective ratings, or all physiological indices reflected an
extreme response that may be associated with more imminent
or extreme danger. This is supported by summary qualitative
analysis where 12 of the participants, representing around a third
of the sample, expressed unease (e.g., “nervous it would not stop,
would like a horn”) when discussing the unexpected stop with
the researchers after journey completion. A further 3 expressed
ease or confidence (e.g., “had stopped before, would this time”)
in relation to the event, with the remainder simply noting that
the vehicle had spotted the ‘hazard’ and stopped, performing its
intended functions. In addition, as our study only included one
unexpected event, further investigations using different types of
unexpected events are needed to be able to characterize functional
states to specific safety-critical scenarios.

Although our results are supported by the above-mentioned
driving studies, the study presented in this paper varies
considerably as our participants were not active manual drivers
in control of the vehicle. As ocular behavior and motor
execution are intrinsically linked both spatially and temporally,
active drivers successfully fixate directly at the objects being
interacted with or ones that precede the action. Despite these
differences, our results are in agreement with Strauch et al.
(2019) who investigated eye gaze of passengers during real-
world autonomous driving. They found a greater frequency
of fixations on safety-relevant AOIs when joining a highway
during an autonomous journey when compared to manual
driving and to the rest of the route. Visual scanning behavior
was therefore affected by safety-critical situations regardless of
active involvement in the driving task. Strauch et al. (2019)
participants’ mean age was 23 years, and so our results extend
this earlier research and suggest that older adults display
broadly similar ocular behaviors to younger adults during safety-
critical situations. However, our study does differ, as passengers
could interact with an HMI throughout the journeys. Unlike
a passenger in a manually driven car, in a Level 5 vehicle the
monitoring of the automated system can take more significance,
given the reduced need to pay attention to the road ahead.
Despite this, we found that attentional focus narrowed toward
the ‘hazard’ before, during, and after the critical event, which was
also accompanied by an increase in skin conductance reflecting
increased sympathetic nervous system arousal following the
vehicle response.

Repeated stress response activation and consequential
negative emotions may have a significant impact on overall
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health and well-being. Therefore, a DSM system could react
in response to detecting increased arousal by either modifying
the vehicle’s behavior, alerting the driver, or modifying HMI
notifications and providing status updates or information about
future events. For example, the HMI might adapt safety-
related notifications to make them more engaging, multimodal,
and alerting, depending on individual characteristics and the
attentional level of the passenger (ranging from inattentive
to over-alert). Moreover, the vehicle could learn the types of
situations that have a negative impact on passenger well-being
and adapt vehicle route or driving style to avoid them.

Taken together, these results have several critical implications
for the safe implementation of Level 5 AVs for older adults.
Our results reveal possible narrowing of visual attention and
heightened arousal during an unexpected event as demonstrated
by increased sympathetic arousal and a smaller distribution
of fixations, coupled with an increase in fixations toward
the unexpected event. In combination with consistently high
trust ratings, these results suggest that the passive process of
automated driving may restrict the focus of visual attention
and heighten adverse responses. This study also demonstrates
that the physiological indices examined can be useful and
practical measures for evaluating passengers’ functional state
during real-world autonomous driving. As such, a DSM system
that includes these measures might be able to detect these
behaviors and make an informed decision on vehicle behavior
and adapt HMI notifications accordingly. The potential for
negative experiences during Level 5 driving, coupled with human
limitations in sustained monitoring during low and high arousal
situations, suggests that a DSM system may be a necessary
adjunct to fully AVs in supporting potentially vulnerable people
in unexpected situations.
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