To be published in Optics Letters:

Title: Electrically-pumped continuous-wave O-band quantum-dot superluminescent diode on silicon

Authors: ying lu, Victoria Cao, Mengya liao, Wei Li, Mingchu Tang, Ang Li, Peter Smowton, Alwyn Seeds, Huiyun Liu, Siming Chen

Accepted: 03 August 20

Posted 03 August 20

DOI: https://doi.org/10.1364/OL.401042

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Electrically-pumped continuous-wave O-band quantum-dot superluminescent diode on silicon

Ying Lu,† Victoria Cao,† Mengya Liao,‡ Wei Li, Mingchu Tang, Ang Li, Peter Smowton, Alwyn Seeds, Huiyun Liu, and Siming Chen†*

1Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
2Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China

†E-mail: mengya.liao@ucl.ac.uk
Corresponding author: siming.chen@ucl.ac.uk

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

High-power, broadband quantum-dot (QD) superluminescent diodes (SLDs) are ideal light sources for optical coherence tomography (OCT) imaging systems but have previously mainly been fabricated on native GaAs- or InP-based substrates. Recently, significant progress has been made to emigrate QD SLDs from native substrates to silicon substrates. Here, we demonstrate electrically pumped continuous-wave (CW) InAs QD SLDs monolithically grown on silicon substrates with significantly improved performance thanks to the achievement of a low density of defects in the III-V epilayers. The fabricated narrow ridge-waveguide device exhibits a maximum 3-dB bandwidth of 103 nm emission spectrum centred at O-band together with a maximum single-facet output power of 3.8 mW at room temperature. The silicon based SLD has been assessed for application in an OCT system. Under optimised conditions, an axial resolution of 5 µm is achieved with a corresponding output power of 1.2 mW/facet. The capabilities of high-performance III-V SLDs on silicon substrates will be the enabling technology for low-cost, large-scale deployment of fully integrated silicon photonic OCT systems. © 2019 Optical Society of America

http://dx.doi.org/10.1364/OL.99.099999

Silicon photonics has been under intensive development over the past decade and is reaching the tipping point. While such technology for data- and tele-communications applications is well known and attracting great interest [1], its potential for other applications, for example, medical diagnostics [2], chemical and biological sensing [3], and nonlinear optics [4], is now building on this progress by leveraging the greatest promise of silicon photonics: large-scale, streamlined manufacturing using commercial CMOS foundry infrastructure. Optical coherence tomography (OCT) has become a powerful medical diagnostic tool to monitor medical treatment and diagnose disease within the skin and other biological tissues non-invasively [5]. The technique currently relies on costly and bulky combinations of separate light sources, optical and electronic components. As a result, there is a strong motivation to achieve a low-cost, compact, and maintenance-free biometrical imaging solution using CMOS-compatible photonic integrated circuits (PICs) which could potentially allow monolithic integration of ultrawide-spectrum waveguides, high-speed silicon photodiodes, and electronics combined with the heterointegration of an efficient and reliable III-V-QD, in a longer term, simply silicon-based [6,7] light sources. Various demonstrations have shown the potential of silicon photonic integrated chips for OCT [6-10], yet all have required external III-V-flight sources. This limits the potential for ultra-compact and large-scale integration. The availability of integrated light sources, therefore, a key technology for a fully integrated silicon photon OCT system. The device, based on fully monolithic silicon technology [11], is now in broad use and can enable high-performance OCT systems. Superluminescent diodes (SLDs), offering both low-coherence and high output power, permit a low-cost and robust route to provide high axial resolution and deep penetration in such scenarios [12]. Self-assembled quantum dots (QDs) constructed by the Stranask-Krastanov growth method have been extensively studied for SLDs over the past two decades, with a view to achieving a broad bandwidth enabled by their naturally occurring large size inhomogeneity, which could also be extended by using of both the ground and excited states for even broader emission [13]. Recently, the self-assembled QD technique is gaining even more importance due to the emergence of promising monolithic III-V/silicon photonic integration applications. Their unique properties, in particular, the enhanced tolerance to defects [14] and reflections [15], as well as the ultralow linewidth enhancement factor [16], have witnessed rapid development in various types of O-band InAs/GaAs QD lasers grown directly on silicon substrates [17-25]. Despite significant progress being made in QD lasers grown
to a minimum axial resolution of 5.3 µm, offering the possibility of successful demonstration of a CW silicon-based InAs QD SLD. However, the devices are limited to pulsed operation. While the first CW single facet output power over 3.8 mW at room temperature was followed soon after [33], these CW devices showed significantly diminished performance in terms of maximum achievable emission bandwidth (~50 nm) and output power (~0.55 mW) maintaining a high density of dislocations and high density of dislocations is generated at the InAs/Si interface due to the large lattice mismatch between the InAs and Si. Fortunately, it is clear to see that after the last set of InGaAs/GaAs SLSs, most of the defects have been filtered. Above all, a nearly defect-free DWELL active region is observed as seen in Fig. 1(c). Figure 1(d) compares the photoluminescence (PL) emission of QDs grown on silicon and GaAs substrates, where a comparable PL intensity of QDs on silicon to that of on GaAs is obtained. The slight blue shift in the peak emission wavelength is mainly attributed to the residual strain between GaAs and Si. These findings suggest that the Si buffer layer plays a critical role in suppressing the formation of dislocations and reducing the density of dislocations, hence, the Si buffer layer is an indispensable part of the InAs/GaAs/Si SLD structure. The inset of Fig. 1(c) shows the atomic-resolution BF-STEM image of an uncapped QD sample grown on silicon.

Figure 1(b) presents a bright-field scanning transmission electron microscopy (BF-STEM) image of the Si buffer layer grown on a silicon substrate. As expected, a high density of dislocations is generated at the InAs/Si interface due to the large lattice mismatch between the InAs and Si. Fortunately, it is clear to see that after the last set of InGaAs/GaAs SLSs, most of the defects have been filtered. Above all, a nearly defect-free DWELL active region is observed as seen in Fig. 1(c). Figure 1(d) compares the photoluminescence (PL) emission of QDs grown on silicon and GaAs substrates, where a comparable PL intensity of QDs on silicon to that of on GaAs is obtained. The slight blue shift in the peak emission wavelength is mainly attributed to the residual strain between GaAs and Si. These findings suggest that the Si buffer layer plays a critical role in suppressing the formation of dislocations and reducing the density of dislocations, hence, the Si buffer layer is an indispensable part of the InAs/GaAs/Si SLD structure. The inset of Fig. 1(c) shows the atomic-resolution BF-STEM image of an uncapped QD sample grown on silicon.

Figure 1(b) presents a bright-field scanning transmission electron microscopy (BF-STEM) image of the Si buffer layer grown on a silicon substrate. As expected, a high density of dislocations is generated at the InAs/Si interface due to the large lattice mismatch between the InAs and Si. Fortunately, it is clear to see that after the last set of InGaAs/GaAs SLSs, most of the defects have been filtered. Above all, a nearly defect-free DWELL active region is observed as seen in Fig. 1(c). The inset of Fig. 1(c) shows the atomic-resolution BF-STEM image of an uncapped QD sample grown on silicon.

The slight blue shift in the peak emission wavelength is mainly attributed to the residual strain between GaAs and silicon. These findings suggest that the Si buffer layer plays a critical role in suppressing the formation of dislocations and reducing the density of dislocations. However, the slight discrepancy between the InAs/Si interface and the InAs/GaAs/Si SLDs can be attributed to the residual strain. The inset of Fig. 1(c) shows the atomic-resolution BF-STEM image of a single dot, where the typical dot size is ~20 nm in diameter and ~7 nm in height. The inset of Fig. 1(d) shows an atomic force microscopy (AFM) image for uncapped InAs QDs grown on silicon. An average dot density of ~3×10^10 cm^-2 was derived from the image. A maximum net modal gain of ~13 cm^-1 at the ground state (GS) peak wavelength was obtained in this structure by a segmented-contact method.

Optical microscopy and scanning electron microscopy (SEM) images of the fabricated devices are shown in Fig. 2. The 2.2 µm width ridge waveguides were defined using electron beam lithography (EBL) and dry etching. To avoid oxidation of the Al-containing layers, a passivation layer of SiO2 was first deposited. Planarisation was then carried out by using hydrogen silsesquioxane (HSQ) thermally cured at 180 °C. For the ohmic contact metallisation, Ti/Pt/Au and Au/Ge/Au/Ni/Au were used for the P+ GaAs contacting layer and the exposed n+ GaAs layer.
respectively. The device cavity length for all devices described in this letter is 4 mm and is defined by cleaving. No facet coating is applied. To achieve only ASE, the device was protected against the laser effect by suppressing cavity reflections using an 8° off-angle tilted waveguide. The SLD bars were mounted on copper heat sink using indium silver low-melting-point solder and directly probed to enable testing. Unless stated otherwise, all SLD measurements were performed under CW operation at RT (20 °C) with no active cooling.

Figure 3 shows the light/current/voltage (LIV) measurements for a typical InAs/GaAs QD SLD grown on a silicon substrate. As seen, above a current of ~100 mA, an apparent superlinear current increase of output power with increasing current. A single facet output power of 38 mW was obtained at an injection current of 400 mA with only slight power roll over at this current due to the thermal effects. For application in OCT systems, higher power is desired for better depth penetration. As the output power spectrum depends linearly on spontaneous emission rate and exponentially on the optical gain, it follows that a high value of modal gain is critical for obtaining high output power.

In addition to output power, another critical factor for high-quality OCT images is the spectral bandwidth since the axial resolution is governed by the coherence length, which is inversely proportional to the spectral bandwidth of the light source deployed in the system. Figure 4 shows the ASE spectra and, correspondingly, the evolution of the 3-dB linewidth as well as the central wavelength as a function of injection current. At a lower current of 40 mA, the emission is dominated by the GS of the QDs centred at 1275 nm, with a 3-dB bandwidth of 103 nm. A higher current excites the ES1 peak into saturation, and the spectrum is broadened sharply to higher energies (shorter wavelengths) due to the sequential carrier filling of the QD's first excited state (ES1). At a current of 200 mA, the ASE from GS and ES1 is well balanced, giving rise to a maximum 3-dB bandwidth of 103 nm centred at 1275 nm. With the further increase of the current above 200 mA, there is a trade-off between the axial resolution and output power. As a result, at 400 mA, although the single facet output power of 3.8 mW was obtained, the predicted axial resolution has been significantly reduced to 18.9 µm. Under the optimised condition at 220 mA, a good axial resolution of 53 µm was realised with a reasonable corresponding output power of 1.56 mW.

Figure 5(a) depicts an example of self-coherence function derived from the ASE spectrum (shown in the inset of Fig. 5(a)) where the 3-dB bandwidth of 103 nm is centred at 1276 nm. A minimum axial resolution of 5.3 µm is predicted. Undesirable sidelobes are observed due to the non-Gaussian ASE spectrum; this introduces a penalty to axial resolution and could be minimised by reducing the ASE spectrum dips between the GS and ES1. Figure 5(b) shows the dependence of predicted axial resolution and measured single facet output power on the injection current. As seen, while a maximum predicted axial resolution of 5.2 µm was achieved at 200 mA, the corresponding output power was less than 0.5 mW. With the increase of the current above 200 mA, there is a trade-off between the axial resolution and output power. As a result, at 400 mA, although a single facet output power of 3.8 mW was obtained, the predicted axial resolution has been significantly reduced to 18.9 µm. Under the optimised condition at 220 mA, a good axial resolution of 53 µm was realised with a reasonable corresponding output power of 1.56 mW.

In summary, we have demonstrated a RT electrically pumped CW InAs/GaAs QD SLD directly grown on a silicon substrate. As assessed in this work, the device performance is inferior when compared to native GaAs substrates previously reported in terms of output power and spectrum bandwidth. Output power can be increased in future devices by increasing the overall dot density through high-density QD growth combined with its multilayer growth [35] and the use of p-type modulation doping of the active region [36]. Strategies to further improve the spectral bandwidth are multifaceted: chirped QDs [37], QD intermixing [38], and hybrid quantum well / QD structures [39].

In summary, we have demonstrated a RT electrically pumped CW InAs/GaAs QD SLD directly grown on a silicon substrate with significantly improved CW performance compared to previous reports. The high-quality III-V epilayers and the use of InAs QDs as the active region lead to a maximum 3-dB linewidth of 103 nm centred at 1275 nm together with a maximum single facet output power over 3.8 mW from a narrow-ridge tilted waveguide AR-coating free device. Assessment of this silicon

Fig. 3. LIV characteristics of a 2.2 µm x 4 mm InAs/GaAs QD SLD grown on a silicon substrate under CW operation.
Based SLD for OCT application indicates that an axial resolution of 0.3 μm should be possible with a corresponding single facet output power of 0.66 mW. The successful demonstration of high-performance QD SLDs on silicon substrates opens the way for exploiting low-cost, miniaturised OCT for medical diagnosis.

Acknowledgments. YL and VC thank EPSRC for funding their PhD studies. SC thanks the Royal Academy of Engineering (RAEng) for funding his Research Fellowship.

Disclosure. The authors declare no conflict of interest.

REFERENCES
REFERENCES


